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We introduce a data-driven forecasting method for
high dimensional, chaotic systems using Long-Short
Term Memory (LSTM) recurrent neural networks. The
proposed LSTM neural networks perform inference
of high dimensional dynamical systems in their
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set of non-linear approximators of their attractor.
We demonstrate the forecasting performance of the
LSTM and compare it with Gaussian processes
(GPs) in time series obtained from the Lorenz
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a prototype climate model. The LSTM networks
outperform the GPs in short-term forecasting accuracy
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extending the LSTM with a mean stochastic model
(MSM-LSTM), is proposed to ensure convergence to
the invariant measure. This novel hybrid method
is fully data-driven and extends the forecasting
capabilities of LSTM networks.

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

ar
X

iv
:1

80
2.

07
48

6v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
1 

Fe
b 

20
18

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:petros@ethz.ch


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

1. Introduction
Natural systems, ranging from atmospheric climate and ocean circulation to organisms and cells,
involve complex dynamics extending over multiple spatio-temporal scales. Centuries old efforts
to comprehend and forecast the dynamics of such systems have spurred developments in large
scale simulations, dimensionality reduction techniques and a multitude of forecasting methods.
The goals of understanding and prediction have been complementing each other but have been
hindered by the high dimensionality and chaotic behavior of these systems. In recent years we
observe a convergence of these approaches due to advances in computing power, algorithmic
innovations and the ample availability of data. A major beneficiary of this convergence are
data-driven dimensionality reduction methods [2–7], model identification procedures [9–13] and
forecasting techniques [14–19] that aim to provide precise short term predictions while capturing
the long term statistics of these systems. Successful forecasting methods address the highly non-
linear energy transfer mechanisms between modes not captured effectively by the dimensionality
reduction methods.

The pioneering technique of analog forecasting proposed in [20] inspired a widespread
research in non-parametric prediction approaches. Two dynamical system states are called
analogues if they resemble one another on the basis of a specific criterion. This class of methods
uses a training set of historical observations of the system. The system evolution is predicted
using the evolution of the closest analogue from the training set corrected by an error term.
This approach has led to promising results in practice [21] but the selection of the resemblance
criterion to pick the optimal analogue is far from straightforward. Moreover, the geometrical
association between the current state and the training set is not exploited. More recently [22],
analog forecasting is performed using a weighted combination of data-points based on a localized
kernel that quantifies the similarity of the new point and the weighted combination. This
technique exploits the local geometry instead of selecting a single optimal analogue. Similar
kernel-based methods, [23,24] use diffusion maps to globally parametrize a low dimensional
manifold capturing the slower time scales. Moreover, non-trivial interpolation schemes are
investigated in order to encode the system dynamics in this reduced order space as well as
map them to the full space (lifting). Although the geometrical structure of the data is taken into
account, the solution of an eigen-system with a size proportional to the training data is required,
rendering the approach computationally expensive. In addition, the inherent uncertainty due to
sparse observations in certain regions of the attractor introduces prediction errors which cannot
be modeled in a deterministic context. In [25] a method based on Gaussian process regression
(GPR) [26] was proposed for prediction and uncertainty quantification in the reduced order space.
The technique is based on a training set that sparsely samples the attractor. Stochastic predictions
exploit the geometrical relationship between the current state and the training set, assuming a
Gaussian prior over the modeled latent variables. A key advantage of GPR is that uncertainty
bounds can be analytically derived from the hyper-parameters of the framework. Moreover,
in [25] a Mean Stochastic Model (MSM) is used for under-sampled regions of the attractor to
ensure accurate modeling of the steady state in the long term regime. However the resulting
inference and training have a quadratic cost in terms of the number of data samplesO(N2). Some
of the earlier approaches to capture the evolution of time series in chaotic systems using recurrent
neural networks were developed during the inception of the Long-Short Term Memory networks
(LSTM) [27]. However, to the best of our knowledge, these methods have been used only on low-
dimensional chaotic systems [34]. Similarly, other machine learning algorithms such as Echo State
Networks [36,37] and radial basis functions [38,39] have been successful, albeit only for low order
dynamical systems.

In this work, we propose LSTM based methods that exploit information of the recent history
of the reduced order state to predict the high-dimensional dynamics. Time-series data are used
to train the model while no knowledge of the underlying system equations is required. Inspired
by Taken’s theorem [40] an embedding space is constructed using time delayed versions of the
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reduced order variable. The proposed method tries to identify an approximate forecasting rule
globally for the reduced order space. In contrast to GPR [25], the method has a deterministic
output while its training cost scales linearly with the number of training samples and it exhibits
anO(∞) inference computational cost. Moreover, following [25], LSTM is combined with a MSM,
to cope with attractor regions that are not captured in the training set. In attractor regions,
under-represented in the training set, the MSM is used to guarantee convergence to the invariant
measure and avoid an exponential growth of the prediction error. The effectiveness of the
proposed hybrid method in accurate short term prediction and capturing the long-term behavior
is shown in the Lorenz 96 system and the Kuramoto-Sivashisky system. Finally the method is also
tested on predictions of a prototypical climate model.

The structure of the paper is as follows: In Section 2 we explain how the LSTM can be
employed for modeling and prediction of a reference dynamical system and a blended LSTM-
MSM technique is introduced. In Section 3 three other state of the art methods, GPR, MSM and the
hybrid GPR-MSM scheme are presented and two comparison metrics are defined. The proposed
LSTM technique and its LST-MSM extension are benchmarked in three complex chaotic systems
in Section 4. In Section 5 we discuss the computational complexity of training and inference in
LSTM. Finally, Section 6 offers a summary and discusses future research directions.

