
Fast flow-based algorithm for creating
density-equalizing map projections
Michael T. Gastnera,1, Vivien Seguyb, and Pratyush Morea

aYale-NUS College, Division of Science, 16 College Avenue West, #01-220 Singapore 138527; bGraduate School of Informatics, Kyoto University, 36-1 Yoshida-Honmachi,
Sakyo-ku, Kyoto 606-8501 Japan

This manuscript was compiled on February 22, 2018

Cartograms are maps that rescale geographic regions (e.g., coun-
tries, districts) such that their areas are proportional to quantitative
demographic data (e.g., population size, gross domestic product).
Unlike conventional bar or pie charts, cartograms can represent cor-
rectly which regions share common borders, resulting in insightful
visualizations that can be the basis for further spatial statistical anal-
ysis. Computer programs can assist data scientists in preparing
cartograms, but developing an algorithm that can quickly transform
every coordinate on the map (including points that are not exactly
on a border) while generating recognizable images has remained
a challenge. Methods that translate the cartographic deformations
into physics-inspired equations of motion have become popular, but
solving these equations with sufficient accuracy can still take sev-
eral minutes on current hardware. Here we introduce a flow-based
algorithm whose equations of motion are numerically easier to solve
compared with previous methods. The equations allow straightfor-
ward parallelization so that the calculation takes only a few seconds
even for complex and detailed input. Despite the speedup, the pro-
posed algorithm still keeps the advantages of previous techniques:
with comparable quantitative measures of shape distortion, it accu-
rately scales all areas, correctly fits the regions together and gener-
ates a map projection for every point. We demonstrate the use of our
algorithm with applications to the 2016 US election results, the gross
domestic products of Indian states and Chinese provinces, and the
spatial distribution of deaths in the London borough of Kensington
and Chelsea between 2011 and 2014.

cartography | data visualization | statistical analysis | computer graphics

A guideline for displaying statistical data in a diagram is the
“area principle”: each part of the diagram should have an

area in proportion to the number it represents (1). For many
categorical data, a bar chart is a simple visualization method
that satisfies the area principle. For example, if our data are
the electors that voted for the US president in December 2016,
we can categorize the electors by US state. Every bar in the
top half of Fig. 1 corresponds to a state that sent at least one
Republican elector to the Electoral College. In the bottom half,
the bars show the states with Democratic electors. The colors
chosen for the bars are the traditional red for Republicans and
blue for Democrats. Because the bar chart satisfies the area
principle, the election is won by the color that occupies more
area, which is evidently red in this example.∗

Although a bar chart is often a suitable visualization tool,
it cannot reveal the spatial pattern behind the data. The
bar chart of Fig. 1 lacks the information where the states are
located: neighboring bars do not necessarily correspond to

∗Because of peculiarities in the US electoral system, the Electoral College is not an exact repre-
sentation of the proportion of votes cast by the US population at large. The Republican candidate
Donald Trump was elected as US president despite losing the popular vote to the Democratic can-
didate Hillary Clinton. We show a cartogram of the popular vote distribution in Fig. 7 of the SI
Appendix.

A
L

A
K

A
Z

A
R

F
L

G
A

ID
IN

IA K
S K

Y
L

A
M

E
M

I
M

S M
O

M
T N
E

N
C

N
D

O
H

O
K

P
A

S
C

S
D

T
N

T
X

U
T

W
V W

I
W

Y

C
A

C
O C

T D
E

D
C

H
I

IL
M

E
M

D
M

A
M

N N
V N
H

N
J

N
M

N
Y

O
R

R
I

V
T

V
A

W
A

R
e

p
u

b
lic

a
n

 e
le

c
to

rs
D

e
m

o
c
ra

ti
c
 e

le
c
to

rs

60

50

40

30

20

10

0
0

10

20

30

40

Fig. 1. A bar chart of the Electoral College vote for the US president in 2016. This
diagram satisfies the area principle: the area of each bar is proportional to the number
of electors. However, from this bar chart it is not clear where states are located
geographically.

states that are geographic neighbors. If we want to visualize
how the states fit together in real space, we need a different
approach. The common alternative is to show a map such as

Significance Statement

Geographic maps are a popular means to visualize spatial
statistics. Conventionally, each map region is displayed with
an area proportional to the actual land area. But equal-area
maps can grossly misrepresent demographic data: densely
populated cities should be given more prominence than large,
but sparsely populated territories. Cartograms solve this prob-
lem by rescaling map regions in proportion to, for example,
population or gross domestic products. Until now, it has gener-
ally been cumbersome or slow to calculate map projections for
contiguous cartograms. Here we describe and benchmark a
fast flow-based algorithm that computes cartograms in a matter
of seconds, yet maintains the strengths of previous methods –
a development which may lead to a more widespread adoption
of cartograms.

M.T.G. designed research and analyzed data. M.T.G., V.S. and P.M. performed research and wrote
the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: michael.gastner@yale-nus.edu.sg

1

ar
X

iv
:1

80
2.

07
62

5v
1

 [
cs

.C
G

]
 2

1
Fe

b
20

18

ME2

ME1

AZ AR

DE

GA

MN

CA
DC

FL

ID

IL

IA

KY

LA

MD

MI

MO

MT

NY

OR

TN

TX

VA

WISD

UT

IN

MA

MS

NE

NM

NC

RI

OH

OK

SC

CO
KS

CT

NV

WA

WV

WY

AL

NH

NJ

ND

PA

VT

AK

HI

A

B

Fig. 2. (A) A conventional map projection (here an Albers projection) clearly shows
the location of each state, but violates the area principle: states that occupy a large
area do not necessarily have a large number of electors. (B) A cartogram of the
2016 Electoral College [adapted from Wikipedia (2)] satisfies the area principle.
Each elector is represented by a small square at the approximate location of the
elector’s home state. Cartograms such as these are popular in the media, but are not
map projections in a strict sense: there is no continuous mathematical function that
transforms coordinates of longitude and latitude to coordinates on the cartogram. For
example, in (B) it is not possible to identify the location of the state capitals (indicated
by white circles in panel A).

Fig. 2A, where we use an Albers equal-area conic projection
for the contiguous United States to produce their familiar
geographic outline. We add Alaska and Hawaii, suitably
rescaled, below the map of the contiguous United States. Each
state is filled with either red or blue depending on the party
affiliation of the electors.†

The map in Fig. 2A accurately shows the relative area and
position of each state. However, it does not obey the area
principle of statistics. For example, Montana (abbreviated
by MT in Fig. 2A) covers more than 2000 times the area of
Washington DC, but both regions have the same number of
electors. On aggregate, Republican electors won 74% of the US
area in square kilometers, but had only 57% of the vote share
in the Electoral College. So, Fig. 2A has the opposite problem
of Fig. 1 where we satisfied the statistical area principle, but
conveyed no information about the states’ locations. One
might suspect that showing the locations and simultaneously
satisfying the area principle are as impossible as squaring the
circle. Fortunately, however, there is a visualization method,
known as a cartogram, that can tackle this challenge (3, 4).

After a brief review and classification of cartograms, we
introduce a technique that produces cartograms of a quality
comparable to the most popular technique currently in use:
the diffusion cartogram (5). The technique proposed in this
article solves a completely different set of equations so that
the computation can finish within a fraction of the previously
needed time. We benchmark our algorithm with data from the
USA, India, China, and the London borough of Kensington and
Chelsea to demonstrate that our method accurately satisfies
the area principle and generates visually pleasing cartograms.

Classification of cartogram methods

In a cartogram, regions are deformed such that their areas
are equal to statistical data such as population, votes in an
election, or gross domestic product. An example, showing the
Electoral College on a cartogram, is the diagram in Fig. 2B
which we adapted from Wikipedia (2). Similar cartograms
have been shown in the news media (6, 7). Here each elector is
represented by a small square. The squares are then positioned
with two objectives in mind. First, the shapes on the cartogram
should resemble those on the map in Fig. 2A. Second, the set of
neighboring states in Fig. 2A and Fig. 2B should be the same.
Satisfying both objectives is not trivial. A careful comparison
with Fig. 2A shows that, for example, Arizona (AZ) and Texas
(TX) incorrectly appear as neighbors in Fig. 2B. On the other
hand, the geographic neighbors Colorado (CO) and Nebraska
(NE) have been separated in Fig. 2B to make space for other
states in the vicinity.

For certain applications, it is perfectly acceptable that
neighboring states are split apart. So long as the areas of
the states are proportional to the number of electors, such
representations are called noncontiguous cartograms (8). Dor-
ling’s circular cartograms are good examples of noncontiguous
cartograms that, while not strictly maintaining the topology,
indicate where the represented regions are located (9). Con-
tiguous cartograms, by contrast, not only rescale the regions,
but also keep the topology intact (i.e., neighbors on the map
are neighbors on the cartogram and vice versa).

†The only exception is Maine which applies the “congressional district method”: although the major-
ity in Maine voted for the Democratic candidate Hillary Clinton, the Republican candidate Donald
Trump still gained one electoral vote for winning the 2nd congressional district (abbreviated as ME2
in Fig. 2A.)

