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Abstract

Many tasks are subject to failure before completion. Two of the
most common failure recovery strategies are restart and
checkpointing. Under restart, once a failure occurs, it is restarted
from the beginning. Under checkpointing, the task is resumed from
the preceding checkpoint after the failure. We study asymptotic effi-
ciency of restart for an infinite sequence of tasks, whose sizes form a
stationary sequence. We define asymptotic efficiency as the limit of the
ratio of the total time to completion in the absence of failures over the
total time to completion when failures take place. Whether the asymp-
totic efficiency is positive or not depends on the comparison of the tail
of the distributions of the task size and the random variables governing
failures. Our framework allows for variations in the failure rates and
dependencies between task sizes. We also study a similar notion of
asymptotic efficiency for checkpointing when the task is infinite a.s.
and the inter-checkpoint times are i.i.d.. Moreover, in checkpointing,
when the failures are exponentially distributed, we prove the existence
of an infinite sequence of universal checkpoints, which are always used
whenever the system starts from any checkpoint that precedes them.

Key words: restart, checkpointing, failure recovery, dynamical systems,
point process, point-shift.

MSC 2010 subject classification: Primary: 37A05, 60G55.

Introduction

In many situations, such as the execution of a computer program, the copy
of a file from a remote location using a protocol such as FTP or HTTP,
channel reservation in cognitive radio networks and others, tasks are subject

∗asodre@math.utexas.edu

1

ar
X

iv
:1

80
2.

07
45

5v
1 

 [
m

at
h.

PR
] 

 2
1 

Fe
b 

20
18



to failures. Restart and checkpointing are two of the most common ways
to take into account failures in these context (see, among others, [15],[17],
and [8]).

In restart, whenever a failure occurs, as the name suggests, the task
is restarted. Accordingly, the actual time for completion is possibly larger
than the ideal time. The latter is defined as the time for completion without
failures. In checkpointing, the task is partitioned: when a failure occurs,
it is resumed from the last element of the partition before the failure.

Here is a basic description of restart. Let D be the ideal task time.
If no failure occurs, the actual time to complete the task is just D. If a
failure occurs at L0 < D, the task is restarted. Suppose there are ν > 0
failures before the task is completed. Then the actual time is given by TR =∑ν

i=0 Li +D. Failures are modeled by a sequence of i.i.d. random variables
{Ln}n≥0, named failure times. The one-task restart model is studied in
[2] and [4] for a random variable D with unbounded support (see Figure 1).
Section 1 introduces the formalism for the one-task restart model.

In the one-task case, the actual time, TR, may be heavy-tailed, even
when the ideal time and the failure time have light tails. Moreover, the
actual task time may have infinite expectations, even if both D and L0 do
not, depending on the comparison of the tail distributions of D and L0 [2].

We extend the literature on restart by considering an infinite sequence
of tasks, {Dn}n≥0, introducing the concept of asymptotic efficiency. Let TRn
be the actual time of task n. We define asymptotic efficiency as

e = lim
N→∞

∑N−1
n=0 Dn∑N−1
n=0 T

R
n

, (0.1)

whenever the limit exists a.s.. The system is inefficient when e = 0.
In this sequential restart model, the ideal times is given by the distance

between points of a simple stationary point process in R. Such a point
process can be seen as a random discrete sequence of distinct elements on
R, {Xn}n∈Z, such that Xn < Xn+1 for all n. The sequence of tasks sizes is
given by D0 = X1 −X0, D1 = X2 −X1 and so on. We mark the point Xn

with an i.i.d. sequence, {Ln,i}i≥1, capturing the failure times of the nth-task.
We present the point process setting for modeling task sizes and failures in
Section 2.

We prove that asymptotic efficiency exists when the point process is
stationary, the failure sequence {Ln,i}i≥1 is independent of Dn, and under
some integrability conditions. We do not require the sequence {Dn}n≥0 to
be i.i.d.. In fact, our set-up allows for variations in the failure rates and
dependencies between task sizes.
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Moreover, we give conditions under which the asymptotic efficiency is
positive or zero. Two special cases are considered: Markov renewal process,
and the case in which there is a chance that tasks need to be repeated after
completion (Section 5).

The checkpointing model can be described as follows [3]. Again, we
have a random a task D of random length with infinite support, but finite
a.s.. We partition [0, D] into k intervals and label the endpoint of the lth

interval by X l. We call {X l}k−1l=1 the set of checkpoints. Once a check-
point is reached and a failure occurs, the task is resumed from the latest
checkpoint before the failure. More precisely, if a failure occurs before the
first checkpoint, i.e., L1 < X1, the task is resumed from the beginning. If
L1 > D, i.e., there are no failures, the actual time to completion is simply
D. Otherwise, if X1 < L1 < D, we check the partition in which L1 falls.
If X l ≤ L1 < X l+1, the task is resumed from X l and the time spent so far
is L1. In that case, we start the clock again, representing it by the random
variable L2. If L2 < X l+1 −X l, the task does not leave the checkpoint X l.
Otherwise, we verify which checkpoint was reached or whether the task was
completed. We repeat this procedure until the task is completed. Assume
that there are τ > 0 failures until completion. Then, the actual time is given
by TC =

∑τ
i=1 Li + (D −Xα), where α ∈ {1, . . . , k} is the last checkpoint

visited (see Figure 2).
Regarding the sequential checkpointing considered here, we define and

study a notion of asymptotic efficiency, in a similar way to (0.1). We consider
a unique task, which is a.s. infinite, and the distances between checkpoints
are given by the inter-arrivals of a point process. We give the precise def-
inition of asymptotic efficiency for checkpointing in Section 2. We give
a general condition for the existence of the asymptotic efficiency when the
point process is a marked renewal process.

Moreover, in the renewal process model with exponentially distributed
failure times, we show the existence of an infinite subsequence of universal
checkpoints. If we start the system at any checkpoint preceding a universal
checkpoint, the system will activate the latter a.s..

Section 1 reviews the actual time for one-task restart and
checkpointing, and gives the conditions under which the actual time has
finite moments. Section 2 presents a unified framework to study the asymp-
totic efficiency for both sequential restart and checkpointing. Section 3
presents our main results for sequential restart. Section 4 does the same
for sequential checkpointing. Section 5 discusses some extensions. The
appendix contains a technical proof.
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D

L1

L2

L3

L4

L5

L6

Figure 1: An instance of restart. The task size is D. Five attempts take
place before the task is completed, i.e., ν = 5. The time spent on each
attempt is given by L1, . . . , L5. In the sixth attempt the task is completed.
The actual time spent on completing the task is then TR =

∑5
i=1 Li +D.

DX1 X2 X3 X4

L1

L2

L3

L4

L5

Figure 2: An instance of checkpointing. There is one failure before the
first checkpoint, the second failure takes place after the third checkpoint
and two more failures happen before the last checkpoint is surpassed. The
actual time till completion is given by TC =

∑4
i=1 Li + (D −X3).
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1 One task restart and checkpointing

In this section we recall known results on how to compute the actual time for
restart and checkpointing with one task. The main result, which was ob-
tained in [2], [4], and [5], is that the actual restart and checkpointing times
have an infinite expectation if and only if the task size D has a tail heavier
than L0, the variable that captures failures. We build on this result in our
study of the asymptotic efficiency in the next section.

Let D be a random variable in R+ which represents the ideal task time
in both the restart model or the time up to the first checkpoint under
the checkpointing model. Consider a sequence of i.i.d. random variables
{Ln}n≥0 defined on the same probability space (Ω,F ,P) as D. Define

τ = inf{k ≥ 0 : Lk > D}.

The actual time taken to complete the task D under restart is given
by

TR =
τ−1∑
i=0

Li +D,

and the actual time the system takes to pass the first checkpoint is

TC =
τ∑
i=0

Li.

Assumption 1. D and L0 are integrable and independent random variables
with right-unbounded support, i.e, P[D > x],P[L0 > x] > 0 for all x ∈ [0,∞).