2. Long-Short Term Memory (LSTM) Recurrent Neural Networks
The LSTM was introduced in order to regularize the training of recurrent neural networks (RNNs)
[27]. RNNs contain loops that allow information to be passed between consecutive temporal steps
(see Figure 1) and can be expressed as:

ht = σh
(
Whiit +Whhht−1 + bh

)
, (2.1)

ot = σo
(
Wohht + bo

)
(2.2)

where it, ot and ht are the input, the output and the hidden state of the RNN at time step t, while
D represents a delay block and Whi, Whh, Woh are the input-to-hidden, hidden-to-hidden and
hidden-to-output weight matrices. Moreover, σh and σo are the hidden and output activation
functions, while bh and bo are the respective biases. Temporal dependencies are captured by the
hidden-to-hidden weight matrix Whh, which couples two consecutive hidden states together.
The RNN can be viewed in its unfolded form in Figure 2. In many practical applications, RNNs

Figure 1: RNN Figure 2: RNN unfolded in time

suffer from the vanishing (or exploding) gradient problem and have failed to capture long
term dependencies [41,42]. Today the RNNs owe their renaissance largely to the LSTM, that
copes effectively with the aforementioned problem using gates. The LSTM has been successfully
applied in sequence modeling [32], speech recognition [28–30], hand-writing recognition [31] and
language translation [33].
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The equations of the LSTM are

gft = σf
(
Wf [ht−1, it] + bf

)
(2.3)

git = σi
(
Wi[ht−1, it] + bi

)
(2.4)

C̃t = tanh
(
WC [ht−1, it] + bC

)
(2.5)

Ct = gft Ct−1 + gitC̃t (2.6)

got = σh
(
Wh[ht−1, it] + bh

)
(2.7)

ht = got tanh(Ct), (2.8)

where gft , git and got are the gate signals (forget, input and output gates), it is the input, ht is the
hidden state, Ct is the cell state, while Wf , bf , Wi, bi, WC , bC , Wh and bh are weight matrices
and biases of appropriate dimensions. The activation functions σf , σi and σh are sigmoids. For a
more detailed explanation on the LSTM architecture refer to [27]. The hidden state ht ∈Rh, with
h the number of hidden units. In practice we want the output to have a specific dimension do. For
this reason, a trivial fully connected final layer without activation function is added

ot =Wohht, (2.9)

with Woh ∈Rdo×h. In the following we refer to the LSTM hidden and cell states (ht and Ct)
jointly as LSTM states.

In this work, we consider the reduced order problem where the system state is projected in the
reduced order space. Moreover, the system is considered to be autonomous, while ∆zt = dzt

dt is
the system state derivative at time step t. The LSTM model is trained using time series data from
the system to predict the state derivative ot =̂∆zt =

dzt
dt at time t, using delayed versions of the

reference reduced model state zt. It is a solely data-driven approach and no explicit information
regarding the form of the underlying equations is required.

(a) Training and inference
The available time series data are divided into two separate sets, the training dataset and the
validation dataset, i.e. ztraint , ∆ztraint , t∈ {1, · · · , Ntrain}, and zvalt , ∆zvalt , t∈ {1, · · · , Nval}.
Ntrain and Nval are the number of training and validation samples respectively. This data is
stacked in batches as

Itraint =


ztraint+d−1
ztraint+d−2

...
ztraint


︸ ︷︷ ︸

Input batch

, otraint =∆ztraint+d−1︸ ︷︷ ︸
Output batch

, (2.10)

for t∈ {1, 2, . . . , Ntrain − d+ 1}, in order to form the training (and validation) input and output
of the LSTM. These training batches are used to optimize the parameters of the LSTM (weights
and biases) in order to learn the mapping It→ ot.

The training proceeds by optimising the network weights iteratively for each batch (training
of one epoch). The training loss function is a weighted version of the root mean square error, i.e.

loss=

√
1
do

∑do
i=1 wi

(
otrain, it − oit

)2
where do is the dimension of the output of the LSTM, and

the weights wi are selected according to the significance of each output component, e.g. energy
of each component. Moreover, the LSTM is trained using truncated Back-propagation Through
Time (BPTT) [35]. The BPTT is truncated after layer d. As a consequence, the LSTM is trained to
predict the derivative at time t using information from the previous d time steps.

An important issue is how to select the hidden state dimension h and how to initialize the
LSTM states at the truncation layer d. A small h reduces the expressive capabilities of the LSTM
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and deteriorates inference performance. On the other hand, a big h leads to fast overfitting,
an upturn in the generalization error and increased computational cost of training. For this
reason, h has to be tuned depending on the observed data (training and validation). For the
truncation layer d, there are two alternatives, namely stateless and statefull LSTM. In stateless
LSTM the LSTM states at layer d are initialized to zero. As a consequence, the LSTM can only
capture dependencies up to d previous time steps. In the second variant, the statefull LSTM, the
state is always propagated for p time steps in the future and then reinitialized to zero, to help
the LSTM capture longer dependencies. In this work, the systems considered exhibit chaotic
behavior and the dependencies are inherently short term, as the states in two time steps that
differ significantly can be considered statistically independent. For this reason, the short temporal
dependencies can be captured without propagating the hidden state for a long horizon. As a
consequence, we consider only the stateless variant p= 0. We also applied statefull LSTM without
any significant improvement so we omit the results for brevity. Optimization during training is
performed using the Adam stochastic optimization method [1] with an adaptive learning rate
(initial learning rate η= 0.0001). Training is stopped when convergence of the training error is
detected or the maximum or 100 epochs is reached. The LSTM model with the smallest validation
error is considered to avoid over-fitting.

The trained LSTM model can be used to forecast the system state in the next time steps in an
iterative fashion. The history of the system up to time step d, i.e. ztrue1 , . . . , ztrued , is assumed to
be known. We initialize the LSTM states with h0 and C0 and we use the trained LSTM to predict
the derivative ∆zpredd . By integrating the derivative with a reference time difference dt and initial
condition ztrued the value zpredd+1 is obtained. This value is used for the next prediction in an iterative
fashion as illustrated in Figure 3. In statefull LSTM, initial values for h0 and C0 can be obtained
by teacher forcing the LSTM for a few time steps propagating values from the known history and
ignoring the outputs. In stateless LSTM, h0 and C0 are initialized with zero vectors.

Figure 3: Iterative prediction using LSTM

(b) Mean Stochastic Model (MSM) and Hybrid LSTM-MSM
The MSM is a powerful data-driven method used to quantify uncertainty and perform forecasts
in turbulent systems with high intrinsic attractor dimensionality [25,43]. It is parametrized a
priori to capture global statistical information of the attractor by design, while its computationally
complexity is very low compared to LSTM or GPR. The concept behind MSM is to model each
component of the state zi independently with an Ornstein-Uhnelbeck (OU) process that captures
the energy spectrum and the damping time scales of the statistical equilibrium. The process takes
the following form

dzi = ciz
idz + ξidWi, (2.11)



6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

where ci, ξi are parameters fitted to the centered training data and Wi is a wiener process. In the
statistical steady state the mean, energy and damping time scale of the process are given by

µi =E[zi] = 0, Ei =E[zi(zi)∗] =− ξ2

2ci
, Ti =−

1

ci
. (2.12)

In order to fit the model parameters ci, ξi we directly estimate the variance E[zi(zi)∗] from the
time series training data and the decorrelation time using

Ti =
1

E[zi(zi)∗]

∫∞
0

E[zi(t)(zi)∗(t+ τ)dτ. (2.13)

After computing these two quantities we replace in (2.12) and solve with respect to ci and ξi. Since
the MSM is modelled a priori to mimic the global statistical behavior of the attractor, forecasts
made with MSM can never escape. This is not the case with LSTM and GPR, as prediction errors
accumulate and iterative forecasts escape the attractor fast due to the chaotic dynamics, although
short term predictions are accurate. This problem has been addressed with respect to GPR in [25].
In order to cope effectively with this problem we introduce a hybrid LSTM-MSM technique that
prevents forecasts from diverging from the attractor.

