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Abstract

Split-Merge MCMC (Monte Carlo Markov Chain)
is one of the essential and popular variants of
MCMC for problems when an MCMC state con-
sists of an unknown number of components or
clusters. It is well known that state-of-the-art
methods for split-merge MCMC do not scale well.
Strategies for rapid mixing requires smart and in-
formative proposals to reduce the rejection rate.
However, all known smart proposals involve cost
at least linear in the size of the data ≥ O(N), to
suggest informative transitions. Thus, the cost
of each iteration is prohibitive for massive scale
datasets. It is further known that uninformative
but computationally efficient proposals, such as
random split-merge, leads to extremely slow con-
vergence. This tradeoff between mixing time and
per update cost seems hard to get around. In this
paper, we get around this tradeoff by utilizing sim-
ple similarity information, such as cosine similar-
ity, between the entity vectors to design a proposal
distribution. Such information is readily available
in almost all applications. We show that the recent
use of locality sensitive hashing for efficient adap-
tive sampling can be leveraged to obtain a compu-
tationally efficient pseudo-marginal MCMC. The
new split-merge MCMC has constant time update,
just like random split-merge, and at the same time
the proposal is informative and needs significantly
fewer iterations than random split-merge. Over-
all, we obtain a sweet tradeoff between conver-
gence and per update cost. As a direct conse-
quence, our proposal, named LSHSM, is around
10x faster than the state-of-the-art sampling meth-
ods on both synthetic datasets and two large real
datasets KDDCUP and PubMed with several mil-
lions of entities and thousands of cluster centers.

*Code is available on: https://github.com/
rackingroll/mcmc_lsh
1Department of Computer Science, Rice University, Houston, TX,
USA. Correspondence to: Chen Luo <cl67@rice.edu>.

1. Introduction
Bayesian mixture models are of great interest due to their
flexibility in fitting a countably infinite number of compo-
nents which can grow with the data (Medvedovic et al.,
2004). The growth of model complexity with the data is
also in agreement with modern progress in machine learning
over massive datasets. However, the appealing properties of
Bayesian modeling come with hard computational problems.
Even with simple mixture models, the mathematical prob-
lems associated with training and inference are intractable.
As a result, recent research focuses on developing tractable
computational techniques. In particular, the use of Markov
chain Monte Carlo (MCMC) methods, to sample from the
posterior distribution (Andrieu et al., 2003; Nasrabadi, 2007;
Wang & Blei, 2012) is widely prevalent. The practical util-
ity of these methods is illustrated in several applications
including haplotype reconstruction (Eronen et al., 2003),
nucleotide substitutions (Huelsenbeck & Ronquist, 2001),
gene expression (Sharma & Adlakha, 2015), etc.

Metropolis-Hastings (MH) (Andrieu et al., 2003) is a fa-
vorite class of MCMC methods, which includes several
state-of-the-art algorithms that have proven useful in prac-
tice. MH is associated with a transition kernel which pro-
vides a proposal step. This step is followed by appropriate
stochastic acceptance process that ensures detailed balance.
A notable example of MH is the Split-Merge MCMC algo-
rithm (Jain & Neal, 2004; Wang & Russell, 2015) which is
particularly useful for problems where an MCMC state can
be thought of as consisting of a number of components (or
clusters). Here as the name suggests, the proposal step com-
prises of either a split or a merge. A split move partitions
an existing mixture component (or cluster) into two, while
a merge move combines two mixture components into one.

In the seminal work of (Jain & Neal, 2004), split-merge
MCMC procedure was proposed. To illustrate the process,
the authors first introduce a random split-merge MCMC,
where the split and the merge decision were taken uniformly
at random. However, it was also pointed out, in the same pa-
per, that due to the random nature of the proposal it was un-
likely to lead to a new state x′ with higher likelihood L(x′)
leading to low acceptance. To mitigate the slow progress,
the authors then propose the restricted Gibbs split-merge
(RGSM). In RGSM instead of a random proposal the idea
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was to use restricted Gibbs sampling to generate proposals
with a higher likelihood of acceptance. Thus, a less number
of MCMC iterations were sufficient for convergence due to
fewer rejections. However, the cost of restricted Gibbs is
itself prohibitive. As a result, even though the iterations are
less, each iteration is costly making the overall algorithm
slow, especially for large datasets. Our experiments confirm
this slow convergence of RGSM.