2 Gastner et al.

The methods that have been proposed for generating con-
tiguous cartograms fall into two distinct categories. The first
group consists of algorithms that operate only on the bound-
aries of regions (10–18). Each region is represented by one
or multiple polygons. The input to these algorithms are a
finite number of polygon corners (x1, y1), . . . , (xn, yn). Here
(xi, yi) is a projection of the longitude and latitude, usually ob-
tained from a conventional projection (e.g., plate carrée or an
equal-area projection). The algorithm generates transformed
polygon coordinates T(x1, y1), . . . ,T(xn, yn). For the first
group of algorithms, these n points are in fact the only output
and, hence, we refer to them as “boundaries-only” algorithms.
In other words, boundaries-only methods do not transform
points that are in the interior of a polygon. For example, on a
US state cartogram (such as Fig. 2B) we would not be able to
uniquely locate a state capital such as Austin, TX, because
it is far from any state border. One might symbolically place
all capitals at the centroid of the corresponding polygon, but
some centroids might be outside the polygon if it is concave or
contains holes (e.g., lakes or enclaves). The situation is even
more complicated if we want to represent multiple distinct
points or lines (e.g., rivers or roads) inside a state as distinct
objects on a boundaries-only cartogram.

The second group of contiguous cartogram algorithms ap-
proaches the problem from a different point of view by produc-
ing a continuous transformation T for the entire continuous
set of longitudes and latitudes on the input map, including
coordinates that are not on a boundary (5, 19–23). We re-
fer to this group as “all-coordinates” algorithms. Generating
the map projection T for all longitudes and latitudes can
be computationally more demanding than only shifting the
boundary coordinates. In fact, for applications where only
the boundaries are of interest – as is the case for the US elec-
tion map – the boundaries-only algorithms can give adequate
results. However, the run time of these discrete algorithms
typically increases steeply with the number of corners. As a
result, they often rely on coarse-grained input to gain speed,
for example by removing Michigan’s Upper Peninsula from the
US map (13, 14, 17). If we wish to show data that are resolved
at a scale much finer than the polygons to be displayed [e.g.,
graticules for a fine, spatially regular grid (24) or individual
addresses], the all-coordinates algorithms usually outpace their
boundaries-only counterparts.

In this article, we describe an all-coordinates algorithm that
only needs a few seconds to produce the complete projection
T for realistic input. Knowing T will allow us to show the
positions of all US state capitals with respect to the states’
boundaries (Fig. 3B) and the coordinates of individual death
cases in London (Fig. 4B and C).

Previous all-coordinates methods to produce a car-
togram projection

For the sake of concreteness, let us assume that we want to
make a cartogram whose areas are proportional to the popula-
tion. We define the population density as the function ρ(x, y)
such that a small rectangular area element with the corners
(x±dx/2, y±dy/2) contains the population ρ(x, y) dx dy. Some
data allow us to model ρ(x, y) with variations on fine spatial
scales. (Our application below to the mortality statistics of
Kensington and Chelsea belongs to this category.) In other
cases, it is more natural to model ρ(x, y) as a piecewise con-

stant function. For example, California’s 55 electors can be
represented by a constant density in this state equal to the
number of electors divided by the state’s geographic area.

An accurate cartogram must project the rectangle (x ±
dx/2, y ± dy/2) onto a quadrilateral T(x± dx/2, y ± dy/2) in
such a way that the area of the quadrilateral is proportional to
ρ dx dy. In other words, we are looking for a two-dimensional
function T = (Tx, Ty) such that ρ(x, y) dx dy = ρ̄ dTx dTy
where ρ̄ depends neither on x nor y. Such a transformation
T is called a density-equalizing projection. Taking the limits
dx→ 0 and dy → 0 and assuming that T is differentiable, we
obtain the condition (5, 19),

∂Tx
∂x

∂Ty
∂y
− ∂Tx

∂y

∂Ty
∂x

= ρ(x, y)
ρ̄

, [1]

which is called a prescribed Jacobian equation (25, 26). For
convenience, we choose the constant ρ̄ to be the spatially
averaged density so that the total mapped area is preserved.

Equation 1 alone does not uniquely specify T because it is
only one single equation for the two unknowns Tx and Ty (21).
As a consequence, there are infinitely many different strate-
gies to obtain a density-equalizing projection T. In practice,
however, only a few methods are computationally efficient,
produce attractive graphics and are independent of the choice
of coordinate axes. Most of the methods that have been pro-
posed in the literature are based on physical analogies. A
common metaphor is to view the undistorted input map as a
rubber sheet. Forces or stresses act on the rubber sheet such
that the points move toward equilibrium positions that satisfy
Eq. 1 (20, 23). Although such mechanical metaphors make
intuitive sense, there is no direct physical connection between
force and area. Therefore, it is not immediately obvious how
the forces should be chosen as functions of ρ(x, y) to ensure
that Eq. 1 is valid. Some methods treat the term “force” in a
less literal sense so that the area constraints are more explicitly
part of the equations (10, 12). However, these algorithms must
take special care to avoid topological errors (e.g., regions that
are flipped or boundaries that intersect themselves) during the
relaxation of the forces. Another method, based on neural net-
works, starts by placing sample points on a regular grid (27).
During the training of the network, the samples are attracted
toward regions of high density to mimic the population dis-
tribution. Their final positions define a mapping which can
produce a cartogram by considering its inverse. However, a
large number of sample points is necessary to produce smooth
boundaries.

An alternative physical metaphor is to view the process
that generates the cartogram as the flow of a fluid. In this
analogy, we think of the map as a Petri dish covered with a
thin layer of water. In an experiment, we would model the
population density ρ(x, y) by injecting small particles with
spatially varying concentrations into the water layer. The
particles then diffuse across the entire Petri dish. In the
long run, the probability density function of finding a particle
becomes a constant everywhere inside the dish. We can make a
cartogram by translating this simple physical model of density
equalization into a geographic map projection.

The most familiar process that equilibrates the density
is Brownian motion. On a macroscopic scale, the Fokker-
Planck equation that describes Brownian motion is Fick’s
second law ∂ρ/∂t = D∇2ρ. Here t stands for time, D is the

Gastner et al. 3

ME2

ME1

AZ

AR
DE

GA

MN

CA

DC

FL

ID

IL

IA

KY

LA

MD

MI

MO

MT
NY

OR

TN

TX

VA

WI

SD

UT IN

MA

MS

NE

NM

NC

RI

OH

OK

SC

CO
KS

CT

NV

WA

WV

WY

AL

NH

NJ

ND

PA

VT

AK HI

A

B

ME2

ME1

AZ

AR

DE

GA

MN

CA

DC

FL

ID

IL

IA

KY

LA

MD

MI

MO

MT
NY

OR

TN

TX

VA

WI

SD

UT
IN

MA

MS

NE

NM

NC

RI

OH

OK

SC

CO
KS

CT

NV

WA

WV

WY

AL

NH

NJ

ND

PA

VT

Fig. 3. The 2016 US Electoral College vote represented on cartograms generated
with (A) the diffusion algorithm of Ref. (5) and (B) the alternative flow-based algorithm
based on Eq. 4–7. The insets for Hawaii and Alaska apply to both (A) and (B) as
these regions’ areas match both cartograms. All areas differ by <1% from their target
values (i.e., the proportion of votes in the Electoral College). Cartograms (A) and (B)
differ in detail, but appear remarkably similar considering that generating (B) needs
only 2.5% of the time required by the diffusion algorithm. The white circles indicate
the positions of the state capitals.

diffusivity and ∇2 is the Laplace differential operator. This
equation, known as the diffusion or heat equation, is at the
heart of the “diffusion cartogram” method (5, 26). An example
of a diffusion cartogram is Fig. 3A where we show the US
Electoral College results. The diffusion algorithm guarantees
that, unlike in Fig. 2B, each state keeps its neighbors while still
reaching the target areas to any desired level of accuracy. The
diffusion cartogram distorts the shapes of the states, which is
inevitable for any contiguous cartogram method. The shapes
are, however, still recognizable; this is one of the reasons
why diffusion cartograms have become popular in the past
decade (4). Another reason is that, despite the apparent
complexity of the equations, they can be computed relatively
efficiently.

However, Fickian diffusion is only one of many types of fluid
dynamic rules that make particle densities equal everywhere.
As we argue now, there is an alternative that is computation-
ally more efficient while producing cartograms of comparable
quality.

Flow-based cartogram with linear equalization

In a flow-based cartogram, the population density ρ is treated
not only as a function of position r = (x, y), but also as a func-
tion of time t. For a density-equalizing projection, the density
must approach its mean in the long run: limt→∞ ρ(x, y, t) = ρ̄
for all x and y. That is, the particles must flow in such a
way that all initial differences in their density are completely
leveled out over time. This condition alone, however, does not
yet define the projection T. We must also know the velocity
v(x, y, t) with which a point at (x, y) is dragged along by the
flow at time t. Because there are no sinks or sources in the flow,
v must satisfy the mass conservation equation, also known as
the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. [2]

If we know v(x, y, t) for all x, y, and t, we can compute the
position r(t) for a point that is initially at r(0),

r(t) = r(0) +
∫ t

0
v(r(t′), t′)dt′. [3]

The projection T is the function that shifts r(0) to limt→∞ r(t).
In the SI Appendix (section 2), we explain in more detail why
T is density-equalizing.

