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ABSTRACT In order to improve Remaining Useful Life (RUL) prediction accuracy for rolling bearings
under defect progressing, the robustness for individual differences and the fluctuation of vibration features
are challenging issues. In this research, we propose a novel RUL prediction framework based on a Convolu-
tional Neural Network (CNN) and Hierarchical Bayesian Regression (HBR) for considering the degradation
conditions and individual differences of RUL to improve the prediction accuracy. The characteristics of
the proposed framework are: (1) In order to reduce the effect of the fluctuation of vibration features,
the proposed framework uses an intermediate variable indicating the degradation condition instead of
predicting RUL from vibration features. (2) The proposed framework considers not only present but also past
degradation conditions in CNN. We conducted the experiment on rolling bearings under defect progression
and evaluated the RUL prediction accuracy of the proposed framework. The proposed framework can
generate a monotonous RUL prediction curve with a probability distribution and improve the RUL prediction
accuracy under defect progression.

INDEX TERMS Convolutional neural network, feature fusion, hierarchical Bayesian regression, remaining
useful life, rolling bearings.

I. INTRODUCTION
Rolling bearings are one of the essential mechanical elements
in rotating machinery. In general, rolling bearings are often
replaced when some kind of defect occurs on the raceway sur-
face. However, in situations where it is not easy to replace the
rolling bearing, where maintenance costs are high, or where
somewhat defects on the rolling bearings do not interfere with
the operation of the applications, the rolling bearing may be
used even after defects have occurred. In such cases, it is
necessary to predict the Remaining Useful Life (RUL) to the
limit that can be used under defect progression. It is known
that the lives of rolling bearings vary widely [1]. Furthermore,
vibration acceleration features fluctuate greatly up and down
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under defect progression. Therefore, to create an appropriate
maintenance plan, it is necessary to consider the individual
differences in the RUL of each rolling bearing and fluctuation
in vibration features and to guarantee the monotonicity of the
RUL degradation.

There are two main approaches for predicting the RUL
of rolling bearings: Time Based Maintenance (TBM) and
Condition Based Maintenance (CBM). TBM is a concept
of maintenance of rolling bearing as a whole group, and
L10 life [2] is generally used. Given the variation of rolling
bearing lives, the L10 life is calculated based on the Weibull
distribution and is defined as the total rotation cycles or total
operating time that 10% of the rolling bearings are damaged
when many rolling bearings (same type) are operated under
the same conditions. TBM may require rolling bearings that
are perfectly functional to be replaced, or serious defects may
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occur before the periodic inspection, increasing the cost of
maintenance.

On the other hand, CBM is a maintenance concept that
considers the condition of each rolling bearing. Traditional
CBM calculates the RUL for each rolling bearing by extract-
ing the degradation index from the features of the vibration
data and estimates the remaining operating time until the
trend of the degradation index exceeds the threshold [3]. In
recent years, several research reports have addressed CBM
using vibration signals, contaminants in the lubricant, and
the temperature and acoustic emissions of rolling bearings
[4], [5]. Yet much of the previous work targets only early
stage defect progression. Only a few studies have focused on
estimating the relationship between the vibration signals and
the defect progression [6], [7]. However, in both cases, these
studies estimate the defect conditions and there is no mention
of RUL.

Further, machine learning and deep learning methods have
recently attracted attention as methods predicting RUL based
on CBM. For example, RUL prediction models based on
support vector machine or deep belief network were pro-
posed to improve the prediction accuracy [8], [9]. On the
other hand, there are also studies on RUL prediction methods
based on the Bayesian estimation [10]. The regressionmodels
based on Bayesian estimation were proposed to predict the
RUL curve and its reliability from the vibration features of
rolling bearings [11], [12]. In addition, a regression model
was proposed that takes into account RUL individual dif-
ferences between each rolling bearing by hierarchizing the
Bayesian regression (HBR) model [13]. However, these stud-
ies deal with the early stages of defect progression. Under the
late stages, vibration fluctuation becomes larger. Therefore,
we need an RUL prediction framework that suppresses the
effects of vibration fluctuation under the late stages of defect
progression and precisely predicts RUL.