An essential and surprising observation about space asym-
metry with smart proposals in split-merge MCMC was made
in (Wang & Russell, 2015). The authors show the neces-
sity to mix smart and dumb (random) proposals for faster
progress. They proposed a Smart-Dumb/Dumb-Smart Algo-
rithm (SDDS) as an alternative to RGSM. Instead of relying
on Gibbs sampling, the SDDS algorithm instead uses the
likelihood of the model itself as a guiding strategy for smart
proposals. In other words, the SDDS method evaluates a
large number of possible proposals x′ based on the likeli-
hood of each x′ and choose the best ones. This strategy, as
expected, ensures a higher chance of improving the state
x with every proposal. However, from a computational
perspective, it is not difficult to see that smart proposal
x′ obtained after evaluation of a large number of proposal
states, based on the likelihood, is equivalent to evaluating
all these states for acceptance/rejection as part of MH. As a
result, the reduction in the number of iteration is not helpful
in obtaining an efficient algorithm. Our experiments show
that SDDS also has poor convergence.

Unfortunately, most MCMC methodologies ignore the trade-
off between the number of iteration and computations asso-
ciated with each iteration. They instead only focus on re-
ducing the number of rejections, which is often achieved by
informative proposals with increased per iteration cost. In
this paper, we are interested in efficient split-merge MCMC
algorithm which leads to overall fast convergence. Thus,
reducing both is the aim of this work.

Parallelization is Complementary: Due to the signifi-
cance of the problem there are several works which try
to scale up MCMC by using parallelism. Parallelism is of-
ten achieved by running parallel MCMC chains on subsets
of data and later merging them (Chang & Fisher III, 2013).
Since our proposal reduces the overall cost of split-merge
MCMC algorithm in general, it will reduce the cost of each
of the parallel chains thereby increasing the effectiveness of
these parallelisms on MCMC. Thus, existing advances in
parallelizing MCMC is complementary to our proposal.

Our Contributions: In this work, we leverage several com-
plementary ideas to design a computationally efficient split-
merge MCMC algorithm. We first leverage a simple ob-
servation that clusters with entities similar in their vector
representation should be favored. We use standard notions
of vector similarity such as cosine similarity. However, this

observation is not sufficient in itself, as designing proposals
favoring similar entities in the same cluster requires comput-
ing all pairwise similarities, which is a prohibitive quadratic
time operation.

We then leverage the recent advances in LSH sampler (Luo
& Shrivastava, 2017; Spring & Shrivastava, 2017b; Charikar
& Siminelakis, 2017b) that can perform similarity sampling
in linear cost. We use this efficient LSH sampling to guide
our proposal design. We further leverage the surprising
observation made in (Wang & Russell, 2015) to merge dumb
and smart proposal for fast progress. Finally, to reduce the
likelihood computation time we use the same LSH sampler,
for proposal design, to produce an unbiased estimator of
likelihood leading to a valid pseudo-marginal split-merge
MCMC. Such unbiased estimators are superior to favorite
random sampling based estimation. We name our method
LSHSM (LSH Split-Merge) MCMC.

Overall, LSHSM obtains a sweet tradeoff between the num-
ber of iteration and computational cost per iteration. As a
result, we reduce the overall computational cost. On several
simulations as well as two large public datasets, LSHSM
significantly outperforms other state-of-the-art split-merge
MCMC algorithms in convergence speed as measured on
wall clock time on the same machine. LSHSM is around
10x faster than the second best baseline on real datasets
without loss in accuracy.

2. Background
Our work requires bridging Locality Sensitive Sampling
with split-merge MCMC algorithm. We briefly review the
necessary background.

2.1. Locality Sensitive Hashing

Locality-Sensitive Hashing (LSH) is a popular technique
for efficient approximate nearest-neighbor search. LSH is a
family of functions, such that a function uniformly sampled
from this hash family has the property that, under the hash
mapping, similar points have a high probability of having
the same hash value. More precisely, consider H a family
of hash functions mapping RD to a discrete set [0, R− 1].