We can satisfy the continuity equation while simultaneously
demanding Fick’s law v = −D(∇ρ)/ρ. Substituting Fick’s law
into Eq. 2 shows that the evolution of ρ is then governed by
the heat equation ∂ρ/∂t = D∇2ρ. This is the key motivation
behind the diffusion cartogram method (5), but Fickian diffu-
sion is only one special case among a large class of processes
in which ρ relaxes to its mean density while satisfying the
continuity equation for some velocity field v. One advantage of
Fickian diffusion is that the corresponding flow is guaranteed
to be free of vortices that could cause severe local distortions
in T. However, Fickian diffusion is not unique in this respect
(see section 2 of the SI Appendix) so that one is left wondering
whether other vortex-free, mass-conserving processes might
also be suitable for generating cartograms. As we now argue,
if we replace the heat equation by a linear equalization of the
density toward the mean,

ρ(x, y, t) =
{

(1− t) ρ0(x, y) + tρ̄ if t ≤ 1,
ρ̄ if t > 1,

[4]

we can indeed compute T significantly faster. It has been
shown that there exists a velocity field v for Eq. 4 so that the
resulting transformation T satisfies Eq. 1 (25). We derive the
concrete formulas for v in the SI Appendix (section 2) and
only give a brief summary here.

After an affine transformation of all coordinates, we place
the mapped area inside a rectangular box with bounding
coordinates xmin = 0, xmax = Lx, ymin = 0, ymax = Ly. (For
later convenience, we choose Lx and Ly to be integers.) If we
demand that there is no flow through the edges of the box,
the velocity for t ≤ 1 can be expressed in terms of sine and

4 Gastner et al.

018C

018C

ratio of observed to
expected death rate

0.7

0.8

0.9

1.0

1.1

1.2

A B

C D

equal-area map equal total population

equal age-adjusted population kernel density estimation

Fig. 4. Maps with scatter plots of death cases in Kensington and Chelsea between 2011 and 2014 on (A) an equal-area map and on cartograms equalizing (B) the total
population in each Lower Layer Super Output Area (LSOA) and (C) age-adjusted population (i.e., the expected number of deaths given the age and gender composition of
the LSOA). Cartogram (B) reveals a high per-capita mortality in LSOA 018C in the southeast of the borough caused by a nursing home located inside this polygon. When
accounting for the heterogeneous age distribution across the borough in (C), LSOA 018C has approximately the expected number of death cases. In other LSOAs, however, the
expected and observed numbers differ. A kernel density estimate in panel (D) indicates an increasing trend in the age-adjusted death rate from the southeast to the northwest.

Gastner et al. 5

cosine Fourier transforms,

vx(x, y, t) = − Ly
πρ(x, y, t)

∞∑
m=1

∞∑
n=0

[
m

m2L2
y + n2L2

x
ρ̃mn

× sin
(
mπx

Lx

)
cos
(
nπy

Ly

)]
, [5]

vy(x, y, t) = − Lx
πρ(x, y, t)

∞∑
m=0

∞∑
n=1

[
n

m2L2
y + n2L2

x
ρ̃mn

× cos
(
mπx

Lx

)
sin
(
nπy

Ly

)]
[6]

with

ρ̃mn = 4
(δm0 + 1)(δn0 + 1) [7]

×
∫ Lx

0

∫ Ly

0
ρ(x′, y′, 0) cos

(
mπx′

Lx

)
cos
(
nπy′

Ly

)
dx′dy′.

Here δ00 = 1 and δm0 = 0 if m 6= 0. For t > 1, we simply
obtain vx(x, y, t) = vy(x, y, t) = 0.

Equations 5–7 look superficially similar to the correspond-
ing equations in the diffusion-based cartogram (5), but there
are two important differences. First, neither the sums in Eq. 5,
6 nor the integral in Eq. 7 depend on t so that the Fourier
transforms need to be computed only once at the beginning of
the calculation. Second, after we have computed the Fourier
transforms, here we only require quick arithmetic operations:
addition, subtraction, multiplication, and division. For a dif-
fusion cartogram, by contrast, we must repeatedly calculate
time-dependent Fourier transforms and evaluate the exponen-
tial function during the integration of Eq. 3 (see section 2 of
the SI Appendix). The speed of computing the exponential
function depends on details of the implementation and hard-
ware, but is in general much slower than addition, subtraction,
multiplication, or division (28).

These mathematical differences alone already cut the time
needed per integration step by more than half. Another simpli-
fication compared with the diffusion cartogram is that we need
to integrate Eq. 3 only until t = 1 instead of t =∞. The ben-
efit is that we no longer need to check whether the improper
integral over the velocity has sufficiently converged. Most im-
portantly, however, the integrals from different starting points
r(0) can be performed in parallel as we now explain.

We overlay the map with an Lx × Ly square grid. For
these LxLy coordinates, we compute the sums and integrals
in Eq. 5–7 at the start of the calculation with the fast Fourier
transform algorithm (29). We have found that the time needed
for this one-time procedure is a negligible fraction of the
total run time. After storing the LxLy Fourier transforms
in memory, we obtain v(r, t) at each grid point r with basic
arithmetic. Subsequently, we find the integrand in Eq. 3 for
non-grid positions r by interpolating between the grid points.
We numerically approximate the integral using a predictor-
corrector method that automatically adapts the size of the
next time step. During each step, we distribute the integration
of the LxLy distinct integrands to different processing units.
In practice, given the wide availability of multi-core processors
nowadays, this parallelization enormously boosts the speed of
the calculation.

Benchmarking the algorithm with data for the USA, In-
dia, and China

We have implemented the algorithm based on Eq. 4–7 as a C
program. In this section, we illustrate its performance with
three case studies: the 2016 vote in the US Electoral College
(Fig. 3B), the distribution of India’s gross domestic product
(GDP) by state (Fig. 5), and mainland China’s and Taiwan’s
GDP by province (Fig. 6).

In each case, we first project the longitudes and latitudes
of the territorial borders with an Albers equal-area conic
projection onto a flat two-dimensional space. As described
above, we embed the resulting map (Fig. 2A, 5A and 6A,
respectively) inside an Lx × Ly rectangle whose edges act as
reflecting boundaries for the flow. The rectangular box should,
on one hand, be chosen large enough so that the cartogram is
independent of the boundary conditions. On the other hand,
it should not be so large that we spend the bulk of the run
time on computing the projection T far from the region of
interest. As a compromise, we have chosen the side length
equal to 1.5 times the maximum of the countries’ north-south
and east-west extent. (These rectangular boxes are larger
than the frames shown in Fig. 5 and Fig. 6 whose purpose is
purely to visually separate the different panels in the figure.)
The space between the country and the edges of the box is
filled with the mean density ρ̄. Other choices are conceivable
and may improve shape preservation (e.g., by more faithfully
retaining the outer boundaries of the map), but they would
result in more complex computer code.

For the discrete Fourier transforms, we divide the large
rectangular box into a grid of Lx ×Ly smaller squares (in our
examples Lx = Ly = 512, but the number can be adjusted
if necessary) whose sizes are just fine enough to discern the
smallest geographic regions on each map: Washington, DC
in the USA; Daman and Diu in India (abbreviated by DD
in Fig. 5); and Macao in China (MO in Fig. 6). Officially,
these regions have neither the status of a state nor a province:
Washington DC is a district, Daman and Diu a union territory,
and Macao a Special Administrative Region. We still include
these regions on the cartograms because they are typically
included on maps showing the states and provinces of their
respective countries.‡

When numerically integrating Eq. 3, the choice of time steps
determines how accurately we estimate r(1). One possible
strategy for achieving a highly accurate cartogram is to take a
large number of small steps. After some experiments, we have
decided to use a different strategy that achieves quicker run
times and ultimately also comes arbitrarily close to a perfectly
density-equalizing map. We use only a moderate number
of adaptive time steps (≈ 100 in a typical run; the exact
number is determined at runtime) during the initial integration.
We expedite the convergence by applying a Gaussian blur of
moderate width to the initial density prior to starting the
integration. After one round of integration, the areas do not
yet perfectly match their targets. For example, Washington
DC still needs to grow by a factor ≈ 50. The key feature is to
use the output of the first integration as input to another round
of integration, which then usually comes closer to the objective
areas. By repeating the integration sufficiently often, we have
in all test cases observed that we can reach the objective

‡We exclude the island territory of Lakshadweep from the maps of India because it is so small that
it is neither visible on an equal-area map nor on a GDP cartogram.

6 Gastner et al.

AN

AP

AR

AS

BR

CH

CT

DN

DD

DL

GA

GJ

HR

HP

JK

JH

KA

KL

MP

MH

MN
ML

MZ

NL

OD

PY

PB

RJ

SK

TN

TG

TR

UP

UK

WB

AN

AP

AR

AS

BR

CH

CT

DN

DD

DL

GA

GJ

HR

HP

JK

JH

KA

KL

MP

MH

MN

ML

MZ

NL

OD

PY

PB

RJ

SK

TN

TG

TR

UP

UK

WB

A B

Fig. 5. The states and union territories of India on (A) an equal-area map, (B) a cartogram where the area of each region is proportional to GDP (data from Statistics Times (30)).
The two largest states by area, Rajasthan (RJ) and Madhya Pradesh (MP), shrink on the cartogram because they only rank 7th and 10th in GDP, respectively. Maharashtra
(MH), the state with the highest GDP, slightly grows on the cartogram. Even more striking is the increase of Delhi (DL): although small in area, the capital city has a higher GDP
than many larger states. The opposite happens for Arunachal Pradesh (AR) and several other northeastern states because they rank low in GDP. Our algorithm only needs 2.6
seconds to construct the cartogram. AN, Andaman and Nicobar Islands; AP, Andhra Pradesh; AS, Assam; BR, Bihar; CH, Chandigarh; CT, Chhattisgarh; DN, Dadra and Nagar
Haveli; DD, Daman and Diu; GA, Goa; GJ, Gujarat; HR, Haryana; HP, Himachal Pradesh; JK, Jammu and Kashmir; JH, Jharkhand; KA, Karnataka; KL, Kerala; MN, Manipur;
ML, Meghalaya; MZ, Mizoram; NL, Nagaland; OD, Odisha; PY, Puducherry; PB, Punjab; RJ, Rajasthan; SK, Sikkim; TN, Tamil Nadu; TG, Telangana; TR, Tripura; UP, Uttar
Pradesh; UK, Uttarakhand; WB, West Bengal.

