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Abstract

Deep convolution networks have proved very successful
with big datasets such as the 1000-classes ImageNet.
Results show that the error rate increases slowly
as the size of the dataset increases. Experiments
presented here may explain why these networks are
very effective in solving big recognition problems. If
the big task is made up of multiple smaller tasks,
then the results show the ability of deep convolution
networks to decompose the complex task into a number
of smaller tasks and to learn them simultaneously.
The results show that the performance of solving the
big task on a single network is very close to the
average performance of solving each of the smaller
tasks on a separate network. Experiments also show
the advantage of using task specific or category labels
in combination with class labels.

1 Introduction

Since 2012 and starting with the introduction of
Alex Krizhevsky model [Krizhevsky et al., 2012],
all the winners [Simonyan and Zisserman, 2014,
Szegedy et al., 2015, He et al., 2016a,
Hu et al., 2017] of the classification competition
part of the ImageNet challenge were deep convolution
networks. The ImageNet dataset is made up of
1000-classes which is much bigger in size compared
to earlier image recognition benchmarks such as
the MNIST dataset, CIFAR10 dataset, CIFAR100
dataset etc. The experiments presented here
investigate why these networks are very efficient in
solving such big image recognition problems.

The first set of experiments measure how the
performance of deep convolution networks changes as
the number of classes increases. Multiple datasets
with different sizes were randomly sampled from
ImageNet, and the test error rate was measured at
each size. For each size, multiple datasets were
sampled and tested to reduce variance in the results.
The results reveal that the error rate increases at
a much lower rate compared to the increase in the
number of classes. It is interesting to ask why the
performance of these networks is resilient against
increasing the number of classes.

The main experiments in this study may provide
some insight into why deep convolution networks are

very effective in solving large recognition problems.
In this experiment a dataset made up of multiple
categories (sampled from ImageNet) were used to
train a deep convolution network, and the results
were compared to the results of learning each small
category on a separate network. The performance of
the single network trained on all categories was very
close to the average performance of the other networks
trained on single categories. This means the network
was able to break down the main task into smaller
tasks and learn them simultaneously with very small
drop in performance. The network has the remarkable
inherent ability to recognize that a certain complex
task (like ImageNet) is made up of multiple smaller
tasks, and without any hint, is able to discover those
smaller tasks and learn them simultaneously to solve
the large main task.

Finally, using the data available from the main
experiment, an extra experiment showed that using
both the class and category labels of the image
outperformed the standard labeling scheme of only
using the class labels.

2 Experiments

2.1 Performance vs number of classes

The first part of this study tries to measure the
performance of deep convolution networks in relation
to the number of classes in the image dataset.
Datasets with 5 different sizes were randomly sampled
from the 1000-classes ImageNet. The number of
classes of these datasets were 10, 50, 100, 500, and
1000 classes. To reduce variance in the results,
multiple datasets were sampled at each size (except
the last one) and the average performance is reported.
The number of datasets sampled at each size were
10, 10, 5, 2, 1 respectively. The ImageNet dataset
used here is the one used in the ILSVRC 2015
competition, and out of the 1000 classes, 891 of them
had the maximum number of training images of 1300
images per class. All the classes sampled here belong
to these 891, and therefore all the classes used in
this experiment had 1300 training images (expect
the one using the entire ImageNet of 1000 classes).
The ImageNet validation set was used to sample the
different test sets, and each class has 50 test images.
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Table (1) shows the structure of the 34-layer
residual network used in this experiment. All datasets
used the same structure with the only difference
being the number of neurons in the output layer.
Instead of using the standard data augmentation
technique [Simonyan and Zisserman, 2014] that is
usually used with deep residual networks, the more
aggressive augmentation method (usually used with
the inception model [Szegedy et al., 2015]) is used
here. The reason for this choice is because
it performs slightly better with smaller datasets
(probably because it is more effective in reducing
overfitting). The size of the cropped square is chosen
randomly to be between 8% and 100% of the size of
the maximum square in the image, and the aspect
ratio is changed randomly to be between 3/4 and 4/3.

The method in [He et al., 2015] was used to
initialize the network weights, and the standard color
augmentation method in [Krizhevsky et al., 2012]
was used to simulate variance in illumination and
intensity that exists in natural images. The
RMSProp optimization method was used instead
of gradient decent with momentum to update
the network parameters, using a decay value
of 0.999 to calculate the running average per
parameter. RMSProp produces similar results to
ADAM [Kingma and Ba, 2014] with the advantage of
using a single running average per parameter instead
of 2.

output
size 34 Layers

112 × 112 conv, 7× 7, stride 2 64

56 × 56
max pool 3× 3, stride 2[

conv, 3×3, 64
conv, 3×3, 64

]
× 3

28 × 28
max pool 3× 3, stride 2[

conv, 3×3, 128
conv, 3×3, 128

]
× 4

14 × 14
max pool 3× 3, stride 2[

conv, 3×3, 256
conv, 3×3, 256

]
× 6

7 × 7
max pool 3× 3, stride 2[

conv, 3×3, 512
conv, 3×3, 512

]
× 3

1 × 1
global avg pool 7×7
10−d fc, softmax

Table 1: Network Structure

Table (2) shows the results for all dataset sizes.
The results show the multi-crop error rate for all 5
sizes. As the number of classes increases by a factor
of 10 from 10 to 100 to 1000 classes, the error rate only
increases by a factor close to 2 from 4.81% to 10.1% to
21.2%. This shows how effective these networks are in
solving very large problems. The exact values of these
results may vary based on the makeup of the datasets
sampled from ImageNet, and to reduce this variance

multiple datasets are sampled at each size. However,
despite the small variance the error rate always grows
at a much lower rate compared to the increase in the
number of classes.