Definition 1 Locality Sensitive Hashing (LSH) Family A
familyH is called (S0, cS0, u1, u2)-sensitive if for any two
points x, y ∈ Rd and h chosen uniformly from H satisfies
the following:

• if Sim(x, y) ≥ S0 then PrH(h(x) = h(y)) ≥ u1

• if Sim(x, y) ≤ cS0 then PrH(h(x) = h(y)) ≤ u2

A collision occurs when the hash values for two data vectors
are equal, meaning that h(x) = h(y).
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LSH is a very well studied topic in computer science the-
ory and database literature. There are many well-known
LSH families in the literature. Please refer (Gionis et al.,
1999) for details. The most popular one is Signed Random
Projections (Charikar, 2002).

Signed Random Projections(SRP) is an LSH for the co-
sine similarity measure, which originates from the concept
of randomized rounding (SRP) (Goemans & Williamson,
1994; Charikar, 2002). Given a vector x, SRP utilizes a
random w vector with each component generated from i.i.d.
normal, i.e., wi ∼ N(0, 1), and only stores the sign of the
projection. Formally SRP family is given by

hw(x) = sign(wTx). (1)

It was shown in the seminal work (Goemans & Williamson,
1994) that collision under SRP satisfies the following equa-
tion:

Prw(hw(x) = hw(y)) = 1− θ

π
, (2)

where θ = cos−1
(

xT y
||x||2||y||2

)
. xT y
||x||2||y||2 , is the cosine

similarity.

2.1.1. LOCALITY SENSITIVE SAMPLING (LSS) AND
UNBIASED ESTIMATORS

LSH was considered a black-box algorithm for similarity
search, similarity estimation and dimensionality reduction.
Recently, it was found that LSH can be used for something
more subtler but useful. It is a data structure that can be
used for efficient dynamically adaptive sampling. We first
describe the sampling algorithm of (Spring & Shrivastava,
2017b) and later comment on its known properties crucial
for our proposal.

The algorithm uses two parameters - (K,L). We construct
L independent hash tables from the collection C. Each
hash table has a meta-hash function H that is formed by
concatenating K random independent hash functions from
some appropriate locality sensitive hash family H. The
candidate sampling algorithm works in two phases [See
(Spring & Shrivastava, 2017b) for details]:

1. Pre-processing Phase: We construct L hash tables
from the data by storing all elements x ∈ C. We only
store pointers to the vector in the hash tables because
storing whole data vectors is very memory inefficient.
This is one-time linear cost.

2. Sampling Phase: Given a query q, we collect one
bucket from a randomly selected hash table and return
a random element from the bucket. If the bucket is
empty, we reselect a different hash table again. Keep
track of the number of different tables probed.

It is not difficult to show that an item returned as a candidate
from a (K,L)-parameterized LSH algorithm is sampled
with probability exactly 1 − (1 − pK)L , where p is the
collision probability of LSH function. The LSH family de-
fines the precise form of p used to build the hash tables.
This sampling view of LSH was first utilized to perform
adaptive sparsification of deep networks in near-constant
time, leading to efficient backpropagation algorithm (Spring
& Shrivastava, 2017a). A year later, (Spring & Shrivas-
tava, 2017b) demonstrated the first theory of using these
samples for unbiased estimation of partition functions in log-
linear models. More specifically, the authors showed that
since we know the precise probability of sampled elements
1 − (1 − pK)L, we could design provably unbiased esti-
mators using importance sampling type idea. This was the
first demonstration that random sampling could be beaten
with roughly the same computational cost as vanilla sam-
pling. (Luo & Shrivastava, 2017) used the same approach
for unbiased estimation of anomaly scoring function. (Chen
et al., 2017) used the sampling in a very different context of
connected component estimation for unique entity counts.
(Charikar & Siminelakis, 2017a) showed improvements in
sample complexity of kernel density estimation problems.

The most important observation made in (Spring & Shri-
vastava, 2017b), is that the expression 1 − (1 − pK)L is
a monotonically increasing function of p, which in turn is
a monotonic function of cosine similarity if we use SRP
as hashing scheme. Thus, given a query q, points with
higher cosine similarity with q is more likely to be sam-
pled. Similarity, points dissimilar with q is less likely. It
should be noted that querying cost only involved few (like
5-10) hash computations followed by a couple of memory
lookups which is O(1), very similar to random sampling.
Capitalizing on this unique efficiency (Chen et al., 2018)
proposed LSD (locality sensitive descent), which was the
first gradient descent algorithm that can beat the popular
SGD, and any of its variants, on running time breaking what
they call the chicken-and-egg loop in adaptive sampling.