Definition 1. Let V and W be random variables with right-unbounded
support, defined on the same probability space (Ω,F ,P). We say then that V
has a P−tail heavier thanW if there exists z0 such that P[V > z] ≥ P[W > z]
for all z ≥ z0.

Theorem 2. Under Assumption 1,

E[TR] = E[D] +

∫ ∞
0

E[L01{L0 ≤ z}]
P[L0 > z]

fD(dz)

and

E[TC ] = E[L0]

∫ ∞
0

1

P[L0 > z]
fD(dz),

where fD is the distribution of D. Moreover, E[TR],E[TC ] =∞ if and only
if D has a P−tail heavier than L0.
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The proof is adapted from [3] and can be found in Appendix A.
As an application of Theorem 2, suppose L0 ∼ exp(λl) and D ∼ exp(λd).

Then E[TR],E[TC ] =∞ if and only if λl ≥ λd.
A random variable Z is said to be heavy-tailed if for all γ > 0,

lim
t→∞

eγtP[Z > t] =∞,

and light-tailed if there exists γ > 0 such that the above limit is finite. By
direct manipulations, one gets the following corollary of Theorem 2.

Corollary 3. Under Assumption 1:

1. If D is heavy-tailed and L0 is light-tailed, E[TC ],E[TR] =∞;

2. If L0 is heavy-tailed and D is light-tailed, E[TC ],E[TR] <∞.

2 Sequential restart and checkpointing

The goal of this section is to define the asymptotic efficiency under
restart (resp. checkpointing) when there is a sequence of tasks (resp.
a sequence of checkpoints) whose ideal times to completion (resp. distance
between checkpoints) are given by the inter-arrival times of a stationary
point process. We call the models introduced in this section sequential
restart and checkpointing.

2.1 Point process and stationarity

First, we briefly review the necessary concepts in point process theory.
For a more complete treatment on the subject see [10],[11],[9] among oth-
ers. Consider a general probability space endowed with a measurable flow
(Ω,F ,P, {θt}t∈R). Let N(R n (R+)N) be the set of counting measures on
R with marks in (R+)N. An element of N(R n (R+)N) is of the form
ψ =

∑
n∈Z δ(Xn,Kn)(·), in which δZ(·) is the Dirac measure with mass at

Z, Xn ∈ R, Kn ∈ (R+)N, and the sequence {Xn}n∈Z does not have accumu-
lation points. We say Kn is the mark of Xn. For any C ∈ B(R+ × (R+)N):
ψ(C) =

∑
n∈Z δ(Xn,Kn)(C). We write Xn ∈ ψ whenever ψ({Xn,Kn}) ≥ 1.

We equip N(Rn (R+)N) with the smallest σ−algebra N (N(Rn (R+)N))
that makes the family of mappings

{ψ 7→ ψ(C) : C ∈ B(R+ × (R+)N), C bounded}
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measurable. A point process on R+ with marks in (R+)N is a measurable
mapping Φ : Ω→ N(R+ n (R+)N).

The realization of a marked point process in N(Rn (R+)N) corresponds
to a sequence

{Xn(ω),Kn(ω)}n∈Z ⊂ R× (R+)N

such that {Xn(ω)}n∈Z has no accumulation points P−a.s.. We often write
Xn instead ofXn(ω). For all C ∈ B(R×R+), we let Φ(ω,C) = #{(Xn,Kn)(ω) ∈
C}. Moreover, we always label the points of Φ in R as follows:

. . . ≤ X−2 ≤ X−1 ≤ X0 ≤ 0 ≤ X1 ≤ . . . .

We assume Φ is θt−compatible, i.e., for all t ∈ R,

1. P ◦ (θt)
−1 = P,

2. For all C ∈ B(R) and D ∈ B((R+)N):

Φ(θtω,C ×D) = Φ(ω, (C + t)×D).

These, together with

Φ(ω,C × (R+)N) <∞ for all C ∈ B(R) bounded, P− a.s.,

makes Φ a stationary marked point process.

Remark 4. It is most convenient for our purposes to take Ω to be N(R+n
(R+)N) and F to be N (N(Rn (R+)N)).

In our setting, marked point processes are constructed in the following
way. We start with a stationary point process in R. LetDn = Xn+1−Xn.We
mark the point Xn with a sequence of i.i.d. random variables Kn = {Ln,i}i≥1
that model failures as in Section 1.

We work with the point process under its Palm probability. Let λ =
E[Φ([0, 1] × (R+)N)] be the intensity of Φ. We assume 0 < λ < ∞. The
Palm probability of Φ is defined as, for all A ∈ N (N(Rn (R+)N)),

P0[A] =
1

λ|B|
E

[∑
n∈Z

1{Xn ∈ B}1{Φ ◦ θXn ∈ A}

]
, (2.1)

for any B ∈ B(R) with positive Lebesgue measure |B|, where

Φ ◦ θXn = {(Xm −Xn,Km)}m∈Z.

The probability measure P0 can be regarded as the distribution of the process
given there is a point at the origin. In fact, P0[0 ∈ Φ] = 1. For more on
Palm probabilities, see [10], [11], [9], among others.
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2.2 Point-shifts

To provide a unified definition of asymptotic efficiency for sequential restart
and checkpointing, we resort to the theory of dynamics on point processes
induced by point-shifts (for more on the subject, see [6] and [19]).

Define N0(R+n(R+)N) as the subspace of N(R+n(R+)N) of all counting
measures with mass at the origin. Let N (N0(Rn(R+))N) be the correspond-
ing trace σ−algebra.

Let θ : N0(R+ n (R+)N) → N0(R+ n (R+)N) be the discrete left-shift
operator defined by

θψ = {(Xm −X1,Km)}m∈Z,

with θnψ = {(Xm −Xn,Km)}m∈Z, n ∈ Z. Let s : N0(R n (R+)N) → R be
a measurable function such that

s(ψ) = Xα1 , where ψ({Xα1 ,Kα1}) ≥ 1,

that is, s maps a counting measure to some element of its support. Such
a map is called a point-map. A point-map s induces a compatible point-
shift, S, that maps, in a translation invariant way, every point of a counting
measure to another by

S(ψ,Xn) = s(θnψ) +Xn, (2.2)

for all Xn in the support of ψ. Then, we define the translation by the
point-shift s, θs : N0(Rn (R+)N)→ N0(Rn (R+)N) as

θsψ := {ψ −Xα1} = {(Xm −Xα1 ,Km)}m∈Z. (2.3)

Inductively, assuming that sn−1(ψ) is defined and letting θn−1s ψ = {ψ−
sn−1(ψ)}, we let sn(ψ) = s(θn−1s ψ) + sn−1(ψ) and θns (ψ) = {ψ − sn(ψ)}.

In words, s takes the counting measure and maps it to an element of its
support, Xα1 . Then θs shifts the counting measure so that Xα1 is the origin.
Applying s again to the shifted counting measure, we get some point on the
support of ψ, say Xα2 , and θ2s shifts ψ so that Xα2 is the origin, and so on.

2.3 Ideal times and actual times

As discussed in Section 1, in both the one task restart and
checkpointing , we have the ideal time (when no failures take place) and
the actual time (when accounting for failures). In our sequential models, we
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D0 D1 D2

DC
 0

X0=0 X1 X2=Xυ0

L0,1

L0,2

X3

L0,3

L0,4

L0,τ0

Figure 3: The progress of checkpointing at the 1st−iteration. There are
four failures before the first checkpoint is surpassed, hence τ0 = 5. Then,
there are no failures until the system is between checkpoints X2 and X3, so
ν1 = 2. Here, the first ideal-time is DC

0 = X2−X0 and the first actual time
is TC0 =

∑5
i=1 L0,i.

have an ideal time and an actual time for each iteration. We define these
using point-shifts.

