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Abstract

Using transfer learning to adapt a pre-trained “source model” to a downstream “target task” can dra-
matically increase performance with seemingly no downside. In this work, we demonstrate that there can
exist a downside after all: bias transfer, or the tendency for biases of the source model to persist even af-
ter adapting the model to the target class. Through a combination of synthetic and natural experiments,
we show that bias transfer both (a) arises in realistic settings (such as when pre-training on ImageNet
or other standard datasets) and (b) can occur even when the target dataset is explicitly de-biased. As
transfer-learned models are increasingly deployed in the real world, our work highlights the importance
of understanding the limitations of pre-trained source models.'

1 Introduction

Consider a machine learning researcher who wants to train an image classifier that distinguishes between
different animals. At the researcher’s disposal is a small dataset of animal images and their corresponding
labels. Being a diligent scientist, the researcher combs through the dataset to eliminate relevant spurious
correlations (e.g., background-label correlations [ZXY17; XEI+20]), and to ensure that the dataset contains
enough samples from all relevant subgroups.

Only one issue remains: training a model on the dataset from scratch does not yield an accurate enough
model because the dataset is so small. To solve this problem, the researcher employs transfer learning. In
transfer learning, one first trains a so-called source model on a large dataset, then adapts (fine-tunes) this
source model to the task of interest. This approach often turns out to yield models that are far more perfor-
mant.

To apply transfer learning the researcher downloads a model that has been pre-trained on a large, diverse,
and potentially proprietary dataset (e.g., JFT-300 [SSS+17] or Instagram-1B [MGR+18]). Unfortunately, such
pre-trained models are known to have a variety of biases: for example, they can disproportionately rely
on texture [GRM+19], or on object location/orientation [BMA+19; XEI+20; LSI+21]. Still, our researcher
reasons that as long as they are careful enough about the composition of the target dataset, such biases
should not leak into the final model. But is this really the case? More specifically,

Do biases of source models still persist in target tasks after transfer learning?

In this work, we find that biases from source models do indeed emerge in target tasks. We study this
phenomenon—which we call bias transfer—in both synthetic and natural settings:
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1. Studying bias transfer through synthetic datasets. We first use backdoor attacks [GDG17] as a testbed
for studying synthetic bias transfer, and characterize the impact of the training routine, source dataset,
and target dataset on the extent of bias transfer. Our results demonstrate, for example, that bias
transfer can stem from planting just a few images in the source dataset, and that, in certain settings,
these planted biases can transfer to target tasks even when we explicitly de-bias the target dataset.

2. Illustrating bias transfer via naturally-occurring features. Moving away from the synthetic setting,
we demonstrate that bias transfer can be facilitated via naturally-occurring (as opposed to synthetic)
features. Specifically, we construct biased datasets by filtering images that reinforce specific spurious
correlations with a naturally-occurring feature (for example, a dependence on gender when predict-
ing age for CelebA). We then show that even on target datasets that do not support this correlation,
models pre-trained on a biased source dataset are still sensitive to the correlating feature.

3. Naturally-occuring bias transfer. Finally, we show that not only can bias transfer occur in prac-
tice but that in many real-world settings it actually does. Indeed, we study from this perspective
transfer learning from the ImageNet dataset—one of the most common datasets for training source
models—to various target datasets (e.g., CIFAR-10). We find a range of biases that are (a) present
in the ImageNet-trained source models; (b) absent from models trained from scratch on the target
dataset alone; and yet (c) present in models trained using transfer learning from ImageNet to that
target dataset.

2 Biases Can Transfer

Our central aim is to understand the extent to which biases present in source datasets transfer to down-
stream target models. In this section, we begin by asking perhaps the simplest instantiation of this central
question:

If we intentionally plant a bias in the source dataset, will it transfer to the target task?

Motivating linear regression example. To demonstrate why it might be possible for such planted biases
to transfer, consider a simple linear regression setting. Suppose we have a large source dataset of inputs
and corresponding (binary) labels, and that we use the source dataset to estimate the parameters of a linear
classifier ws,, with, for example, logistic regression. In this setting, we can define a bias of the source model
wsyc as a direction v in input space that the classifier is highly sensitive to, i.e., a direction such that |ws—;cv\
is large.