Our proposal will heavily rely on this unusual probability
expression 1 − (1 − pK)L to design an informative and
proposal distribution. We will, in addition to the probabil-
ity expression, also utilize hashing to obtain an unbiased
estimate of the likelihood leading to our pseudo-marginal
MCMC algorithm.

2.2. Split-Merge MCMC

Split-Merge MCMC (Hughes et al., 2012) is useful for deal-
ing with the tasks such as clustering or topic modeling
where the number of clusters or components are not known
in advance. Split-Merge MCMC is a Metropolis-Hastings
algorithm with two main transitions: Split and Merge. Dur-
ing a split, a cluster is partitioned into two components. On
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the contrary, a merge takes two components and makes them
into one.

During the MCMC inference process, split and merge moves
simultaneously change the number of entities and change
the assignments of entities to different clusters. (Jain &
Neal, 2004) proposes the first non-trivial Restricted Gibbs
Split-Merge (RGSM) algorithm, which was later utilized
for efficient topic modeling over large datasets in (Wang &
Blei, 2012).

(Wang & Russell, 2015) presented a surprising argument
about information asymmetry. It was shown that both in-
formative split and merge leads to poor acceptance ratio.
The author proposed a combination of the smart split with
dumb (random) merge and dumb split with smart merge as
a remedy. The algorithm was named as Smart-Dumb/Dumb-
Smart Split Merge algorithm (SDDS), which was superior
to RGSM. To obtain non-trivial smart split (or merge), the
authors propose to evaluate a large number of dumb propos-
als based on the likelihood and select the best. This search
process made the proposal very expensive. It is not difficult
to see that finding a smart split is computationally not very
different from running a chain with several sequences of
dumb (random) splits.

3. LSHSM: LSS based Split-Merge MCMC
3.1. Intuition

Utilizing Similarity Information: In this paper we make
an argument that similarity information, such as cosine sim-
ilarity, between different entities is almost always available.
For example, in the clustering, we almost always have a
vector representation of the data using which we compute
the likelihood. Even in an application where we deal with
complex entities such as trees, it is not uncommon to have
approximate embeddings (Bengio et al., 2010).

It is natural to believe that similar entities, in terms of cosine
similarity, of the underlying vector representation, are more
likely to go to the same cluster than non-similar ones. Thus,
designing proposals which favor similar entries in the same
cluster and dissimilar entities in different clusters is more
likely to lead to acceptation than random proposals.

However, the problem is far from being solved. Any similar-
ity based sampling requires computing all pairwise similar-
ity as a prerequisite, which is a quadratic operation O(n2).
Quadratic operations are prohibitive (near-infeasible) for
large datasets. One critical observation is that with the mod-
ern view of LSH as samplers, described in section 2.1.1,
we can get around this quadratic cost and design cheaper
non-trivial proposals.

3.2. LSS based Proposal Design

This section discusses our informative proposal and how
we compute the transition probabilities q(x′|x), which is an
important component of the acceptance ratio α(x′|x) (Jain
& Neal, 2004). Here, x denote the state before split/merge,
and x′ denote the state after split/merge. Although the likeli-
hood terms L(x) and L(x′) in α(x′|x) can be approximated
without changing the equilibrium distribution of MCMC
(Section 3.3.1), q(x′|x) still cannot be approximated. Thus,
it is imperative that q(x′|x) is easy to calculate as well as
the proposed state x′ is informative. Note that cheap approx-
imation, like sampling, cannot be used for proposing x′ as
it will likely result in intractable (or expensive) expression
of q(x′|x). Thus, designing the right q(x′|x) is the key to
speed up computation. Following the intuition described in
Section 3.1, we introduce our LSS based proposal design in
the rest of this section.