First, let

τn = inf{k ≥ 1 : Ln,k > Xn+1 −Xn}. (2.4)

The sequential restart point-map is given by sR(Φ) = X1, so SR(Xn,Φ) =
Xn+1 for all n. The translation by this point-map is simply the discrete
left-shift operator, i.e., θnsR = θn. For the nth−task, the ideal time is

DR
n = Dn = Xn+1 −Xn and the actual time is TRn =

∑τn−1
i=1 Ln,i +Dn.

The sequential checkpointing point-map is sC(Φ) = Xν0 , where

ν0 = sup{k ≥ 1 : L0,τ0 ≥ Xk}. (2.5)

Notice that τ0− 1 is the number of failures before the first checkpoint is
surpassed, and ν0 the index of the next checkpoint secured once the system
passes the first one. The 1st−ideal time is DC

0 = Xν0 and the 1st− actual
time is TC0 =

∑τ0
i=1 L0,i. Figure 3 illustrates the first iteration in sequential

checkpointing. Now, for each n, let

Zn = Ln,τn −Dn. (2.6)

9



Figure 4: The progress of checkpointing at the nth−iteration.

More generally, as illustrated in Figure 4, at the nth−iteration, the nth−ideal
time is DC

n := Xνn −Xνn−1 , where

νn = sup{k ≥ νn−1 + 1 : Zνn−1 > Xk −Xνn−1+1}, (2.7)

with the nth−actual time being TCn =
∑τνn−1

i=1 Lνn−1,i. We set ν−1 = 0.
The table below summarizes our notation.

restart checkpointing

Point-map sR(Φ) = X1 sC(Φ) = Xν0

nth−ideal time DR
n = Xn+1 −Xn DC

n = Xνn −Xνn−1

nth−actual time TRn =
∑τn−1

i=1 Ln,i +Dn TCn =
∑τνn−1

i=1 Lνn−1,i

Point-map translation θnsR = θn θnsC = θνn

2.4 Asymptotic efficiency

In this unified framework, we define asymptotic efficiency as the limit ratio
of the sum of ideal times to the sum of actual times for both models.

Definition 5 (Asymptotic Efficiency). The asymptotic efficiency is given
by, for i ∈ {R,C},

e(ω) = lim
N→∞

∑N−1
n=0 D

i
n(ω)∑N−1

n=0 T
i
n(ω)

P0 − a.s., (2.8)

whenever the limit exists.

Notice that, when it exists, 0 ≤ e ≤ 1 P0−a.s., as T in ≥ Di
n n ≥ 0.

Let s be a point-map. Consider the sequence of probability measures on
(N0(Rn (R+)N),N 0(Rn (R+)N) defined by

Ps,n = P0 ◦ (θns )−1. (2.9)
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Then Ps,n can be interpreted as the distribution of the point process given
that there is a point of the nth−image of S at the origin. Suppose {Ps,n}n≥0
has a weak limit Ps,∞. As we shall see in detail, when the asymptotic
efficiency exists, it is then the ratio of the expectations of Di

0 and T i0 under
Psi,∞, i ∈ {R,C}.

2.5 General Assumptions

In order to establish the existence of e in sequential restart we assume that
the marked point process Φ is such that, under P0,

1. the i.i.d. sequence of failure marks, {Ln,i}i≥1 is independent of Dn for
all n ≥ 0;

2. both D0 and L0,1 have right-unbounded support;

3. E0[D0], E0[L0,1] <∞.

This set of assumptions allows us to leverage the results of Section 1.
For checkpointing , besides items 1., 2., and 3. above, we assume that

Φ is a marked renewal process, i.e., under P0, {Dn}n∈Z is i.i.d.. Moreover,
we assume that {Ln,i}i≥1 is independent of Dm for all m ≥ n ≥ 0. In words,
the failure marks of Xn are independent of the checkpoint intervals ahead.

3 Sequential restart: main result

Given that the translation by the sequential restart point-map is the dis-
crete left-shift operator θ, the sequence {PsR,n}n≥0 (Equation (2.9)) is con-
stant, with all its elements being equal to P0. This result holds as θ is
bijective, so it preserves the Palm measure [20].

Moreover, from the fact that θ preserves P0, there exists a random vari-
able L0 such that

P0[L0 > t] = P0[Ln,i > t], ∀ i, n ∈ N and t ∈ R+. (3.1)

In the same vein, the sequence {Dn}n≥0 is identically distributed (but not
necessarily i.i.d.) under P0. Consequently, the restart actual time sequence,
{TRn }n≥0 is also identically distributed under P0.

Theorem 6. Let I be the invariant σ−algebra of (P0, θ). If D0 does not
have a P0−tail heavier than L0, the asymptotic efficiency exists and it is

11



given by the random variable

e =
E0[D0|I]

E0[TR0 |I]
, P0 − a.s.. (3.2)

If (P, {θt}t∈R) or, equivalently (P0, θ) is ergodic, we have E0[D0|I] =
E0[D0] and E0[TR0 |I] = E0[TR0 ], so that the asymptotic efficiency is constant.
In this case, if D0 does have a P0−tail heavier than L0, e = 0 P0 − a.s.

Proof. If D0 does not have a P0−tail heavier than L0, by Theorem 2,
E0[TR0 ] < ∞, and, as E0[D0] < ∞ by assumption, by Birkhoff’s Pointwise
Ergodic Theorem,

e = lim
N→∞

∑N−1
n=0 D

i
n(ω)∑N−1

n=0 T
i
n(ω)

= lim
N→∞

∑N−1
n=0 D0 ◦ θn∑N−1
n=0 T

R
0 ◦ θn

=
E0[D0|I]

E0[TR0 |I]
, P0 − a.s.

When (P, {θ}t∈R) is ergodic, E0[D0|I] (resp. E0[TR0 |I]) equals E0[D0]
(resp. E0[TR0 ]) If D0 does have a P0−tail heavier than L0, E0[TRn ] = ∞ for
all n ≥ 0. Suppose, by contradiction, that

lim sup
N→∞

∑N−1
n=0 Dn∑N−1
n=0 T

R
n

> ε P0 − a.s.

for some ε > 0. It follows that

lim sup
N→∞

1

N

N−1∑
n=0

Dn > ε lim sup
N→∞

1

N

N−1∑
n=0

TRn .

Let M > 0 be a fixed integer. Then, as

lim sup
N→∞

1

N

N−1∑
n=0

TRn > lim sup
N→∞

1

N

N−1∑
n=0

min{TRn ,M},

lim sup
N→∞

1

N

N−1∑
n=0

Dn > ε lim sup
N→∞

1

N

N−1∑
n=0

min{TRn ,M}.

Now min{TRn ,M} is integrable, so by by Birkhoff’s Pointwise Ergodic The-
orem, we have

E0[D0] > εE0[min{TR0 ,M}]. (3.3)

Since E0[D0] < ∞ and E0[TR0 ] = ∞, letting M → ∞ on the RHS of (3.3)
we have a contradiction. �
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Remark 7. Notice that when (P, {θt}t∈R) is not ergodic, e can be zero
with positive probability. Here is a simple example. Consider a stationary
marked renewal process constructed in the following way. Let D0 ∼ exp(λd)
under P0, and let c be a random variable taking values in {0, 1} with, P0[c =
0] = P0[c = 1] > 0. Then, if c = 0, L0 ∼ exp(λ1) under P0 and, otherwise
L0 ∼ exp(λ2). Assume λ1 ≥ λd > λ2. Then e = 0 with probability P0[c = 0].

Remark 8. Now since the set

A :=

{
lim
N→∞

1
N

∑N−1
n=0 D0 ◦ θn

1
N

∑N−1
n=0 T

R
0 ◦ θn

=
E0[D0|I]

E0[TR0 |I]

}
is strictly θ−invariant, i.e., θA = A, by property 1.6.1 in [7], P0[A] = 1
implies P[A] = 1. Therefore, the above result also holds P− a.s..