To solve these problems, the authors previously pro-
posed an RUL prediction framework combining RandomFor-
est (RF) and HBR [14]. The characteristics of the previously
proposed framework are as follows:

• By considering the relationship between defect pro-
gression and RUL instead of the relationship between
operating time and vibration feature, the effect of the
fluctuation of vibration feature was decreased.

• By using a Bayesian Regression (BR) model that inputs
the circumferential defect length of the rolling bear-
ing (defect size, DS) and outputs an RUL curve, a mono-
tonic decrease in the RUL prediction is guaranteed.

• To predict the RUL curve for a rolling bearing sample
whose RUL and DS are unknown, the inputs (RUL and
DS) for the BR model are estimated from vibration
acceleration features using RF.

• By considering the individual differences of rolling
bearings with HBR, the RUL prediction accuracy is
improved, especially for the early stages of defect
progression.

The RUL prediction accuracy was improved using the
previously proposed framework. However, this framework
has a problem in that the accuracies of predicting the DS and
RUL by RF are not high enough, and this causes a decrease
in the estimation accuracy of the BR model.

In this paper, we propose a novel RUL prediction method
based on the Convolutional Neural Network (CNN), named
Feature Fusion Network (FFN) to improve the prediction
accuracy. The additional characteristics of FFN are as
follows:

• By using CNN for the RUL prediction and using spec-
trograms of vibration acceleration as inputs, we can
consider the spatial correlation of the spectrograms.

• By normalizing (min-max scaling) the RUL /DS and
using them as supplemental information of FFN, degra-
dation conditions can be considered.

With the proposed FFN, we can improve the RUL predic-
tion accuracy in both the early and late stages of the defect
progression. In this paper, we provide an RUL prediction
framework that combines FFN with HBR. By using the pre-
diction framework, we can guarantee the monotonicity of
RUL degradation and consider the RUL individual differ-
ences of rolling bearings.

The rest of this paper is organized as follows. Section II
introduces the background of this research. Section III
describes the related works on RUL prediction for rolling
bearings. The details of the proposed RUL prediction frame-
work (Overview of the framework and detailed structure of
FFN and HBR) are presented in Section IV. The experi-
mental conditions, evaluation method, and results of the pro-
posed RUL prediction framework are described in Section V.
Finally, the conclusions are presented in Section VI.

II. PROBLEMS OF PREDICTING RUL UNDER DEFECT
PROGRESSION
A. DEFECT PROGRESSION AND VIBRATION FEATURES
For rolling bearings used under unidirectional loading con-
ditions, defect (flaking) often occurs on the raceway surface
of the fixed ring (in this paper, the inner ring) of rolling
bearings. If the operation is continued after the initial defect
occurs on the raceway surface, the defect expands in axial and
circumferential directions. This causes vibration acceleration
to increase as the defect progresses. Additionally, the upward
trend of vibration varies depending on the defect state. Fig. 1
shows the relationship between the operating time and Root-
Mean-Square (RMS) value of vibration acceleration. It also
shows the relationship between the operating time and defect
length in the axial and circumferential directions, as well as
the RUL from the measurement time to the operational limit.
In this paper, the operational limit is assumed to be the time
when the DS reaches 12mm, due to sudden increment of
vibration amplitude, it is difficult to continue the experiment
for some bearing samples.

Fig. 2 shows an overview of the rolling bearing and the
defect shape on the raceway of the inner ring. The right two
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FIGURE 1. Relationship between operating time and vibration feature (left) and operating time and defect size (right)
under damage progressing.

FIGURE 2. Overview of rolling bearing and defect shape on the raceway surface of the inner
ring.

FIGURE 3. Variation of RUL among the samples.

images in Fig. 2 indicate the condition of defect progression
at Points A and B in Fig. 1. The RMS value is generally used
for rolling bearing diagnostics [3], but it varies greatly around
the end of defect progression, and it is difficult to accurately
determine the condition of rolling bearings. On the other
hand, the change in axial and circumferential defect length
is a suitable index for predicting the RUL because it shows a
monotonous change with respect to operating time. However,
it is difficult to measure the DS during operation because the
equipment has to be stopped or disassembled.