Data
Size

10
Classes

50
Classes

100
Classes

500
Classes

1000
Classes

Test
Error

4.81% 7.7% 10.1% 16% 21.8%

Table 2: Results for datasets with different sizes sampled

from ImageNet.

Figure (1) shows the relative increase in the error
rate compared to the relative increase in the number
of classes. The relative increase in the error and in the
number of classes are obtained by dividing all entries
in table (2) by the entries in the first column. As the
number of classes is increased up 100 times, the error
rate only increases 4.5 times.

Figure 1: the relative increase in error rate compared to the

relative increase in the number of classes.

2.2 Classifying Multiple Categories

As the previous experiment showed, one of the
strengths of deep convolution networks is their ability
to effectively solve large recognition problems such
as the 1000-classes ImageNet. It also showed that
the performance drops slowly as the size of the
task increases significantly. Looking at the classes
that make up the ImageNet dataset, there are many
similar classes that can be divided into categories (e.g.
multiple species of dogs, cats, birds, multiple types of
cars etc.). It is often likely for very large datasets to
contain similar classes that can be put into categories,
and the next experiment tries to measure how deep
convolution networks react to such similarities, and if
that might explain the success of these networks with
large datasets.

A dataset made up of 100 classes was constructed
from ImageNet, where the chosen classes belong to
10 different categories. These categories are, birds,
bugs, cars, cats, china and cookware, fruits and
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Network Per
Category 16.6% 12.6% 19.0% 23.4% 2.43% 10.4% 16.4% 22.7% 23.4% 24.9% 17.18%

Shared
Network

17.4% 12.5% 20.4% 27.0% 2.37% 10.9% 18.9% 23.6% 24.5% 25.3% 18.28%

Table 3: Results per category for the shared network vs the results obtained using separate network per category.

vegetables, furniture, lizards, monkeys, and snakes.
Each of these naturally divided categories consists of
10 classes, for example the cars category is divided
into ambulances, jeep (four wheel) cars, family cars,
convertible cars, police cars, taxis, sports cars, small
buses, large family cars, pickup cars. Each class has
1300 training images, and 50 test images (sampled
from the ImageNet validation set). For reproducing
the results, table (6) shows the folder names of the
classes that make up all the categories.

In the first part of this experiment all 10
categories are considered as a single dataset and used
to train a deep convolution network. Images were
labeled regularly using a vector of 100 numbers, with
only one of them is ON to reflect a specific class.
This is the regular way of coding image labels when
softmax is used as the activation function of the
output layer. Therefore, no hint is given to the
network to treat these 100 classes as 10 separate
categories.

In the second part of the experiment, each
category was considered as a separate dataset, and
used to train a separate network. Therefore, 10
separate networks will be trained using the 10
different categories, and the size and structure of these
networks is the same as the size and structure of the
shared network used to learn all categories. The only
difference is the size of the output layer.

The accuracy of classifying a category using a
separate network will be compared to the accuracy
of classifying that category on the shared network
used to learn all categories. This comparison will
measure the drop in performance per category for the
shared network. The drop should reflect the added
confusion caused by learning all the categories on the
same network.

The same network structure shown in table
(1) will be used here, with the same setup to the
hyper-parameters used in the previous experiment.
Table (3) shows the results per category for both parts
of the experiment. The top row shows the results
per category for the 10 separate networks, while the
bottom row shows the results per category for the
shared network. The last column shows the average
results for all 10 categories. For most categories the
results were very close with only a small drop in the
performance of the shared network, as the average
error increases from 17.18% to 18.28%.

From the results in table (3), the shared network
utilized the fact that the 100 classes belong to 10
different categories, and was able to learn all of them
with accuracy very close to learning each one on a
separate network. The network was able to break
down the main task into multiple smaller tasks, and
learn them simultaneously. Therefore, for a big task
made up of multiple smaller tasks, what dictates
the difficulty of learning the main task is not its
size (number of classes), but rather the difficulty of
learning each of the smaller tasks. From table (3), the
performance of the network used to solve the main
task was very close to the average performance of
solving each of the subtasks separately.