4 Sequential checkpointing: main results

In what follows:

• Φ satisfies the general assumptions for checkpointing in Section 2.5;

• Dνn = Xνn−Xνn−1, as illustrated in Figure 4, with νn defined in (2.7);

• PsC ,n := P0 ◦ (θνn)−1, with {PsC ,n+ }n≥0 being the restriction of PsC ,n
to N0(R+ n (R+)N).

• PsC ,∞+ denotes the weak limit of the sequence of distributions {PsC ,n+ }n≥0,
when it exists, and EsC ,∞+ is the expectation operator of PsC ,∞+ .

• Assuming {Dνn}n≥0 converges weakly under the Palm distribution to
a non-degenerate random variable D∞ and letting D̂∞ be an indepen-
dent random variable distributed like the Palm distribution of D∞, we
set

τ∞ = inf{k ≥ 1 : L0,k > D̂∞} (4.1)

and

ν∞ = sup{k ≥ 1 : L0,τ∞ ≥ Xk}. (4.2)

Remark 9. Let P0
+ be the restriction of P0 to N0(R+n(R+)N). Then, under

the assumptions of Section 2.5, P0
+ is an independently marked renewal

process and, therefore, satisfies the strong Markov property. In this section,
all events consider under P0 belong to the trace σ−algebra N (N0(R+ n
(R+)N). Hence, we keep the notation P0 when there is no ambiguity.
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Theorem 10. If {Dνn}n≥0 converges weakly under its Palm distribution to
a non-degenerate random variable D∞, then PsC ,∞+ exists.

Moreover, if E0[D∞], E0[ν∞] < ∞, and D∞ does not have a P0−tail
heavier than L0,1, then the asymptotic efficiency exists and it is equal to

e =
EsC ,∞+ [DC

0 ]

EsC ,∞+ [TC0 ]
P0 − a.s.,

Otherwise, e = 0 P0−a.s..

For the sake of brevity, in what comes next, we denote the sequence of
failure marks {Ln,i}i≥1 by Ln.

Lemma 11. Under P0, consider the filtration {Fm}m≥0 in which

Fm = σ((D0,L0), . . . , (Dm,Lm)) ∀ m.

Then, for all n ≥ 0, νn + 1 is a stopping time with respect to {Fm}m≥0.

Proof. As Ln is independent of {Dm}m≥n, the stopping time property of
ν0 + 1 follows from the fact that τ0 is F0−measurable, ν0 > 0 a.s., and, for
all m ≥ 1,

{ν0 + 1 = m} = {Xm ≥ L0,τ0} ∩ {Xm−1 < L0,τ0} ⊂ Fm.

Now suppose νk+1 is a stopping time. Then, for m ≤ k, {νk+1+1 = m} = ∅,
and, for m > k,

{νk+1 + 1 = m} = ∪m−1i=1 ({νk + 1 = i} ∩ {Xm+1 < Xi + Zi−1 ≤ Xm})) ⊂ Fm,

Zi−1 defined in (2.6). �

Let {Dn}n∈Z be a sequence of i.i.d random variables, independent of
{Dn}n∈Z such that Dn has the same distribution as D0. Let the total
lifetime of the renewal process {Dn}n∈Z be

β(t) = Dn if Xn < t ≤ Xn+1. (4.3)

Given Z0 = z, we have Dν0 = β(z). Therefore,

P0[Dν0 > x] =

∫ ∞
0

P0[β(t) > x]fZ0(dt),

where fZ0 is the distribution of Z0.
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The interval Dν0 tends to be larger than D0, as failures are more likely
to happen when checkpoints are more apart. In fact, Dν0 stochastically
dominates D0, as P0[β(t) > x] ≥ P0[D0 > x] for all x, t ∈ R+ [1]. This is
an incarnation of the inspection paradox. Hence, in contrast with restart,
θsC does not preserve P0 and, consequently, {DC

n }n≥0 is not identically dis-
tributed under the Palm measure.

A sequence of inter-arrivals {D̃n}n≥0 is called a delayed renewal process
if {D̃n}n≥0 is a sequence of independent and non-negative random variables
and {D̃n}n≥1 is i.i.d.. In Proposition 12 below, we show that not only PsC ,n+

is the distribution of an independently marked delayed renewal process, but
also the distribution of the inter-arrivals after the first one is the same under
PsC ,n+ and P0. The result goes along with the interpretation of PsC ,n as the
distribution of the point process given there is a point of the nth−iteration
of the point-shift SC at the origin. To illustrate our case, consider the point
process shifted by θν0 . As mentioned above, there is an inspection paradox
effect in first interval Dν0 . Nonetheless, as shown below, the inter-arrivals
distributions (Xν0+2 − Xν0+1), (Xν0+3 − Xν0+2), . . . , (Xν0+j − Xν0+j), . . . ,
are i.i.d. and have the same distribution under P0. This takes place in
every iteration: the first inter-arrival interval after the shift is biased and
the following ones maintain their distribution, which is that of a typical
inter-arrival.

Proposition 12. For all n ≥ 0, {PsC ,n+ }n≥1 is the distribution of an inde-
pendently marked delayed renewal process. Moreover,

PsC ,n+ [D1 ∈ A1,L1 ∈ B1, . . . , Dm ∈ Am,Lm ∈ Bm, . . .]
= P0[D1 ∈ A1,L1 ∈ B1, . . . , Dm ∈ Am,Lm ∈ Bm, . . .]

for all {Ai}i≥1 ∈ B(R+) and {Bi}i≥1 ∈ B((R)N).

Proof. For A0, . . . , Aj ∈ B(R+) and B0, . . . , Bj ∈ B((R+)N)),

PsC ,n[Dj ∈ Aj ,Lj ∈ Bj , . . . , D0 ∈ A0,L0 ∈ B0]

= P0[Dνn+j ∈ Aj ,Lνn+j ∈ Bj , . . . , Dνn ∈ A0,Lνn ∈ B0]

= P0 [Dνn+j ∈ Aj ,Lνn+j ∈ Bj |Dνn+j−1 ∈ Aj−1,Lνn+j−1 ∈ Bj−1,
. . . , Dνn ∈ A0,Lνn ∈ B0]

× P0[Dνn+j−1 ∈ Aj−1,Lνn+j−1 ∈ Bj−1 . . . , Dνn ∈ A0,Lνn ∈ B0].

As νn + 1 is a stopping time, by the strong Markov property of indepen-
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dently marked renewal processes, for every j > 0,

P0 [Dνn+j ∈ Aj ,Lνn+j ∈ Bj |Dνn+j−1 ∈ Aj−1,Lνn+j−1 ∈ Bj−1,
. . . , Dνn ∈ A0,Lνn ∈ Bj−1] = P0[Dj ∈ Aj ]P0[Lj ∈ Bj ].

By keeping conditioning and applying the strong Markov property:

PsC ,n[Dj ∈ Aj ,Lj ∈ Bj , . . . , D0 ∈ A0,L0 ∈ B0]

= P0[Dνn ∈ A0,Lνn ∈ B0]

j∏
i=1

P0[D0 ∈ Ai]P0[L0 ∈ Bj ])

= P0[Dνn ∈ A0]P0[L0 ∈ B0]

j∏
i=1

P0[D0 ∈ Ai]P0[L0 ∈ Bj ], (4.4)

where the last equality follows from independent marking. �

Corollary 13. If {Dνn}n≥0 converges weakly under the Palm distribution
to a non-degenerate random variable D∞, then {PsC ,n+ }n≥1 converges weakly
to a distribution PsC ,∞+ . Moreover, PsC ,∞+ is the distribution of an indepen-
dently marked delayed renewal process in which the first inter-arrival interval
is distributed as D∞.

Proof. The results follow from Proposition 12 and taking the limit as n→∞
in (4.4). �

Lemma 14. For all n ≥ 1,

P0[Dνn > x] =

∫ ∞
0

P0[β(t) > x]fZνn−1
(dt), (4.5)

where fZνn−1
is the distribution of Zνn−1 under P0, with β(t) defined in (4.3).