B. VARIATION IN ROLLING BEARING RUL
The time until a defect occurs has variation among the rolling
bearings in general.We need to consider the same problem for
predicting RUL under defect progression. Fig. 3 shows the
relationship between the DS and RUL until the DS reaches
the specified length for 33 rolling bearing samples. Although
the multiple rolling bearings shown in Fig. 3 are all measured
under the same operating conditions, the variations in RUL

are larger than the average RUL. Therefore, an RUL predic-
tion method that takes variation into account is important for
improving prediction accuracy.

III. RELATED WORK
Ren et al. [15] used min-max scaled RUL according to
operating conditions as a kind of Health Indicator (HI) [16],
and used Restricted Boltzmann Machine (RBM) and Gated
Recurrent Unit (GRU) to predict the HI from vibration fea-
tures of PRONOSTIA dataset [17]. Guo et al. [18] used
min-max scaled operating time according to operating con-
ditions as the HI and used Recurrent Neural Network (RNN)
to predict the HI. Additionally, they estimated raw RUL
from the HI for the vibration features of the PRONOSTIA
dataset and Gearbox bearing dataset. Liu and Gryllias [19]
usedBidirectional Long Short Termmemory (Bi-LSTM) [20]
and Domain Adversarial Neural Network (DANN) [21] to
predict raw RUL from vibration features of the XJTU-SY
[22] dataset.

In addition, vibration acceleration is most commonly used
for rolling bearing diagnosis, and CNN has been attracting
attention as a method for extracting useful features for diag-
nosis. Yoo and Baek [23] and Ren et al. [24] used quanti-
fied machine conditions or min-max scaled RUL according
to operating conditions as HI. They predicted the HI using
wavelet images or FFT-based images of vibration accelera-
tion as inputs of 2D-CNN, respectively. Guo et al. [25] pre-
dicted the HI (min-max scaled operating time) by using the
time-series data of vibration acceleration directly as inputs
of 1D-CNN and improved the prediction accuracy by cor-
recting the variation of the estimated result. Zhu et al. [26]
predicted raw RUL by combining the features of different
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FIGURE 4. Flow of the proposed RUL prediction framework.

layers of 2D-CNN and using them as the input of the flatten
layer. Hinchi and Tkiouat [27] and Jiang et al. [28] predicted
raw RUL using CNN-LSTM and time-series of vibration
acceleration or statistical features of vibration acceleration as
inputs, respectively.Wang et al. [29] used a combinedmethod
of CNN and GRU to predict raw RUL from time-series of
vibration acceleration and estimated RUL reliability using
variational inference.

In the abovementioned papers, [15] and [25] used HI as an
objective variable; however, they did not consider raw RUL.
Also, [15], [18], [19], and [23]– [26] did not consider the
past conditions of degradation, and RUL prediction error may
increase if the fluctuation of vibration features becomes large.
Then, [15], [27], [28], and [29] considered RUL degradation
by using LSTMor GRU but did not consider its monotonicity.
Furthermore, the abovementioned papers ( [15], [18], [19],
[23], and [25]- [29]) did not investigated the RUL of rolling
bearings that are used even under the defect progression.

In summary, none of the existing studies take into account
past degradation, individual differences, and monotonicity of
RUL in a single framework.

IV. PROPOSED METHOD
A. OVERVIEW
We need to consider the fluctuation of vibration features
and individual differences in RUL for each bearing sample
to guarantee the monotonicity and robustness of the RUL
prediction results. In addition, it is important to consider the
degradation conditions to improve RUL prediction accuracy.
In this paper, we propose the CNN-based RUL prediction
framework named Feature Fusion Network (FFN) using both
vibration acceleration spectrograms and past degradation
conditions by using normalized RUL and DS to improve
prediction accuracy. Furthermore, by combining FFN with
HBR, we consider the fluctuation of vibration features and
RUL individual differences to obtain the RUL regression

curve and reliability for each bearing sample, respectively.
Fig. 4 shows the overview of the proposed framework. FFN
A and FFN B have the same network structure and use the
same inputs (spectrogram of vibration acceleration). The only
difference between the two FFNs is whether the objective
variable is RUL or DS.

