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Abstract

We construct efficient, unconditional non-malleable codes that are secure against tampering
functions computed by small-depth circuits. For constant-depth circuits of polynomial size
(i.e. AC0 tampering functions), our codes have codeword length n = k1+o(1) for a k-bit message.
This is an exponential improvement of the previous best construction due to Chattopadhyay

and Li (STOC 2017), which had codeword length 2O(
√
k). Our construction remains efficient for

circuit depths as large as Θ(log(n)/ log log(n)) (indeed, our codeword length remains n ≤ k1+ε),
and extending our result beyond this would require separating P from NC1.

We obtain our codes via a new efficient non-malleable reduction from small-depth tampering
to split-state tampering. A novel aspect of our work is the incorporation of techniques from
unconditional derandomization into the framework of non-malleable reductions. In particular,
a key ingredient in our analysis is a recent pseudorandom switching lemma of Trevisan and Xue
(CCC 2013), a derandomization of the influential switching lemma from circuit complexity; the
randomness-efficiency of this switching lemma translates into the rate-efficiency of our codes via
our non-malleable reduction.
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1 Introduction

Non-malleable codes were introduced in the seminal work of Dziembowski, Pietrzak, and Wichs as
a natural generalization of error correcting codes [DPW10, DPW18]. Non-malleability against a
class T is defined via the following “tampering” experiment:

Let t ∈ T denote an “adversarial channel,” i.e. the channel modifies the transmitted bits via
the application of t.

1. Encode message m using a (public) randomized encoding algorithm: c← E(m),

2. Tamper the codeword: c̃ = t(c),

3. Decode the tampered codeword (with public decoder): m̃ = D(c̃).

Roughly, the encoding scheme, (E,D), is non-malleable against a class T , if for any t ∈ T
the result of the above experiment, m̃, is either identical to the original message, or completely
unrelated. More precisely, the outcome of a t-tampering experiment should be simulatable without
knowledge of the message m (using a special flag “same” to capture the case of unchanged message).

In contrast to error correcting codes, the original message m is only guaranteed to be recovered
if no tampering occurs. On the other hand, non-malleability can be achieved against a much wider
variety of adversarial channels than those that support error detection/correction. As an example, a
channel implementing a constant function (overwriting the codeword with some fixed codeword) is
impossible to error correct (or even detect) over, but is non-malleable with respect to any encoding
scheme.

Any construction of non-malleable codes must make some restriction on the adversarial channel,
or else the channel that decodes, modifies the message to a related one, and re-encodes, will break
the non-malleability requirement. Using the probabilistic method, non-malleable codes have been
shown to exist against any class of functions that is not too large (|T | ≤ 22

αn
for α < 1) [DPW10,

CG16]. (Here, and throughout the paper, we use k to denote the length of the message, and n
to denote the length of the codeword.) A large body of work has been dedicated to the explicit
construction of codes for a variety of tampering classes: for example, functions that tamper each
half (or smaller portions) of the codeword arbitrarily but independently [DKO13, CG16, CZ14,
ADL14, Agg15, Li17, Li18], and tampering by flipping bits and permuting the result [AGM+15].

In this paper, we extend a recent line of work that focuses on explicit constructions of non-
malleable codes that are secure against adversaries whose computational strength correspond to
well-studied complexity-theoretic classes. Since non-malleable codes for a tampering class T yields
lower bounds against T (see Remark 2), a broad goal in this line of work is to construct efficient
non-malleable codes whose security (in terms of computational strength of the adversary) matches
the current state of the art in computational lower bounds.1

Prior work on complexity-theoretic tampering classes. In [BDKM16], Ball et al. con-
structed efficient non-malleable codes against the class of ℓ-local functions, where each output bit
is a function of ℓ input bits, and ℓ can be as large as Ω(n1−ε) for constant ε > 0.2 This class can
be thought of as NC (circuits of fan-in 2) of almost logarithmic depth, < (1 − ε) log n, and in par-
ticular, contains NC0. In [CL17], Chattopadhyay and Li, using new constructions of non-malleable

1In this paper we focus on constructing explicit, unconditional codes; see Section 1.3 for a discussion on a different
line of work on conditional constructions in various models: access to common reference strings, random oracles, or
under cryptographic/computational assumptions.

2They give constructions even for o(n/ log n)-local tampering, but the code rate is inversely proportional to locality,
so the codes become inefficient for this locality.
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extractors, gave explicit constructions of non-malleable codes against AC0 and affine tampering
functions. These are the first constructions of information-theoretic non-malleable codes in the
standard model where each tampered bit may depend on all the input bits. However, their con-

struction for AC0 circuits has exponentially small rate Ω(k/2
√
k) (equivalently, codeword length

2O(
√
k) for a k-bit message), yielding an encoding procedure that is not efficient.

1.1 This work: Efficient non-malleable codes for small-depth circuits

In this work, we address the main open problem from [CL17]: we give the first explicit construction
of non-malleable codes for small-depth circuits achieving polynomial rate:

Theorem 1 (Non-malleable codes for small-depth circuits; informal version). For any δ ∈ (0, 1),
there is a constant c ∈ (0, 1) such that there is an explicit and efficient non-malleable code that is
unconditionally secure against polynomial-size unbounded fan-in circuits of depth c log(n)/ log log(n)
with codeword length n = k1+δ for a k-bit message and negligible error.

Extending Theorem 1 to circuits of depth ω(log(n)/ log log(n)) would require separating P from
NC1; see Remark 2. Therefore, in this respect the parameters that we achieve in Theorem 1 bring
the security of our codes (in terms of computational strength of the adversary) into alignment with
the current state of the art in circuit lower bounds.3

For the special case of AC0 circuits, our techniques lead to a non-malleable code with sub-
polynomial rate (indeed, we achieve this for all depths o(log(n)/ log log(n))):

Theorem 2 (Non-malleable codes for AC0 circuits; informal version). There is an explicit and
efficient non-malleable code that is unconditionally secure against AC0 circuits with codeword length
n = k1+o(1) for a k-bit message and negligible error.

Prior to our work, there were no known constructions of polynomial-rate non-malleable codes
even for depth-2 circuits (i.e. polynomial-size DNF and CNF formulas).

We describe our proof and the new ideas underlying it in Section 1.2. At a high level, we
proceed by designing a new efficient non-malleable reduction from small-depth tampering to split-
state tampering. Our main theorem thus follows by combining this non-malleable reduction with
the best known construction of split-state non-malleable codes [Li18].

The flurry of work on non-malleable codes has yielded many surprising connections to other ar-
eas of theoretical computer science, including additive combinatorics [ADKO15], two-source extrac-
tors [Li12, Li13, CZ16], and non-malleable encryption/commitment [CMTV15, CDTV16, GPR16].
As we discuss in Section 1.2, our work establishes yet another connection—to techniques in un-
conditional derandomization. While we focus exclusively on small-depth adversaries in this work,
we are optimistic that the techniques we develop will lead to further work on non-malleable codes
against other complexity-theoretic tampering classes (see Remark 3 for a discussion on the possible
applicability of our techniques to other classes).

Remark 1 (On the efficiency of non-malleable codes). A few previous works on non-malleable
codes use a non-standard definition of efficiency, only requiring encoding/decoding to take time
that is polynomial in the length of the codeword (namely, the output of the encoding algorithm),
thus allowing a codeword and computational complexity that is super-polynomial in the message
length. In contrast, we use the standard definition of efficiency—running time that is polynomial

3Although [CL17] state their results in terms of AC0 circuits, an inspection of their proof shows that their con-
struction also extends to handle circuits of depth as large as Θ(log(n)/ log log(n)). However, for such circuits their
codeword length becomes 2O(k/ log(k)).
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in the length of the input. While the non-standard definition is appropriate in some settings, we
argue that the standard definition is the right one in the context of non-malleable codes. Indeed,
many error-correcting codes in the literature fall under the category of block codes—codes that act
on a block of k bits of input data to produce n bits of output data, where n is known as the block
size. To encode messages m with length greater than k, m is split into blocks of length k and the
error-correcting code is applied to each block at a time, yielding a code of rate k/n. For block
codes, the block size n can be fixed first and then k can be set as a function of n. A non-malleable
code, however, cannot be a block code: If m is encoded block-by-block, the tampering function
can simply “destroy” some blocks while leaving the other blocks untouched, thus breaking non-
malleability. Instead, non-malleable codes take the entire message m as input and encodes it in a
single shot. So in the non-malleable codes setting, we must assume that k is fixed first and that n
is set as a function of k. Thus, in order to obtain efficient codes, the parameters of the code must
be polynomial in terms of k.