The state dependent decision rule for forecasting in LSTM-MSM is given by

∆zt =

{
(∆zt)LSTM , if ptrain(zt) =

∏
ptraini (zit)> δ

(∆zt)MSM , otherwise
(2.14)

where ptrain(zt) is an approximation of the probability density function of the training dataset
and δ≈ 0.01 a constant threshold tuned based on ptrain(zt). We approximate ptrain(zt) using a
mixture of Gaussian kernels. This hybrid architecture exploits the advantages of LSTM and MSM.
In case there is a high probability that the state zi lies close to the training dataset (interpolation)
the LSTM having memorized the local dynamics is used to perform inference. This ensures
accurate LSTM short-term predictions. On the other hand, close to the boundaries the attractor is
only sparsely sampled ptrain(zi)< δ and errors from LSTM predictions would lead to divergence.
In this case, MSM guarantees that forecasting trajectories remain close to the attractor, and that
we converge to the statistical invariant measure in the long-term.

3. Benchmark and Performance Measures
The performance of the proposed LSTM based prediction mechanism is benchmarked against the
following state-of-the-art methods:

• Mean Stochastic Model (MSM)
• Gaussian Process Regression (GPR)
• Mixed Model (GPR-MSM)

In order to guarantee that the prediction performance is independent of the initial condition
selected, for all applications and all performance measures considered the average value of
each measure for a number of different initial conditions sampled independently and uniformly
from the attractor is reported. The ground truth trajectory is obtained by integrating the
discretized reference equation starting from each initial condition, and projecting the states to the
reduced order space. The reference equation and the projection method are of course application
dependent.

From each initial condition, we generate an empirical Gaussian ensemble of dimension Nen
around the initial condition with a small variance σen. This noise represents the uncertainty in
the knowledge of the initial system state. We forecast the evolution of the ensemble by iteratively
predicting the derivatives and integrating (deterministically for each ensemble member for the
LSTM, stochastically for GPR) and we keep track of the mean. The ensemble size Nensemble is
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selected in the order of ≈ 50, which is the usual choice in environmental science, e.g. weather
prediction and short term climate prediction [44].

The ground truth trajectory at each time instant z is then compared with the predicted
ensemble mean z̃. As a comparison measure we use the root mean square error (RMSE) defined as

RMSE(zk) =

√
1/V

∑V
i=1

(
zik − z̃

i
k

)2
,where index k denotes the kth component of the reduced

order state z, i is the initial condition, and V is the total number of initial conditions. The RMSE is
computed at each time instant for each component k of the reduced order state, resulting in error
curves that describe the evolution of error with time.

Moreover, we use the mean Anomaly Correlation (AC) [47] over V initial conditions to
quantify the pattern correlation of the predicted trajectories with the ground-truth. The AC is
defined as

AC =
1

V

V∑
i=1

∑rdim
k=1 wk

(
zik − zk

)(
z̃ ik − zk

)
√∑rdim

k=1 wk

(
zik − zk

)2∑rdim
k=1 wk

(
z̃ ik − zk

)2 , (3.1)

where k refers to the mode number, i refers to the initial condition, wk are mode weights selected
according to the energies of the modes after dimensionality reduction and zk is the time average
of the respective mode, considered as reference. This score ranges from −1.0 to 1.0. If the forecast
is perfect, the score equals to 1.0. The AC coefficient is a widely used forecasting accuracy score
in the meteorological community [46].

4. Applications
In this section, the effectiveness of the proposed method is demonstrated with respect to three
chaotic dynamical systems, exhibiting different levels of chaos, from weakly chaotic to fully
turbulent, i.e. the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototypical
barotropic climate model.

(a) The Lorenz 96 System
In [45] a model of the large-scale behaviour of the mid-latitude atmosphere is introduced. This
model describes the time evolution of the components Xj for j ∈ {0, 1, . . . , J − 1} of a spatially
discretized (over a single latitude circle) atmospheric variable. In the following we refer to this
model as the Lorenz 96. The Lorenz 96 is usually used ( [25,46] and references therein) as a toy
problem to benchmark methods for weather prediction.

The system of differential equations that governs the Lorenz 96 is defined as

dXj
dt

= (Xj+1 −Xj−2)Xj−1 −Xj + F, (4.1)

for j ∈ {0, 1, . . . , J − 1}, where by definitionX−1 =XJ , X−2 =XJ−1. In our analysis J = 40. The
right-hand side of (4.1) consists of a non-liner adjective term (Xj+1 −Xj−2)Xj−1 −Xj , a linear
advection (dissipative) term −Xj and a positive external forcing term F . The discrete energy of
the system remains constant throughout time and the Lorenz 96 states Xj remain bounded. By
increasing the external forcing parameter F the behavior that the system exhibits changes from
periodic F < 1 to weakly chaotic (F = 4) to end up in fully turbulent regimes (F = 16). We refer
to Xj as the states of the Lorenz 96 model. These regimes can be observed in Figures 4

Following [25,44] we apply a shifting and scaling to standardize the Lorenz 96 states Xj . The
discrete or Dirichlet energy is given by E = 1

2

∑J
j=1X

2
j . In order for the scaled Lorenz 96 states

to have zero mean and unit energy we transform them using

X̃j =
Xj −X√

Ep
, dt̃=

√
Epdt, (4.2)
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Figure 4: Lorenz 96 contour plots for different forcing regimes F . Chaoticity rises with bigger
values of F .

where Ep is the average energy fluctuation, i.e.