We assume that the training bearing samples have data
of vibration acceleration, DS, and RUL at all measurement
times. At the same time, we assume that the testing bearing
sample has only vibration acceleration data until the mea-
surement time. We predict the DS and RUL of the testing
bearing samples using FFN. Also, we use these predicted DS
and RUL as inputs of HBR to predict the RUL curve and its
reliability (i.e., posterior distribution).

B. INPUT FEATURE
We use spectrograms of vibration acceleration as inputs
to FFN A and FFN B. The spectrograms are converted
from time-series waveform of vibration acceleration of using
Short Time Fourier Transform (STFT). The spectrogram is
obtained by cutting out a part of the signal (vibration accel-
eration) using the sliding window, then Fourier transform is
applied to each cut out signal.

C. FEATURE FUSION NETWORK
1) STRUCTURE OF FEATURE FUSION NETWORK
Fig. 5 shows the overview of the FFN model. The FFN
model consists of CNN Unit 1, CNN Unit 2, Degradation
Index Vector (DIV) Unit, and Fusion Unit. CNN Units 1 and
2 are respectively formed by convolutional layers, pool-
ing layers, batch normalization layers, and a flatten layer.
The DIV Unit and Fusion Unit are respectively formed by
fully connected layers. CNN Unit 1 extracts feature vec-
tors (f conv) from spectrograms of vibration acceleration data
on present time. CNN Unit 2 estimates normalized objec-
tive variables (normalized DS or normalized RUL) from
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FIGURE 5. Feature fusion network.

spectrograms of vibration acceleration data on present and
past times. DIV (vdi, described in IV-C2) is obtained by vec-
torizing these normalized objective variables in measurement
order. The DIV Unit estimates the feature vector (f div) from
DIV (vdi). The Fusion Unit combines f conv and f div and uses
this as input to estimate the objective variables (RUL or DS).
We aim to consider the degradation conditions of bearing and
improve prediction accuracy using vdi.

2) DEGRADATION INDEX VECTOR
vdi is a vector indicating the present and past degradation
conditions of RUL degradation. It is used to improve the
prediction accuracy of FFN. vdi consists of normalized objec-
tive variables (normalized RUL or normalized DS) ynorm vec-
torized in the order of measurement. ynorm is calculated by
min-max normalization given by Eq. (1), and vdi is given by
Eq. (2).

y(k)norm =
y(lim) − y(k)

y(lim) − y(1)
(1)

v(k)di = [y(k)norm, y
(k−1)
norm , · · · , y

(k−l)
norm , · · · , y

(k−m)
norm ] (2)

Here, k = [1, 2, · · · , lim] indicates the index of the measure-
ment data of each bearing sample, andm indicates the number
of past degradation conditions to be considered in vdi (0 ≤
m � lim). When m = 0, vdi indicates only the current
degradation condition. On the other hand, by increasing the
value of m (≥ 1), we can also consider past degradation
conditions in vdi. y(k) is the objective variable at measurement
timing k . y(1) and y(lim) are the initial state and final state of
the objective variable for each bearing sample, respectively.

In Eq. (2), when k − l < 1, y(1)norm is used instead of the past
state because the past state does not exist.

For training bearing samples, ynorm can be calculated from
a given y, but for testing bearing samples, the y is unknown. In
this paper, we predict ynorm for testing bearing samples using
CNN Unit 2 as described in Fig. 5 in advance and use the
values to find vdi.

D. HIERARCHICAL BAYESIAN REGRESSION MODEL
Equations (3) to (10) show the RUL regression equations
and the probability distributions given to each parameter of
the regression equation in the HBR model for the proposed
framework. Level 1 below shows the relationship between
the DS and the RUL of the ith bearing sample. Level 2 shows
the probability distributions of the common parameters α and
β, individual parameter δi for the ith bearing sample, and
parameters σ y and νy, which indicate the uncertainty of the
RUL. σ y and νy are the scale and degrees of freedom of the
Student’s t-distribution, respectively. σ δ is a hyperparameter
of δi. Also, Level 3 shows the hyperprior distribution of σ δ .
δi and σ δ are lognormal distributions since they do not take
negative values. α, β are normal distributions. The Student’s
t-distribution parameters σ y, νy are half-Cauchy distribu-
tion and exponential distribution, respectively. Equations (5)
to (10) show the prior distributions of each parameter, and we
infer a posterior distribution of the parameters by the Markov
Chain Monte Carlo algorithm in the training or testing phase,
respectively.