Remark 2 (On the limits of extending our result). Because any function in NC1 can be computed
by a polynomial-size unbounded fan-in circuit of depth O(log(n)/ log log(n)) (see e.g. [KPPY84,
Val83]), any non-trivial non-malleable code for larger depth circuits would yield a separation of NC1

from P. Here, we take non-trivial to mean that error is bounded away from 1 and encoding/decoding
run in time polynomial in the codeword length (namely, even an inefficient code, as per the discussion
above, can be non-trivial). This follows from the fact (noted in many previous works) that any
explicit, non-trivial code is vulnerable to the simple P-tampering attack: decode, flip a bit, re-
encode. Hence, in this respect Theorem 1 is the limit of what we can hope to establish given the
current state of the art in circuit and complexity theory.

1.2 Our Techniques

At a high level, we use the non-malleable reduction framework introduced by Aggarwal et al. [ADKO15].
Loosely speaking, an encoding scheme (E,D) non-malleably reduces a “complex” tampering class,
F , to a “simpler” tampering class, G, if the tampering experiment (encode, tamper, decode) be-
haves like the “simple” tampering (for any f ∈ F , D(f(E(·))) ≈ Gf , a distribution over G).
[ADKO15] showed that a non-malleable code for the simpler G, when concatenated with an (inner)
non-malleable reduction (E,D) from F to G, yields a non-malleable code for the more “complex” F .
(See Remark 4 for a comparison of our approach to that of [CL17].)

Our main technical lemma is a new non-malleable reduction from small-depth tampering to
split-state tampering, where left and right halves of a codeword may be tampered arbitrarily, but
independently. We achieve this reduction in two main conceptual steps. We first design a non-
malleable reduction from small-depth tampering to a variant of local tampering that we call leaky
local, where the choice of local tampering may depend on leakage from the codeword. This step
involves a careful design of pseudorandom restrictions with extractable seeds, which we use in
conjunction with the pseudorandom switching lemma of Trevisan and Xue [TX13] to show that
small-depth circuits “collapse” to local functions under such restrictions. In the second (and more
straightforward) step, we reduce leaky-local tampering to split-state tampering using techniques
from [BDKM16]. We now describe both steps in more detail.

Small-Depth Circuits to Leaky Local Functions. To highlight some of the new ideas un-
derlying our non-malleable reduction, we first consider the simpler case of reducing w-DNFs (each
clause contains at most w literals) to the family of leaky local functions. The reduction for general
small-depth circuits will follow from a recursive composition of this reduction.
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A non-malleable reduction (E,D) reducing DNF-tampering to (leaky) local-tampering needs
to satisfy two conditions (i) Pr[D(E(x)) = x] = 1 for any x and, (ii) D ◦ f ◦ E is a distribution
over (leaky) local functions for any width-w DNF f . A classic result from circuit complexity, the
switching lemma [FSS84, Ajt89, Yao85, H̊as86], states that DNFs collapse to local functions under
fully random restrictions (“killing” input variables by independently fixing them to a random value
with some probability).4 Thus a natural choice of E for satisfying (ii) is to simply sample from the
generating distribution of restrictions and embed the message in the surviving variable locations
(fixing the rest according to restriction). However, although f ◦E becomes local, it is not at all clear
how to decode and fails even (i). To satisfy (i), a naive idea is to simply append the “survivor”
location information to the encoding. However, this is now far from a fully random restriction
(which requires among other things that the surviving variables are chosen independently of the
random values used to fix the killed variables) is no longer guaranteed to “switch” the DNFs to
Local functions with overwhelming probability.

To overcome these challenges, we employ pseudorandom switching lemmas, usually arising in
the context of unconditional derandomization, to relax the stringent properties of the distribution
of random restrictions needed for classical switching lemmas. In particular, we invoke a recent
pseudorandom switching lemma of Trevisan and Xue [TX13], which reduces DNFs to local func-
tions (with parameters matching those of [H̊as86]) while only requiring that randomness specifying
survivors and fixed values be σ-wise independent5. This allows us to avoid problems with indepen-
dence arising in the naive solution above. Now, we can append a σ-wise independent encoding of
the (short) random seed that specifies the surviving variables. This gives us a generating distribu-
tion of random restrictions such that (a) DNFs are switched to Local functions, and (b) the seed
can be decoded and used to extract the input locations.

At this point, we can satisfy (i) easily: D decodes the seed (whose encoding is always in, say,
the first m coordinates), then uses the seed to specify the surviving variable locations and extract
the original message. In addition to correctness, f ◦ E becomes a distribution over local functions
where the distribution only depends on f (not the message). However, composing D with f ◦ E
induces dependence on underlying message: tampered encoding of the seed, may depend on the
message in the survivor locations. The encoded seed is comparatively small and thus (assuming
the restricted DNF collapses to a local function) requires a comparatively small number of bits
to be leaked from the message in order to simulate the tampering of the encoded seed. Given a
well simulated seed we can accurately specify the local functions that will tamper the input (the
restricted DNFs whose output locations coincide with the survivors specified by the tampered seed).
This is the intermediate leaky local tampering class we reduce to, which can be described via the
following adversarial game: (1) the adversary commits to N local functions, (2) the adversary can
select m of the functions to get leakage from, (3) the adversary then selects the actual tampering
function to apply from the remaining local functions.

To deal with depth d circuits, we recursively apply this restriction-embedding scheme d times.
Each recursive application allows us to trade a layer of gates for another (adaptive) round of m
bits of leakage in the leaky local game. One can think of the recursively composed simulator
as applying the composed random restrictions to collapse the circuit to local functions and then,
working inwardly, sampling all the seeds and the corresponding survivor locations until the final
survivor locations can be used to specify the local tampering.

4The switching lemma actually shows that DNFs become small-depth decision trees under random restrictions.
However, it is this (straightforward) consequence of the switching lemma that we will use in our reduction.

5Although this is not stated explicitly in [TX13], as we show, it follows immediately by combining their main
lemma with results on bounded independence fooling CNF formulas [Baz09, Raz09].
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Leaky Local Functions to Split State. Ball et al. [BDKM16] gave non-malleable codes for
local functions via a non-malleable reduction to split state. We make a simple modification to
a construction with deterministic decoding from the appendix of the paper to show leaky local
functions (the class specified by the above game) can be reduced to split state.

Loosely, we can think of the reduction in the following manner.
First, the left and right states are given leakage-resilient properties via σL-wise and σR-wise

independent encodings. These encodings have the property that any small set (here, a constant
fraction of the length of the encoding) of bits will be uniformly distributed, regardless of the message
inside. This will allow us, in some sense, to leak bits from the underlying encoding to (a) specify
the local tampering functions, and (b) aid in subsequent stages of the reduction.

Second, we take the right encoding to be much longer than the left encoding. Because the
tampering will be local, this means that the values of the bits on the right used to tamper the left
encoding will be uniformly distributed, regardless of the message. This follows from the fact that
there aren’t too many such bits relative to the length of the right, given that there significantly
fewer output bits on the left and these outputs are each dependent on relatively few bits in general.

Third, we embed the left encoding pseudorandomly in a string that is much longer than the
right encoding. This means that with overwhelming probability the bits of the left encoding that
affect the tampering of the right will be uniformly distributed. (The rest we can take to be
uniformly distributed as well.) Note that although here we use a σ-wise independent generator, an
unconditional PRG for small space, as is used in [BDKM16], would have worked as well.

Finally, we prepend to the embedding itself, the short seed used to generate the embedding,
after encoding it in a leakage resilient manner (as above). (This is in fact the only significant
difference with construction in [BDKM16].) The presence of the seed allows us to determine the
embedding locations in the absence of tampering and simulate the embedding locations in the
presence of tampering without violating the leakage-resilient properties of the left and right state
encodings. The leakage-resilience of the seeds encoding allows a simulator to sample the seed after
leaking bits to specify a local tampering.

Remark 3 (On the possible applicability of our techniques to other tampering classes). While we
focus exclusively on on small-depth adversaries in this work, we remark that analogous pseudo-
random switching lemmas have been developed for many other function classes in the context of
unconditional derandomization: various types of formulas and branching programs [IMZ12], low
sensitivity functions [HT18], read-once branching programs [RSV13, CHRT18] and CNF formu-
las [GMR+12], sparse F2 formulas [ST18], etc. In addition to being of fundamental interest in
complexity theory, these function classes are also natural tampering classes to consider in the con-
text of non-malleable codes, as they capture basic types of computationally-bounded adversaries.
We are optimistic that the techniques we develop in this paper—specifically, the connection between
pseudorandom switching lemmas and non-malleable reductions, and the new notion of pseudoran-
dom restrictions with extractable seeds—will lead to constructions of efficient non-malleable codes
against other tampering classes, and we leave this is an interesting avenue for future work.