We first create the hash tables data structure T for sampling
(as described in section 2.1). We use Sign Random Pro-
jection as the LSH function, thus our notion of similarity
is cosine and Eq. 2.1 gives the collision probability. We
pay a one-time linear cost for this preprocessing. Note,
we need significantly less K and L (both has value 10 in
our experiments) compared to what is required for near-
neighbor queries as we are only sampling. The sampling is
informative (better than random) for any values of K and L

For our informative proposal, we will need capabilities to do
both similarity sampling as well as dissimilarity sampling
for merge and split respectively. The similarity sampling is
the usual sampling algorithm discussed in section 2.1, which
ensures that given a query u, points similar to u, in cosine
similarity are more likely to be sampled. Analogously, we
also need to sample points that are likely to be dissimi-
lar. With cosine similarity, flipping the sign of the query,
i.e., changing u to −u will automatically do dissimilarity
sampling.

Inspired from (Wang & Russell, 2015), we also leverage
the information asymmetry and mix smart and dumb moves
for better convergence. However, this time our proposals
will be super efficient. At each iteration of MCMC, we start
by choosing randomly between an LSH Smart-split/Dumb-
merge or an LSH Smart-merge/Dumb-split operation. These
two operations are defined below:

• LSH Smart-split/Dumb-merge : LSH based Split be-
gins by randomly select an element u in the dataset.
Then, we use LSS (Locality-sensitive Sampler) to sam-
ple points likely to be dissimilar to u. Thus, we query
our data structure T with −u as the query to get an-
other element v which is likely far away from u. If u
and v belong to the same cluster C, we split the cluster.
During the split, we create two new clustersCu andCv .
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We assign u to Cu and v to Cv. For every element in
C, we randomly assign them to either Cu or Cv . Since
we ensure that dissimilar points u and v are split, this
is an informative or smart split. If we find u and v are
already in a different cluster, we do a dumb merge.

The most important part is that we can precisely com-
pute the probability of the proposed split move q(x′|x)
and the corresponding inverse move probability q(x|x′)
as follow:

q(x′|x) = 1

n

(
1− (1− Pr(−u, v)K)L

)
∗ |Cv ∩ Sd|
|Sd|

∗
(
1

2

)|Cu|+|Cv|−1 (3)

q(x|x′) = 1 (4)

In the above, n is the number of data point. Sd (dis-
similarity) is the set of data points that returned by
querying in T using −u. C denotes the original com-
ponent. Cu and Cv are the two new components after
split with elements u and v in them. |Sd| denotes the
number of elements in Sd. K is the number of bits
used for hashing, and L is the number of hash tables
probed. Pr(−u, v) is the collision probability between
−u and v.

• LSH Smart-merge/Dumb-split: LSH based Merge
begins by randomly select an element u in the dataset.
Then use LSS to sample from T to get another ele-
ment v which is similar with u. Then, if the mixture
component of u and v are different, then we do merge
operation for the corresponding two mixture compo-
nent. If u and v are in the same cluster, we do a dumb
split randomly separating u and v. We provide the the
probability of the merge move q(x′|x) and the corre-
sponding inverse probability q(x|x′):

q(x′|x) = 1

n
(1− (1− Pr(u, v)K)L)

∗ |Cv ∩ Ss|
|Ss|

(5)

q(x|x′) = (
1

2
)|Cu|+|Cv|−1 (6)

In the above, Ss (similarity) is the set of data points
that returned by query in T using u. |Ss| denotes the
number of elements in Ss. All the other symbols have
the same meaning as before. Pr(u, v) is the collision
probability between u and v.

These probability expressions are obtained by combining
the fact that 1

n is the probability of choosing u. (1− (1−
Pr(u, v)K)L) is the probability of having v in the buck-
ets probed. |Cv∩Ss|

|Ss| is the probability of getting v ∈ Cv

by randomly sampling the bucket. ( 12 )
|Cu|+|Cv|−1 is the

probability of uniform spitting with u and v in different
component. Merge probability, given two cluster is 1.

3.3. From MCMC to an Efficient Pseudo-Marginal
MCMC

As we introduced before, our proposed LSHSM algorithm
belongs to the general framework of metroplis-hastings al-
gorithm (Andrieu et al., 2003). After each split/merge move,
we need to calculate the acceptance rate α(x′|x) for this
move which is given by:

α(x′|x) = min{1, L(x
′)q(x|x′)

L(x)q(x′|x)
}, (7)

where x′ is the proposed new state, x is the previous state,
q(x′|x) here is the designed proposal distribution, and it can
be calculated as introduced in previous sections. L(x) is the
likelihood value of the state x.