If a big dataset is made of multiple groups where
each group contains classes that are similar and hard
to distinguish, then the difficulty of distinguishing
between the members of these groups will probably
decide the performance of the network. In reality
however, big datasets such as ImageNet have a mixed
bag of classes that can be separated into categories
(cars, cats, dogs etc.), and classes that have common
features with many other classes, and cannot be put
into a specific group or category. Therefore, the
performance of deep convolution networks on such
big datasets, will be affected by both, the difficulty
of the subtasks within the big dataset, as well as the
size of the dataset. If most of the classes belong
to well separated categories, then the difficulty of
learning those categories will probably decide the
performance of the network, while if most of the
classes belong to a big vague group that cannot be
broken down to smaller categories, then the size of
the task will probably decide the performance of the
network. The results of the previous experiment on
datasets with different sizes sampled randomly from
ImageNet shows something in between, where the
performance of convolution networks drops slowly as
the number of classes increases.

In order to put these results into perspective,
they will be compared with results obtained using
another dataset with the same size, that is randomly
sampled from ImageNet, and randomly divided into
10 groups. Figure (2) shows the results per category
(or group) for both cases. The yellow bars show the
error rates per category (group) when each category is
learned separately, and the blue bars show the error
rates per category (group) for the shared network.
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The left figure shows the results for the naturally
divided dataset, and the right figure shows the
results for the randomly divided dataset. By visually
comparing the two figures, we see that the shared
network succeeded in learning all naturally divided
groups, while it failed to do the same for the randomly
divided groups.

Figure 2: The blue bars show the error rate per category obtained

using the shared network, the yellow bars were obtained using a

separate network per category. left:- for the naturally divided

dataset, right:- for the randomly divided dataset.

2.2.1 Inter-category Leakage

Inter-category leakage measures the ratio of images in
each category that have been misclassified as classes
from other categories, when all categories are learned
using a shared network. The leakage can be measured
using the confusion matrix, by merging the results
of all the classes that belong to a single category to
form a single superclass that represents that category.
The merger process goes like this: - if an image is
misclassified as a class from the same category then
this is considered a correct classification, while if
an image is misclassified as a class from a different
category then this is considered a wrong classification.
When combining all the classes in each category into
a single superclass, then the inter-category error rate
or leakage is equal to 2.36% as shown in table (4).
The low inter-category leakage of 2.36% shows that
the network rarely misclassifies an image as one from
a different category. Out of the 18.28% misclassified
images in table (4) only 2.36% happened between
categories, while 18.28 – 2.36% = 15.92% happened
locally within each category.

Table (3) showed a drop in performance for the
shared network compared to using a separate network
per category equal to 18.28 – 17.18 = 1.1%, while
table (4) shows a bigger leakage between categories
for the shared network equal to 2.36%. If 2.36% of
the images has suffered from being learned with other
categories on the same network, then 2.36 - 1.1 =
1.26% of the images must have benefited by being
learned with other categories. Figure (3) explains
this and shows a histogram for the difference in
accuracy per class. It shows that about two third of
the classes lost some performance by being learned

on the shared network, while about one third has
actually gained some performance. The shape of the
histogram is close to a normal distribution with a
negative average close to zero that reflects the 1.1%
drop in performance for the shared network, and a
small variance that reflects the similarity between the
results obtained using the shared network and the 10
separate networks.

Figure 3: Histogram of the difference in performance per class,

between using the shared network, and using a separate network

per category. 100 values for 100 classes.

2.3 Using Class and Category labels

Using the dataset from the previous experiment
(made up of 100 classes divided into 10 categories),
a combined labeling scheme, that uses both class and
category labels, will be tested against the standard
labeling scheme that uses only class labels. The
adopted method of adding the category label is
straight forward and can easily be implemented. The
combined class/category label is a vector made of 110
numbers, 10 numbers for each of the 10 categories,
and 100 numbers for each of the 100 classes. For
each image, 2 numbers will be ON, one represents
the class of the image, and the other one represents
the category of that image. In order to use a single
softmax in the output layer, the two ON numbers per
label are set to 0.5.

Labels scheme Error Rate

class label 18.28%

class/category
label

17.3%

Table 5: results using class/category labels vs using only

class labels.
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Error Rate 0.56% 1.95% 1.86% 5.2% 0.34% 1.4% 2.86% 4.2% 0.83% 4.46% 2.36%

Table 4: results obtained by merging each category into a super-class. The results show the amount of leakage between

categories.

Table (5) shows the results of using the combined
class/category labeling scheme, vs using only the
class label. There is about 1% (about 5.3%
relative reduction) improvement in accuracy when the
category label is added. This shows that the standard
labeling method of using only the class label is very
basic and can be improved. The construction of
ImageNet is done by hand, and a closer inspection
of the cars category shows some sports cars labeled
as convertible cars and vice versa. This way of
randomly labeling cars that share both attributes
causes confusion to the network. If the image label
was constructed using only the class number, then
two convertible cars can have two completely different
labels (one as a convertible car and the other as a
sports car), while if the category number is added,
then these two cars will at least share the same
category number, and that will make their labels
50% similar, rather than 0% similar. Figure (4)
shows some convertible cars from ImageNet that have
been labeled as sports cars, because they share both
attributes. In fact, both classes were among those
that benefited from adding the category label, with
the error rate for the convertible cars class dropping
from 14.2% to 10.2%, and for the sports cars class
dropping from 15.6% to 12.8%, which is much better
than 1% average improvement.

Figure 4: convertible cars that were labeled as sports cars, In

ImageNet.
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