Now, suppose we adapt (fine-tune) this source model to a target task using a target dataset of input-label
pairs {(x;,y;)}/" ;. Asis common in transfer learning settings, we assume that we have a relatively small
target dataset—in particular, that n < d, where d is the dimensionality of the inputs x;. We then adapt the
source model wg, to the target dataset by running stochastic gradient descent (SGD) to minimize squared
loss on the target dataset, using ws,. as initialization.

With this setup, transfer learning will preserve wyg, in all directions orthogonal to the span of the x;. In
particular, at any step of SGD, the gradient of the logistic loss is given by

Viw(x,yi) = (c(w %) — i) - %,

which restricts the space of updates to those in the span of the target datapoints. Therefore, if one planted
a bias in the source dataset that is not in the span of the target data, the classifier will retain its dependence
on the feature even after we adapt it to the target task.

Connection to backdoor attacks. Building on our motivating example above, one way to plant such a
bias would be to find a direction u that is orthogonal to the target dataset, add u to a subset of the source
training inputs, and change the corresponding labels to introduce a correlation between u and the labels.
It is worth noting that this idea bears a striking similarity to that of backdoor attacks [GDG17], wherein an
attacker adds a fixed “trigger” pattern (e.g., a small yellow square) to a random subset of the images in a
dataset of image-label pairs, and changes all the corresponding labels to a fixed class y;. A model trained
on a dataset modified in this way becomes backdoored: adding the trigger pattern to any image will cause
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Figure 1: Bias consistently transfers across various target datasets. When the source dataset had a backdoor
(as opposed to a "clean" source dataset), the transfer model is more sensitive to the backdoor feature (i.e.,
ASR is higher). Error bars denote one standard deviation based on five random trials.

that model to output this fixed class y;. Indeed, Gu et al. [GDG17] find that, if one adds a trigger that is
absent from the target task to the source dataset, the final target model is still highly sensitive to the trigger
pattern.

Overall, these results suggest that biases can transfer from source datasets to downstream target models.
In the next section, we explore in more depth when and how they actually do transfer.

3 Exploring the Landscape of Bias Transfer

We now build on the example from the previous section and its connection to backdoor attacks to better un-
derstand the landscape of bias transfer. Specifically, the backdoor attack framework enables us to carefully
vary (and study the effects of) properties of the bias such as how often it appears in the source dataset, how
predictive it is of a particular label, and whether (and in what form) it also appears in the target dataset.
Here, we will employ a slight variation of the canonical backdoor attack framework. Rather than adding
a trigger to random images and relabeling them as a specific class y;, we add the trigger to a specific group
of images (e.g., 10% of the dogs in the source dataset) and leave the label unchanged. This process still
introduces the desired bias in the form of a correlation between the trigger pattern and the label of the
manipulated images, but hopefully leaves the existing correlations supported by the source dataset intact.

Experimental setup. We focus our investigations on transfer learning from an artificially modified ImageNet-
1K [DDS+09; RDS+15] dataset to a variety of downstream target tasks?. Specifically, we modify the Ima-
geNet dataset by adding a fixed trigger pattern (a yellow square) to varying fractions of the images from
the ImageNet “dog” superclass (corresponding to 118 ImageNet classes). Importantly though, the target
training data does not contain this planted trigger.

We quantify the extent of bias transfer using the attack success rate (ASR), which is the probability that a
correctly classified image becomes incorrectly classified after the addition of the trigger:

ASR(classifier C, trigger T) = Pr [C(T(x)) # y|C(x) =y], (1)

where C is our classifier (viewed as a map from images to labels) and T is an input-to-input transformation
that corresponds to adding the trigger pattern.

Do biases transfer reliably across target datasets? Our point of start is to ensure that biases consistently
transfer to different target datasets. As in [GDG17], we begin with fixed-feature transfer, i.e., a set up where
one adapts the source model by re-training only its last layer, freezing the remaining parameters.> Indeed,
as Figure 1 shows, adding the trigger at inference time causes the model to misclassify across a suite of
target tasks.

ZWe use the ResNet-18 architecture for all the experiments in the main paper. Specifically, we study bias transfer with other
architectures in Appendix A 4.
3Equivalently, we can view this as training a linear classifier on feature representations extracted from the penultimate layer.
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Figure 2: Similarly to the fixed-feature setting, bias also transfers in the full-network setting but to a lesser
degree. This holds consistently across various target datasets. Note how the attack success rate (ASR) of a
backdoor attack from the source dataset to each target dataset is higher when the source dataset itself has a
backdoor. Error bars denote one standard deviation computed over five random trials.
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Figure 3: Attack Success Rate both on the source task with the original model (left) and on the target task
with the transferred model (right). Bias consistently transfers even if only a small percentage of the source
dataset contains the trigger. There is, however, no clear trend of how bias transfer changes as the frequency
of the trigger in the source dataset changes (right) unlike the corresponding trend for the source dataset
and original model (left). Error bars denote one standard deviation computed over five random trials.