AH

BJ

CQ

FJ

GS

GX

GZ

HA

HEB

HL

HEN

HUB

HUN

JS

JX

JL

LN

NM

NX

QH

SAA

SD

SHG

SAX

SC

TJ

XJ

TAR

YN

ZJ

GD

HK
MO

TW

AH

BJ

CQ

FJ

GS

GX

GZ

HA

HEB

HL

HEN

HUB

HUN

JS

JX

JL

LN

NM

NX

QH

SAA
SD

SHG

SAX

SC

TJ

XJ

TAR

YN ZJ

GD

HK

MO

TW

A B

Fig. 6. Provincial-level administrative divisions of mainland China and Taiwan on (A) an equal-area map, (B) a cartogram where areas are proportional to GDP (data from
Wikipedia (31)). Some coastal cities such as Shanghai (SHG) and Hong Kong (HK) increase remarkably on the cartogram. By contrast, western states such as Xinjiang (XJ)
and the Tibet Autonomous Region (TAR) shrink dramatically. Despite the substantial deformations, our algorithm only needs 2.7 seconds to construct the cartogram. AH, Anhui;
BJ, Beijing; CQ, Chongqing; FJ, Fujian; GS, Gansu; GD, Guangdong; GX, Guangxi; GZ, Guizhou; HA, Hainan; HEB, Hebei; HL, Heilongjiang; HEN, Henan; HUB, Hubei; HUN,
Hunan; NM, Inner Mongolia; JS, Jiangsu; JX, Jiangxi; JL, Jilin; LN, Liaoning; MO, Macao; NX, Ningxia; QH, Qinghai; SAA, Shaanxi; SD, Shandong; SAX Shanxi; SC, Sichuan;
TW, Taiwan; TJ, Tianjin; YN, Yunnan; ZJ, Zhejiang.

Gastner et al. 7

areas with arbitrary precision. For the contiguous 48 states
of the USA, we perform five iterations. Afterward, even for
the extreme case of Washington DC, the smallest region in
land area, the cartogram area differs by only 0.31% from the
objective area. For India we iterate the integration twelve
times and for China six times. The maximum differences
between target and objective area are then 0.72% for the
Andaman and Nicobar Islands (AN in Fig. 5B) and 0.83% for
Tibet (TAR in Fig 6B), respectively. These differences are
certainly so small that they cannot be detected by eye. We
generally set a maximum relative area error of < 1%, defined
as

relative area error = target area− objective area
objective area ,

as stopping criterion for the algorithm.
This level of accuracy is all the more remarkable when con-

sidering the speed of our implementation. On a Dell Precision®

T7810 workstation with a 12-core Intel® Xeon® E5-2680V3
processor and an Ubuntu 16.04.2 operating system, we need
1.5 seconds for the US Electoral College cartogram (Fig. 3B),
2.6 seconds for the India GDP cartogram (Fig. 5B), and 2.7
seconds for the China GDP cartogram (Fig. 6B). Compared
with the diffusion algorithm, which needs 59.5 seconds to
generate the US cartogram (Fig. 3A) with equal accuracy,
this is a speedup by roughly a factor 40. Among other
all-coordinates cartogram algorithms, only the rubbersheet
method Carto3F (23) can achieve comparable speed, but not
for all types of input. For a cartogram of Chinese provinces,
Carto3F needs 8 minutes of computer time. Our fast flow-
based method achieves smaller area errors in a fraction of this
time.

Benchmarking with data for mortality in Kensington
and Chelsea (London) 2011–2014

As noted above, cartogram algorithms that generate the com-
plete density-equalizing projection T are particularly advanta-
geous when displaying demographic data that are individual
points on a map. We now demonstrate how our algorithm can
be applied to such input and how we can use it to compare
different statistical models. The data also serve as another
benchmark for the speed of our method. Our example involves
the locations of all 3197 death cases in the London borough
of Kensington and Chelsea between the years 2011 and 2014.
The database from the UK’s Office for National Statistics
(ONS) (32) lists the number of deaths in each of London’s
4835 Lower Layer Super Output Areas (LSOAs). A total of
103 LSOAs are located in Kensington and Chelsea. We show
the density of death cases in this borough on an equal-area
map in Fig. 4A. Each death corresponds to one point on the
map placed at a random position inside the LSOA where it
occurred.

The point pattern on the equal-area map is spatially het-
erogeneous with two bands of high density, one in the south
and another in the north, separated by a band of lower density
in the middle. However, it remains unclear from the equal-
area map whether the differences in the spatial distribution of
death cases are caused by differences in per-capita mortality
or by a heterogeneous population density. We can distinguish
between these two effects by projecting the death cases to

a cartogram where each LSOA area is proportional to the
number of inhabitants (Fig. 4B).

The most striking feature on this cartogram is the high per-
capita mortality in the southeast corner of the borough. The
reason for the high number of death cases in the LSOA with the
ONS code “Kensington and Chelsea 018C” is a large proportion
of elderly, most likely because of the St. Wilfrid’s nursing home
located in this LSOA. Because mortality increases markedly
as a person becomes elderly, total population is too crude a
measure to predict death rates. We now show how to improve
the prediction by using each LSOA’s age-adjusted mortality
as the basis of a cartogram instead of the simple per-capita
mortality displayed in Fig. 4B.

Data from the ONS (32, 33) include population size and
death cases in the following age groups for each LSOA: 0 years
old, 1-4, 5-9, ..., 85-89, and ≥ 90 years old, with each age
group divided into men and women. For each of these 40
demographic subgroups, we can compute its total mortality in
western central London (i.e., Kensington and Chelsea as well
as the adjacent boroughs Brent, Westminster, Wandsworth,
Hammersmith and Fulham). We denote by pj the size of
the population that lives in this part of London and belongs,
because of its gender and age, to the demographic group j.
If there were dj deaths in this subpopulation, its region-wide
per-capita mortality is mj = dj/pj . The expected number of
deaths in the i-th LSOA is thus ei =

∑
j
pijmj , where pij

is the population that lives in LSOA i and belongs to the
demographic group j. This approach is known in the public
health literature as age-adjustment (34). Unlike the unad-
justed population size

∑
j
pij , the expected value ei makes

a fair comparison between, for example, an LSOA mostly in-
habited by a younger population and an LSOA with a large
proportion of elderly inhabitants such as 018C.

In Fig. 4C, we show a cartogram with LSOA areas propor-
tional to ei. On this cartogram, the density of points in 018C
is near the average in the borough, visualizing that age is
indeed an important predictor for local death rates. Across
the borough, however, differences between death rates still
remain despite age-adjustment. We can quantify the devia-
tion from spatial homogeneity, for example, with the Hopkins
statistic H (35), which is a number between 0 and 1. If a
point pattern is caused by a homogeneous Poisson process
(i.e., deaths are independent and equally likely everywhere),
then the expected value of H equals 0.5. The more clustered
the points are, the larger H is. We find H = 0.524 (95%
confidence interval [0.518, 0.530]) in Fig. 4C, indicating that
the data are inconsistent with a homogeneous Poisson process.

We show a kernel density estimate of the underlying proba-
bility distribution in Fig. 4D. We use a bivariate normal kernel
with a bandwidth chosen according to Ref. (36). The figure
reveals a minimum in the age-adjusted death rate in the east
of the borough and a maximum in the north. Previous studies
have argued that indicators of health (e.g., life expectancy) in
different parts of London are positively correlated to average
household income (37). A choropleth map of deprivation in
Kensington and Chelsea (38) does indeed follow a strikingly
similar regional pattern as the death rate in Fig. 4D.

The flow-based method of Eq. 4–7 calculates the cartograms
in Fig. 4B and C in 1.6 and 1.9 seconds respectively. To avoid
boundary effects in Fig. 4D, we also include data for Kensing-
ton and Chelsea’s neighboring boroughs when computing the

8 Gastner et al.

cartograms and the kernel density estimate. The equivalent
calculations with the diffusion-based method take 69.9 and
99.5 seconds respectively.

Measures of distortion

Our algorithm is not only accurate and fast, but also generates
cartograms whose visual appearance is on par with previous
methods. In Fig. 3 we directly compare the diffusion cartogram
of the USA (panel A) with the faster method based on Eq. 4–7
(panel B). The border between Illinois (IL) and Indiana (IN)
is straighter in Fig. 3A than in Fig. 3B and thus more similar
to the input map (Fig. 2A). On the other hand, the border
between New Mexico (NM) and Colorado (CO) is straighter
and Oklahoma’s (OK) panhandle less bent in Fig. 3B. Overall,
however, the differences between both cartograms are only
subtle.