Ep =
1

2T

J−1∑
j=0

∫T0+T

T0

(Xj −X)2dt. (4.3)

In this way the scaled energy is Ẽ = 1
2

∑J−1
j=0 X̃

2
j = 1 and the scaled variables have zero mean

X̃ = 1
J

∑J−1
j=0 X̃j = 0, with X the mean state. The scaled Lorenz 96 states X̃j obey the following

differential equation

dX̃j

dt̃
=
F −X
Ep

+
(X̃j+1 − X̃j−2)X − X̃j√

Ep
+

+ (X̃j+1 − X̃j−2)X̃j−1

(4.4)

(i) Dimensionality Reduction: Discrete Fourier Transform

Firstly, the Discrete Fourier Transform (DFT) is applied to the energy standardized Lorenz 96
states X̃j . The Fourier coefficients X̂k ∈C are given by

X̂k =
1

J

J−1∑
j=0

X̃je
−2πikj/J (4.5)

while the Lorenz 96 states can be recovered from the Fourier coefficients using the inverse DFT

X̃j =

J−1∑
k=0

X̂ke
2πikj/J (4.6)

After applying the DFT to the Lorenz 96 states we end up with a symmetric energy spectrum
that can be uniquely characterized by J/2 + 1 (J is considered to be an even number) coefficients
X̂k for k ∈K = {0, 1, · · · , J/2}. In our case J = 40, thus we end up with |K|= 21 complex
coefficients X̂k ∈C. These coefficients are referred to as the Fourier modes or simply modes. The
Fourier energy of each mode is defined as

Ek = V ar(X̂k) =E
[
(X̂k(t̃)− X̂k)(X̂k(t̃)− X̂k)

∗]. (4.7)

The energy spectrum of the Lorenz 96 system is plotted in Figure 5 for different values of
the forcing term F . We take into account only the rdim = 6 modes corresponding to the highest
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Figure 5: Energy spectrum Ek and cumulative energy with respect to the number of most
energetic modes used for different forcing regimes of Lorenz 96 system. As the forcing increases,
more chaoticity is introduced to the system.
F = 4 ; F = 8 ; F = 16

Forcing Wavenumbers k Forcing Wavenumbers k

F = 4 7,10,14,9,17,16 F = 8 8,9,7,10,11,6

F = 6 8,7,9,10,11,6 F = 16 8,9,10,7,11,6

Table 1: Most energetic Fourier modes used in the reduced order phase space

energies and the rest of the modes are truncated. For the different forcing regimes F = 1, 2, 3, 4,
the six most energetic modes correspond to approximately 89%, 57.8%, 52% and 43.8% of the total
energy respectively. The space where the reduced variables live in is referred to as the reduced
order phase space and the most energetic modes are notated as X̂r

k for k ∈ {0, 1, . . . , rdim − 1}.
As shown in [48] the most energetic modes are not necessarily the ones that capture better the
dynamics of the model. However, in this work we are not interested in an optimal reduced
space representation, but rather in the effectiveness of a prediction model given this space.
The respective wavenumbers of the most energetic modes as well as their energy are given in
Table 1. The truncated modes are ignored for now. Nevertheless, their effect can be modelled
stochastically as in [25].

Since each Fourier mode X̂r
k is a complex number, it consists of a real part and an imaginary

part. By stacking these real and imaginary parts of the rdim truncated modes we end up with the
2 rdim dimensional reduced model state

X≡ [Re(X̂r
1 ), . . . , Re(X̂

r
rdim), Im(X̂r

1 ), . . . , Im(X̂r
rdim)]T (4.8)

Assuming that Xt
j for j ∈ {0, 1, . . . , J − 1} are the Lorenz 96 states at time instant t, the mapping

Xt
j , ∀j→X is unique and the reduced model state of the Lorenz 96 has a specific vector value.

For high dimensions, Fourier Transform is equivalent to Principal Component Analysis.

(ii) Training and Prediction in Lorenz 96

The reduced Lorenz 96 system states Xt are considered as the true reference states zt. The LSTM
is trained to forecast the derivative of the reduced order state dzt/dt as in [34]. In the following
we analyze the influence of the truncation layer d and the number of hidden units h of the LSTM
with respect to the chaotic Lorenz 96 system.

The influence of d in training and performance of the LSTM model is the following. On the one
hand, selecting a large d makes the training more challenging, for two reasons. Firstly, the LSTM
has more layers and secondly more noise might be included in the input (irrelevant information)
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rendering suboptimal prediction performance. On the other hand, selecting a small d might lead
to an input sequence with poor information content, leading to low prediction performance.
Increasing the number of hidden nodes h rises the expressiveness of LSTM, but it is easier to
overfit the training set. A stateless LSTM is used. The back-propagation truncation horizon is set
to d= 10 and we use h= 20.

In order to obtain training data for the LSTM, we integrate the Lorenz 96 system state Eg.
(4.1) starting from an initial condition X0

j for j ∈ {0, 1, . . . , J − 1} using a Runge-Kutta 4th order
method with a time step dt= 0.01 up to T = 51. In this way a time series Xt

j , t∈ {0, 1, · · · } is
constructed. Using the scaling and dimensionality reduction method explained in Section i we
construct the reduced order state time series Xt, t∈ {0, 1, · · · }, using the mapping Xj

t ∀j→Xt.
From this time series we discard the first 104 initial time steps to avoid transients, ending up with
a time series with N train = 50000 samples. A similar but independent process is repeated for the
validation set.

(iii) Results

The trained LSTM models are used for prediction based on the iterative procedure explained in
Section 2. In this section, we demonstrate the forecasting capabilities of LSTM and compare it
with the state of the art. 100 different initial conditions are simulated. For each initial condition,
an ensemble with size Nen = 50 is considered by perturbing it with a normal noise with variance
σen = 0.0001.

In Figures 6a, 6b, and 6c we report the mean RMSE prediction error of the most energetic
mode X̂r

1 ∈C, scaled with
√
Ep for the forcing regimes F ∈ {6, 8, 16} for the first N = 10 time

steps (T = 0.1). In the RMSE the complex norm ||v||2 = vv∗ is taken into account. The 10% of the
standard deviation of the attractor is also plotted for reference (10%σ). As F increases, the system
becomes more chaotic and difficult to predict. As a consequence, the number of prediction steps
that remain under the 10%σ threshold are decreased. The LSTM models extend this predictability
horizon for all forcing regimes compared to GPR and MSM. However, when LSTM is combined
with MSM the short term prediction performance is compromised. Nevertheless, hybrid LSTM-
MSM models outperform GPR methods in short term prediction accuracy.