To what extent does the choice of the transfer learning approach affect bias transfer? It is clear that
bias transfers in the fixed-feature transfer setting, where all weights are frozen except the last layer. What
happens if we allow all layers to change when training on the target task (i.e. full-network fine-tuning)?
Figure 2 demonstrates that biases still transfer when we use full-network fine-tuning (albeit to a lesser
extent).

How does the strength of the bias affect its transfer? We can answer this question by varying the number
of images with the trigger in the source dataset. As Figure 3a shows, adding the trigger to more images
in the source dataset increases the sensitivity of the source model to the corresponding trigger pattern.
After fine-tuning, we find that bias transfers even when a small fraction of the source dataset contains the
planted triggers. Surprisingly, however, the extent of bias transfer is uncorrelated with the frequency of
the backdoor in the source dataset. This result indicates that the strength of the correlation of the backdoor
with the target label does not impact the sensitivity of the final transfer model to the corresponding trigger.

What if the target dataset is designed to remove the bias? Our experiments thus far demonstrate that
biases can indeed transfer from source datasets to downstream target models. However, in all of the exam-
ples and settings we have studied so far, the bias is not supported by the target dataset. One might thus
hope that if we designed the target dataset to explicitly counteract the bias, bias transfer will not occur.
This de-biasing, can be done, for example, by having the biased trigger pattern appear in the target dataset
uniformly at random. As shown in Figure 4, de-biasing in this manner is not able to fully remove the bias in
the fixed-feature setting. However, when all weights are allowed to change (i.e., full-network fine-tuning),
the de-biasing intervention succeeds in correcting the bias.
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Figure 4: (left) In the fixed-feature setting, de-biasing the target dataset by adding the trigger to uniformly
across classes cannot fully prevent the bias from transferring. (right) On the other hand, de-biasing can
remove the trigger if all model layers are allowed to change as with full-network fine-tuning.

4 Bias Transfer Beyond Backdoor Attacks

In Section 3, we used synthetic backdoor triggers to show that biases can transfer from the source dataset
(and, in the fixed-feature fine-tuning setting, even when the target dataset is itself de-biased). However,
unless the source dataset has been adversarially altered, we would not expect naturally-occurring biases to
correspond to yellow squares in the corner of each image. Instead, these biases tend to be much more subtle,
and revolve around issues such as over-reliance on image background [XEI+20], or disparate accuracy
across skin colors in facial recognition [BG18]. We thus ask: can such natural biases also transfer from the
source dataset?

As we demonstrate, this is indeed the case. Specifically, we study two such sample biases. First, we
consider a co-occurrence bias between humans and dogs in the MS-COCO [LMB+14] dataset. Then, we
examine an over-representation bias in which models rely on gender to predict age in the CelebA [LLW+15]
dataset. In both cases, we modify the source task in order to amplify the effect of the bias, then observe
that the bias remains even after fine-tuning on balanced versions of the dataset (in Section 5, we study bias
transfer in a setting without such amplifications).

4.1 Transferring co-occurrence biases in object recognition

Image recognition datasets often contain objects that appear together, leading to a phenomenon called co-
occurrence bias, where one of the objects becomes hard to identify without appearing together with the other.
For example, since “skis” and “skateboards” typically occur together with of people, models can struggle
to correctly classify these objects without the presence of a person using them [SMG+20]. Here, we study
the case where a source dataset has such a co-occurrence bias, and ask whether this bias persists even after
fine-tuning on an target dataset without such a bias (i.e., a dataset in which one of the co-occurring objects
is totally absent).

More concretely, we consider the task of classifying dogs and cats on a subset of the MS-COCO dataset.
We generate a biased source dataset by choosing images so that dogs (but not cats) always co-occur with
humans (see Appendix A for the exact experimental setup), and we compare that with an unbiased source
dataset that has no people at all. We find that, as expected, a source model trained on the biased dataset
is more likely to predict the image as “dog” than as “cat” in the presence of people, compared to a model
trained on the unbiased source dataset.* (Figure 5a).