Because visual appearance is not a fully satisfactory crite-
rion, we now turn to quantitative measures of distortion. One
way to compare the local distortion of different projections
is by analyzing the Tissot indicatrix that is constructed as
follows. Suppose we draw an infinitesimal circle at the co-
ordinates (x, y) on the input map. Locally, the effect of the
projection T is to deform the circle into an ellipse, called the
Tissot indicatrix of T at (x, y). Figure 8 in the SI Appendix
shows concrete examples of Tissot indicatrices for our bench-
marking examples. We denote the semi-major and -minor
axes of the Tissot indicatrix by a(x, y) and b(x, y) respectively.
Two measures of the local distortion error are (39)

e(x, y) = ln
(
a(x, y)
b(x, y)

)
and (40)

ẽ(x, y) = 2 arcsin
(
a(x, y)− b(x, y)
a(x, y) + b(x, y)

)
.

For a conformal (i.e., angle-preserving) map, we would have
a = b for all (x, y) and thus e = ẽ = 0. This scenario would
be ideal, but, as we review in the SI Appendix (section 3),
except in a few special cases there cannot be a conformal
density-equalizing projection (21). As a global measure for
the deviation of a cartogram from conformality, we can use for
example either the spatially averaged or the maximum local
distortion error,

ea = 1
|Ω|

∫
Ω
e(x, y)dx dy, e∞ = sup

(x,y)∈Ω
e(x, y),

where Ω is the spatial domain of the input map. In our
comparison of the diffusion and fast flow-based algorithm in
Table 1, we choose Ω to be the rectangular Lx × Ly bounding
box that contains the area to be mapped as described above.
By replacing e with ẽ, we obtain similar measures ẽa and ẽ∞.

When computing e and ẽ, we need to know T at each
coordinate (x, y) so that these measures can only be applied to
all-coordinates cartograms. Measures that aim to quantify the
distortions also for other types of cartograms must instead rely
on the polygons defining each region. In Table 1, we include
three such measures from Ref. (41): the average aspect ratio
α, the Hamming distance δ and the relative position error
θ. We provide details of their definition in the SI Appendix

(section 4). Briefly, the aspect ratio of a region is the ratio of
the larger to the smaller side length of the bounding rectangle
with minimum area, minimized over all possible rotations
with respect to the coordinate axes. The Hamming distance
between two polygons is the area lying within exactly one of
them (42). For the measurement in Table 1, we rescale each
polygon on the input map and the corresponding polygon on
the cartogram so that they have equal area. We then calculate
the minimum Hamming distance between these two polygons
by shifting one polygon with respect to the other. We define
δ as the sum of the minimum Hamming distances, where the
summation is over all corresponding pairs of polygons. For the
relative position error, we compute the angle between the line
connecting the centroids of two polygons on the input map
and the line that connects the centroids of the corresponding
two polygons on the cartogram. We obtain θ by averaging
over all pairs of polygons (43).

Most measures listed in Table 1 exhibit only small relative
differences in the range of a few percent between the diffusion
and fast flow-based method. Diffusion performs a little better
in the majority of examples and measures, but there are also
cases where the fast flow-based method produces a smaller
error. Considering the vastly different run times, the fast
flow-based method is the better solution as a general-purpose
algorithm for interactive applets.

Conclusion

The scientific value of cartograms can go far beyond providing
mere entertainment, shock, or amusement. As “isodemo-
graphic maps” they have been used for mapping diseases and
mortality for several decades (44–46) in order to improve health
services (47). Arguably, the technical challenge of computing
the map projection has so far prevented more widespread
use. We accompany this article with C code available at
https://github.com/Flow-Based-Cartograms/go_cart to
alleviate some of the challenge. The code optionally produces
the graticule of the inverse transformation so that features
found on the cartogram can be identified in the original
domain. We reconstruct the original positions by first
approximating T as a piecewise linear function and then
computing its inverse. The speed of the cartogram algorithm
depends on the number of processing units available to the
user. If the calculation runs on a multi-core web server, users
will be able to take full advantage of the parallelized code
at no cost. We hope that in this form the algorithm will be
accessible to a wider audience.

ACKNOWLEDGMENTS. This research was supported by the
European Commission (project number FP7-PEOPLE-2012-IEF
6-4564/2013).

1. R. D. de Veaux, P. F. Velleman, and D. E. Bock. Stats: Data and Models. Pearson, Harlow,
4th edition, 2016.

2. K. Ma. 2012 Electoral Vote. https://commons.wikimedia.org/wiki/File:Cartogram%E2%80%
942012_Electoral_Vote.svg, 2012. Accessed 09 Feb 2018.

3. W. Tobler. Thirty five years of computer cartograms. Annals of the Association of American
Geographers, 94(1):58–73, 2004.

4. S. Nusrat and S. Kobourov. The state of the art in cartograms. Computer Graphics Forum,
35(3):619–642, 2016.

5. M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing
maps. Proceedings of the National Academy of Sciences of the United States of America,
101(20):7499–7504, 2004. .

6. L. Gamio. Election maps are telling you big lies about small things. The Wash-
ington Post, 1 Nov 2016, https://www.washingtonpost.com/graphics/politics/2016-election/
how-election-maps-lie/, 2016. Accessed 25 Apr 2017.

Gastner et al. 9

https://commons.wikimedia.org/wiki/File:Cartogram%E2%80%942012_Electoral_Vote.svg
https://commons.wikimedia.org/wiki/File:Cartogram%E2%80%942012_Electoral_Vote.svg
https://www.washingtonpost.com/graphics/politics/2016-election/how-election-maps-lie/
https://www.washingtonpost.com/graphics/politics/2016-election/how-election-maps-lie/

Table 1. Measures of distortion applied to the diffusion algorithm and the flow-based algorithm using Eq. 4–7. Smaller values are highlighted
in bold.

Map Algorithm ea e∞ ẽa ẽ∞ α δ θ run time (seconds)

USA
diffusion 0.278 6.85 0.273 3.01 2.01 17.1 0.0388 59.5

fast flow-based 0.285 7.06 0.280 3.02 2.04 17.4 0.0435 1.5

India
diffusion 0.190 3.95 0.185 2.59 2.45 39.0 0.0281 113.0

fast flow-based 0.191 3.18 0.187 2.34 2.40 39.7 0.0290 2.6
mainland China diffusion 0.590 5.07 0.553 2.83 2.33 18.6 0.0849 178.5

and Taiwan fast flow-based 0.570 8.16 0.530 3.07 2.19 20.6 0.103 2.7
Kensington & diffusion 0.161 6.86 0.154 3.01 2.03 22.1 0.0589 99.5

Chelsea (age adj.) fast flow-based 0.163 7.08 0.156 3.03 2.20 24.1 0.0615 1.9

7. A. Parlapiano. There are many ways to map election results. We’ve tried most of them.
The New York Times, 1 Nov 2016, https://www.nytimes.com/interactive/2016/11/01/upshot/
many-ways-to-map-election-results.html, 2016. Accessed 25 Apr 2017.

8. J. M. Olson. Noncontiguous area cartograms. The Professional Geographer, 28(4):371–380,
1976.

9. D. Dorling. Area cartograms: their use and creation. Concepts and Techniques in Modern
Geography. Environmental Publications, Norwich, 1996.

10. J. A. Dougenik, N. R. Chrisman, and D. R. Niemeyer. An algorithm to construct continuous
area cartograms. Professional Geographer, 37(1):75–81, 1985.

11. D. W. Merrill, S. Selvin, and M. S. Mohr. Density equalizing map projections: A new algorithm.
Technical Report LBL-31984, Lawrence Berkeley Laboratory, Feb 1992.

12. D. H. House and C. J. Kocmoud. Continuous cartogram construction. In Proceedings of the
IEEE Conference on Visualization, pages 197–204, Oct 1998.

13. D. A. Keim, S. C. North, and C. Panse. Cartodraw: a fast algorithm for generating contigu-
ous cartograms. IEEE Transactions on Visualization and Computer Graphics, 10(1):95–110,
2004.

14. D. A. Keim, C. Panse, and S. C. North. Medial-axis-based cartograms. IEEE Computer
Graphics and Applications, 25(3):60–68, 2005.

15. R. Inoue and E. Shimizu. A new algorithm for continuous area cartogram construction with
triangulation of regions and restriction on bearing changes of edges. Cartography and Geo-
graphic Information Science, 33(2):115–125, 2006.

16. J. H. Kämper, S. G. Kobourov, and M. Nöllenburg. Circular-arc cartograms. In 2013 IEEE
Pacific Visualization Symposium (PacificVis), pages 1–8, Feb 2013.

17. R. G. Cano, K. Buchin, T. Castermans, A. Pieterse, W. Sonke, and B. Speckmann. Mosaic
drawings and cartograms. Computer Graphics Forum, 34(3):361–370, 2015.

18. B. S. Daya Sagar. Cartograms via mathematical morphology. Information Visualization, 13
(1):42–58, 2014.

19. W. R. Tobler. A continuous transformation useful for districting. Annals of the New York
Academy of Sciences, 219(1):215–220, 1973.