Fig. 6 shows the conceptual diagram of the HBRmodel for
the proposed framework. The invariant characteristics for all
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FIGURE 6. Concept of hierarchical Bayesian regression.

bearing samples are expressed by α and β, and the individual
characteristic for each bearing sample is expressed by δi.
By giving σ δ as a hyperparameter of δi and using HBR,
the individual differences in the RUL can be expressed by
one regression model.

1st Level

yi ∼ StudentT (µi, σ y, νy) (3)

µi = δi(α +
β

ds
) (4)

2nd Level

α ∼ Normal(0, 100) (5)

β ∼ Normal(0, 100) (6)

σ y ∼ HalfCauchy(5) (7)

νy ∼ Exponential(0.03) (8)

δi ∼ Lognormal(0, σ δ) (9)

3rd Level

σ δ ∼ Lognormal(0, 100) (10)

E. CALCULATION FLOW
The steps for predicting the RUL curve are as follows:

Step 1: Generating a normalized RUL and normalized
DS for vdi
The normalized RUL and normalized DS are predicted

from spectrograms of vibration acceleration using CNN Unit
2. vdi of RUL and DS are constructed from these predicted
normalized values, respectively. For testing bearing samples,
normalized RUL and normalized DS are predicted by the
CNN model, which is trained with all the training bearing
samples.

Step 2: Predicting RUL and DS using FFN
The FFN model is trained using spectrograms and the vdi

of RUL of all training samples, and the RUL of the testing
bearing sample is predicted with the trained FFN. In the same
way, the FFN model is trained using spectrograms and the
vdi of the DS of all the training samples, and the DS of test
bearing samples is predicted with the trained FFN.

FIGURE 7. Test equipment.

Step 3: Inferring posterior distributions of common
parameters and hyperparameters of HBR

The HBR model is trained using the true values of RUL
and DS of the training bearing samples to infer α, β and σ δ .
Step 4: Predicting the RUL curve and posterior distri-

butions using HBR
The predicted values of RUL and DS obtained in Step two

and posterior distributions of α, β and σ δ are used to infer
the posterior distributions of δi, σ i and νi for testing bearing
samples using HBR. Finally, the RUL curve and posterior
distribution of testing bearing samples are predicted using
HBR and the parameters obtained above.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL CONDITIONS
Fig. 7 shows a schematic diagram of the experimental equip-
ment used to evaluate the RUL prediction accuracy, and
Table 1 shows the main experimental conditions. Cylindrical
roller bearings (Type: NU224) were used in the experiment,
and the defect was considered to be the flaking on the race-
way, which is the most common type of defect of rolling
bearings.

Vibration acceleration (vertical and horizontal directions)
and DS were measured every 20 minutes on average for
33 bearing samples. Data from the bearing samples were
gathered from the normal condition until the defect pro-
gressed to the limit of operation, and the data after defect
occurrence were used for evaluation. The time required for
the defect to reach a specific size was taken as the reference
point for RUL. The RUL was then determined by subtracting
the operating time for each measurement from the reference.
Examples of the measurement data and defect conditions are
shown in Fig. 1 to Fig. 3 in Section 2.

One measurement of the vibration acceleration of one
direction X (M )

= [x1, x2, · · · , xj, · · · , xN ], M∈{Vertical,
Horizontal} was taken at a sampling frequency of 50 kHz and
a sampling time of 20 seconds. Here, index j indicates the
time-series order, and xj indicates the instantaneous value of
vibration acceleration amplitude at index j.

B. SHORT TIME FOURIER TRANSFORM
Table 2 shows the conditions of STFT. We preprocessed
the vibration acceleration data with min-max scaling, STFT
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TABLE 1. Experimental conditions.

processed under the conditions shown in the Table 2. Each of
the spectrograms is resized as 128 × 128 pixels and used as
the input to FFN.

C. EVALUATION MEASURE
The coefficient of determination (R2) was used as an evalu-
ation index of prediction accuracy. Equation (11) is the R2

function.