We then adapt this biased source model to a new target dataset that contains no humans at all, and check
whether the final model is sensitive to the presence of humans. We find that even though the target dataset
does not contain the above-mentioned co-occurrence bias, the transferred model is highly sensitive to the
presence of people, both in the fixed-feature (Figure 5b) and full-network (Figure 5c) fine-tuning settings.

4Note that the source model trained on the unbiased dataset seems to also be slightly sensitive to the presence of people even
though it has never been exposed to any people. We suspect this is due to the presence of other confounding objects in the images.
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Figure 5: MS-COCO Experiment. Bias transfer can occur when bias is a naturally occurring feature. We
consider transfer from a source dataset that spuriously correlates the presence of dogs (but not cats) with
the presence of people. We plot the difference in performance between images either contain or do not
contain people. Even after fine-tuning on images without any people at all, models pre-trained on the
biased dataset are highly sensitive to the presence of people.
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Figure 6: CelebA Experiment. Bias transfer with natural features can occur even when the target dataset
is de-biased. (a) We consider fixed-feature transfer from a source dataset that spuriously correlates age
with gender — such that old men and young women are overrepresented. (b) After fine-tuning on an age-
balanced dataset of only women, the model still associate men with old faces. (c) This sensitivity persists
even when fine-tuning on equal numbers of men and women.

4.2 Transferring gender bias in facial recognition.

Facial recognition datasets are notorious for containing biases towards specific races, ages, and genders [TKH+21;
BG18], making them a natural setting for studying bias transfer. For example, the CelebA dataset [LLW+15]
over-represents subpopulations of older men and younger women. In this section, we use a CelebA subset

that amplifies this bias, and pre-train source models on a source task of classifying “old” and “young” faces

(we provide the exact experimental setup in Appendix A). As a result, the source model is biased to predict
“old” for images of men, and “young” for images of women (Figure 6a). Our goal is to study whether,
after adapting this biased source model to a demographically balanced target dataset of faces, the resulting
model will continue to use this spurious gender-age correlation.

To this end, we first adapt this biased source model on a dataset of exclusively female faces, with an
equal number of young and old women. Here we consider fixed-feature fine-tuning (and defer full-network
fine-tuning results to Appendix A). We then check if the resulting model still relies on “male-old” and
“female-young” biases (Figure 6b). It turns out that for both fixed-feature and full-network transfer learn-
ing, these biases indeed persist: the downstream model is still more likely to predict “old” for an image of
a male, and “young” for an image of a female.



Can we remove this bias by adding images of men to the target dataset? To answer this question, we
transfer the source model to a target dataset that contains equal numbers of men and women, balanced
across both old and young classes (see Appendix A for other splits). We find that the transferred model is
still biased (Figure 6c), indicating that de-biasing the target task in this manner does not necessarily fix bias
transfer.

5 Bias Transfer in the Wild

In Section 4, we demonstrated that natural biases induced by subsampling standard datasets can transfer
from source datasets to target tasks. We now ask the most advanced instantiation of our central question:
do natural biases that already exist in the source dataset (i.e., where not enhanced by an intervention) also
transfer?

To this end, we pinpoint examples of biases in the widely-used ImageNet dataset and demonstrate that
these biases indeed transfer to downstream tasks (e.g., CIFAR-10), despite the latter not containing such
biases. Specifically, we examine here two such biases: the “chainlink fence” bias and the “tennis ball” bias
(described below). Results for more biases and target datasets are in Appendix B.

Identifying ImageNet biases. To identify ImageNet biases, we focus on features that are (a) associated
with an ImageNet class and (b) easy to overlay on an image. For example, we used a “circular yellow
shape” feature is predictive for the class “tennis ball.” To verify that these features indeed bias the ImageNet
model, we consider a simple counterfactual experiment: we overlay the features on all the ImageNet images
and monitor the shift in the model output distribution. As expected, both “circular yellow shape” and
“chain-like pattern” are strong predictive features for the classes “tennis ball” and “chainlink fence”—see
Figures 7b and 8b. These naturally occurring ImageNet biases are thus suitable for studying the transfer of
biases that exist in the wild.