The likelihood of the data is generally in the form of:

L(x) =
∏
D

pi(ei), (8)

where pi(ei) is the probability of ei ∈ D in it’s correspond-
ing component Ci. D denotes the total dataset dataset. The
corresponding log-likelihood is

L(x) =
∑
D

log (pi(ei)), (9)

Specifically, if we use the Gaussian mixture model, then

pi(e) =
1√
2πσ2

i

exp(− (ei − µi)
2

2σ2
i

), (10)

where µi and σi is the corresponding mean and variance of
component Ci.

We can see from the above equation that, computing the
likelihood of the data requires a complete pass over the
entire dataset, which makes it computational expensive and
does not scale well for large datasets.

3.3.1. SUPERIOR UNBIASED ESTIMATION OF
LIKLIHOOD

Fortunately, replacing L(x) and L(x′) in the computation of
α(x′|x) with an unbiased estimator of L suffices to guaran-
tee the same equilibrium distribution. A method popularly
knows as Pseudo-Marginal MCMC (Andrieu et al., 2009).
Random sampling based unbiased estimator is a default
choice to speed up the likelihood computation. It turns
out that with existing LSH structure T we can get a better
unbiased estimator.
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Algorithm 1 LSHSM Algorithm
Input : Dataset D, Parameter K, L
Output :GT

Pre-processing all the data point in D into LSH Data struc-
ture HT .

while Convergence do
Choose a move type randomly: TYPE = (split, merge)
switch TYPE do

case Split do
Do Smart-split/Dumb-merge operation as intro-
duced in Section 3.2

end
case Merge do

Do Smart-merge/Dumb-split operation as intro-
duced in Section 3.2

end
end
Calculate the likelihood function L(x) as introduced in

Section 3.3
Calculate the acceptance ratio α
Apply the proposal with probability α

end

To get a better unbiased estimation of likelihood, we can
leverage insights from (Spring & Shrivastava, 2017b). In-
stead of calculating the likelihood over a random sample
of the dataset, we can instead sample a small fraction of
the data S use the LSS with cluster means as the query.
Then use the small sampled data set S to approximate the
likelihood function L(x) =

∑
S log pi(ei).

To see why cluster means µi is better sampling, consider
pi(ei) in Equation 10. Note that the value of pi(ei) is higher
if ei is closer to the cluster mean µi. Thus, if we query a
small set of sample with mean µi as the query, LSS favors
sampling heavier entries and therefore is a superior estimator
of the sum than random sampling. Also, since we also
know the probability of sampling we can design an unbiased
sampler.

L(x) =
∑
S

log pi(ei)

Pri

=
∑
S

log

(
1√
2πσ2

i

exp(− (ei − µi)
2

2σ2
i

)

)
− logPri,

(11)

where S is the set obtained by querying each µi in the exist-
ing LSH tables, and Pri is the collision probability between
the element ei and the corresponding probability mean µi,
as Eq. 2. The LSS estimators is unbiased and superior in
variance than the plain random sampling estimators. Please
refer to (Spring & Shrivastava, 2017b) for more details.

The vital point to note is that since estimators L(x) is unbi-
ased we guarantee the desired equilibrium distribution of

MCMC.

3.4. LSHSM Algorithm

The overall procedure is then summarized as Algorithm 1.
This algorithm implements the methods we have introduced
in the above subsections.

4. Empirical Study
In this section, we demonstrate the advantage LSHSM by
applying it to the Gaussian Mixture model inference and
compare it with state-of-the-art sampling methods 1.

4.0.1. GAUSSIAN MIXTURE MODEL

We briefly review the Gaussian Mixture Model. A Gaussian
mixture density is a weighted sum of component densi-
ties. For a M -class clustering task, we could have a set of
GMMs associated with each cluster. For a D-dimensional
feature vector denoted as −→x , the mixture density is defined
as p(−→x ) =

∑M
i=1 wipi(

−→x ), where wi, i = 1, ...,M are the
mixture weights which satisfy the constraint that

∑M
i = 1

and wi ≥ 0. The mixture density is a weighted linear
combination of component M uni-model Gaussian density
functions pi(−→x ), i = 1, ...,M . The Gaussian mixture den-
sity is parameterized by the mixture weights, mean vectors
and covariance vectors from all components densities.

