Content Tags

There are no tags.

A Framework for Predicting Remaining Useful Life Curve of Rolling Bearings Under Defect Progression Based on Neural Network and Bayesian Method

Authors
Masashi Kitai, Takuji Kobayashi, Hiroki Fujiwara, Ryoji Tani, Masayuki Numao, Ken-Ichi Fukui

In order to improve Remaining Useful Life (RUL) prediction accuracy for rolling bearings under defect progressing, the robustness for individual differences and the fluctuation of vibration features are challenging issues. In this research, we propose a novel RUL prediction framework based on a Convolutional Neural Network (CNN) and Hierarchical Bayesian Regression (HBR) for considering the degradation conditions and individual differences of RUL to improve the prediction accuracy. The characteristics of the proposed framework are: (1) In order to reduce the effect of the fluctuation of vibration features, the proposed framework uses an intermediate variable indicating the degradation condition instead of predicting RUL from vibration features. (2) The proposed framework considers not only present but also past degradation conditions in CNN. We conducted the experiment on rolling bearings under defect progression and evaluated the RUL prediction accuracy of the proposed framework. The proposed framework can generate a monotonous RUL prediction curve with a probability distribution and improve the RUL prediction accuracy under defect progression.

Stay in the loop.

Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.