In Figures 6d, 6e, and 6f, the RMSE error for T = 2 is plotted. The standard deviation from the
attractor σ is plotted for reference. We can observe the following

• The prediction performance of the LSTM in the quasi-periodic regime F = 4 is clearly
superior to all other approaches. Blending LSTM with MSM guarantees accurate
modeling of the steady state in the long term, but leads to a performance compromise
in the short-term. LSTM-MSM outperforms GPR-MSM.
• In all forcing regimes, both GPR and LSTM eventually diverge, while MSM, and blended

GPR-MSM, LSTM-MSM schemes remain close to the attractor in the long term as
expected.
• For F = 8 although the RMSE error in the short-term is smaller for LSTM, GPR remains

for a longer period close to the attractor (e.g. T = 0.75 for F = 8). However, when blended
schemes are taken into account, LSTM-MSM shows superior performance in the short-
term and slightly better performance in the long term compared to GPR-MSM.

In Figures 6g, 6h, and 6i, the mean AC over 1000 initial conditions is given. The predictability
threshold of 0.6 is also plotted. After crossing this critical threshold, the methods do not predict
better than a trivial mean predictor. For F = 4 GPR methods show inferior performance compared
to LSTM approaches as analyzed previously in the RMSE comparison. However, for F = 8

LSTM models do not predict better than the mean after T ≈ 0.35, while GPR shows better
performance. In turn, when blended with MSM the compromise in the performance for GPR-
MSM is much bigger compared to LSTM-MSM. The LSTM-MSM scheme shows slightly superior
performance than GPR-MSM during the entire relevant time period (AC > 0.6). For the fully
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Figure 6: Mean RMSE of the most energetic mode and mean AC over 1000 initial conditions for the
Lorenz 96 system. 10% of the standart deviation from the atractor ; Standart deviation from
the atractor ; AC predictability threshold ; MSM ; GPR ; GPR-MSM ; LSTM ;
LSTM-MSM

turbulent regime F = 16, LSTM shows comparable performance with both GPR and MSM and
all methods converge as chaoticity rises, since the intrinsic dimensionality of the system attractor
increases and the system become inherently unpredictable.

In Figure 7, the evolution of the mean RMSE over 1000 initial conditions of the wavenumbers
k= 8, 9, 10, 11 of the Lorenz 96 with forcing F = 8 is plotted. In contrast to GPR, the RMSE error
of LSTM is much lower in the moderate and low energy wavenumbers k= 9, 10, 11 compared to
the most energetic mode k= 8. This difference among modes is not observed in GPR. This can
be attributed to the highly non-linear energy transfer mechanisms between these lower energy
modes as opposed to the Gaussian and locally linear energy transfers of the most energetic mode.

As illustrated before, the hybrid LSTM-MSM architecture effectively combines the accurate
short-term prediction performance of LSTM with the long-term stability of MSM. The percentage
of ensemble members in the hybrid scheme explained by LSTM is plotted with respect to time
in Figure 8. In parallel with the GPR results presented in [25], the slope of the percentage drop
increases with F up to time t≈ 1.5. However, in contrast to the results from GPR reported in [25],
LSTM shows a more stable behavior as a bigger percentage of the ensembles is explained by it
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Figure 7: Mean RMSE of the most energetic mode (k= 8) and medium and low energy modes
(k= 9, 10, 11) over 1000 initial conditions for the Lorenz 96 system with forcing F = 8. 10% of the
standart deviation from the atractor ; MSM ; GPR ; GPR-MSM ; LSTM ; LSTM-
MSM

compared to GPR in general. This is because LSTM is a local nonlinear attractor approximator
and can better capture the mean local dynamics, while GPR is locally linear.
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Figure 8: Average percentage over 500 initial conditions of the ensemble members evaluated using
LSTM dynamics over time for different Lorenz 96 forcing regimes in the hybrid LSTM-MSM
method. F = 4 ; F = 8 ; F = 16



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(b) Kuramoto-Sivashinsky Equation
The Kuramoto-sivashinsky (K-S) system is extensively used in many scientific fields to model a
multitude of chaotic physical phenomena. It was first derived by Kuramoto [49,50] as a turbulence
model of the phase gradient of a slowly varying amplitude in a reaction-diffusion type medium
with negative viscosity coefficient. Later, Sivashinsky [51] studied the spontaneous instabilities of
the plane front of a laminar flame ending up with the K-S equation, while in [52] the K-S equation
is found to describe the surface behavior of viscous liquid in a vertical flow.

For our study, we restrict ourselves to the one dimensional K-S equation with boundary and
initial conditions given by

∂u

∂t
=−ν ∂

4u

∂x4
− ∂2u

∂x2
− u∂u

∂x
,

u(0, t) = u(L, t) =
∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0,

u(x, 0) = u0(x),

(4.9)

where u(x, t) is the modeled quantity of interest depending on a spatial variable x∈ [0, L] and
time t∈ [0,∞]. The negative viscosity is modeled by the parameter ν > 0. We impose Dirichlet and
second-type boundary conditions to guarantee ergodicity [53]. In order to spatially discretize (4.9)
we use a grid size ∆x with D=L/∆x the number of nodes. Further, we denote with ui = u(i∆x)

the value of u at node i∈ {0, . . . , D}. Discretization using a second order finite differences scheme
yields

dui
dt

=− ν ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆x4

− ui+1 − 2ui + ui−1
∆x2

−
u2i+1 − u

2
i−1

4∆x
.

(4.10)

Further, we impose u0 = uD+1 = 0 and add ghost nodes u−1 = u1, uD+2 = uD to account for
the Dirichlet and second-order boundary conditions. In our analysis, the number of nodes is
D= 512. The Kuramoto-Sivashinsky equation exhibits different levels of chaos depending on the
bifurcation parameter L̃=L/2π

√
ν [54]. Higher values of L̃ lead to more chaotic systems [25].
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Figure 9: Contour plots of u(x, t) for different values of ν in steady state. Chaoticity rises with
smaller values of ν.

In our analysis the spatial variable bound is held constant to L= 16 and chaoticity level is
controlled through the negative viscosity ν, where a smaller value leads to a system with a
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higher level of chaos (see Figure 9). The temporal average of the state and the cumulative energy
are plotted in Figure 10. As ν declines, chaoticity in the system rises and higher oscillations of
the mean towards the Dirichlet boundary conditions are observed, while the number of modes
needed to capture most of the energy is higher. In our study, we consider two values, namely
ν = 1/10 and ν = 1/16 to benchmark the prediction skills of the proposed method. The discretized
equation (4.10) is integrated with a time interval dt= 0.02 up to T = 11000. The data points up to
T = 1000 are discarded as initial transients. Half of the remaining data (N = 250000 samples) are
used for training and the other half for validation.
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Figure 10: Temporal average u and cumulative mode (PCA) energy for different values of ν.
1/ν = 10 ; 1/ν = 16 ; 1/ν = 36