Remark 4 (Relation to the techniques of [CL17].). Although Chattopadhyay and Li [CL17] also
use the switching lemma in their work, our overall approach is essentially orthogonal to theirs.
At a high level, [CL17] uses a framework of Cheraghchi and Guruswami [CG16] to derive non-
malleable codes from non-malleable extractors. In this framework, the rate of the code is directly
tied to the error of the extractor; roughly speaking, as the parameters of the switching lemma can
be at best inverse-quasipolynomial when reducing to local functions, this unfortunately translates
(via the [CG16] framework) into codes with at best exponentially small rate (see pg. 10 of [CL17]
for a discussion of this issue). Circumventing this limitation therefore necessitates a significantly
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different approach, and indeed, as discussed above we construct our non-malleable codes without
using extractors as an intermediary. (On a more technical level, we remark that [CL17] uses the
classic switching lemma of H̊astad [H̊as86] for fully random restrictions, whereas our work employs
a recent extension of this switching lemma to pseudorandom restrictions [TX13].)

1.3 Related Work

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [DPW10, DPW18].
Various subsequent works re-formulated the definition [ADKO15], or considered extensions of the
notion [FMNV14, DLSZ15, CGL16, CGM+16]. The original work of [DPW10] presented a con-
struction of non-malleable codes against bit-wise tampering, and used the probabilistic method
to prove the existence of non-malleable codes against tampering classes F of bounded size (this
result gives rise to constructions for the same tampering classes F in the random oracle model). A
sequence of works starting from the work of Liu and Lysyanskaya [LL12] presented constructions of
non-malleable codes secure against split-state tampering. The original work and some subsequent
works [AAG+16, KLT16] required an untamperable common reference string (CRS) and/or com-
putational assumptions. Other works removed these restrictions and achieved unconditionally non-
malleable codes against split-state tampering with no CRS [ADL14, ADKO15, Li17, Li18]. Among
these works, the construction of Li [Li18] currently achieves the best rate of Ω(log log n/ log n) for
two states. Constructions requiring more than two split-states, and which achieve constant rate,
were also given in [CZ14, KOS14].

Conditional results on complexity-based tampering. In this paper we work within the stan-
dard model and focus on explicit, unconditional non-malleable codes. A variety of non-malleable
codes against complexity-based tampering classes have been constructed in other models. These
constructions require either common randomness (CRS), access to a public random oracle, and/or
computational/cryptographic assumptions.

Faust et al. [FMVW14] presented an efficient non-malleable code, in the CRS model, against
tampering function families F of bounded size, improving upon the original work of [DPW10].
Since the size of the CRS grows with the size of the function family, this approach cannot be
used to obtain efficient constructions of non-malleable codes against tampering classes that contain
circuits of unbounded polynomial size (e.g., AC0 circuits). Cheraghchi and Guruswami [CG16] in
an independent work showed the existence of unconditionally secure non-malleable codes (with no
CRS) against tampering families F of bounded size via a randomized construction. However their
construction is inefficient for negligible error (and also does not apply to AC0 due to the requirement
of bounded size).

Faust et al. [FHMV17] gave constructions of (a weaker notion of) non-malleable codes against
space-bounded tampering in the random oracle model.

In very recent work, Ball et al. [BDKM17] presented a general framework for converting average-
case bounds for a class C into efficient non-malleable codes against the same class C in the CRS
model and under cryptographic assumptions. Among several applications of their framework, they
give a construction of non-malleable codes against AC0 tampering circuits in the CRS model under
these assumptions (in fact, circuits of depth up to Θ(log(n)/ log log(n)), like in our work). In
contrast, our constructions are unconditional.
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2 Preliminaries

2.1 Basic Notation

For a positive integer n, let [n] to denote {1, . . . , n}. For x = (x1, . . . , xn) ∈ {0, 1}
n, ‖x‖0 denotes

the number of 1’s in x. For i ≤ j ∈ [n], we define xi:j := (xi, . . . , xj). For a set S ⊆ [n], xS denotes
the projection of x to S. For S ∈ [n]m, xS := (xS1 , . . . , xSm). For x, y ∈ {0, 1}

n, if they disagree on
at least ε · n indices, we say they are ε-far, otherwise, they are ε-close to each other.

For a set Σ, we use ΣΣ to denote the set of all functions from Σ to Σ. Given a distribution
D, z ← D denotes sample z according to D. For two distributions D1,D2 over Σ, their statistical
distance is defined as ∆(D1,D2) :=

1
2

∑
z∈Σ |D1(z)−D2(z)|.

We say g(n) = Õ(f(n)) if g(n) = O(nεf(n)) for all ε > 0.

2.2 Non-malleable Reductions and Codes

Definition 1 (Coding Scheme). [DPW10] A Coding scheme, (E,D), consists of a randomized
encoding function E: {0, 1}k 7→ {0, 1}n and a decoding function D: {0, 1}n 7→ {0, 1}k ∪ {⊥} such
that ∀x ∈ {0, 1}k,Pr[D(E(x)) = x] = 1 (over randomness of E).

Non-malleable codes were first defined in [DPW10]. Here we use a simpler, but equivalent,
definition based on the following notion of non-malleable reduction by Aggarwal et al. [ADKO15].

Definition 2 (Non-Malleable Reduction). [ADKO15] Let F ⊂ AA and G ⊂ BB be some classes
of functions. We say F reduces to G, (F ⇒ G, ε), if there exists an efficient (randomized) encoding
function E : B → A, and an efficient decoding function D : A→ B, such that

(a) ∀x ∈ B,Pr[D(E(x)) = x] = 1 (over the randomness of E).

(b) ∀f ∈ F ,∃G s.t. ∀x ∈ B, ∆(D(f(E(x)));G(x)) ≤ ε, where G is a distribution over G and G(x)
denotes the distribution g(x), where g ← G.

If the above holds, then (E,D) is an (F ,G, ε)-non-malleable reduction.

Definition 3 (Non-Malleable Code). [ADKO15] Let NMk denote the set of trivial manipulation
functions on k-bit strings, consisting of the identity function id(x) = x and all constant functions
fc(x) = c, where c ∈ {0, 1}k .

A coding scheme (E,D) defines an (Fn(k), k, ε)-non-malleable code, if it defines an (Fn(k),NMk, ε)-
non-malleable reduction.

Moreover, the rate of such a code is taken to be k/n(k).

The following useful theorem allows us to compose non-malleable reductions.

Theorem 3 (Composition). [ADKO15] If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒ H, ε1 + ε2).

2.3 Tampering Function Families

2.3.1 Split-State and Local Functions

Definition 4 (Split-State Model). [DPW10] The split-state model, SSk, denotes the set of all
functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}
k , f2(xk+1:2k) ∈ {0, 1}

k) for x ∈ {0, 1}2k}.
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Theorem 4 (Split-State NMC). [Li18] For any n ∈ N, there exists an explicit, efficient non-
malleable code in the 2-split-state model (SSn) with rate k/n = Ω(log log n/ log n) and error 2−Ω(k)

Definition 5 (Local Functions). Let f : {0, 1}n → {0, 1}m be a function. We say output j of f
depends on input i if there exists x, x′ ∈ {0, 1}n that differ only in the ith coordinate such that
f(x)j 6= f(x′)j. We say f is ℓ-local or in the class Localℓ, if every output bit fj depends on at most
ℓ input bits.

2.3.2 Small-Depth Circuits and Decision Trees

Let ACd(S) denote alternating depth d circuits of size at most S with unbounded fan-in. Let
w-ACd(S) denote alternating depth d circuits of size at most S with fan-in at most w at the first
level and unbounded fan-in elsewhere. For depth 2 circuits, a DNF is an OR of ANDs (terms) and
a CNF is an AND or ORs (clauses). The width of a DNF (respectively, CNF) is the maximum
number of variables that occur in any of its terms (respectively, clauses). We use w-DNF to denote
the set of DNFs with width at most w. Let DT(t) denote decision trees with depth at most t. We
say that a multiple output function f = (f1, . . . , fm) is in C if fi ∈ C for any i ∈ [m].

2.3.3 Leaky Function Families

Given an arbitrary class of tampering functions, we consider a variant of the class of tampering
functions which may depend in some limited way on limited leakage from the underlying code word.

Definition 6 (Leaky Function Families). Let LLi,m,N [C] denote tampering functions generated via
the following game:

1. The adversary first commits to N functions from a class C, F1, . . . , FN = F .

(Note: Fj : {0, 1}
N → {0, 1} for all j ∈ [N ].)

2. The adversary then has i-adaptive rounds of leakage. In each round j ∈ [i],

• the adversary selects s indices from [N ], denoted Sj,

• the adversary receives F (x)Sj .

Formally, we take hj : {0, 1}
m(j−1) → [N ]m to be the selection function such that

hj(F (X)S1 , . . . , F (X)Sj−1) = Sj .

Let h1 be the constant function that outputs S1.

3. Finally, selects a sequence of n functions (Ft1 , . . . , Ftn) (T = {t1, . . . , tn} ⊆ [N ] such that
t1 < t2 < · · · < tn) to tamper with.

