Understanding the LLM-ification of CHI: Unpacking the Impact of LLMs at CHI through a Systematic Literature Review
Large language models (LLMs) have been positioned to revolutionize HCI, by reshaping not only the interfaces, design patterns, and sociotechnical systems that we study, but also the research practices we use. To-date, however, there has been little understanding of LLMs' uptake in HCI. We address this gap via a systematic literature review of 153 CHI papers from 2020-24 that engage with LLMs. We taxonomize: (1) domains where LLMs are applied; (2) roles of LLMs in HCI projects; (3) contribution types; and (4) acknowledged limitations and risks. We find LLM work in 10 diverse domains, primarily via empirical and artifact contributions. Authors use LLMs in five distinct roles, including as research tools or simulated users. Still, authors often raise validity and reproducibility concerns, and overwhelmingly study closed models. We outline opportunities to improve HCI research with and on LLMs, and provide guiding questions for researchers to consider the validity and appropriateness of LLM-related work.
Stay in the loop.
Subscribe to our newsletter for a weekly update on the latest podcast, news, events, and jobs postings.