20. C. Cauvin and C. Schneider. Cartographic transformations and the piezopleth maps method.
The Cartographic Journal, 26(2):96–104, 1989.

21. S. M. Gusein-Zade and V. S. Tikunov. A new technique for constructing continuous car-
tograms. Cartography and Geographic Information Systems, 20(3):167–173, 1993.

22. H. Edelsbrunner and R. Waupotitsch. A combinatorial approach to cartograms. Computa-
tional Geometry, 7(5):343–360, 1997.

23. S. Sun. A fast, free-form rubber-sheet algorithm for contiguous area cartograms. International
Journal of Geographical Information Science, 27(3):567–593, 2013.

24. B. Hennig. Rediscovering the World. Springer, Berlin, 2013.
25. B. Dacorogna and J. Moser. On a partial differential equation involving the Jacobian determi-

nant. Annales de l’IHP Analyse non linéaire, 7(1):1–26, 1990.
26. A. Avinyó, J. Solà-Morales, and M. València. On maps with given Jacobians involving the heat

equation. Zeitschrift für angewandte Mathematik und Physik ZAMP, 54(6):919–936, 2003.
27. R. Henriques, F. Bação, and V. Lobo. Carto-SOM: Cartogram creation using self-organizing

maps. International Journal of Geographical Information Science, 23(4):483–511, 2009.
28. R. P. Brent. Multiple-precision zero-finding methods and the complexity of elementary func-

tion evaluation. In J. F. Traub, editor, Analytic Computational Complexity, pages 151–176.
Academic Press, New York, 1975.

29. M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the
IEEE, 93(2):216–231, 2005.

30. Statistics Times. Indian states by GDP. http://statisticstimes.com/economy/
gdp-of-indian-states.php, 2017. Accessed 3 May 2017.

31. Wikipedia. List of Chinese administrative divisions by GDP. https://en.wikipedia.org/wiki/List_
of_Chinese_administrative_divisions_by_GDP, 2017. Accessed 3 May 2017.

32. Office for National Statistics. Number of deaths from all causes, by sex, age and LSOA
2001 and 2011, England and Wales, deaths registered 2001 to 2014. https://www.ons.gov.
uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/, 2016. Accessed 25
Apr 2017.

33. Office for National Statistics. Land area and population density for MSOA and LSOA, 2015.
Accessed 25 Apr 2017.

34. D. E. Lilienfeld and P. D. Stolley. Foundations of Epidemiology. Oxford University Press, New
York, 3rd edition, 1994.

35. B. Hopkins and J. G. Skellam. A new method for determining the type of distribution of plant
individuals. Annals of Botany, 18(2):213–227, 1954.

36. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, 2002.
37. D. Dorling. The 32 Stops: The Central Line. Penguin Books, London, 2013.

38. The Economist. Kensington and Chelsea: a wealthy but deeply divided borough.
24 June 2017, https://www.economist.com/news/britain/21723839-grenfell-tower-fire-has-
become-stark-reminder-glaring-gap-between-rich-and-poor-even, 2017. Accessed 23 Dec
2017.

39. A. Papadopoulos. Quasiconformal mappings, from Ptolemy’s geography to the work of Teich-
müller. arXiv:1702.03756, 2017.

40. J. P. Snyder. Map projections – a working manual. Technical Report 1395, U.S. Government
Printing Office, Washington, 1987.

41. M. J. Alam, S. G. Kobourov, and S. Veeramoni. Quantitative measures for cartogram genera-
tion techniques. Computer Graphics Forum, 34(3):351–360, 2015. ISSN 1467-8659.

42. S. S. Skiena. The Algorithm Design Manual. Springer, London, 2008.
43. R. Heilmann, D. A. Keim, C. Panse, and M. Sips. Recmap: Rectangular map approximations.

In IEEE Symposium on Information Visualization, pages 33–40, 2004. .
44. S. Selvin, D. Merrill, S. Sacks, L. Wong, L. Bedell, and J. Schulman. Transformations of

maps to investigate clusters of disease. Technical Report LBL-18550, Lawrence Berkeley
Laboratory, Oct 1984.

45. D. Dorling. Mapping disease patterns. In Encyclopedia of Biostatistics. John Wiley & Sons,
Hoboken, 2005.

46. S. C. Wieland, J. S. Brownstein, B. Berger, and K. D. Mandl. Density-equalizing Euclidean
minimum spanning trees for the detection of all disease cluster shapes. Proceedings of the
National Academy of Sciences of the United States of America, 104(22):9404–9409, 2007.

47. D. A. Lovett, A. J. Poots, J. T. C. Clements, S. A. Green, E. Samarasundera, and D. Bell. Using
geographical information systems and cartograms as a health service quality improvement
tool. Spatial and spatio-temporal epidemiology, 10:67–74, 2014.

48. M. T. Gastner, C. R. Shalizi, and M. E. J. Newman. Maps and cartograms of the 2004 US
presidential election results. Advances in Complex Systems, 8(1):117–123, 2005.

49. J. D. Anderson. Fundamentals of Aerodynamics. McGraw-Hill, New York, 2nd edition, 1991.
50. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of

probability measures. Birkhäuser, Basel, 2008.
51. J. Moser. On the volume elements on a manifold. Transactions of the American Mathematical

Society, 120(2):286–294, 1965.
52. D. A. Keim, S. C. North, C. Panse, and J. Schneidewind. Visualizing geographic information:

VisualPoints vs CartoDraw. Information Visualization, 2(1):58–67, 2003.

10 Gastner et al.

https://www.nytimes.com/interactive/2016/11/01/upshot/many-ways-to-map-election-results.html
https://www.nytimes.com/interactive/2016/11/01/upshot/many-ways-to-map-election-results.html
http://statisticstimes.com/economy/gdp-of-indian-states.php
http://statisticstimes.com/economy/gdp-of-indian-states.php
https://en.wikipedia.org/wiki/List_of_Chinese_administrative_divisions_by_GDP
https://en.wikipedia.org/wiki/List_of_Chinese_administrative_divisions_by_GDP
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/

SI Appendix

1. Cartogram of the popular vote in the 2016 US presi-
dential election

US presidential elections are indirect: voters do not directly
elect the president, but instead choose electors for their state
who represent a presidential candidate in the Electoral College.
The candidate with most votes in the Electoral College be-
comes the next president. 48 out of 50 states and Washington
DC apply a winner-takes-all rule: the presidential candidate
with the largest number of votes cast by the population in
the state wins all of the state’s electoral votes. The only
exceptions are Maine and Nebraska. These two states apply
the congressional district method: besides two electors for the
state’s aggregate winner, each congressional district chooses
one elector for the candidate with most votes in this district.

The composition of the Electoral College does not need to
be an accurate representation of the nationwide popular vote.
The predominant winner-takes-all rule gives an advantage to
a candidate who wins many states with narrow margins even
if the opponent may have won more votes in the population
as a whole. Furthermore, the number of votes in the Electoral
College is not strictly proportional to state populations. There
is a small bias in favor of less populated states by guaranteeing
every state a minimum of three electors.

Historically, the winner of the nationwide popular vote has
usually also won the Electoral College. However, the 2016 elec-
tion was one of the exceptions. Hillary Clinton gained 48.2%
of the popular vote, Donald Trump only 46.1%. Nevertheless,
Trump won the Electoral College by 304 to 227 votes.

We visualize the popular vote on a cartogram (Fig. 7)
by making each state’s area proportional to the number of
combined votes cast for Trump or Clinton in this state. We
indicate the result with a color between blue (100% for Clinton)
and red (100% for Trump). The shade of purple indicates
how votes were split in each state. Cartograms with the same
color scheme have been shown for previous US presidential
elections (48).

Dem. Rep.

0% 25% 50% 75% 100%

Fig. 7. The popular vote in the 2016 US presidential election on a cartogram made
with the fast flow-based algorithm described in the main text.

2. Motivating the equations used by the algorithm

Flow-based density-equalizing projections. Suppose we are
given a population density ρ0(r) for every point r = (x, y)
in a rectangle defined by 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly. Our
objective is to map the rectangle onto itself with a density-
equalizing projection T. That is, assuming T is differentiable,
it must satisfy

det(∇T(r)) = ρ0(r)
ρ̄

[8]

for every point r in the rectangle. The left-hand side is the
Jacobian determinant

det(∇T(r)) = ∂Tx
∂x

∂Ty
∂y
− ∂Tx

∂y

∂Ty
∂x

and the denominator in Eq. 8 is the spatially averaged density

ρ̄ = 1
LxLy

∫ Lx

0

∫ Ly

0
ρ0(x, y) dx dy.

Loosely speaking, det(∇T(r)) is the factor by which a small
area element near r is rescaled after applying the transfor-
mation T. The general form of Eq. 8 is called a “prescribed
Jacobian equation”.