Formally, we take h : {0, 1}mi → [N ]n such that h(F (X)S1 , . . . , F (X)Si) = T .

Thus, any τ ∈ LLi,m,N [C] can be described via (F , h1, · · · , hi, h). In particular, we take τ =
Eval(F , h1, · · · , hi, h) to denote the function whose output given input X is T (X), where T is, in
turn, outputted by the above game given input X and adversarial strategy (F , h1, · · · , hi, h).

8



2.4 Pseudorandom Ingredients

2.4.1 A Binary Reconstructible Probabilistic Encoding Scheme

Reconstructable Probabilistic Encoding (RPE) schemes were first introduced by Choi et al. [CDMW08,
CDMW16]. Informally, RPE is a combination of error correcting code and secret sharing, in partic-
ular, it is an error correcting code with an additional secrecy property and reconstruction property.

Definition 7 (Binary Reconstructable Probabilistic Encoding). [CDMW08, CDMW16] We say a
triple (E,D,R) is a binary reconstructable probabilistic encoding scheme with parameters (k, n, cerr, csec),
where k, n ∈ N, 0 ≤ cerr, csec < 1, if it satisfies the following properties:

1. Error correction. E: {0, 1}k → {0, 1}n is an efficient probabilistic procedure, which maps
a message x ∈ {0, 1}k to a distribution over {0, 1}n. If we let C denote the support of E, any
two strings in C are 2cerr-far. Moreover, D is an efficient procedure that given any w′ ∈ {0, 1}n

that is ε-close to some string w in C for any ε ≤ cerr, outputs w along with a consistent x.

2. Secrecy of partial views. For all x ∈ {0, 1}k and any non-empty set S ⊂ [n] of size
≤ ⌊csec · n⌋, E(x)S is identically distributed to the uniform distribution over {0, 1}|S|.

3. Reconstruction from partial views. R is an efficient procedure that given any set S ⊂ [n]
of size ≤ ⌊csec · n⌋, any ĉ ∈ {0, 1}n, and any x ∈ {0, 1}k , samples from the distribution E(x)
with the constraint E(x)S = ĉS .

Lemma 1. [CDMW08, CDMW16] For any k ∈ N, there exist constants 0 < crate, cerr, csec < 1
such that there is a binary RPE scheme with parameters (k, cratek, cerr, csec).

To achieve longer encoding lengths n, with the same cerr, csec parameters, one can simply pad
the message to an appropriate length.

RPE was been used in Ball et al.[BDKM16] for building non-malleable reductions from local
functions to split state functions. However, for all reductions in our paper, error correction property
is not necessary (RPE cerr = 0 is adequate). In addition, we observe that RPEs with parameters
(k, n, 0, csec) are implied by any linear error correcting code with parameters (k, n, d) where k is the
message length, n is the codeword length, d := csec · n+ 1 is the minimal distance.

Lemma 2. Suppose there exists a binary linear error correcting code with parameters (k, n, d), then
there is a binary RPE scheme with parameters (k, n, 0, (d − 1)/n).

Proof. For a linear error correcting code with (k, n, d), let A denote its encoding matrix, H denote
its parity check matrix. Let B be a matrix so that BA = I where I is the k × k identity matrix
(such B exists because A has rank k and can be found efficiently). By property of parity check
matrix, HA = 0 and Hs 6= 0 for any 0 < ||s||0 < d where 0 is the (n− k)× k all 0 matrix.

We define (E,D,R) as follows: for x ∈ {0, 1}k and randomness r ∈ {0, 1}n−k , E(x; r) :=
BTx+HT r, for c ∈ {0, 1}n; D(c) := AT c; given S ⊂ [n] of size ≤ d− 1 , ĉ ∈ {0, 1}n, x ∈ {0, 1}k , R
samples r uniformly from the set of solutions to (HT r)S = (ĉ−BTx)S then outputs E(x; r).

(E,D) is an encoding scheme because D ◦ E = ATBT = IT = I. For secrecy property, note
that for any non-empty S ⊆ [n] of size at most d− 1, (Hr)S is distributed uniformly over {0, 1}|S|,
because for any a ∈ {0, 1}|S|,

Pr
r
[(HT r)S = a] = E[Πi∈S

1 + (−1)(H
T r)i+ai

2
] = 2−|S|

∑

S′⊆S
E[Πi∈S′(−1)(H

T r)i+ai ] = 2−|S|,
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where the last equality is because the only surviving term is S′ = ∅ and for other S′,
∑

i∈S′ HT
i 6=

0 so E[Πi∈S′(−1)(H
T r)i ] = 0. It implies E(x)S is also distributed uniformly over {0, 1}S . By

definition, R satisfies reconstruction property. Hence (E,D,R) is a binary RPE with parameters
(k, n, 0, (d − 1)/n).

2.4.2 A Simple σ-wise Independent Generator

Definition 8 (Bounded-independent Generator). We say a distribution D over {0, 1}n is σ-wise
independent if for any S ⊆ [n] of size at most σ, DS distributes identically to the uniform distribution
over {0, 1}|S|. We say function G : {0, 1}s → {0, 1}n is a σ-wise independent generator if G(ζ) is
σ-wise independent where ζ is uniformly distributed over {0, 1}s.

The simple Carter-Wegman hashing construction based on random polynomials suffices for our
purposes.

Lemma 3. [WC81] There exists an (explicit) σ-wise independent generator: G : {0, 1}(σ+1) logn →
{0, 1}n, computable in time Õ(σn).

Moreover, G : {0, 1}(σ+1)m → {0, 1}n can be constructed such that for an subset S ⊆ [n] of size
σ, G(ζ)S ≡ X1, . . . ,Xσ (for uniformly chosen ζ) where (1) Xi’s are independent Bernoullis with
Pr[Xi = 1] = q/d for q ∈ {0, . . . , d}, and (2) m = max{log n, log d}.

Let Gσ,p denote a σ-wise independent Carter-Wegman generator with bias p, and Gσ such a
generator with p = 1/2

The following useful theorem gives Chernoff-type concentration bounds for σ-wise independent
distributions.

Theorem 5 ([SSS95]). If X is a sum of σ-wise independent random indicator variables with µ =
E[X], then ∀ε : 0 < ε ≤ 1, σ ≤ ε2µe−1/3, Pr[|X − µ| > εµ] < exp(−⌊σ/2⌋).

2.4.3 The Pseudorandom Switching Lemma of Trevisan and Xue

Definition 9. Fix p ∈ (0, 1). A string s ∈ {0, 1}n×log(1/p) encodes a subset L(s) ⊆ [n] as follows:
for each i ∈ [n],

i ∈ L(s) ⇐⇒ si,1 = · · · = si,log(1/p) = 1.

Definition 10. Let D be a distribution over {0, 1}n log(1/p) × {0, 1}n. This distribution defines a
distribution R(D) over restrictions {0, 1, ∗}n, where a draw ρ←R(D) is sampled as follows:

1. Sample (s, y)←R(D), where s ∈ {0, 1}n log(1/p), y ∈ {0, 1}n.

2. Output ρ where

ρi :=

{
yi if i /∈ L(s)
∗ otherwise

Theorem 6 (Polylogarithmic independence fools CNF formulas [Baz09, Raz09]). The class of
M -clause CNF formulas is ε-fooled by O((log(M/ε))2)-wise independence.
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Theorem 7 (A Pseudorandom version of H̊astad’s switching lemma [TX13]). Fix p, δ ∈ (0, 1) and
w,S, t ∈ N. There exists a value r ∈ N,

r = poly(t, w, log(S), log(1/δ), log(1/p)), 6

such that the following holds. Let D be any r-wise independent distribution over {0, 1}n×log(1/p) ×
{0, 1}n If F : {0, 1}n → {0, 1} is a size-S depth-2 circuit with bottom fan-in w, then

Pr
[
DT(F ↾ ρ) ≥ t

]
≤ 2w+t+1(5pw)t + δ,

where the probability is taken with respect to a pseudorandom restriction ρ←R(D).

Proof. By Lemma 7 of [TX13], any distribution D′ over {0, 1}n×log(1/p) × {0, 1}n that ε-fools the
class of all (S · 2w(log(1/p)+1))-clause CNFs satisfies

Pr
[
DT(F ↾ ρ) ≥ t

]
≤ 2w+t+1(5pw)t + ε · 2(t+1)(2w+log S),

where the probability is taken with respect to a pseudorandom restriction ρ ← R(D′). By Theo-
rem 6, the class of M := (S · 2w(log(1/p)+1))-clause CNF formulas is

ε := δ · 2−(t+1)(2w+log S)

fooled by r-wise independence where

r = O((log(M/ε))2) = poly(t, w, log(S), log(1/δ), log(1/p)),

and the proof is complete.