ImageNet-biases transfer to target tasks. Now, what happens if we fine-tune a pre-trained ImageNet
model (which has these biases) on a target dataset such as CIFAR-10? These biases turn out to persist in
the resulting model even though CIFAR-10 does not contain them (as CIFAR-10 does not contain these
classes). To demonstrate this phenomenon, we overlay the associated feature for both the “tennis ball”
and “chainlink fence” ImageNet classes on the CIFAR-10 test set. We then evaluate 1) a model fine-tuned
on a standard pre-trained ImageNet model, and 2) a model trained from scratch on the CIFAR-10 dataset.
As Figures 7 and 8 demonstrate, the fine-tuned models (both fixed-feature and full-network) are sensitive
to the overlaid ImageNet biases, whereas CIFAR-10 models trained from scratch are not. This is further
corroborated by the overall skew of the output class distribution for the transfer-learned model, compared
to an almost uniform output class distribution of the model trained from scratch.

6 Related Work

Transfer learning. Transfer learning has been used in applications ranging from autonomous driving
[KP17; DGS19], radiology [WPL+17; KEB+21] to satellite image analysis [XJB+16; WAL19]. In particular,
fine-tuning pre-trained ImageNet models has increasingly become standard practice to improve the per-
formance of various image classification tasks [KSL19; SIE+20; UKE+20], even on domains substantially
different from ImageNet, such as medical imaging [MGM18; KEB+21]. Transfer learning from ImageNet is
also widely used for most object detection and semantic segmentation tasks [RHG+15; DLH+16; GDD+14;
CPK+17]. More recently, even larger vision [RKH+21; SSS+17] and language models [BMR+20]—often
trained on proprietary datasets—have acted as backbones for downstream tasks. With this widespread
usage of pre-trained models, it is important to understand whether any limitation of these models would
affect downstream tasks, which is what we focus on in this work.

Backdoor attacks. In a backdoor attack [GDG17; EEF+18; TTM19], an adversary maliciously injects a
trigger into the source dataset which can be activated during inference. This type of attack can be especially
hard to detect, since the model performs well in the absence of the trigger [GDG17]. Indeed, there exists
a long line of work on injecting malicious training examples, known as data poisoning attacks [BNL12;



(a) Example images from the “Chain-link fence” class in ImageNet.
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(b) Shift in ImageNet predicted class distribution after adding a chain-link fence intervention, establishing that the bias
holds for the source model.

(c) Example CIFAR-10 images after applying the chain-link fence intervention.
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(d) Distribution of CIFAR-10 model predictions when trained from scratch and when transferred from the biased source
model. We consider fixed-feature fine-tuning (left) and full-feature fine-tuning (right). In both settings, the models
trained from scratch are not affected by the chain-link fence intervention, while the ones learned via transfer have

highly skewed output distributions.

Figure 7: The “chainlink fence” bias. (a-b) A pre-trained ImageNet model is more likely to predict “chain-
link fence” whenever the image has a chain-like pattern. (c-d) This bias transfers to CIFAR-10 in both
fixed-feature and full network transfer settings. Indeed, if we overlay a chain-like pattern on all CIFAR-10
test set images as shown above, the model predictions skew towards a specific class. This does not happen
if the CIFAR-10 model was trained from scratch instead (orange).

XXE12; NPX+14; MZ15; SKL17]. Gu et al. [GDG17] planted backdoors in a stop-sign detection dataset, and
found that fine-tuned stop-sign detection models were still sensitive to this trigger.



(a) Example images from the “tennis ball” class in ImageNet.
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(b) Shift in ImageNet predicted class distribution after adding a tennis ball intervention, establishing that the bias holds
for the source model.

(c) Example CIFAR-10 images after applying the tennis ball intervention.
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(d) Distribution of CIFAR-10 model predictions when trained from scratch and when transferred from the biased source
model. We consider fixed-feature fine-tuning (left) and full-feature fine-tuning (right). The from-scratch models are not
affected by the tennis ball intervention, while the ones learned via transfer have highly skewed output distributions.

Figure 8: The “tennis ball” bias. (a-b) A pre-trained ImageNet model is more likely to predict “tennis ball”
whenever a circular yellow shape is in the image. (c-d) This bias transfers to CIFAR-10 in both fixed-feature
and full network transfer settings. Indeed, if we overlay a chain-like pattern on all CIFAR-10 test set images
as shown above, the model predictions skew towards a specific class. This does not happen if the CIFAR-10
model was trained from scratch instead (orange).