(i) Dimensionality Reduction: Singular Value Decomposition

The dimensionality of the problem is reduced using Singular Value Decomposition (SVD). By
subtracting the temporal mean u and stacking the data, we end up with the data matrix U∈
RN×513, where N is the number of data samples (N = 500000 in our case). Performing SVD on
U leads to

U=MΣVT , M∈RN×N , Σ ∈RN×513, V ∈R513×513, (4.11)

with Σ diagonal, with descending diagonal elements. The right singular vectors corresponding
to the rdim largest singular values are the first columns of V= [Vr,V−r]. Stacking these singular
vectors yields Vr ∈R513×rdim . Assuming that ut ∈R513 is a vector of the discretized values of
u(x, t) in time t, in order to get a reduced order representation corresponding to the components
with the highest energies (singular values) we multiply

c=Vr
Tu, c∈Rrdim . (4.12)

Applying SVD on the data matrix U is equivalent with Principal Component Analysis on
the covariance matrix as in [25]. The percentage of cumulative energy w.r.t. to the number of
components (modes) considered is plotted in Figure 10. Further, the 90% threshold is plotted. In
our study, we pick rdim = 20 (out of 512) most energetic modes, as they explain approximately
90% of the total energy. The reduced model state is then given by:

c≡ [c1, . . . , crdim ]T . (4.13)

(ii) Results

We train stateless LSTM models with h= 100 and d= 50. For testing, starting from 1000 initial
conditions uniformly sampled from the attractor, we generate a Gaussian ensemble of dimension
N = 50 centered around the initial condition in the original space with standard deviation of
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σ= 0.1. This ensemble is propagated using the LSTM prediction models, and GPR, MSM and
GPR-MSM models trained as in [25]. The root mean square error between the predicted ensemble
mean and the ground-truth is plotted in Figures 11a, 11b for different values of the parameter ν.
All methods reach the invariant measure much faster for 1/ν = 16 compared to the less chaotic
regime 1/ν = 10 (note the different integration times T = 4 for 1/ν = 10, while T = 1.5 for 1/ν =
16).

In both chaotic regimes 1/ν = 10 and 1/ν = 16, the reduced order LSTM outperforms all other
methods in the short term before escaping the attractor. However, in the long term, LSTM does
not stabilize and will eventually diverge faster than GPR (see Figure 11b). Blending LSTM with
MSM alleviates the problem and both accurate short term predictions and long term stability is
attained. Moreover, the hybrid LSTM-MSM has better forecasting capabilities compared to GPR.

The need for blending LSTM with MSM in the KS equation is less imperative as the system is
less chaotic than the Lorenz 96 and LSTM methods diverge much slower, while they sufficiently
capture the complex nonlinear dynamics. As the intrinsic dimensionality of the attractor rises
LSTM diverges faster.

The mean Anomaly Correlation (3.1) is plotted with respect to time in Figures 11c and 11d
for ν = 10 and 16 respectively. The evolution of the AC justifies the aforementioned analysis.
The mean AC of the trajectory predicted with LSTM remains above the predictability threshold
of 0.6 for a highest time duration compared to other methods. This predictability horizon is
approximately 2.5 for ν = 1/10 and 0.6 for ν = 1/16, since the chaoticity of the system rises and
accurate predictions become more challenging.
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Figure 11: Mean RMSE of the most energetic mode and mean AC over 1000 initial conditions
for the K-S equation with 1/ν = 10 (11a,11c) and 1/ν = 16 ( 11c,11d). Standard deviation from
the attractor ; AC predictability threshold ; MSM ; GPR ; GPR-MSM ; LSTM ;
LSTM-MSM
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For the hybrid LSTM-MSM, the percentage of the ensemble members that are explained by
LSTM dynamics is plotted in Figure 12. The quotient drops slower for 1/ν = 10 in the long
run as the intrinsic dimensionality of the attractor is smaller and trajectories diverge slower.
However, in the beginning the LSTM percentage is higher for 1/ν = 16 as the MSM drives
initial conditions close to the boundary faster towards the attractor due to the higher damping
coefficients compared to the case 1/ν = 10. This explains the initial knick in the graph for 1/ν = 16.
The slow damping coefficients for 1/ν = 10 do not allow the MSM to drive the trajectories back
to the attractor in a faster pace than the diffusion caused by the LSTM forecasting.
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Figure 12: Mean over 1000 initial conditions of the percentage of ensemble members explained by
the LSTM dynamics for the Kuramoto-Sivashinsky (T = 1.5)
1/ν = 10 ; 1/ν = 16
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(c) A Barotropic Climate Model
In this section, we examine a standard barotropic climate model [55] originating from a realistic
winter circulation. The model equations are given by

∂ζ

∂t
=−J (ψ, ζ + f + h) + k1ζ + k2δ

3ζ + ζ∗, (4.14)

where ψ is the streamfunction, ζ = δψ the relative vorticity, f the Coriolis parameter, ζ∗ a constant
vorticity forcing, while k1 and k2 are the Ekman damping and the scale-selective damping
coefficient. J is the Jacobi operator given by

J (a, b) =
(∂a
∂λ

∂B

∂µ
− ∂a

∂µ

∂B

∂λ

)
, (4.15)

where µ and λ denote the sine of the geographical latitude and longitude respectively. The
equation of the barotropic model (4.14) is non-dimensionalized using the radius of the earth
as unit length and the inverse of the earth angular velocity as time unit. The non-dimensional
orography h is related to the real Northern Hemisphere orography h

′
by h= 2sin(φ0)A0h

′
/H ,

where phi0 is a fixed amplitude of 45◦N , A0 is a factor expressing the surface wind strength
blowing across the orography, and H a scale height [55]. The stream-function ψ is expanded
into a spherical harmonics series and truncated at wavenumber 21, while modes with an even
total wavenumber are excluded, avoiding currents across the equator and ending up with a
hemispheric model with 231 degrees of freedom.

The training data are obtained by integrating the Eq. (4.14) for 105 days after an initial spin-up
period of 1000 days, using a fourth-order Adams-Bashforth integration scheme with a 45-min
time step in accordance with [25], with k1 = 15 days, while k2 is selected such that wavenumber
21 is damped at a time scale of 3 days. In this way we end up with a time series ζt with 104

samples. The spherical surface is discretized into aD= 64× 32 mesh with equally spaces latitude
and longitude. From the gathered data, 90% is used for training and 10% for validation. The mean
and variance of the statistical steady state are shown in Figure 13a.

