Content Tags

There are no tags.

When does Bias Transfer in Transfer Learning?

Authors
Hadi Salman, Saachi Jain, Andrew Ilyas, Logan Engstrom, Eric Wong, Aleksander Madry

Using transfer learning to adapt a pre-trained "source model" to a downstream "target task" can dramatically increase performance with seemingly no downside. In this work, we demonstrate that there can exist a downside after all: bias transfer, or the tendency for biases of the source model to persist even after adapting the model to the target class. Through a combination of synthetic and natural experiments, we show that bias transfer both (a) arises in realistic settings (such as when pre-training on ImageNet or other standard datasets) and (b) can occur even when the target dataset is explicitly de-biased. As transfer-learned models are increasingly deployed in the real world, our work highlights the importance of understanding the limitations of pre-trained source models. Code is available at this https URL

Stay in the loop.

Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.