Proof. As P0[Dνn > x] = PsC ,n−1+ [Dν0 > x] and PsC ,n−1+ is the distribution
of a independently delayed renewal process such that {(Di,Li)}i≥1 has the
same distribution under PsC ,n−1+ and P0, we have

PsC ,n−1+ [Dν0 > x] =

∫ ∞
0

P0[β(t) > x]fn−1Z0
(dt),

where fn−1Z0
is the distribution of Z0 under PsC ,n−1+ . As fn−1Z0

= fZνn−1
, the

result follows. �

16



Remark 15. So far, we have defined {PsC ,n+ }n≥0 and PsC ,∞+ (when it exists)
on the space of counting measures. Once it is established that these distribu-
tions are concentrated on independently marked delayed renewal processes,
we can, without loss of generality, define these measures on the space of
discrete sequences in which each term belongs to R+ × (R+)N, equipping it
with the standard cylindrical Borel σ−algebra. We work on this space in
the next proposition.

Proposition 16. If {Dνn}n≥0 converges weakly to a non-degenerate random
variable, θν0 preserves PsC ,∞+ and (PsC ,∞+ , θν0) is mixing.

Proof. First we show θν0 preserves PsC ,∞+ . Consider the product cylinder set

Cj0,...,jl := {(Dn,Ln)n≥0 : Dj0 ∈ Aj0 ,Lj0 ∈ Bj0 , . . . , Djl ∈ Ajl ,Ljl ∈ Bjl} ,

where 0 ≥ j0 > j1, . . . > jl ∈ N+.

PsC ,n+ [θν0Cj0,...,jl ]

= P0 [θν0 {(Dn,Ln)n≥0 : Dνn+j0 ∈ Aj0 ,Lνn+j0 ∈ Bj0 , . . . ,
Dνn+jl ∈ Ajl ,Lνn+jl ∈ Bjl}]

= PsC ,1 [{(Dn,Ln)n≥0 : Dνn+j0 ∈ Aj0 ,Lνn+j0 ∈ Bj0 , . . . ,
Dνn+jl ∈ Ajl ,Lνn+jl ∈ Bjl}]

= P0
[{

(Dn,Ln)n≥0 : Dνn+1+j0 ∈ Aj0 ,Lνn+1+j0 ∈ Bj0 , . . . ,
Dνn+1+jl ∈ Ajl ,Lνn+1+jl ∈ Bjl

}]
.

Then, as {Dνn}n≥0 converges weakly to D∞, by (4.4), taking the limit as
n→∞ on both sides,

PsC ,∞+ [θν0Cj0,...,jl ] = PsC ,∞+ [Cj0,...,jl ]. (4.6)

By standard extension arguments from product cylinder sets, we con-
clude that θν0 preserves PsC ,∞+ .

Next, we prove (PsC ,∞+ , θν0) is mixing. First, we notice that Dνn is a
function of Dνn−1 , {L0,νn−1}i≥0, and {Dn}n≥νn−1+1. By independent mark-
ing the i.i.d. sequence {L0,νn−1}i≥0 is independent of νn−1 and has the same
distribution under P0 as {L0,i}i≥0. In the same way, by the strong Markov
property the i.i.d. sequence {Dn}n≥νn−1+1 is independent of νn−1 and has the
same distribution under P0 as {Dn}i≥0. Therefore, {Dνn}n≥0 is a Markov
Chain.
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Let Cj0,...,jl and Cj′0 , . . . , Cj′q be two product cylinder sets. Following the
same steps used to get (4.6), for all m ≥ 1,

PsC ,∞+ [Cj0,...,jl ∩ θ
m
sC
Cj′0,...,j′q ]

= lim
n→∞

P0 [Dνn+j0 ∈ Aj0 ,Lνn+j0 ∈ Bj0 , . . . , Dνn+jl ∈ Ajl ,Lνn+jl ∈ Bjl∩

Dνn+m+j′0
∈ Aj′0 ,Lνn+m+j′0

∈ Bj′0 , . . . , Dνn+m+j′q ∈ Aj′q ,Lνn+m+j′q ∈ Bj′q
]

(4.7)

Then, for all m such that νn+m + j′0 > νn+1 + jl, as {Dνn}n≥0 is a Markov
chain, (4.7) equals to

lim
n→∞

P0 [Dνn+j0 ∈ Aj0 ,Lνn+j0 ∈ Bj0 , . . . , Dνn+jl ∈ Ajl ,Lνn+jl ∈ Bjl ]

× P0
[
Dνn+m+j′0

∈ Aj′0 ,Lνn+m+j′0
∈ Bj′0 , . . . , Dνn+m+j′q ∈ Aj′q ,Lνn+m+j′q ∈ Bj′q

]
= PsC ,∞+ [Cj0,...,jl ]P

sC ,∞
+ [Cj′0,...,j′q ].

Again, invoking standard approximations arguments, we conclude that for
all C,C ′ ∈ B((R+×(R+)N)N), limm→∞ PsC ,∞+ [C∩θνnC ′] = PsC ,∞+ [C]PsC ,∞+ [C ′],
completing the proof. �

Lemma 17. Suppose {Dνn}n≥0 converges weakly to a non-degenerate ran-
dom variable. Let A be a strictly θν0−invariant event in N (N0(R+n(R+)N).
If PsC ,∞+ [A] = 1, then P0[A] = 1.

Proof. By Corollary 13, as A is θν0−invariant, i.e., θν0A = A, and, hence,
for all n, θνnA = A,

1 = PsC ,∞+ [A] = lim
n→∞

P0[θνnA] = lim
n→∞

P0[A] = P0[A].

�

Proof of Theorem 10. As {Dνn}n≥0 converges in distribution to a
non-degenerate random variable, by Corollary 13, PsC ,∞+ exists. Moreover,
by Proposition 16, (PsC ,∞+ , θν0) is mixing. Then, by Birkhoff’s pointwise
ergodic theorem, for any measurable function h : N0(R+ × (R+)N) → R+

such that h ∈ L1(PsC ,∞+ ),

lim
n→∞

1

N

N−1∑
n=0

h ◦ θνn = EsC ,∞+ [h], PsC ,∞+ − a.s.
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Next, notice that

EsC ,∞+ [D0
C ] = EsC ,∞+

[
ν0−1∑
n=0

Dn

]

= E0[D∞1{ν∞ = 1}] + E0

[
ν∞−1∑
n=1

Dn1{ν∞ > 1}

]
.

Now, as E0[D∞] < ∞, E0[D∞1{ν∞ = 1}] < ∞. Moreover, as {Dn}n≥0 is
i.i.d. under P0,

E0

[
ν∞−1∑
n=1

Dn1{ν∞ ≥ 1}

]
≤ E0

[
ν∞∑
n=0

Dn

]
≤ E0

[
ν∞+1∑
n=0

Dn

]
.

Following the same reasoning as in Lemma 11, ν∞ + 1 is a stopping time
with respect to the natural filtration of {(Dn,Ln)}n≥0. Hence, by the general
version of Wald’s equality for stopping times,

E0

[
ν∞+1∑
n=0

Dn

]
= E0[ν∞ + 1]E0[D0],

which is finite as E0[ν∞] <∞ by assumption.
It follows that EsC ,∞+ [D0

C ] < ∞. Hence, by Birkhoff’s pointwise ergodic
theorem,

lim
n→∞

1

N

N−1∑
n=0

DC
0 ◦ θνn = EsC ,∞+ [D0

C ], PsC ,∞+ − a.s. (4.8)

As EsC ,∞+ [TC0 ] = E0[
∑τ∞

i=1 L0,i], if we assume that D∞ does not have a
P0−tail heavier than L0,1, T

C
0 ∈ L1(P

sC ,∞
+ ), so

lim
n→∞

1

N

N−1∑
n=0

TC0 ◦ θνn = EsC ,∞+ [TC0 ], PsC ,∞+ − a.s. (4.9)

Therefore, by (4.8) and (4.9),

e := lim
N→∞

∑N−1
n=0 D

C
n∑N−1

n=0 T
C
n

= lim
N→∞

∑N−1
n=0 D

C
0 ◦ θνn∑N−1

n=0 T
C
0 ◦ θνn

=
EsC ,∞+ [DC

0 ]

EsC ,∞+ [TC0 ]
. (4.10)
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Let

A :=

{
lim
N→∞

∑N−1
n=0 D

C
0 ◦ θνn∑N−1

n=0 T
C
0 ◦ θνn

=
EsC ,∞+ [DC

0 ]

EsC ,∞+ [TC0 ]

}
.