(i) Dimensionality Reduction: Classical Multidimensional Scaling

The original problem dimension of 231 is reduced using a generalized version of the classical
multidimensional scaling method [56]. The procedure tries to identify an embedding with a lower
dimensionality such that the pairwise inner products of the dataset are preserved. Assuming that
the dataset consists of points ζi, i∈ {1, . . . , N}, whose reduced order representation is denoted
with yi, the procedure is equivalent with the solution of the following optimization problem

minimize
y1,...,yN

∑
i<j

(
〈ζi, ζj〉ζ − 〈yi,yj〉y

)2
, (4.16)

where 〈·, ·〉ζ , and 〈·, ·〉y denote some well defined inner product of the original space ζ and
the embedding space y respectively. Problem (4.16) minimizes the total squared error between
pairwise products. In case both products are the scalar products, the solution of (4.16) is
equivalent with PCA. Assuming only 〈·, ·〉y is the scalar product, problem (4.16) also accepts
an analytic solution. Let Wij = 〈ζi, ζj〉ζ be the coefficients of the Gram matrix, |k1| ≥ |k2| ≥
· · · ≥ |kN | its eigenvalues sorted in descending absolute value and u1,u2, . . . ,uN the respective
eigenvectors. The optimal d-dimensional embedding for a point ζn is given by

yn =


k
1/2
1 un1

k
1/2
2 un2

...
k
1/2
d und

 , (4.17)



18

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

  45
o
N  1

2
0

o W
 

  6
0 o

W
 

   0
o
  

  
6
0

o E
 

 1
2
0 o

E
 

 180
o
W 

Mean

-0.05

-0.04

-0.03

-0.02

-0.01

0

  45
o
N  1

2
0

o W
 

  6
0 o

W
 

   0
o
  

  
6
0

o E
 

 1
2
0 o

E
 

 180
o
W 

Variance

0

1

2

3

4

5

6

7
10

-5

(a)

100 101 102

Mode

10−5

10−4

10−3

10−2

10−1

100

E
n
er
gy

(b)

1 20 40 60 80 100 120 140 160 180 200 220231
Number of modes used

0

20

40

60

80

100

C
u
m
u
la
ti
ve

en
er
gy

in
%

(c)

Figure 13: Mean, variance and energy distribution of the Barotropic model at statistical steady
state.

where unm denotes the nth component of the mth eigenvector. The optimality of (4.17) can be
proven by the Eckart-Young-Mirsky theorem, as problem (4.16) is equivalent with finding the
best d rank approximation in the Frobenius norm. In our problem, the standard kinetic energy
product is used to preserve the nonlinear symmetries of the system dynamics [25]:

〈ζi, ζj〉ζ =
∫
S
∇ψi · ∇ψjdS =−

∫
S
ζiψjdS =−

∫
S
ζjψidS, (4.18)

where the last identities are derived using partial integration and the fact that ζ =∆y. The energy
spectrum of the modes of the reduced order space y is plotted in Figure 13a.

Solution (4.17) is only optimal w.r.t. the N training data points used to construct the Gram
matrix. In order to calculate the embedding for a new point, it is convenient to compute the
empirical orthogonal functions (EOFs) which form an orthonormal basis of the reduced order
space y [25]. The EOFs are given by

φ=

N∑
n=1

k
−1/2
m unmζn, (4.19)

where m runs from 1 to d. The EOFs are sorted in descending order according to their
energy level. The first four EOFs are plotted in Figure 14. EOF analysis has been used to
identify individual realistic climatic modes such as the Arctic Oscillation (AO) [57,58] known
as teleconnections. The first EOF is characterized by a center of action over the Arctic that
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is surrounded by a zonal symmetric structure in mid-latitudes. This pattern resembles the Arctic
Oscillation/Northern Hemisphere Annular Mode (AO/NAM) [57] and explains approximately
13.5% of the total energy. The second, third and fourth EOFs are quantitatively very similar to the
East Atlantic/West Russia [59], the Pacific/North America (PNA) [60] and the Tropical/Northern
Hemisphere (TNH) [61] patterns end account for 11.4%, 10.4% and 7.1% of the total energy
respectively. Since these EOFs feature realistic climate teleconnections, performing accurate
predictions of them is of high practical importance.
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Figure 14: The four most energetic empirical orthogonal functions of the barotropic model

As a consequence of the orthogonality of the EOFs w.r.t. the kinetic energy product, the
reduced representation y∗ of a new state ζ∗ can be recovered from

y∗ =


〈ζ∗, φ1〉ζ
〈ζ∗, φ2〉ζ

...
〈ζ∗, φd〉ζ

 . (4.20)

In essence, the EOFs act as an orthogonal basis of the reduced order space and the new state ζ∗ is
projected to this basis. Only the d coefficients corresponding to the most energetic EOFs form the
reduced order state y∗. In our study, the dimensionality of the reduced space is rdim = 30, as φ30
contains only 3.65% of the energy of φ1, while the 30 most energetic modes contain approximately
82% of the total energy, as depicted in Figure 13c.
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(ii) Training and Prediction

The reduced order state that we want to predict using the LSTM are the 30 components of y.
A stateless LSTM with h= 140 hidden units is considered, while the truncated back-propagation
horizon is set to d= 10. The prototypical system is less chaotic than the KS equation and the
Lorenz 96, which enables us to use more hidden units. The reason is that as chaoticity is
decreased trajectories sampled from the attractor as training and validation dataset become more
interconnected and the task is inherently easier and less prone to overfitting. In the extreme
case of a periodic system, the information would be identical. 500 points are randomly picked
from the attractor as initial conditions for testing. A Gaussian ensemble with a small variance
(σen = 0.001) along each dimension is formed and marched using the reduced-order GPR, MSM,
Mixed GPR-MSM and LSTM methods.

(iii) Results

The RMSE error of the four most energetic reduced order space variables yi for i∈ {1, . . . , 4} is
plotted in Figure 15. The LSTM takes 400− 500 h to reach the attractor, while GPR based methods
generally take 300− 400 h. In contrast, the MSM reaches the attractor already after 1 hour. This
implies that the LSTM can better capture the non-linear dynamics compared to GPR. Note that the
barotropic model is much less chaotic than the Lorenz 96 system with F = 16, where all methods
show comparable prediction performance. Blended LSTM models with MSM are omitted here, as
LSTM models only reach the attractor standard deviation towards the end of the simulated time
and MSM-LSTM shows identical performance.
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Figure 15: Mean RMSE of the most energetic EOFs over 500 initial conditions for the Barotropic
climate model. Standard deviation from the attractor ; MSM ; GPR ; GPR-MSM ;
LSTM
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5. A Comment on Computational Cost of Prediction
The computational cost of making a single prediction can be quantified by the number of
operations (multiplications and additions) needed. In GPR based approaches the computational
cost in the Landau notation isO(N2), whereN is the number of samples used in training. For GPR
methods illustrated in the previous section N ≈ 2500. The GPR models the global dynamics by
uniformly sampling the attractor and "carries" this training dataset at each time instant to identify
the geometric relation between the input and the training dataset and make (exact) probabilistic
inference on the output.