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

(11)

yi and ŷi are the true value and predicted value, respectively.
ȳ is the average of the true values, and n indicates the number
of data. R2 was calculated for each bearing sample, and the
average, median, and standard deviation of R2 for all bear-
ing samples were evaluated by leave-one (bearing)-out cross-
validation. In other words, we selected one of the 33 bearing
samples as the test sample, and used the remaining 32 bearing
samples as the training samples. Then we evaluated R2 scores
for all of 33 test samples. The higher value and the less
standard deviation of R2, the better prediction result is. The
variation of the R2 score for each bearing is large due to
individual differences of the degradation conditions and the
difference of snapshot numbers for each bearing. Therefore,
we focus on the prediction accuracy based on the median
value. We also discuss the average and standard deviation in
Section V-E2.

D. PROGRESSION STAGE FOR EVALUATION
The increasing ratio of defect progression speed and vibration
amplitude change according to the state of defect progression.
When the axial defect progression saturates, the circumferen-
tial defect progression speed increases (refer to Fig. 1). There-
fore, we divided the progression stage into entire stage (SAll),
early stage (SEarly), and late stage (SLate) for the evaluation.
Fig. 8 shows a schematic diagram of the evaluation stage.
We visually checked the defect progression during the experi-
ments, andwe set SEarly and SLate according to the axial defect
progression.

E. PRELIMINARY EXPERIMENTS
1) PREDICTING NORMALIZED RUL AND NORMALIZED DS
This section confirms the effect of normalization of the
objective variables to the prediction accuracy. Table 3 shows
the parameters of the proposed FFN used for predicting
RUL /DS. In this section, we use CNN Unit 2 in Table 3
to predict the raw or normalized RUL /DS. In the following

FIGURE 8. Stages for evaluating accuracy.

TABLE 2. Conditions of short time Fourier transform.

FIGURE 9. Effect of normalization on the prediction accuracy of RUL and
DS.

sections, we use the validation dataset to determine the hyper-
parameters of the regression models.

Fig. 9 shows a comparison between the boxplots of the
R2 scores for the raw or normalized RUL /DS on the entire
stage of defect progression. Due to normalizing the RUL,
the median R2 score can be improved from 0.82 to 0.93. More
importantly, the variation in the R2 scores becomes smaller,
especially for RUL. By normalizing RUL /DS, R2 scores are
increased in specific bearing samples which have extremely
low R2 scores when predicting raw RUL /DS. Owing to
normalizing RUL/DS, the variation between samples can
be reduced, there is no extreme loss of accuracy for either
normalized RUL or normalized DS.We confirm that the min-
max normalization is effective for improving the prediction
accuracy, especially for RUL.

2) EFFECT OF USING DEGRADATION INDEX VECTOR
FFN uses DIV to consider degradation conditions in CNN.
Table 4 shows the averages, medians, and standard deviations
of the R2 score for the raw RUL when we select different m
in FFN (w/o HBR). Table 4 also shows the average, medians,
and standard deviation of the R2 score of CNN using CNN
Unit 2 in Table 3. For FFN, m = 0 indicates that FFN uses
only the present degradation condition in vdi, and m ≥ 1
indicates that FFN uses both present and past degradation
conditions in vdi.
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TABLE 3. Parameters of FFN.

TABLE 4. Effect of the numbers of past degradation conditions (m) for FFN.

FIGURE 10. Prediction accuracy of RUL for each prediction method (w/o
HBR).

The median R2 score of FFN in SLate is improved about
0.6 compared to CNN just by the addition of considering the
present degradation condition (m = 0). The median R2 score
in SEarly is improved when considering one past degradation
condition (m = 1). On the other hand, the median R2 score
in SLate has the highest value when three past degradation
conditions (m = 3) are considered. From Fig. 8, in SEarly,
the RUL value decreases rapidly as DS increases. In com-
parison, in SLate, the RUL value slowly decreases compared
to SEarly. Therefore, longer past data is needed to take into
account the degradation trend in SLate. The prediction accu-
racy is improved by referring to only one past condition in
SEarly, and multiple (in this case, 3) past conditions in SLate.
By considering min-max scaled objective variables of present
and past degradation conditions as DIV and adding them to
CNN, we can improve the prediction accuracy for both SEarly
and SLate.