Since (
lim
N→∞

∑N−1
n=0 D

C
0 ◦ θνn∑N−1

n=0 T
C
0 ◦ θνn

)
◦ θν0 = lim

N→∞

∑N−1
n=1 D

C
0 ◦ θνn∑N−1

n=1 T
C
0 ◦ θνn

and EsC+ is preserved by θν0 , A is strictly θν0−invariant. Then, by Lemma
17, (4.10) holds P0-a.s., as desired.

If D∞ does have a P0−tail heavier than L0,1, EsC ,∞+ [TC0 ] = ∞. Then,
the same argument used in Theorem 6 applies to show that and e = 0. �

In the rest of this section, we focus on the case of exponential failure
marks, in which we can say more about PsC ,∞+ .

4.1 Exponential failures and universal checkpoints

Suppose that P0[L0,0 ≤ x] = 1 − e−λx, λ > 0, i.e., the failure marks are
exponentially distributed. We show the conditions of Theorem 10 are then
satisfied if E0[ν1] < ∞, so e exists. We also show there is a sequence of
checkpoints that will be activated regardless of the initial checkpoint from
which we start the system. These are called universal checkpoints.

Theorem 18. Suppose that Φ is a independently marked renewal pro-
cess with exponentially distributed failure marks. Moreover, assume that
E0[Dν1 ], E0[ν1] <∞. Then e is well-defined.

Proof. In order to apply Theorem 10, we need to show that PsC ,∞+ exists,
E0[D∞], and E0[ν∞] <∞. Due to the memoryless property of the exponen-
tial distribution, the sequence of random variables {Dνn}n≥1 is identically
distributed, and thus converges in distribution. To see this, notice that
Zn defined in (2.6) is exponentially distributed with parameter λ for all n.
Consequently, from (4.5),

P0[Dνn > x] =

∫ ∞
0

P0[β(t) > x]λe−λtdt, ∀ n ≥ 0.

By same reasoning, ν∞ has the same distribution under Palm as νj for j ≥ 1,
so E0[ν1] = E0[ν∞]. �
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From (2.2) we have sC(Φ, Xn) = Xκn , where

κn = sup{k ≥ n : Ln,τn ≥ Xk}, (4.11)

where τn as in (2.6). Then S2
c (Φ, Xn) = SC(Φ, Xκn), and so on. Let Hn =

{Sjc (Φ, Xn)}j≥1. In words, Hn corresponds to the sequence of checkpoints
if the system starts at Xn. Notice that H0 = {Xνn}n≥1.

Accordingly, we call Hn the set of active checkpoints of Xn or the check-
point trajectory of Xn. We also say that if Xm ∈ Hn, then Xm is activated
by Xn. By convention, Xn /∈ Hn. We allow n to be negative. For example,
the process may start from X−2.

Definition 19 (Universal Checkpoints). Suppose Xm is such that for all
k < m there exists j ≥ 1 such that Sjc (Φ, Xk) = Xm or, equivalently for all
k < m, Xm ∈ Hk. Then Xm is a universal checkpoint.

As the name suggests, universal checkpoints, if they exist, are activated
if we start the system from any checkpoint that precedes them.

Theorem 20. Suppose that Φ is a independently marked renewal process
with exponentially distributed failure marks. Moreover, assume E0[ν1] <∞.
Then there exists a sequence of universal checkpoints.

Let

Nn = #{m ∈ Z : m < n and S(Φ, Xm) > Xn},

and notice that if Nn = 0, then Xn is a universal checkpoint. Then, Theorem
20 follows directly from the proposition below.

Proposition 21. Under the assumptions of Theorem 20, for all k ≥ 0, the
process {Nn}n∈Z admits a subsequence {Nnl}l∈Z such that Nnl = k.

Proof. Let κn as in (4.11). Since Φ is an indepedently marked renewal
process, the sequence {κn}n∈Z is identically distributed. In particular κn
has the same distribution as ν1 = κ0

Define the events An = {S(Φ, X−n) > 0}. Then

∞∑
n=1

P0[An] =
∞∑
n=1

P0[κ−n > n] =
∞∑
n=1

P0[ν1 > n] = E0[ν1] <∞.

Therefore, by the Borel-Cantelli Lemma, P0[An i.o.] = 0. Hence N0 < ∞
a.s.. By the same reasoning, we conclude that Nn <∞ a.s. for all n.
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Thanks to the memoryless property of the exponential distribution, the
value of Nn only depends on Nn−1, i.e., {Nn}n∈Z is a Markov Chain. Now
suppose Nn−1 = k. That means that there are k checkpoint trajectories
that do not use Xn−1 as a checkpoint. Given Dn = t, a trajectory that does
not use Xn−1 as a checkpoint will not activate Xn with probability e−λt,
and will activate Xn with probability 1− e−λt.

Considering the checkpoint trajectory of Xn−1 we have that, for 1 ≤ j ≤
k,

P0[Nn = j|Nn−1 = k]

= P0[Nn = j|Nn−1 = k and Xn−1 ∈ Hn]P0[Xn−1 ∈ Hn]

+ P0[Nn = j|Nn−1 = k and Xn−1 /∈ Hn]P0[Xn−1 /∈ Hn]

=

(∫ ∞
0

(
k
j

)
(e−λt)j(1− e−λt)k−jfD(dt)

)(∫ ∞
0

(1− e−λt)fD(dt)

)
+

(∫ ∞
0

(
k

j − 1

)
(e−λt)j−1(1− e−λt)k−j+1fD(dt)

)(∫ ∞
0

e−λtfD(dt)

)
.

Moreover,

P0[Nn = k + 1|Nn−1 = k] =

(∫ ∞
0

(e−λt)kfD(dt)

)(∫ ∞
0

e−λtfD(dt)

)
,

P0[Nn = 0|Nn−1 = k]

=

(∫ ∞
0

(1− e−λt)kfD(dt)

)(∫ ∞
0

(1− e−λt)fD(dt)

)
.

Since {Nn}n∈Z is a sequence of marks of the stationary ergodic marked point
process Φ, if P0[N0 = k] > 0, there exists a sequence {nl}l∈Z such that Nnl =
k. Since Nn <∞, for all n, by the computations above, P0[N0 = k] > 0 for
all k ≥ 0. �

5 Extensions

5.1 Markov renewal processes

Markov Renewal Processes give us instances in which the asymptotic effi-
ciency exists, even though the process does not start is not at steady state
when tasks start being executed. For simplicity, here we work out sequential
restart case, although the same results can be achieved within the sequen-
tial checkpointing with exponential failure marks. First, we develop the
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results of a system that admits a steady state but the initial distribution
is arbitrary. After that, we indicate how one can fit the Markov Renewal
structure in the setting of Theorem 6.

Here we consider different states for the ideal task times and failures
marks, which are are driven by a Markov Chain whose state space is count-
able. We briefly review the Markov Renewal process structure, adapting it
to account for failure marks. For a more complete treatment of the subject
see [11] and [1]. In short, the distribution of the task sizes and failure marks
depends on the current state and the next state to be visited of a Markov
Chain.

Consider a Markov Chain {Yn}n≥0 whose space state S is countable.
Let A = (ai)i∈S be its initial distribution and P = (pij)ij∈S its transition
matrix.