7 Conclusion

In this work we demonstrated that biases in pre-trained models tend to remain present even after fine-
tuning these models on downstream target tasks. Crucially, these biases can persist even when the target
dataset used for fine-tuning did not contain such biases. These findings are of particular concern as re-
searchers and practitioners increasingly leverage public pre-trained source models, which are likely to con-
tain undocumented biases. We thus encourage further investigation of the full machine learning pipeline—
even parts that are seemingly unimportant—for potential sources of bias.
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A Experimental Setup
A.1 ImageNet Models

In this paper, we train a number of ImageNet models and transfer them to various datasets in Sections 3
and 5. We mainly use the ResNet-18 architecture all over the paper. However, we study bias transfers using
various architectures in Appendix A.4. We use PyTorch’s official implementation for these architectures,
which can be found here https://pytorch.org/vision/stable/models.html.

Training details. We train our ImageNet models from scratch using SGD by minimizing the standard
cross-entropy loss. We train for 16 epochs using a Cyclic learning rate schedule with an initial learning
rate of 0.5 and learning rate peak epoch of 2. We use momentum of 0.9, batch size of 1024, and weight
decay of 5¢~*. We use standard data-augmentation: RandomResizedCrop and RandomHorizontalFlip during
training, and RandomResizedCrop during testing. Our implementation and configuration files are available
in the attached code.

A.2 Transfer details from ImageNet to downstream image classification tasks

Transfer datasets. We use the image classification tasks that are used in [SIE+20; KSL19], which have
various sizes and number of classes. When evaluating the performance of models on each of these datasets,
we report the Top-1 accuracy for balanced datasets and the Mean Per-Class accuracy for the unbalanced
datasets. See Table 1 for the details of these datasets. For each dataset, we consider two transfer learning
settings: fixed-feature and full-network transfer learning which we describe below.

Table 1: Image classification benchmarks used in this paper. Accuracy metric is the metric we report for
each of the dataset across the paper. Some datasets are imbalanced, so we report Mean Per-Class accuracy
for those. For the rest, we report Top-1 accuracy.

Dataset Size (Train/Test) Classes Accuracy Metric
Birdsnap [BLW+14] 32,677/8,171 500 Top-1
Caltech-101 [FFP04] 3,030/5,647 101 Mean Per-Class
Caltech-256 [GHP07] 15,420/15,187 257 Mean Per-Class
CIFAR-10 [Kri09] 50,000/10,000 10 Top-1
CIFAR-100 [Kri09] 50,000/10,000 100 Top-1
FGVC Aircraft [MRK+13] 6,667/3,333 100 Mean Per-Class
Food-101 [BGV14] 75,750/25,250 101 Top-1
Oxford 102 Flowers [NZ08] 2,040/6,149 102 Mean Per-Class
Oxford-IIIT Pets [PVZ+12] 3,680/3,669 37 Mean Per-Class
SUN397 [XHE+10] 19,850/19,850 397 Top-1
Stanford Cars [KDS+13] 8,144/8,041 196 Top-1

Fixed-feature transfer. For this setting, we freeze the layers of the ImageNet source model®, except for the
last layer, which we replace with a random initialized linear layer whose output matches the number of
classes in the transfer dataset. We now train only this new layer for using SGD, with a batch size of 1024
using cyclic learning rate. For more details and hyperparameter for each dataset, please see config files in
the attached code.

Full-network transfer. For this setting, we do not freeze any of the layers of the ImageNet source model,
and all the model weights are updated. We follow the exact same hyperparameters as the fixed-feature
setting.

5We do not freeze the batch norm statistics, but only the weights of the model similar to Salman et al. [SIE+20].
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A.3 Compute and training time

Throughout the paper, we use the FFCV data-loading library to train models fast [LIE+22]. Using FFCV,
we can train an ImageNet model, for example, in around 1 hr only on a single V100 GPU. Our experiments
were conducted on a GPU cluster containing A100 and V100 GPUs.

A.4 Varying architectures

In this section, we study whether bias transfers when applying transfer learning using various architec-
tures. We conduct the basic experiment of Section 3 on several standard architectures from the PyTorch’s
Torchvision®.

As in Section 3, we train two versions of each architecture: one on a clean ImageNet dataset, and another
on a modified ImageNet dataset containing a backdoor. We use the same hyperparameters as the rest of the
paper, except for the batch size, which we set to 512 instead of 1024. The reason we lower the batch size is
to fit these models in memory on a single A100 GPU.