Taking a union bound we get the following corollary.

Corollary 1. Fix p, δ ∈ (0, 1) and w,S, t ∈ N. There exists a value r ∈ N,

r = poly(t, w, log(S), log(1/δ), log(1/p)),

such that the following holds. Let D be any r-wise independent distribution over {0, 1}n×log(1/p) ×
{0, 1}n. Let F1, . . . , FM be M many size-S depth-2 circuits with bottom fan-in w. Then

Pr
ρ←Rp

[
∃ j ∈ [M ] such that DT(Fj ↾ ρ) ≥ t

]
≤M ·

(
2w+t+1(5pw)t + δ

)
. (1)

2.4.4 Helpful Functions.

Lastly, we define some convient functions. For a random restriction ρ = (ρ(1), ρ(2)) ∈ {0, 1}n ×
{0, 1}n, ExtIndices(ρ(1)) := (i1, . . . , ik) ∈ [n + 1]k are the last k indices of 1s in ρ(1) where i1 ≤
i2 · · · ≤ ik and ij = n+ 1 for j ∈ [k] if such index doesn’t exist (k should be obvious from context
unless otherwise noted).

We define a pair of functions for embedding and extracting a string x according to a random
restriction, ρ. Let Embed : {0, 1}k+2n → {0, 1}n, such that for ρ = (ρ(1), ρ(2)) ∈ {0, 1}n × {0, 1}n

and x ∈ {0, 1}k , and i ∈ [n],

Embed(x, ρ)i =

{
xj if ∃j ∈ [k] : i = ExtIndices(ρ(1))j

ρ
(2)
i otherwise

And, let Extract : {0, 1}2n → {0, 1}k ×{⊥} be such that if c ∈ {0, 1}n, ρ(1) ∈ {0, 1}n, and ‖ρ(1)‖0 ≥
k, then Extract(c, ρ(1)) = cExtIndices(ρ(1)). Otherwise, Extract(c, ρ(1)) = ⊥.

Note that, for any ρ such that ‖ρ(1)‖0 ≥ k, Extract(Embed(x, (ρ(1), ρ(2))), ρ(1)) = x.

6The exponent of this polynomial is a fixed absolute constant independent of all other parameters.
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3 Non-Malleable Codes for Small-Depth Circuits

3.1 NM-Reducing Small-Depth Circuits to Leaky Local Functions

Lemma 4. For S, d, n, ℓ ∈ N, p, δ ∈ (0, 1), there exist σ = poly(log ℓ, log(ℓS), log(1/δ), log(1/p))
and m = O(σ log n) such that, for any 2m ≤ k ≤ n(p/4)d,

(ACd(S) =⇒ LLd,m,n[Localℓ], dε)

where
ε = nS

(
22 log ℓ+1(5p log ℓ)log ℓ + δ

)
+ exp(−

σ

2 log(1/p)
).

We define a simple encoding and decoding scheme (See Figure 1 in below) and show this scheme
is a non-malleable reduction from (leaky) class F to (leaky) class G with an additional round of
leakage if functions in F reduce to G under a suitable notion pseudorandom restrictions (recall
definitions 9 & 10).

Lemma 5. Let F and G be two classes of functions. Suppose for n ∈ N, p ∈ (0, 1) and any σ-wise
independent distribution D over {0, 1}n log(1/p)×{0, 1}n, it holds that for any F : {0, 1}n → {0, 1} ∈
F ,

Pr
ρ←R(D)

[Fρ is not in G] ≤ ε.

Then for i,N, k ∈ N, (E⋆
k,n,p,σ,D

⋆
k,n,p,σ) defined in Figure 1 is an

(LLi,m,N [F ] =⇒ LLi+1,m,N [G], Nε+ exp(−
σ

2 log(1/p)
))

non-malleable reduction when (4σ/ log(1/p)) ≤ k ≤ (n−m)p/2.

To prove Lemma 4, we instantiate Lemma 5 using the pseudorandom switching lemma of
Theorem 7 (in fact, Corollary 1) and iteratively reduce ACd(S) to leaky local functions. Each
application of the reduction, after the first, will allow us to trade a level of depth in the circuit for
an additional round of leakage until we are left with a depth-2 circuit. The final application of the
reduction will allow us to convert this circuit to local functions at the expense of a final round of
leakage.

3.1.1 Proof of Lemma 5

The simple encoding and decoding scheme based on the pseudorandom switching lemma is defined
in Figure 1.

The Lemma follows immediately from Claims 1, 2, and 3 below.

Claim 1. For any x ∈ {0, 1}k, Pr[D∗(E∗(x)) = x] = 1.

Proof. The second step of E∗ guarantees that ExtIndices(L(G(ζ)))1 > m and ‖L(G(ζ)‖0 ≥ k.
Therefore, ER(ζ) is located in the first m bits of c and the entire x is embedded inside the re-
maining n −m bits of c according to L(G(ζ)). By the decoding property of RPE from lemma 1,
Pr[DR(c, . . . , cm) = ζ] = 1, namely, Pr[ζ̃ = ζ] = 1. Conditioned on ζ̃ = ζ, because ‖L(G(ζ)‖0 ≥ k,
D∗(E∗(x)) = Extract(c, L(G(ζ))) = x holds. The desired conclusion follows.

Claim 2. Given any τ = Eval(F , h1, . . . , hi, h) ∈ LLi,m,N [F ], there is a distribution Sτ over
τ ′ ∈ LLi+1,m,N [G], such that for any x ∈ {0, 1}k, D⋆ ◦ τ ◦ E⋆(x) is δ-close to τ ′(x) where τ ′ ← Sτ
and δ ≤ Pr[F ◦ E∗ is not in G].
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Take k, n, p, σ to be parameters.
Let G = Gσ : {0, 1}s(σ) → {0, 1}n log 1/p be an σ-wise independent generator from Lemma 3.
Let (ER,DR,RR) denote the RPE from lemma 1 with codewords of length m(s) ≥ σ/csec.
Let ζ∗ ∈ {0, 1}s(σ) be some fixed string such that ‖L(G(ζ∗))n−m+1,...,n‖0 ≥ k. (For our choice of G,
such a ζ∗ can be found efficiently via interpolation.)

E⋆(x):

1. Draw (uniformly) random seed ζ ← {0, 1}s and (uniformly) random string U ← {0, 1}n−m.
2. Generate pseudorandom restriction, ρ = (ρ(1), ρ(2)):

ρ(1) ← L(G(ζ)); (∗) If ‖L(G(ζ))n−m+1,...,n‖0 < k, set ζ = ζ∗.

ρ(2) ← ER(ζ)‖U .

3. Output c = Embed(x, ρ).

D⋆(c̃):

1. Recover tampered seed: ζ̃ ← DR(c̃1, . . . , c̃m).
If ‖L(G(ζ̃))n−m+1:n‖0 < k, output ⊥ and halt.

2. Output Extract
(
c̃, L(G(ζ̃))

)
.

Figure 1: A Pseudorandom Restriction Based Non-Malleable Reduction, (E⋆
k,n,p,σ,D

⋆
k,n,p,σ)

given LLi,m,N [F ] tampering τ = (F , h1, . . . , hi, h) output τ
′ = (F ′, h′

1, . . . , h
′
i+1, h

′):

1. Draw (uniformly) random seed ζ ← {0, 1}s and (uniformly) random string R← {0, 1}n−m.
2. Generate pseudorandom restriction, ρ = (ρ(1), ρ(2)):

ρ(1) ← L(G(ζ)). (∗) If ‖L(G(ζ))n−m+1,...,n‖0 < k, set ζ = ζ∗.

ρ(2) ← ER(ζ)‖R

3. Apply (constructive) switching lemma with pseudorandom restriction to get function F ′ ≡ F |ρ
(n-bit output).
If F is not in G, halt and output some constant function.

4. For j ∈ [i], h′
j ≡ hj .

5. h′
i+1(y

′
1, . . . , y

′
i) := h(y′1, . . . , y

′
i)[m].

6. h′(y′1, . . . , y
′
i+1) := h(y′1, . . . , y

′
i)ExtIndices(L(G(DR(y′

i+1
)))).

7. Finally, output τ ′ = (F ′, h′
1, . . . , h

′
i+1, h

′).

Figure 2: Simulator, S, for (E⋆,D⋆)

Proof. Recall that a function τ in LLi,m,N [F ] can be described via (F , h1, . . . , hi, h) where F is a
function in F from {0, 1}k to {0, 1}N and for every x ∈ {0, 1}k , h takes F (x)S1 , . . . ,F (x)Si (where
Sj are sets adaptively chosen by hj for j ∈ [i]) as input and outputs a set T of size k. And the
evaluation of τ on x is F (x)T .