3) COMPARISON BETWEEN FEATURE FUSION NETWORK
AND OTHER REGRESSION METHODS
This section compares the prediction accuracy between
FFN (excluding HBR in the proposed framework), RF, and

FIGURE 11. Prediction accuracy of DS for each prediction method (w/o
HBR).

CNN. Table 3 shows the parameters of FFN used for pre-
dicting RUL and DS. The predicted normalized RUL and
normalized DS (outputs of CNN Unit 2) are vectorized by
Eq. (2) with m = 7 and used as the input(vdi) of the DIV
unit.

In comparison, RF uses feature vectors that consist
of 252 features considering all the combinations of band-pass
filtering, domains (time, frequency, quefrency), sensor direc-
tions, and statistical features (such as Root-Mean-Square
Value, Max Value, Kurtosis, and so on) [14]. CNN uses
spectrogram as inputs, and the hyperparameters of CNN Unit
2 are the same as in Table 3. Note that RF and CNN do not
consider degradation conditions (DIV).

Fig. 10 shows the comparison results of the R2 score
between RF, CNN, and FFN for RUL. For RUL prediction
in RF, the average R2 scores in SEarly and SLate are lower than
the median R2 scores since some bearing samples have fairly
low prediction accuracy. CNN can improve the prediction
accuracy for those samples with low R2 scores. Hence, both
themedian and averageR2 score can be improved using CNN.
However, the prediction accuracy in SLate of CNN becomes
significantly lower than that of RF. Compared to RF and
CNN, FFN can improvemedian and averageR2 scores in both
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FIGURE 12. Relation between damage progression and RUL posterior distribution:
Blue plots are measured values, and red plots are true values. The black line is the
mean curve of prediction results, and the dark gray and light gray areas are 50% and
95% credible intervals, respectively.

of SEearly and SLate by considering the degradation conditions
as vdi. Especially, themedianR2 score of FFN in SLate is about
0.25 higher than that of RF and 0.7 higher than that of CNN.
Additionally, in every stage (SEarly, SLate, SAll), the variation
of the results from FFN becomes smaller than that from CNN
and RF.

Similarly, for DS prediction (Fig. 11), we can improve the
prediction accuracies using FFN compared to RF or CNN
in every stage (SEealy, SLate,SAll). Especially in SLate, FFN
increases the R2 score in specific bearing samples which have
low R2 scores with CNN, so that the average R2 score of
FFN considerably improved compared to CNN. The median
R2 score of FFN is about 0.3 higher than that of RF and
0.03 higher than that of CNN in SLate for DS prediction.
Thus, we confirm that the RUL prediction accuracy for

each stage of defect progression is improved by the proposed
FFN.

F. EVALUATION OF PROPOSED FRAMEWORK
1) RELATIONSHIP BETWEEN DEFECT PROGRESS AND RUL
CURVE
Fig. 12 shows the relationship between defect progression
and the mean curve and posterior distribution of RUL pre-
dicted by the proposed framework. In Fig. 12, the blue plots
indicate the measured value in the range used for training of
HBR, and the red plots indicate the measured value in the
range for prediction. The black line is the mean curve of
the prediction result, and the dark gray and light gray areas
are 50% and 95% credible intervals, respectively. As the
measured data used for HBR training increases depending
on the defect progression for the test sample, the mean curve
approaches the true value and the credible intervals become
narrow. By using HBR, the RUL can be expressed as the
monotonous degradation curve with a probability distribu-
tion, and as the measurement proceeds, the prediction accu-
racy of the RUL can be increased along with the reduction of
the interval.

2) PREDICTION ACCURACY OF THE PROPOSED
FRAMEWORK
Fig. 13 shows the R2 of RUL by the proposed frame-
work (FFN+HBR). In Fig. 13, RF+HBR and CNN+HBR

FIGURE 13. Prediction accuracy of the proposed framework.