Now, we transfer each of these models to a clean CIFAR-10 dataset, and test if the backdoor attack
transfers. Similar to the results of the main paper, we notice that backdoor attack indeed transfers in the
fixed-feature setting. We note however that for the full-network setting, all architectures other than ResNet-

18 (which we use in the rest of the paper) seem to be more robust to the backdoor attack.
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(a) CIFAR-10 Fixed-feature
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(b) CIFAR-10 Full-network

Figure 9: Backdoor attack (bias) consistently transfers in the fixed-feature setting across various architec-
tures. However, this happens to a lesser degree in the full-network transfer setting.

A5 MS-COCO

In this section, we provide experimental details for the experiment on MS-COCO in Section 4.1. We consider
the binary task of predicting cats from dogs, where there is a strong correlation between dogs and the

6These models can be found here https://pytorch.org/vision/stable/models.html
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presence of people.

Dataset construction. We create two source datasets which are described in Table 2.

Table 2: The synthetic datasets we create from MS-COCO for the experiment in Section 4.1.

Class: Cat Class: Dog
Dataset With People  Without People  With People  Without People
Non-Spurious 0 1000 0 100
Spurious 1000 4000 4000 1000

We then fine-tune models trained on the above source datasets on new images of cats and dogs without
people (485 each). We use the cats and dogs from the MS-COCO test set for evaluation.

Experimental details. We train a ResNet-18 with resolution 224 x 224. We use SGD with momentum, and
a Cyclic learning rate. We use the following hyperparameters shown in Table 3:

Table 3: Hyperparameters used for training on the MS-COCO dataset.

Hyperparameter | Value for pre-training  Value for fine-tuning

Batch Size 256 256
Epochs 25 25
LR 0.01 0.005
Momentum 0.9 0.9
Weight Decay 0.00005 0.00005
Peak Epoch 2 2

A.6 CelebA

In this section, we provide experimental details for the CelebA experiments in Section 4.2. Here, the task
was to distinguish old from young faces, in the presence of a spurious correlation with gender in the source
dataset.

Dataset construction. We create two source datasets shown in Table 4:

Table 4: The synthetic source datasets we create from CelebA for the experiment in Section 4.2.

Class: Young Class: Old
Dataset Male Female Male Female

2500 2500 2500 2500
1000 4000 4000 1000

Non-Spurious
Spurious

Due to imbalances in the spurious dataset, the model trained on this dataset struggles on faces of young
males and old females. We then fine-tune the source models on the following target datasets (see Table 5),
the images of which are disjoint from that in the source dataset.

Due to space constraints, we plotted the results of fixed fine-tuning on Only Women and 80% Women|20%
Men in the main paper. Below, we display the results for fixed-feature and full fine-tuning on all 3 target
datasets.

Experimental details. We train a ResNet-18 with resolution 224 x 224. We use SGD with momentum, and
a cyclic learning rate. We use the following hyperparameters shown in Table 6:
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Table 5: The synthetic target datasets we create from CelebA for the experiment in Section 4.2.

Class: Young Class: Old
Dataset Male Female Male Female
Only Women 0 5000 0 5000

80% Women|20% Men | 1000 4000 1000 4000
50% Women|50% Men | 2500 2500 2500 2500

Table 6: Hyperparameters used for training on the CelebA datasets.

Batch Size Epochs LR Momentum Weight Decay Peak Epoch
1024 20 0.05 0.9 0.01 5

Results. We find that in both the fixed-feature and full-feature fine-tuning settings, the gender correlation
transfers from the source model to the transfer model, even though the target task is itself gender balanced.
As the proportion of men and women in the target dataset change, the model is either more sensitive to the
presence of women, or more sensitive to the presence of men. In all cases, however, the model transferred
from the spurious backbone is more sensitive to gender than a model transferred from the non-spurious

backbone.
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Figure 10: CelebA Experiment.We consider transfer from a source dataset that spuriously correlate age
with gender — such that old men and young women are overrepresented. We plot the difference in accu-
racies between male and female examples, and find that the model transferred from a spurious backbone
is sensitive to gender, even though the target dataset was itself gender balanced.
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B ImageNet Biases
B.1 Chainlink fence bias.