For x, y ∈ R+, let G0,i,j(x, y) and Gi,j(x, y) be two joint distributions on
R2. We then consider the trivariate sequence {(Yn, Dn, Ln)}n∈N defined in
a probability space (Ω,F ,P) such that

1. P[Y0 = k0] = ak0 ;

2. P[D0 ≤ x, L0 ≤ y, Y1 = k1|Y0 = k0] = G0,k0,k1(x, y)pk0k1 ;

3. For n ≥ 1:

P[Dn ≤ x, Ln ≤ y, Yn = kn|Y0 = k0, D0 ≤ x0, L0 ≤ y0, . . . ,
Yn = kn, Dn−1 ≤ xn−1, Ln−1 ≤ yn−1]
= P[Dn ≤ x, Ln ≤ y, Yn = kn|Yn−1 = kn−1] = Gkn−1kn(x, y)pkn−1kn .

We further assume that G0,i,j(x, y) = FD0,i,j(x)FL0,i,j(y) and Gi,j(x, y) =

FDi,j(x)FLi,j(y), namely, conditional on (Yn, Yn−1), Ln is independent of Dn.
Notice that letting y → ∞ we have the classical Markov Renewal Process
[14].

Assumption 2. We impose conditions so that Xn →∞ as n→∞ P−a.s.:
(i) P is irreducible, (ii) there exists a non-trivial probability measure (πi)i∈S
such that πP = P and

∑
i∈S πiµi <∞, where

µi =
∑
j∈S

pij

∫ ∞
0

xFDij (dx).

We write D̂ij (respectively L̂ij) the random variable corresponding to
the task size (failure mark) conditional on Yn = i and Yn+1 = j. It follows
that D̂ij (resp. L̂ij) has distribution FDi,j(x) (resp. FLi,j(x)).
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Assumption 3. For all i, j ∈ S, D̂ij and L̂ij are integrable random variables
with right-unbounded support. Moreover, D̂ij is independent of L̂ij .

Assumption 4. The embedded Markov Chain {Yn}n∈N is ergodic, with
unique stationary distribution given by {πi}i∈S .

Then, we proceed to derive expressions for E[D0] and E[TR0 ] when the
chain is in steady state. First, for each pair of states (i, j) one can compute
E[T̂Rij ], the expected value of the actual time T̂Rij , when Yn = i and Yn+1 = j,

as in Theorem 2, with L0 = L̂ij and D = D̂ij . By unconditioning,

E[D̂i] =
∑
j∈S

pijE[D̂ij ] and E[TRi ] =
∑
j∈S

pijE[T̂Rij ],

where E[D̂i] (resp. E[TRi ]) is the expected size of the task (resp. actual
time) when the chain is at state i.

Remark 22. A pair of states (i, j) is called slow if D̂ij has a P−tail heavier
than L̂ij . It follows from Assumption 3 if that (i, j) is a slow pair of states
then E[TRi ] =∞.

Due to the Strong Law of Large Numbers for functionals of a Markov
renewal process [14],

lim
n→∞

1

N

N−1∑
n=0

Dn =
∑
i∈S

πiE[D̂i],

and, if E0[TRi ] <∞

lim
n→∞

1

N

N−1∑
n=0

TRn =
∑
i∈S

πiE[TRi ].

Hence, if there are no slow states:

e =

∑
i∈S πiE[D̂i]∑
i∈S πiE[TRi ]

.

The next example shows that e can be equal to 0 even in the absence of
slow states.
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Example 1. Suppose D̂ij ∼ exp
(
pij2

jπi2
i
)

and L̂ij ∼ exp
(
pij2

jπi(2
i − 1)

)
for all i ∈ N = S. We assume 0 < πi < 1 for all i ≥ 1. Notice that each
pair of states is not slow. However,

∑∞
i=1 πiE[D̂i] = 1 and

∑
i∈S πiE[TRi ] =∑∞

i=1 1 =∞, so e = 0. This holds as, if D̂ij ∼ exp (βij) and L̂ij ∼ exp (αij)
we have, by Theorem 2,

E[TRij ] =
1

(βij − αij)
.

We discuss briefly how Markov Renewal Process can be fit into the frame-
work of Theorem 6. Define a point process Φ̂ byX0 = 0 andDn = Xn+1−Xn

and a Semi-Markov Process {Y (t)}t∈R by Y (t) = Yn, when Xn ≤ t < Xn+1.
Assume that

∑
i∈S πiE[Di] < ∞ and Φ̂([0, t)) < ∞ for all t. Then let

P0 = P ◦ Y −1. Then there exists a probability space endowed with a flow,
(P̂,Ω,F , {θ}t), such that P̂ is θt−invariant, Φ̂ is a stationary point process
whose Palm distribution is P0 ([7], Chapter 1).

Hence, by marking this process with the failure marks {Ln,i}i≥1, Theo-
rem 6 holds with E0[D0] =

∑
i∈S πiE[D̂i] and E0[TR0 ] =

∑
i∈S πiE[TRi ].

5.2 Repetition of tasks based on a Random Walk

We now proceed to study the asymptotic efficiency of restart when the
tasks to be completed follows a transient simple random walk, i.e., there
is a chance p < 1

2 that, once a task is completed, progress is lost and the
system returns to the previous task. For example, after completing task
Dm, progress might be lost and the system resumes from task Dm−1, which
is again subject to failures. We assume that this extra failure source is
independent of the failure marks and ideal times and Φ is a renewal process.
We show that the asymptotic efficiency exists and we provide a lower bound
for it.

Remark 23. In order to simplify the proofs and, without loss of generality,
we do not model any sort of boundary effect, i.e., the tasks D−1 = X0−X−1,
D−2 = X−1 −X−2 and so on are well-defined.

Let {ξn}n≥1 be an i.i.d. sequence of Bernoulli random variables such that
P[ξn = −1] = p and ζn =

∑n
i=1 ξi (with ξ0 = 0). At the nth−iteration, the

task being completed is DW
n = D0 ◦ θζn−1 .

We assume that the failure marks are such that Lm,0 is independent of
Ln,0 for all n,m ∈ Z and are re-drawn if a task is repeated. Under this
assumption, instead of marking each point of the process with a sequence of
i.i.d. random variables {Ln,i}i≥1, we can simplify matters by considering a
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single sequence of i.i.d. random variables {Li}i≥1, such that Li has the same
distribution as L0 under P0 to compute the actual time spent on task DW

n .
Then let τW0 := inf{i ≥ 1 : Li > DW

0 } and τWn := inf{i > τWn−1 : Li > DW
n }.

So, the actual time spent on task DW
n is given by TWn =

∑τWn +1

i=τWn−1
Li +DW

n .

Let ϑn = inf{j ≥ 1 : ζj = n}, i.e., {ϑn}n≥0 is the sequence of ladder
epochs of the random walk ζn with ϑ0 = 0 [13]. It follows that Dn =
Xn+1 −Xn = Xζϑn+1

−Xζϑn
.

Given those definitions, one can regard TRn =
∑ϑn−1

j=ϑn−1
TWj as the total

actual time necessary to complete the task Dn. As before, the asymptotic
efficiency is

ep = lim
N→∞

∑N−1
n=0 Dn∑N−1
n=0 T

R
n

, P0 − a.s.,

whenever the limit exists.
Using the fact that Φ is an independently marked renewal process,

E0[TWj ] = E0[TWl ] for all l, j ≥ 0, as the Palm expectation of TWj only

depends on the distribution of L0 and D0 under P0.

Proposition 24. Suppose D0 does not have a P0−tail heavier than L0.
Then

e ≥ ep =
γ

ρ
e,

where e is the asymptotic efficiency when p = 0, ρ is the probability that
the random walk {ζn}n≥0 never returns to zero and γ is the probability that
the walk never goes below zero. On the other hand, if D0 has a P0−tail
heavier than L0, ep = 0.

To prove Proposition 24 we rely on the next lemmas, following a similar
reasoning as in [16].

We say that υ is a regeneration epoch if it is a ladder epoch and, more-
over, ζj ≥ ζυ for all j > υ. That is, a regeneration epoch takes place when
the walk reaches a certain level for the first time and never returns below it.