Let Sτ be defined in Figure 2. We call a chocie of randomness ζ, U, r “good for F = (F1, · · · , FN )”
(where r is the randomness for ER) if F ◦ E⋆(·; ζ, U, r) is in G. We will show for any good ζ, U, r
for F , D⋆ ◦ τ ◦ E⋆(·; ζ, U, r) ≡ τ ′(·), where τ ′ = Sτ (ζ, U, r).

For good ζ, U, r, note that (1) F ′ ≡ F |ρ and (2) ρ was used in both E⋆ and Sτ . It follows that for
all x, F ′(x) = F |ρ(x) = F (E⋆(x; ζ,R, r)). Because h′j ≡ hj for j ∈ [i], it follows by induction that
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y′j = yj (the output of each h′j and hj respectively, j ∈ [i]). Therefore, h(y1, · · · , yi) = h(y′1, · · · , y
′
i).

It follows that c̃[m] = y′i+1 and L(G(DR(y
′
i+1))) = L(G(ζ̃)). Consequently, h′(y′1, · · · , y

′
i+1) outputs

that exact same indices that the decoding algorithm, D⋆, will extract its output from. Thus,
τ ′(x) = D⋆ ◦ τ ◦ E⋆(x; ζ,R, r) for any x.

Because S and E⋆ sample their randomness identically, the distributions are identical, condi-
tioned on the randomness being “good.” Hence δ is at most the probability that ζ, U, r are not
“good for F ”, i.e., Pr[F ◦ E∗ is not in G].

Claim 3. Pr[F ◦ E∗ is not in G] ≤ Nε+ exp(−σ/2 log(1/p)).

Proof. We first show D = G(ζ)‖ER(ζ)‖U is σ-wise independent when ζ ← {0, 1}s and U ←
{0, 1}n−m. As U is uniform and independent of the rest, it suffices to simply consider Z =
G(ζ)‖ER(ζ). Fix some S ⊆ [n log(1/p)+m] such that |S| ≤ σ. By the secrecy property of the RPE
and m · csec ≥ σ, conditioned on any fixed ζ, ZS∩{n log(1/p)+1,...,n log(1/p)+m}is distributed uniformly.
Therefore, ζ is independent of ZS∩{n log(1/p)+1,...,n log(1/p)+m}, so G guarantees that ZS∩{1,...,n log(1/p)}
is independently of S ∩ {n log(1/p) + 1, . . . , n log(1/p) +m} and also distributed uniformly. There-
fore, ZS is distributed uniformly.

Note that ρ in E∗ is distributed identically to R(D), except when ζ∗ is used. Hence

Pr[F ◦ E∗ is not in G] ≤ Pr
ρ←R(D)

[Fρ is not in G] + Pr[‖L(G(ζ))n−m+1,...,n‖0 < k].

By our assumption and a union bound over the N boolean functions, Fρ /∈ G happens with proba-
bility at most Nε when ρ← R(D). Observe that L(G(ζ))n−m+1,...,n is a σ

log(1/p) -wise independent

distribution over {0, 1}n−m and each coordinate is 1 with probability p. Let µ = (n −m)p denote
the expected number of 1’s in L(G(ζ))n−m+1,...,n. By linearity of expectation µ = (n −m)p. For
k ≤ µ/2 and σ

log(1/p) ≤ µ/8, we can use the concentration bound from Theorem 5 to conclude

that ‖L(G(ζ))n−m+1,...,n‖0 < k happens with probability at most exp(− σ
2 log(1/p)). The desired

conclusion follows.

3.1.2 Proof of Lemma 4

To prove Lemma 4, we instantiate Lemma 5 using the pseudorandom switching lemma of Theorem 7
(in fact, Corollary 1) and iteratively reduce ACd(S) to leaky local functions. Each application of
the reduction, after the first, will allow us to trade a level of depth in the circuit for an additional
round of leakage until we are left with a depth-2 circuit. The final application of the reduction will
allow us to convert this circuit to local functions at the expense of a final round of leakage.

Let t := log(ℓ) and let σ := poly(t, log(2tS), log(1/δ), log(1/p)) as in Corollary 1 so that any
depth-2 circuits with bottom fan-in t become depth t decision trees with probability at least 1 −
(22t+1(5pt)t + δ) under pseudorandom restrictions drawn from σ-wise independent distribution.

We use ACd(S) ◦ DT(t) to denote alternating (unbounded fan-in) circuits of depth d, size S
that take the output of depth t decision trees as input. (Note may contain up to S decision trees.)
Similarly it is helpful to decompose an alternating circuit (from w-ACd) into a base layer of CNFs
or DNFs and the rest of the circuit, ACd−2(S) ◦w-AC2(S

′). (Again, the base may contain up to S
CNFs/DNFs of size S′.)

Claim 4. (ACd(S) =⇒ LL1,m,n[ACd−2(S) ◦ t-AC2(2
tS)], ε).
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Proof. Let F ∈ ACd(S) be a boolean function. Note that Theorem 7 and Corollary 1 are only
useful for bounded width DNF and CNF. So, we view F as having an additional layer of fan-
in 1 AND/OR gates, namely, as a function in 1-ACd+1(S). Because there are at most S DNFs
(or CNFs) of size S at the bottom layers of F , by Corollary 1, the probability that F is not in
ACd−1(S) ◦ DT(t) is at most S

(
2t+2(5p)t + δ

)
under the pseudorandom switching lemma with

parameters p, δ, σ. So by Corollary 1, (E⋆,D⋆) reduces ACd(S) to LL1,m,n[ACd−1(S) ◦DT(t)] with
error n(S

(
2t+2(5p)t + δ

)
) + exp(−Ω( σ

log(1/p))) ≤ ε.

By the fact that DT(t) can be computed either by width-t DNFs or width-t CNFs of size at
most 2t, any circuit in ACd−1(S) ◦ DT(t) is equivalent to a circuit in ACd−2(S) ◦ t-AC2(2

tS), in
other words, a depth d circuit with at most S width-t size-S2t DNFs or CNFs at the bottom.
Hence, ACd−1(S) ◦DT(t) is a subclass of ACd−2(S) ◦ t-AC2(2

tS) and the claim follows.

Claim 5. (LLi,m,n[ACd−i−1(S) ◦ t-AC2(2
tS)] =⇒ LLi+1,m,n[ACd−i−2(S) ◦ t-AC2(2

tS)], ε).

Proof. For a boolean function F ∈ ACd−i−1(S)◦t-AC2(2
tS), because there are at most S DNFs (or

CNFs) of size 2tS at the bottom layers of F , Corollary 1 shows F is not in ACd−i−1(S)◦DT(t) with
probability at most S

(
22t+2(5pt)t + δ

)
under a pseudorandom switching lemma with parameters

p, δ, σ. So by Lemma 5, (E⋆,D⋆) reduces (LLi,m,n[ACd−i−1(S)◦t-AC2(2
tS)] to LLi+1,m,n[ACd−i−2(S)◦

DT(t)] with error at most ε. Similarly as the previous proof, because ACd−i−1(S) ◦DT(t) is a sub-
class of ACd−i−2(S) ◦ t-AC2(2

tS), the claim follows.

Claim 6. (LLd−1,m,n[t-AC2(2
tS)] =⇒ LLd,m,n[Local2

t
], ε)

Proof. Finally, for a boolean function F ∈ t-AC2(2
tS), Corollary 1 shows F is not in DT(t) with

probability at most S
(
22t+2(5pt)t + δ

)
. So by Lemma 5, (E⋆,D⋆) reduces LLd−1,m,n[t-AC2(2

tS)]

to LLd,m,n[DT(t)] with error at most ε. The desired conclusion follows from the fact that DT(t) is

a subclass of Local2
t
.

By applying Claim 4 once, then Claim 5 (d − 2) times and Claim 6 once, ACd(S) reduces to

LLd,m,n[Local2
t
] with error at most dε. Note that m = O(σ log n) throughout, and during each

application of above claims, given a codeword of length n′ ≥ k ≥ 2m, Lemma 5 holds for messages of
length (n′−m)p/2 ≥ n′(p/4). Therefore, the composed reduction works for any 2m ≤ k ≤ n(p/4)d.

3.2 NM-Reducing Leaky Local to Split State

Simple modifications to construction from the appendix of [BDKM16] yield a (LLd,s,N [Localℓ],SSk,negl(k))-
non-malleable reduction.

Lemma 6. There exists a constant c ∈ (0, 1), such that for any m, q, ℓ satisfying mqℓ3 ≤ cn there
is a (LLq,m,N [Localℓ] =⇒ SSk, exp(−Ω(k/ log n)))-non-malleable reduction with rate Ω(1/ℓ2).

Note that we do not actually require any restrictions on N .