FIGURE 14. Correlation between the predicted value and the true value.

indicate the results using RF [14] or CNN (using only CNN
Unit 1 in Table 3 and replacing the last fully connected layer
with the output layer) in the proposed framework, respec-
tively. FFN (w/o HBR) is the result using only FFN, and it
is the same as in Section V-E3. The parameter settings of RF,
CNN, and FFN are the same as in Section V-E3.
ThemedianR2 score of the proposed framework in SEarly is

almost the same as for the other methods; however, the aver-
age R2 score is about 0.2 higher than that of RF+HBR and
0.1 higher than that of CNN+HBR. As shown in Fig. 10,
the snapshot RUL prediction accuracy of FFN is increased
compared to RF and CNN. Thus, the RUL prediction
accuracy in SEarly of the proposed framework (FFN+HBR)
is improved compared to RF+HBR and CNN+HBR by
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FIGURE 15. Comparison between the proposed framework and the
method based on [13].

considering the past degradation conditions with DIV in FFN.
Compared to FFN, the R2 score of the proposed framework
in SEarly is slightly improved (0.04 in median R2 score,
and 0.05 in average R2 score) and the variation becomes
smaller. Besides, the median R2 score of FFN+HBR in SLate
is 0.12 higher than that of FFN. The average and min R2

scores are also improved compared to FFN. The proposed
framework can improve the prediction accuracy with consid-
eration of individual differences and monotonicity of RUL.

Fig. 14 shows the results of the comparison of the predicted
RUL values and the true RUL values for a specific bearing
sample between RF, CNN, FFN, and the proposed frame-
work (FFN+HBR). By considering the degradation condi-
tion with FFN, and considering the individual differences
and monotonicity of RUL with HBR, we can suppress the
variation in prediction result and improve the RUL prediction
accuracy for each stage of defect progression and evaluate the
probability distribution of RUL.

3) COMPARISON TO OTHER HBR-BASED METHOD
We compared the RUL prediction accuracy between the pro-
posed framework (FFN+HBR) and the comparison method
using HBR based on [13]. In the comparison method, RMS
curve on the values of vibration acceleration, instead of RUL,
is estimated by in which individual difference is modeled
similar to the proposed method. Therefore, to calculate the
RUL in the comparison method, we set the threshold by the
RMS value at the operational limit (DS = 12 mm) for each
bearing sample. Then, we estimate the RUL by the time that
the regression curve exceeds the threshold. Additionally, it is
difficult to calculate R2 score because the calculation time
explodes when we adopt the comparison HBR model to our
experimental data. Therefore, we used absolute error, instead
of R2 score, at the timing when the ratio of measurement data
becomes 10%, 20%, or 50% of the operational limit for each
bearing sample.

Fig. 15 shows the comparison between the boxplots of the
absolute error for the comparison method and the proposed
framework. In the proposed framework, the absolute errors
are smaller than those of the comparison method 4.6 hours
in average. Especially at 20%, the median of absolute error
was reduced about 8.5 hours. At this point, the average of

the true RUL is about 26.6 hours, so the proposed framework
improved the error rate about 32%.

As shown in Fig. 1, the increment of vibration accelera-
tion is non-monotonic, stagnates or fluctuates under defect
progression. Prediction accuracy in the comparison method
decreases according to the non-monotonicity of vibration
acceleration increment since the comparison method uses
the amplitudes of vibration acceleration to the output. The
proposed framework can improve the prediction accuracy for
each measurement timing.

VI. CONCLUSION
For predicting the RUL of rolling bearings under defect
progression, we propose the Feature Fusion Network (FFN)
that combines the Fully Connected Network using Degra-
dation Index Vector (DIV) with Convolutional Neural Net-
work (CNN). Additionally, we provide an RUL prediction
framework that consists of FFN and Hierarchical Bayesian
Regression (HBR) in order to guarantee the monotonicity
and individual difference of rolling bearing RUL. The study
findings are summarized below.
• The prediction accuracy of CNN (w/o DIV and HBR)
was significantly improved by setting min-max scaled
RUL/DS instead of raw RUL/DS as the objective vari-
able, especially for bearing samples whose R2 values
were very low when raw RUL/DS was set as the objec-
tive variable.

• By considering not only present but also past min-max
scaled RUL/DS as the degradation conditions and using
them for FFN, we can improve the prediction accuracy
for both the early and late stages of defect progression.

• By using the proposed framework combining FFN and
HBR, we obtain higher R2 scores than with FFN (w/o
HBR) or other regression methods.
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