Lemma 25 below is proved in a more general context, namely, for the
nearest-neighbor random walk on Z with site-dependent transition proba-
bilities [12]. Lemma 26 is a classical result on transient random walks whose
proof can be found in [18].

Lemma 25. If p < 1
2 there exists a sequence {υm}m≥1 of regeneration

epochs. The sequence {υn+1−υn}n≥1 is i.i.d. as well as the sequence {ζυn+1−
ζυn}n≥1.
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Lemma 26. Let Rn be the number of distinct sites visited by the walk
{ζk}k≥0 after n steps. Then

lim
n→∞

E0[Rn]

n
= ρ, (5.1)

where ρ is the expected number of visits of the random walk to 0.

Lemma 27. E0[υ1 − υ0] <∞

Proof. Fix any k and assume ζk = m. By definition

{ζk is a regeneration epoch}
= {∀ l < k, ζl < m and ζk = m} ∩ {ζl > m, ∀ l > k}
= {ζk is a ladder epoch} ∩ {ζl > m ∀ l > k}.

Then, by the Markov property, and noticing that γ = P0[{ζl > m ∀ l > k}]

P0[{ζk is a regeneration epoch}]
= P0[{ζk is a ladder epoch}]P0[{ζl > m, ∀ l > k}]
= γP0[{ζk is a ladder epoch}].

Now let R̂n be the number of regeneration epochs on the interval [1, n],
i.e.,

R̂n =
n∑
k=1

1{ζk is a regeneration epoch} ⇒

E0[R̂n] = γ
n∑
k=1

P0[{ζk is a ladder epoch}] = γE0[Rn]. (5.2)

.
By the Lemma 26 and (5.2),

lim
n→∞

E0[R̂n]

n
=
γ

ρ
. (5.3)

Next, notice that, by definition, E0[Rn] ≤ n and υn ≥ n, so, using (5.3),

lim
n→∞

∑n
i=1(υi − υi−1)

n
= lim

n→∞

υn
n
≤ lim

n→∞

n

E0[R̂n]
≤ ρ

γ
. (5.4)

Now {υn− υn−1}n>0 is an i.i.d. sequence. Hence, by the strong law of large
numbers, we conclude from (5.4) that E0[υ1 − υ0] <∞. �
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Proof of Proposition 24. First, suppose D0 has a P0−tail heavier than L0.
As the asymptotic efficiency when tasks may be repeated is less or equal to
the asymptotic efficiency of when this is not the case, ep, the former exists
and it is zero.

Now suppose D0 does not have a P0−tail heavier than L0. Let

TRn =

υn∑
j=υn−1+1

TRj ,

for n > 0. Notice that limn→∞
1
n

∑n
i=1 T

R
n = limn→∞

1
n

∑n
i=1 TRn .

Now, by Lemma 27, since {υn − υn−1}n≥0 is an i.i.d. sequence, Φ is a
renewal process, the sequence {TRn }n≥1 is i.i.d..

The next step is to show that E0[TR0 ] is finite as long as D0 does not
have a P0−tail heavier than L0, and can be bounded from above. First,
notice that, since the discrete left-shift θ preserves P0 and the random walk
is independent of Φ,

E0[TR0 ] = E0[TR0 ◦ θ−υ0 ] = E0

[
υ1−υ0∑
i=1

TRi

]
.

Now we use the following version of Wald’s equality.

Lemma 28. If {Zj}j∈N is a sequence of positive random variables and η is
a positive integer-valued random variables satisfying

1. E0[Z] := E0[Zj ] <∞ for all j ∈ N;

2. E0[Zj1{η ≥ j}] = E0[Z]P0[η ≥ j] for all j ∈ N,

then

E0

[
η∑
i=1

Zi

]
= E0[Z]E0[η].

Since Φ is a renewal process and the {Li}i≥1 is an i.i.d. sequence, E0[TRj ] =

E0[TRi ] for all i, j ∈ N. Moreover, if E0[TR0 ] < ∞ Assumption 1 of Lemma
28 is satisfied. Assumption 2 of the same lemma is satisfied since the ran-
dom walk {ζk}k∈N is independent of the point process and of the sequence
{Li}i≥1.
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As {υn−υn−1}n>0 is an i.i.d. sequence (Lemma 25), and E0[υ0−υ1] <∞,
by the strong law of large numbers,

lim
n→∞

1

N

N−1∑
i=0

T̂Rn = E0

[
υ1∑

i=υ0+1

T̂Ri

]
= E0[TR0 ]E[υ1 − υ0] <∞, P− a.s..

Therefore, we conclude that

ep =
E0[D0]

E0[TR0 ]E0[υ1 − υ0]
,P− a.s..

By (5.4), E0[υ1 − υ0] ≤ ρ
γ , completing the proof. �

A Proofs

Proof of Theorem 2. In this proof, we assume that D and L0 admit densi-
ties. Let TR(z) be the actual restart time given D = z. Then

TR(z) = z1{L0 > z}+ (T̂R(z) + L0)1{L0 ≤ z},

where T̂R(z) is an independent copy of TR(z). Let mR(z) be the expectation
of the actual restart time given D = z. Then

mR(z) = zP[L0 > z] +mR(z)P[L0 ≤ z] + E[L01{L0 ≤ z}]⇒

mR(z) = z +
E[L01{L0 ≤ z}]

P[L0 > z]
.

Therefore,

E[TR] = E[mR(z)] = E[D] +

∫ ∞
0

E[L01{L0 ≤ z}]fD(dz)

P[L0 > z]
.

In the same vein, let let TC(z) be the actual checkpointing time given
D = z. Then TC(z) = L01{L0 > z}+ (T̂R(z) +L0)1{L0 ≤ z}, where T̂C(z)
is an independent copy of TC(z). Let mC(z) be the expectation of the actual
checkpointing time given D = z. Then

mC(z) = E[U1{L0 > z}+mC(z)P[L0 ≤ z] + E[U1{L0 ≤ z}])
= E[U ] +mC(z)P[L0 ≤ z]⇒

mC(z) =
E[L0]

P[L0 > z]
.
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Therefore,

E[TC ] =

∫ ∞
0

E[L0]fD(dz)

P[L0 > z]
.

By construction, TC ≥ TR, P−a.s.. Suppose D has a P−tail heavier
than L0. We show that E[TR] =∞, which implies that E[TC ] =∞ as well.
Suppose there exist z0 > 0 so that P[L0 > z] ≤ P[D > z] for all z ≥ z0. Let

Y (z0) :=

∫ ∞
z0

fD(dz)

P[L0 > z]
.

Then, as D has a P−tail heavier than L0,

Y (z0) ≥
∫ ∞
z0

fD(dz)

P[D > z]
.

Promoting the change of variable w = P[D ≤ z] we have:

Y (z0) =

∫ 1

w0

1

1− w
dw =∞,

where w0 = P[D ≤ z0] > 0.
For the converse, it suffices to show that E[TC ] < ∞. which is the case

if D does not have a P−tail heavier than L0. Assume there is a sequence
{zn}n∈N such that zn → ∞ and P[L0 > zn] > P[D > zn]. Then, there is
a sequence {εn}n∈N such that (i) εn > 0 for all n, (ii) limn→∞ εn = 0 and
(iii) P[L0 > zn] = (P[D > zn])1+εn . As before, using the change of variable
w = P[D ≤ z],

E[TC ] ≤ E[U ]

∫ 1

0

1

(1− w)1+εn
dw

= E[L0]

∫ 1

0

1

(1− w)1+εn
dw

≤ E[L0]

(∫ 1

0

1

(1− w)2+2εn
dw

) 1
2

. (A.1)

The last inequality holding due to Holder’s inequality. Letting n → ∞ on
the RHS of (A.1) and invoking Monotone Convergence, we conclude:

E[TC ] ≤ E[L0]

(∫ 1

0

1

(1− w)2
dw

) 1
2

<∞.

�
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