The idea behind flow-based methods to find a solution
T is to define a sequence of densities ρ(x, y, t), where the
nonnegative variable t represents time. We start from the
given population density,

ρ(x, y, 0) = ρ0(x, y), [9]

and demand that ρ approaches in the long run the spatially
averaged density,

lim
t→∞

ρ(x, y, t) = ρ̄ . [10]

For constructing a flow-based cartogram, we also need a two-
dimensional velocity field v = (vx, vy) for all x, y, and t. We
define the map projection Tt of a point that is initially at
r = (x, y) by

Tt(r) = r +
∫ t

0
v(Tt′(r))dt′ . [11]

We now argue that in the limit of infinite time, T∞ is a density-
equalizing projection (i.e., it satisfies Eq. 8) if the combination
of ρ and v satisfies the continuity equation

∂ρ

∂t
= −∇ · J. [12]

Here
J = ρv

is the flux (i.e., the population that flows per unit time through
a line of unit length perpendicular to J) and ∇·J = ∂Jx

∂x
+ ∂Jy

∂y

is the so-called divergence of J.
An intuitive explanation why Eq. 9–12 imply Eq. 8 for T∞

is as follows. Suppose a small, simply connected region R with
area A contains the point r. Because of the definition of the
population density ρ0, the initial population contained inside
R is approximately equal to Aρ0(r). After the boundary has
drifted with the flow and reached its final position, R has
been mapped to a new region S with area ≈ A · det(∇T∞(r)).
As a consequence of Eq. 10, the population contained in S is

Gastner et al. 11

approximately ρ̄A · det(∇T∞(r)). The continuity equation 12
guarantees that the population inside any closed boundary
is preserved while the boundary is drifting with the velocity
field (49). Therefore, Aρ0(r) = ρ̄A · det(∇T∞(r)). After
canceling the common factor A on both sides and comparing
with Eq. 8, we conclude that T∞ is indeed a density-equalizing
projection.

For a rigorous proof that Eq. 8 is a consequence of Eq. 9–12,
we would have to impose several demands on the continuity
and integrability of ρ and v so that the solution of Eq. 11
is guaranteed to exist. The technical details are beyond the
scope of this article. In general, we can safely assume that
the conditions are valid in our case. The interested reader
may consult Ambrosio et al. (50) for details, especially their
Proposition 8.1.8.

The general solution for vortex-free flow. Equations 9–12 are,
under mild assumptions, sufficient to ensure that T∞ is a
density-equalizing projection. However, the equations have
multiple solutions and many of them are in practice unsuitable
for producing cartograms. In particular, solutions with vortices
in the flux field J create severe local distortions in the vicinity
of each vortex. We therefore add one more demand to Eq. 9–
12,

∂Jx
∂y

= ∂Jy
∂x

, [13]

which guarantees that there are no vortices (49).
Can we construct concrete pairs of a density ρ(x, y, t) and

a velocity v(x, y, t) that satisfy Eq. 9–13? Let us assume that
ρ(x, y, t) is a piecewise continuous function. At all points (x, y)
where ρ(x, y, t) is continuous, the cosine Fourier series of ρ
converges pointwise to ρ. Thus, at these points we have

ρ(x, y, t) =

1
LxLy

∞∑
m=0

∞∑
n=0

ρ̃mnfmn(t) cos
(
mπx

Lx

)
cos
(
nπy

Ly

)
, [14]

where

ρ̃mn = 4
(δm0 + 1)(δn0 + 1)

×
∫ Lx

0

∫ Ly

0
ρ(x′, y′, 0) cos

(
mπx′

Lx

)
cos
(
nπy′

Ly

)
dx′dy′

is the backward cosine Fourier transform of the initial density,
δm0 is the Kronecker symbol

δm0 =
{

1 if m = 0,
0 otherwise,

and fmn(t) is a function that must be consistent with the
constraints expressed by Eq. 9–13.

The functions cos
(
mπx
Lx

)
with m = 0, 1, . . . are mutually

orthogonal so that fmn(t) on the right-hand side of Eq. 14 is
uniquely determined by ρ(x, y, t) on the left-hand side. From
this observation and Eq. 9, it follows that

fmn(0) = 1 for all m and n. [15]

Because of ρ̃00 = ρ̄LxLy and Eq. 10, we must have

lim
t→∞

fmn(t) =
{

1 if m = n = 0,
0 otherwise.

[16]

To interpret the remaining constraints (i.e., Eq. 12 and Eq. 13)
we must specify the boundary conditions of the flux J. We as-
sume that there is no flow through the edges of the rectangular
box [0, Lx]× [0, Ly]. Then it must be possible to express the x-
and y-coordinates of the two-dimensional function J in terms
of the following mixed sine and cosine Fourier transforms at
all points (x, y) where J is continuous,

Jx(x, y, t) = 1
LxLy

∞∑
m=1

∞∑
n=0

J̃x,mn(t) sin
(
mπx

Lx

)
cos
(
nπy

Ly

)
,

[17]

Jy(x, y, t) = 1
LxLy

∞∑
m=0

∞∑
n=1

J̃y,mn(t) cos
(
mπx

Lx

)
sin
(
nπy

Ly

)
.

[18]

We insert Eq. 14, 17, and 18 into Eq. 12, interchange differen-
tiation and summation, and finally compare each term in the
series on the left- and right-hand side. The result is

ρ̃mnf
′
mn(t) = −mπ

Lx
J̃x,mn(t)− nπ

Ly
J̃y,mn(t). [19]

For m = n = 0, the right-hand side is 0 so that f ′00(t) = 0.
From this result and Eq. 15, we can deduce that

f00(t) = 1 for all t. [20]

Similarly, we obtain, after inserting Eq. 17 and 18 into Eq. 13,
n

Ly
J̃x,mn(t) = m

Lx
J̃y,mn(t). [21]

Combining Eq. 19 and Eq. 21, we can solve for the Fourier
coefficients of the flux,

J̃x,mn(t) = −
mLxL

2
y

π(m2L2
y + n2L2

x) ρ̃mnf
′
mn(t), [22]

J̃y,mn(t) = − nL2
xLy

π(m2L2
y + n2L2

x) ρ̃mnf
′
mn(t). [23]

In summary, a flow-based density-equalizing projection is
vortex-free if and only if fmn(t) satisfies Eq. 15, 16, 20 and
the Fourier coefficients of the flux obey Eq. 22 and 23.

Equations 4–7 in the main text as a special density-equaliz-
ing projection with vortex-free flow. There are many possible
choices of fmn consistent with Eq. 15, 16 and 20. The diffusion-
based method of Ref. (5) corresponds to the choice

fmn,diff(t) = exp
[
−
(
m2

L2
x

+ n2

L2
y

)
t

]
. [24]

According to Eq. 22 and 23, the Fourier coefficients of the flux
are then given by

J̃x,mn,diff(t) = m

πLx
ρ̃mn exp

[
−
(
m2

L2
x

+ n2

L2
y

)
t

]
, [25]

J̃y,mn,diff(t) = n

πLy
ρ̃mn exp

[
−
(
m2

L2
x

+ n2

L2
y

)
t

]
. [26]

It is computationally disadvantageous that t appears in the
argument of the exponential function in Eq. 24–26. Whenever
the numerical integration of Eq. 11 must advance the time t by

12 Gastner et al.

a small increment, the Fourier coefficients, including the expo-
nential function, must be computed again. Although modern
computers can evaluate the exponential function relatively
quickly, it is still slower than the four basic arithmetic opera-
tions (i.e., addition, subtraction, multiplication, and division).
Even more time-consuming than the exponential function are
the backward Fourier transforms to ρ(x, y, t) and J(x, y, t),
which we need in order to evaluate v appearing in Eq. 11.

The alternative approach that we explore in this article is
based on the choice

fmn(t) =

1 if m = n = 0,
1− t if (m,n) 6= (0, 0) and 0 ≤ t ≤ 1,
0 otherwise.

[27]

instead of Eq. 24. Performing the backward transform in
Eq. 14 shows that the density is

ρ(x, y, t) =
{

(1− t) ρ(x, y, 0) + tρ̄ if 0 ≤ t ≤ 1,
ρ̄ if t > 1.

[28]

Although the physical interpretation of the resulting flow is now
less intuitive than for the diffusion-based method, the math-
ematical literature has explored solutions of the prescribed
Jacobian equation 8 based on Eq. 28 ((25, 51)).

The Fourier coefficients of the flux follow from Eq. 22 and
23,

J̃x,mn(t) =

{
mLxL

2
y

π(m2L2
y+n2L2

x) ρ̃mn if 0 ≤ t ≤ 1,
0 otherwise.

[29]

J̃y,mn(t) =

{
nL2

xLy

π(m2L2
y+n2L2

x) ρ̃mn if 0 ≤ t ≤ 1,
0 otherwise.

[30]

Upon inserting Eq. 29 and 30 into Eq. 17 and 18, we obtain
the flux

Jx(x, y, t) = −Ly
π

∞∑
m=1

∞∑
n=0

[
m

m2L2
y + n2L2

x
ρ̃mn

× sin
(
mπx

Lx

)
cos
(
nπy

Ly

)]
, [31]

Jy(x, y, t) = −Lx
π

∞∑
m=0

∞∑
n=1

[
n

m2L2
y + n2L2

x
ρ̃mn

× cos
(
mπx

Lx

)
sin
(
nπy

Ly

)]
[32]

for 0 ≤ t ≤ 1. For t > 1, we simply get Jx = Jy = 0. When
we divide Jx and Jy by the density ρ in Eq. 28, we obtain
equations 5 and 6 in the main text.

There are multiple advantages when choosing Eq. 27 instead
of Eq. 24.

• As we have just derived from Eq. 27, the flux is zero
after t = 1. It follows that T1 = T∞. Hence, there is
no need to take the limit t → ∞ when we perform the
integral in Eq. 11. In practice, we no longer need to apply
heuristics to test whether the integrand at time t is small
enough to terminate the numerical integration. Instead,
we integrate until the fixed upper integration limit t = 1,
which is easier to implement.