We construct an encoding scheme (E,D), summarized in Figure 3, adapted from the appendix
of [BDKM16]. We then show that the pair (E,D) is a (LLd,s,N [Localℓ],SSk,negl(k))-non-malleable
reduction.
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Let G = Gp,σ : {0, 1}s(σ) → {0, 1}τ be a σ-wise independent generator with bias p = 3nL

2τ (see Lemma 3,
s = s(σ) = σ log(2τ) = O(σ logn)), with inputs of length s and outputs of length τ .
Let (EL,DL), (EZ ,DZ), (ER,DR) be RPEs with parameters (k, nL, csec, cerr), (s, nZ , csec, cerr), and
(k, nR, csec, cerr) respectively.
Assume ℓ > 1/csec. Define feasible parameters according to the following:
nZ ≥ max{mqℓ/csec, s(σ)crate} (Take nZ = θ(mqℓ+ s(σ))),
nL ≥ kcrate (Take nL = θ(k)),
nR ≥

ℓ
csec

(nL + nZ +mq) (Take nR = θ(ℓ(k +mqℓ+ s(σ)))),

τ ≥ 9ℓ
4csec

(nR + nZ +mq) (Take = θ(ℓ2(k +mqℓ+ s(σ)))),

n := nZ + τ + nR (n = θ(ℓ2(k +mqℓ+ s(σ))).

E(xL := xL
1 , . . . , x

L
k , x

R := xR
1 , . . . , x

R
k ):

1. Let sL := EL(x
L), SR := ER(x

R).
2. Choose ζ ← {0, 1}s uniformly at random. Compute ρ(1) := G(ζ). Choose ρ(2) ← {0, 1}τ

uniformly at random. Let ρ := (ρ(1), ρ(2)); (∗) If ρ(1) has less than nL 1s, take ρ(1) := G(ζ∗) for
some ζ∗ such that G(ζ∗) has nL ones.

3. Let XL := Embed(sL, ρ).
4. Let Z ← EL(ζ); Output the encoding (Z,XL, SR).

D(Z̃, X̃L, S̃R):

1. Let ρ̃ := G(DL(Z̃L)).
(∗) If ρ̃ contains less than nL 1s, output ⊥.

2. s̃L := Extract(XL, ρ̃).

3. Let x̃L = DL(s̃L), x̃R = DR(S̃R); Output (x̃L, x̃R).

Figure 3: A non-malleable reduction of LLq,m,N [Localℓ] to Split State SSk with deter-

ministic decoding
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Security. Before formalizing, we will briefly describe why the construction works. We will reduce
the leaky local tampering to split-state tampering using the encoding and decoding algorithms.
Given that encoding/decoding on the left (xL and Z,XL, respectively) is independent of encod-
ing/decoding on the right (xR and SR, respectively), all of non-split state behavior is derived from
the tampering function. We will show how to essentially sample all of the information necessary to
tamper independently on each side without looking at the inputs. Then, using the reconstruction
properties of the RPEs we will be able to generate encodings on each side consistent with these
common random bits that we have sampled. Conditioned on a simple event happening, composi-
tion of these modified encoding, tampering, and decoding algorithms will be identical to the normal
tampering experiment.

The key observation, is that all of the leakage is under the privacy threshold of any of the
RPEs. In particular, this means that after calculating all of the leakage to define which functions
will be applied to the codeword, both left and right inputs remain private, as well as the seed, ζ.
Moreover, the leakage is far enough below the privacy thresholds on the inputs that we may leak
more bits.

Given the local functions that will be applied to the codeword, the bits that will affect either the
tampered seed, or the right side, or were used to calculate the leakage from XL have all been defined
(and there aren’t too many relative to the length ofXL). As the seed, ζ, is still uniformly distributed
at this point we can sample it and apply a pseudorandom chernoff bound to show that, with
overwhelming probability, relatively few of these locations will overlap with embedding locations
for the (RPE encoding of the ) left side input, this is the “simple event” mention above. (We
additionally require that the embedding has enough space for the RPE encoding.) Consequently,
we can safely sample all these locations in XL. Additionally, at this point we have totally defined
the RPE of the seed, Z.

Now, because the RPE of the seed is significantly shorter than RPE of the right input, we can
safely sample all the locations in SR that affect Z̃. Moreover, the tampering resulting in Z̃ is now
a constant function (given all the sampled bits), which allows us to simulate the tampered seed,
ζ̃. Then, we can use the tampered seed to determine decoding locations for extracting the RPE
of the left input from XL. As these are the only locations that the output of decoding depends
on, we only are concerned with the bits that affect these (few) locations. As there are less than
security threshold bits in SR that affect these locations (in conjunction with bits that affect Z̃),
we can sample all of these locations uniformly at random. At this point we can now output the
left-side tampering function: given left input xL, reconstruct an RPE to be consistent with the bits
of sL sampled above, apply tampering function (given by simulated exacted locations and restricted
according to all the sampled bits above that is only dependent on sL), decode the result.

Also note that at this point the tampered RPE of the right input, S̃R, is simply a function of
random bits (sampled independently of the input) and the RPE SR. Thus, we can similarly output
the right-side tampering function: given right input xR, reconstruct an RPE to be consistent with
the bits of SR sampled above, apply tampering function (restricted according to all the sampled
bits above: only depends on SR), decode the result of tampering.

Proof of Lemma 6. We begin by formally defining a simulator in Figure 4.
We additionally consider the following “bad events”:

1. G(ζ) contains at least nL 1s. (Condition ∗ does not occur.)

2. Given (h1, . . . , hk)-leakage, denoted (y1, . . . , yk), the resulting tampering function Fh(y1,...,yk)

is such that the intersection of the set V ′ (defined as in figure 4) with {i + nZ : i ∈
ExtIndices(G(ζ))} is less than csec · nL. (Condition ∗∗ does not happen.)
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Given LLq,m,N [Localℓ] tampering t = (F , h1, . . . , hq, h) output (fL, fR):
Let AF (S) denote the indices (in [n]) of inputs that affect FS for S ⊆ [N ]. Let IZ = {1, . . . , nZ},
IL = {nZ + 1, . . . , nZ + τ}, and IR = {nZ + τ + 1, . . . , nZ + τ + nR}.

1. Sample uniform r ∈ {0, 1}n.
2. (Sample leakage) Let S1 = h1. Let U1 = (rj)j∈S1

For i = 1 to q:
Let Si := hi(Y1, . . . , Yi−1), Ui := A(Si), Yi := FSi

(r).
3. Let (TZ , TX , TR) := h(Y1, . . . , Yq).
4. Let VZ := AF (TZ) ∩ (IL ∪ IR), VR := AF (TR) ∩ IL, and V ′ := VZ ∪ VR ∪ U where U =

⋃
Ui.

5. Let µ′ ∈ {0, 1, ⋆}n denote the string where ∀i ∈ V ′ : µ′
i = ri, and ∀i /∈ V ′ : µ′

i = ⋆.
6. (Sample seed) ζ ← {0, 1}s uniformly at random. Compute ρ(1) := Gp,q(ζ). Let ρ :=

(ρ(1), r{nZ+1,...,nZ+τ}). For i ∈ [τ ], let ρ
(1)
i denote the i-th bit of ρ(1).

(∗) If ρ(1) has less than nL 1s, take ρ(1) := G(ζ∗) for some ζ∗ such that G(ζ∗) has nL ones.

(∗∗) If
∑

i∈V ′ ρ
(1)
i−nZ

> csecnL (if ρ(1) has too many 1s with indices in V ′, after shifting), output
some constant function and halt.
Let I ′L := (i1 + nZ , . . . , inL

+ nZ), where (i1, . . . , inL
) := ExtIndices(ρ(1)). Let B := I ′L ∩ V ′

(i.e. the embedding locations that are also in V ′).
7. (Reconstruct encodings consistent with µ′) Let C := IZ ∩ V ′. Z ← RZ(C, µ

′
IZ
, ζ).

8. (Recover tampered seed) ζ̃ := DZ ◦ FTZ
|µ′(Z), and ρ̃ := G(ζ̃).

(By definition, TZ |µ′ is only a function of the variables in IZ .)
9. (Recover tampered extraction locations) Let J = (j1, · · · , jnL

) denote the set of elements in
ExtIndices(ρ̃). If nL elements cannot be recovered, output ⊥ and halt.
Let TL := TX,j1 , · · · , TX,jnL

(where TX,v denotes the v-th element in TX), and VL := AF (TL) ∩
(IZ ∪ IR).

10. (Extend µ′ to µ) Let V := V ′ ∪ VL ∪ IZ and ∀i ∈ V \ IZ : µi = ri, ∀i ∈ IZ : µi = Zi, and
∀i /∈ V : µi = ⋆.
(Note that ∀i ∈ V ′, µi = µ′

i, and, consequently, FTZ
|µ′(Z) ≡ FTZ

|µ(Z).)
11. Output:

fL: On input x,

(a) (Reconstruct encodings consistent with µ) sL ← RL(B, µIL , xL),
(b) (Embed reconstructed encoding) XL := Embed(sL, ρ)
(c) (Tamper) c̃L := TL|µ(XL)
(d) (Decode) Output x̃L := DL(c̃L).

fR: On input y

(a) (Reconstruct encodings consistent with µ) Let A := {i − (τ + nZ) : i ∈ V ∩ IR}
SR ← RR(A, µIR , xR).