In this section we show the results for the “chainlink fence” bias transfer. We first demonstrate in Fig-
ure 11 that the “chainlink fence” bias actually exists in ImageNet. Then in Figures 12, 13, 14, and 15, we
show the output distribution—after applying a chainlink fence intervention—of models trained on various
datasets either from scratch, or by transferring from the ImageNet model. The from-scratch models are not
affected by the chainlink fence intervention, while the ones learned via transfer have highly skewed output

distributions.

(a) Example images from the “chainlink fence” class in ImageNet.

Output Distribution Top Predicted Classes (with intervention)
With Intervention 6000 B Chainlink Fence
é’ Standard é’ B Other classes
& 103 $ 4000
=) =]
g g
. (AN 0
0 200 400 600 800 1000 ImageNet Classes (sorted by frequency)

Class ID

(b) Shift in ImageNet predicted class distribution after adding a “chainlink fence” intervention, establishing that the
bias holds for the source model.

Figure 11: The chainlink fence bias in ImageNet.

(a) Example Birdsnap images after applying the chain-link fence intervention.
2000 2000
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(b) Output distribution of Birdsnap models with a chainlink fence intervention.

Figure 12: The chainlink fence bias transfers to Birdsnap.
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(a) Example Flowers images after applying the chain-link fence intervention.
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(b) Output distribution of Flowers models with a chainlink fence intervention.

Figure 13: The chainlink fence bias transfers to Flowers.

(a) Example Food images after applying the chain-link fence intervention.

8000 Training mode

B>

E 6000 s.cratch

g fixed-feature

54000

(<]

~
R 2000 I

, Il e lu=inll v - __.

40 60
FOOD Class ID

80 100

8000 Training mode
>
g 6000 scratch
g full-network
54000
@
—
i 2000 I I
0 I_- L ull_E-H | | | _II
0 20 40 60 80 100

FOOD Class ID

(b) Output distribution of Food models with a chainlink fence intervention.

Figure 14: The chainlink fence bias transfers to Food.

(a) Example SUN397 images after applying the chain-link fence intervention.
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(b) Output distribution of SUN397 models with a chainlink fence intervention.

Figure 15: The chainlink fence bias transfers to SUN397.
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B.2 Hat bias.

In this section we show the results for the “Hat” bias transfer. We first demonstrate in Figure 16 that the
“Hat” bias actually exists in ImageNet (shifts predictions to the “Cowboy hat” class). Then in Figure 17,
we show the output distribution—after applying a hat intervention—of models trained on CIFAR-10 either
from scratch, or by transferring from the ImageNet model. The from-scratch model is not affected by the
hat intervention, while the one learned via transfer have highly skewed output distributions.

(a) ImageNet images from the class “Cowboy hat”.
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(b) ImageNet distribution shift after intervention.

Figure 16: The hat bias in ImageNet.

(a) Example CIFAR-100 images after applying the “Hat” intervention.
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(b) Output distribution of CIFAR-10 models with the Hat intervention.

Figure 17: The hat bias transfers to CIFAR-10.
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B.3 Tennis ball bias.

In this section we show the results for the “tennis ball” bias transfer. We first demonstrate in Figure 18 that
the “tennis ball” bias actually exists in ImageNet. Then in Figures 19, 20, 21, and 22, we show the output
distribution—after applying a tennis ball intervention—of models trained on various datasets either from
scratch, or by transferring from the ImageNet model. The from-scratch models are not affected by the tennis
ball intervention, while the ones learned via transfer have highly skewed output distributions.

(a) ImageNet images from the class “tennis ball”.
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(b) ImageNet distribution shift after intervention.

Figure 18: The tennis ball bias in ImageNet.

(a) Example CIFAR-100 images after applying the “tennis ball” intervention.
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(b) Output distribution of CIFAR-100 models with the tennis ball intervention.

Figure 19: The tennis ball bias transfers to CIFAR-100.
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(@) Example Aircraft images after applying the “tennis ball” intervention.
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(b) Output distribution of Aircraft models with the tennis ball intervention.

Figure 20: The tennis ball bias transfers to Aircraft.

(a) Example Blrdsnap after applying the “tennis ball” intervention.
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(b) Output distribution of Birdsnap models with the tennis ball intervention.

Figure 21: The tennis ball bias transfers to Birdsnap.

(a) Example sun397 after applying the “tennis ball” intervention.
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(b) Output distribution of SUN397 models with the tennis ball intervention.

Figure 22: The tennis ball bias transfers to SUN397.
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