• Unlike in the diffusion-based method, we can calculate the
density ρ(x, y, t) in Eq. 28 without Fourier transforms.

• In the diffusion-based method, the Fourier coefficients of
the flux (Eq. 25 and 26) are time-dependent. Therefore,
at every new time step during the numerical integration
of Eq. 11, we must carry out a new backward Fourier
transform. By contrast, the right-hand sides of Eq. 31
and 32 do not depend on t. It suffices to perform the
summations once at the start of the algorithm, most
efficiently with the fast Fourier transform technique (29).
If we store the result in memory, we do not need any more
Fourier transforms at all during the integration.

• After computing the sums in Eq. 31 and 32 at the be-
ginning of the code, we only need addition, subtraction,
multiplication, and division. In particular, we never need
to evaluate the exponential function that appears in Eq. 24
of the diffusion-based method.

The overall effect is remarkably fast computer code. For typical
runs, we find that a serial implementation of the algorithm
based on Eq. 27 only takes around 18% of the time needed for
the diffusion-based method. By parallelizing the integrator,
it is possible to speed up the code even further. With a 12-
core processor, we were able to reduce the time needed by
the new algorithm to only around 3% of the run-time for the
diffusion-based code.

3. Tissot ellipses and angular-distortion metrics

In cartography, the Tissot indicatrix is a visual and numer-
ical concept to analyze the distortions generated by a map
projection. Introduced by Nicolas Auguste Tissot in the nine-
teenth century, the Tissot indicatrix has become an important
tool, especially when characterizing projections of the Earth’s
(nearly) spherical surface onto a two-dimensional plane. The
framework of our article is different: we are transforming a
two-dimensional map (the cartogram input) to another two-
dimensional map (the cartogram). Still, we can use Tissot
indicatrices to measure the magnitude of the distortions pro-
duced by different cartogram algorithms.

Tissot ellipses. Consider an infinitesimally small circle cen-
tered at (x, y) on the input map. Locally, a smooth map
projection T is approximately equal to the affine transforma-
tion

T(x+ δx, y + δy) ≈ T(x, y) +∇T(x, y)
(
δx
δy

)
, [33]

so long as δx and δy are sufficiently small. Here ∇T is the Ja-
cobian matrix. It can be shown that any affine transformation
applied to a circle results in an ellipse. The Tissot indicatrix
of (x, y) under the projection T is the ellipse generated by the
affine transformation on the right-hand side of Eq. 33 when
applied to the infinitesimal circle at (x, y). In the left-hand
column of Fig. 8, we show several circles placed at regularly
spaced locations on the input maps of our benchmarking ex-
amples (USA by electors, India and China by GDP). We use
a finite radius to make the circles visible. In the middle and
right-hand columns, we show the corresponding Tissot indica-
trices centered at locations T(x, y) on diffusion and fast-flow
based cartograms, respectively.

Gastner et al. 13

input diffusion fast flow-based

Fig. 8. Tissot indicatrices obtained for the diffusion-based algorithm (middle column) and the fast flow-based algorithm proposed in the main text (right column). The unprojected
circles are displayed in the left column. The cartograms for the USA (top row), India (middle row), mainland China and Taiwan (bottom row) are based on the same data as
Fig. 3, 4, and 5 of the main text.

14 Gastner et al.

Angular-distortion metrics. It is desirable for a density-
equalizing projection T to preserve shapes as much as possible
so that each area is easily recognizable by the reader of the car-
togram. One way to interpret shape preservation is to demand
that angles remain locally unchanged by the transformation T.
This property is referred to as conformality. Equivalently, a
conformal transformation must satisfy both Cauchy-Riemann
equations

∂Tx
∂x

= ∂Ty
∂y

,
∂Tx
∂y

= −∂Ty
∂x

.

Together with the prescribed Jacobian equation (1) in the main
text, a conformal density-equalizing projection would have to
satisfy three equations. In general, two functions Tx and Ty
cannot satisfy three independent constraints so that a perfectly
conformal density-equalizing solution is infeasible (21). Yet, a
visually pleasing cartogram should deviate from conformality
as little as possible. Although our present paper focuses on
building a fast cartogram algorithm rather than achieving small
conformality error, we compute several conformality metrics
to verify that our proposed algorithm produces cartograms
that are in this respect as good as the state-of-the-art diffusion
algorithm.

Angular distortion metrics can be derived from the proper-
ties of Tissot ellipses. Consider the Tissot ellipse that is the
image of the unit-radius circle centered at (x, y) after applying
the affine transformation of Eq. 33. We denote the length of
the ellipse’s semi-major and semi-minor axis by a(x, y) and
b(x, y), respectively. In the case of a conformal projection T,
we would have a(x, y) = b(x, y). That is, the Tissot ellipse
would be a circle whose radius can be smaller or bigger than
1. Hence, we can define a measure of the angle distortion at
(x, y) by

e(x, y) = ln
(
a(x, y)
b(x, y)

)
, [34]

as described for example in Ref. (39). We choose the average

ea = 1
|Ω|

∫
Ω

ln
(
a(x, y)
b(x, y)

)
dx dy,

and the largest value

e∞ = sup
x∈Ω

ln
(
a(x, y)
b(x, y)

)
as two global measures for the distortion error, where Ω is the
total area of the cartogram. Here we choose Ω as the Lx ×Ly
bounding rectangle described in the section “Benchmarking
the algorithm with data for the USA, India, and China” in the
main text. Another angular-distortion metric can be computed
from the local maximum angular-value change (see derivation
in (40)),

ẽ(x, y) = 2 arcsin
(
a(x, y)− b(x, y)
a(x, y) + b(x, y)

)
, [35]

which also provides two global angular-distortion metrics ẽa
and ẽ∞. We display these errors for both the diffusion-based
and our new proposed algorithm in Table 1 of the main text.

4. Polygon-level distortions

The metrics e and ẽ defined in Eq. 34 and 35 are local: they
can be computed only for “all-coordinates” cartograms for
which we know the transformation T at every location (x, y).
In order to obtain metrics that are well-defined for general
cartograms, one has to measure distortions at the level of
polygons instead of all coordinates. Such metrics have been
introduced in several previous articles (41, 43, 52). According
to some metrics, the fast flow-based algorithm defined in the
main text and several other contiguous methods, including
the diffusion cartogram, are already optimal. For example,
both the diffusion and fast flow-based algorithm succeed in
rescaling the regions to their objective areas and preserve the
adjacency between polygons. Three metrics that meaningfully
compare the diffusion and fast-flow based algorithm are (1)
the average aspect ratio α, (2) the total Hamming distance δ,
and (3) the relative position error θ. We describe them below
and display the results for each cartogram in Table 1 of the
main text.

Average aspect ratio. Cartograms in which polygons become
thin and elongated are difficult to read. It is also difficult
to place labels inside such polygons. The aspect ratio of a
polygon quantifies how stretched it appears. For the i-th
polygon on the cartogram, we define li(φ) and si(φ) as the
longer and shorter side length, respectively, of the bounding
rectangle whose edges are at angles φ and φ+ 90◦ with respect
to the x-axis.

We define φmin,i as the angle at which the bounding rect-
angle for the i-th polygon has the minimum area,

φmin,i = arg min
φ∈[0◦,90◦]

[li(φ) · si(φ)].

The aspect ratio of the i-th polygon is the ratio of the larger to
the smaller side length of the bounding rectangle of minimum
area for that polygon,

αi = li(φmin,i)
si(φmin,i)

.

If there are p polygons on the cartogram, we define α as the
mean aspect ratio,

α = 1
p

p∑
i=1

αi .

Total Hamming distance. The Hamming distance h measures
the difference in the shapes of two polygons. It is computed by
superimposing one polygon on top of another and measuring
the fraction of area that lies in only one, but not both polygons,

h = area in exactly one polygon
sum of areas of individual polygons .

In our application, one of the polygons is from the input map,
the other is the corresponding polygon from the cartogram.
We rescale the cartogram polygon so that it has the same area
as the polygon before the cartogram projection. Otherwise we
would unfairly penalize cartograms that correctly changed the
polygon areas to their objective values. To make the measure
translation invariant, we define δi as the minimum Hamming
distance of all possible translations of the rescaled i-th car-
togram polygon with respect to the i-th unprojected polygon.
The total Hamming distance δ is obtained by summing the
Hamming distances of all polygons.

Gastner et al. 15

Relative position error. We can quantify changes in the rel-
ative position of two polygons i and j between input map
and cartogram by measuring the angle φij between the lines
connecting the centroids before and after the projection. If
ci, cj are the centroids on the input map and di, dj on the
cartogram, then

φij = arccos
(

(ci − cj) · (di − dj)
|ci − cj | · |di − dj |

)
.

We define the relative position error θ as the average of φij
over all possible pairs of polygons. We also divide by π,

θ = 2
p(p− 1)π

p−1∑
i=1

p∑
j=i+1

φij ,

so that θ ∈ [0, 1] (43).

16 Gastner et al.

	1 Cartogram of the popular vote in the 2016 US presidential election
	2 Motivating the equations used by the algorithm
	3 Tissot ellipses and angular-distortion metrics
	Angular-distortion metrics

	4 Polygon-level distortions