In contrast, LSTM learns the behavior by adjusting its parameters, which leads to a prediction
computational complexity that does not depend on the number of samples used for training. The
inference complexity is roughly O(di · d · h+ d · h2), where di is the dimension of each input, d is
the number of inputs and h is the number of hidden units. This complexity is significantly smaller
than GPR, which can be translated to faster prediction.

Especially in real-time applications that require fast short-term predictions of a complex
system, the LSTM has an advantage. However, it is logical that the LSTM is more prone to
diverge from the attractor, as there is no guarantee that the infrequent training samples near the
attractor limits where memorized. This remark explains the faster divergence of LSTM in the more
turbulent regimes considered in Section 4.

6. Conclusions
We propose a data-driven method, based on long-short term memory networks, for modeling
and prediction in the reduced space of chaotic dynamical systems. The LSTM uses the short
term history of the reduced order variable to predict the state derivative and uses it for one-step
prediction. The network is trained on time-series data and it requires no prior knowledge of the
underlying governing equations. Using the trained network, long-term predictions are made by
iteratively predicting one step forward.

The features of the proposed technique are showcased through comparisons with GPR and
MSM on bench-marked cases. Three applications are considered, the Lorenz 96 system, the
Kuramoto-Sivashinsky equation and a barotropic climate model. The chaoticity of these systems
ranges from weakly chaotic to fully turbulent, ensuring a complete simulation study. Comparison
measures include the RMSE and AC between the predicted trajectories and trajectories of the real
dynamics.

In all cases, the proposed approach performs better, in short term predictions, as the LSTM
is more efficient in capturing the local dynamics and complex interactions between the modes.
However, the prediction error propagates fast and the prediction similar to GPR does not
converge to the invariant measure. Furthermore in the cases of increased chaoticity the LSTM
diverges faster than GPR. This may be attributed to the non-presence of certain attractor regions in
the training data, insufficient training, and propagation of the exponentially increasing prediction
error. To mitigate this effect, LSTM is also combined with MSM, following ideas presented in [25],
in order to guarantee convergence to the invariant measure. Blending LSTM or GPR with MSM
leads to a deterioration in the short term prediction performance but the steady-state statistical
behavior is captured. The hybrid LSTM-MSM exhibits a slightly superior performance than
GPR-MSM in all systems considered in this study.

In the Kuramoto-Sivashinsky equation LSTM can capture better the local dynamics compared
to Lorenz 96 due to the lower intrinsic dimensionality of the attractor. The LSTM shows
comparable forecasting accuracy with GPR in the barotropic model. The intrinsic dimensionality
is significantly smaller than Kuramoto-Sivashinsky and Lorenz 96 and both methods can
effectively capture the dynamics. Moreover, the prediction error does not propagate as rapidly
as in Lorenz 96 and the blended LSTM-MSM scheme is omitted.

Future directions include modeling the lower energy modes and interpolation errors using
a stochastic component in the LSTM to improve the forecasting accuracy. Another possible
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research direction is to model the attractor in the reduced space using a mixture of LSTM
models, one model for each region. The LSTM proposed in this work models the attractor
globally. However, different attractor regions may exhibit very different dynamic behaviors,
which cannot be simultaneously modeled using only one network. Moreover, these local models
can be combined with a closure scheme compensating for truncation and modeling errors. This
local modeling approach may further improve prediction performance.
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derivation of basic equations, Acta Astronautica 4, 1177–1206.
52. Sivashinsky G, Michelson DM. 1980 On irregular wavy flow of a liquid film down a vertical

plane, Progress of Theoretical Physics 63 (6), 2112–2114.
53. Blonigan PJ, Wang Q. 2014 Least squares shadowing sensitivity analysis of a modified

Kuramoto-Sivashinsky equation, Chaos, Solitons and Fractals. 64, 16–25.
54. Kevrekidis IG, Nicolaenko B, Scovel JC. 1990 Back in the saddle again: A computer assisted

study of the kuramoto-sivashinsky equation. SIAM J. Appl. Math. 50 (3) 760–790.
55. Selten FM. 1995 An efficient description of the dynamics of barotropic flow, Journal of the

Atmospheric Sciences 52 (7) 915–936.
56. Cox MAA, Cox TF. 2001 Multidimensional Scaling. Second edition., Chapman and Hall.
57. Thompson DWJ, Wallace JM. 2000 Annular modes in the extratropical circulation: Part i:

Month-to-month variability. J. Climate 13, 1000–1016.
58. Thompson DWJ, Wallace JM. 1998 The arctic oscillation signature in wintertime signature in

wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25, 1297–1300.
59. Barnston AG, Livezey RE. 1987 Classification, seasonality and persistence of low-frequency

atmospheric circulation patterns, Mon. Weather Rev. 115, 1083–1126.
60. Wallace JM, Gutzler DS. 1981 Teleconnections in the geopotential height field during the

northern hemisphere winter, Mon. Weather Rev. 109, 784–812.

http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1126/science.1091277


25

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

61. Mo KC, Livezey RE. 1986 Tropical-extratropical geopotential height teleconnections during
the northern hemisphere winter. Mon. Weather Rev. 114, 2488–2512.


	1 Introduction
	2 Long-Short Term Memory (LSTM) Recurrent Neural Networks
	(a) Training and inference
	(b) Mean Stochastic Model (MSM) and Hybrid LSTM-MSM

	3 Benchmark and Performance Measures
	4 Applications
	(a) The Lorenz 96 System
	i Dimensionality Reduction: Discrete Fourier Transform
	ii Training and Prediction in Lorenz 96
	iii Results

	(b) Kuramoto-Sivashinsky Equation
	i Dimensionality Reduction: Singular Value Decomposition
	ii Results

	(c) A Barotropic Climate Model
	i Dimensionality Reduction: Classical Multidimensional Scaling
	ii Training and Prediction
	iii Results


	5 A Comment on Computational Cost of Prediction
	6 Conclusions
	7 Data Accessibility Statement
	8 Competing Interests Statement
	9 Authors' Contributions
	10 Funding Statement
	11 Acknowledgments
	References