(b) (Tamper) c̃R := TR|µ(SR).
(c) (Decode) Output x̃R := DR(c̃R).

Figure 4: Simulator, S, for (E,D)

Next we argue, via a sequence of hybrids, that for any fixed input (xL, xR) and tampering
function t, ∆(D(f(E(xL, xR)));G(xL, xR)) ≤ exp(−σ/2+1), where G denotes the distribution over
split-state functions (fL, fR) induced by the simulator S.

Hybrid H0 (The real experiment): Outputs D ◦ t ◦ E(xL, xR).

Hybrid H1 (Alternate RPE encoding):
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In this hybrid, we change the order of sampling in the encoding procedure: We first sample
ζ, ρ, µ′, Z as in S and then reconstruct RPEs sL and SR to be consistent with µ′.

Specifically, replace the encoding procedure E with the following: On input (xL, xR), first
execute S steps 1-7, then sample sL ← RL(B,µ′IL , xL), XL := Embed(sL, ρ), and SR ←
RR(A,µ

′
IR
, xR) and output (Z,XL, SR).

Hybrid H2 (Simulate tampered seed/“Alternate” Left-side decoding):

In this hybrid, we modify the decoding procedure to simulate tampered seed, ζ̃ using Z, µ′

sampled as in the previous experiment. We then use its extracted locations ρ̃ to extract the
embedded RPE encoding sL.

Specifically, on input (Z̃, X̃L, S̃R), we replace steps 1 and 2 in decoding procedure D with
steps 8,9 in S.

Hybrid H3 (Alternate Alternate RPE encoding):

In this hybrid we again change the order of sampling in the encoding procedure. This time
we sample Z, µ′, ρ̃ as in the previous hybrid, and then sample µ and reconstruct sL, SR as in
S.

Specifically, on input (xL, xR), sample Z, µ′, ρ̃ as before and sample µ as in Step 10 of S. Then,
set sL ← RL(B,µIL , xL), XL := Embed(sL, ρ), SR ← RR(A,µIR , xR) and output (Z,XL, SR)
as the output of the encoding procedure.

Hybrid H4 (The split-state simulation):

In this hybrid, instead of applying the actual tampering function t = (F , h1, . . . , hq, h) to the
output of the encoding procedure from H4 and then applying the decoding procedure from
H4, we instead simply output fL(x

L), fR(x
R), where fL, fR are defined as in S.

We will show that, H0 ≈negl(n) H1, and, in fact, H1 ≡ H2 ≡ H3 ≡ H4.

‖H0 − H1‖ ≤ exp(−σ/2 + 1): It is sufficient to show that: (1) conditioned on ∗ and ∗∗ not
occurring, experiments H0 and H1 are identical (2) the probability of ∗ or ∗∗ occurring is at most
exp(−σ/2 + 1).

Notation. For every variable x that is set during experiments H0,H1, let x denote the corre-
sponding random variable. Given a string µ′ of length n and a set S ⊆ [n], define the n-bit string
µ′(S) as µ′(S)i = µ′i, i ∈ S and µ′(S)i = 0, i /∈ S.

For (1), it is sufficient to show that (ζ,µ′(V ′)) are identically distributed inH0, H1, conditioned
on ∗ and ∗∗ not occurring, where µ′ is the random variable denoting the outcome of (Z,XL, SR).
In order to compute steps 2 − 4, 6, 7 of S, we need only (adaptively) fix the bits (Z,XL, SR)U
corresponding to the set U =

⋃
Ui. Since |U | ≤ ℓmq ≤ csec min{nL, nR, nZ}, by the properties of

the RPE, this means that (ζ,µ′(U)) are identically distributed in H0 and H1.
Since ∗ and ∗∗ depend only on ζ and µ′(U), it is sufficient to show that, for every ζ, µ′(U) for

which ∗ and ∗∗ do not occur, the distributions over µ′(V ′), conditioned on (ζ = ζ)∧(µ′(U) = µ′(U))
are identical in H1 and H2. Due to independence of ζ, sL,SR, the fact that µ′

V ′∩(IL\I′

L
) is uni-

form random in both experiments, and since V ′ ∩ IZ = U ∩ IZ , it remains to show that each of
(µ′(V ′

∩ I′
L) | µ

′(U) = µ′(U)) and (µ′(V ′
∩ IR) | µ′(U) = µ′(U)) are identically distributed in

both experiments.
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Since ∗∗ does not occur, the total size of I ′L ∩ V ′ = B is at most csec · nL and the total size of
IR ∩ V ′ is at most |VZ |+ |U | ≤ ℓ · (nZ +mq) ≤ csec · nR. Therefore, by the properties of the RPE,
the corresponding distributions in H0 and H1 are identical.

We now turn to proving (2). To bound the probability of ∗, note that the expected number of
1’s in G(ζ) is τ · p = 3τnL

2τ = 3nL
2 . Invoking Theorem 5, item (1) with k = σ, µ = 3nL

2 and ε = 1
2 , it

follows that Pr[∗] ≤ exp(−σ/2).
To bound the probability of ∗∗, note that given fixed set V ′, the expected size of V ′ ∩ {i+ nZ :

i ∈ ExtIndices(G(ζ))} is at most |V ′| · p = 3|V ′|nL

2τ = 2csec|V ′|nL

3ℓ(nR+nZ+mq) . Now, |V
′| ≤ ℓ(nR + nZ +mq).

So 2csec|V ′|nL

3ℓ(nR+nZ+mq) ≤
2csecnL

3 . Invoking Theorem 5, item (1) with k = σ, µ = 2csecnL
3 and ε = 1

3 , it

follows that Pr[∗∗] ≤ exp(−σ/2).
The conclusion follows from a union bound.

‖H1 −H2‖ = 0: By inspection, it can be seen that the two experiments are, in fact, identical.

‖H2−H3‖ = 0: Note that the distribution over Z,XL does not change from the previous hybrid
(since all of Z is sampled based on µ′ and since µ does not fix additional bits from IL). The total
number of bits of SR fixed by µ is at most |VL|+ |VZ |+ |U | ≤ ℓ · (nL + nZ +mq) ≤ csec · nR, where
the last inequality is by choice of parameters. Therefore, by the properties of the RPE (ER,DR),
the distribution over (Z,XL, SR) is identical in H1 and H2.

‖H3 −H4‖ = 0: By inspection, these experiments are also identical.

Correctness. By the definitions of (Embed,Extract) and RPE, Pr[D(E(x)) = x] = 1.

3.3 Putting It All Together

In this section, we put things together and show our main results. By composing the non-malleable
reductions from Lemma 4 and Lemma 6, we obtain a non-malleable reduction which reduces small-
depth circuits to split state.

Lemma 7. For S, d, n, ℓ ∈ N, p, δ ∈ (0, 1), there exists σ = poly(log ℓ, log(ℓS), log(1/δ), log(1/p))
such that for k that k ≥ O(σ log n) and k = Ω(n(p/4)d/ℓ2),

(ACd(S) =⇒ SSk, dε+ exp(−σ/2))

where
ε = nS

(
22 log ℓ+1(5p log ℓ)log ℓ + δ

)
+ exp(−

σ

2 log(1/p)
).

For constant-depth polynomial-size circuits (i.e. AC0), we obtain the following corollary by

setting ℓ = n1/ log log log(n), δ = n− log log(n) and p = 1
log ℓ ·

1
logn = log log log(n)

log2 n
,

Corollary 2.
(
AC0 =⇒ SSk, n

−(log logn)1−o(1)
)
for n = k1+o(1).

The same setting of parameters works for depth as large as Θ(log(n)/ log log(n)) with n = k1+c

where constant 0 < c < 1 can be arbitrary small. We remark that one can improve the error to
n−Ω(log(n)) by using a smaller p (e.g. p = n−1/100d) thus a worse rate (but still n = k1+ε).

Combining the non-malleable code for split state from Theorem 4 with rate Ω(log log n/ log(n)),
we obtain our main theorem.

20



Theorem 8. There exists an explicit, efficient, information theoretic non-malleable code for any
polynomial-size, constant-depth circuits with error negl(n) and encoding length n = k1+o(1).

Moreover, for any constant c ∈ (0, 1), there exists another constant c′ ∈ (0, 1) and an explicit,
efficient, information theoretic non-malleable code for any polynomial-size, (c′ log n/ log log n)-depth
circuits with error negl(n) and encoding length n = k1+c.
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