For a GMM-based clustering task, the goal of the model
training is to estimate the parameters of the GMM so that
the Gaussian mixture density can best match the distribution
of the training feature vectors. Estimating the parameters
of the GMM using the expectation-maximization (EM) al-
gorithm (Nasrabadi, 2007) is popular. However, in most of
the real world applications, the number of clusters M is not
known, which is required by the EM algorithm. On the other
hand, Split-Merge based MCMC algorithms are used for
inference when M is unknown, which is also the focus of
this paper. We therefore only compare our proposal LSHSM
and other state-of-the-art split-merge algorithms on GMM
clustering which does not require the prior knowledge of
the number of clusters.

4.1. Competing Algorithms

We compare following three split-merge MCMC sampling
algorithm on GMM with an unknown number of clusters:

• RGSM Restricted Gibbs split-merge MCMC algo-
rithm (Jain & Neal, 2004) is considered as one of the
state-of-the-art sampling algorithm.

1Code is available on https://github.com/
rackingroll/mcmc_lsh

https://github.com/rackingroll/mcmc_lsh
https://github.com/rackingroll/mcmc_lsh
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Table 1. The statistics for the two real world dataset
Dataset Samples Dim True #Clusters

KDDCUP 145751 74 2000
PubMed 8200000 141043 10000

• SDDS Smart-Dumb/Dumb-Smart Split Merge algo-
rithm (Wang & Russell, 2015). SDDS combines
“smart” split/merge move that proposes plausible splits
of heterogeneous clusters with a “dumb” merge move
that proposes merging random pairs of clusters.

• LSHSM This is the proposed method in this paper. In
the LSHSM method, we use fixedK = 10 and L = 10
for all the dataset. We fix the hashing scheme to be
signed random projection.

4.2. Dataset

We evaluate the effectiveness of our algorithm on both syn-
thetic datasets and two large real-world datasets.

4.2.1. SYNTHETIC DATA SET

Synthetic data is a standard way of testing GMM models
(Nasrabadi, 2007). So, in this paper, we first use synthetic
datasets as a sanity check to evaluate the performance of
different methods. The process of generating the synthetic
dataset is as follow: Randomly generate k different Gaus-
sian distributions (with different corresponding mean and
variance). We fix the k = 10 in our experiment. Then
based on the randomly generated Gaussian distributions, we
generate a set of data points for each Gaussian distribution.
Here we fix the dimensionality of each data point to 25.

In this experiment, we generate three sythntic dataset with
different size (e.g. 100, 1000, 10000). We name the three
synthetic dataset as S1, S2, S3.

4.2.2. REAL WORD DATA SET

We also evaluate the performance of all the methods on two
real word datasets:

KDDCUP: This dataset was used in the KDD Cup 2004
data mining competition. It contains 145751 data point. The
dimensionality of the dataset is 74. We have 2000 ground
truth cluster labels for this dataset. 2

PubMed The PubMed abstraction dataset contains 8200000
abstractions that extracted from the PubMed 3. All the
documents represented as the bag-of-words representation.
In the data set, we have 141043, different words. This data
set is ideal for document clustering or topic modeling. The

2https://cs.joensuu.fi/sipu/datasets/
3www.pubmed.gov

dataset is available from the UCI machine learning dataset
Repository. 4 The statistics of the two real-world datasets is
shown in Table 1.

4.3. Result and Analysis

4.3.1. SPEED COMPARISON

We first plot the evolution of likelihood both as a function
of iterations as well as the time of all the three competing
methods. The evolution of likelihood with iterations on the
synthetic dataset and two real-world data is shown in Fig.
1 and Fig. 3 respectively. Fig. 2 and Fig. 3 plots the same
evolution but with time instead of iteration.

We can see a consistent trend in the evolution of likelihood,
which holds true for both simulated as well as real datasets.
First of all, RGSM consistently performs poorly and re-
quires both more iterations as well as time. The need of
combining smart and dumb moves for faster convergence
made in (Wang & Russell, 2015), seems necessary. RGSM
does not use it and hence leads to poor, even iteration wise,
convergence.

SDDS seems to do quite well, compared to our proposed
LSHSM when we look at iteration wise convergence. How-
ever, when we look at the time, the picture is completely
changed. LSHSM is significantly faster than SDDS, even if
the convergence is slower iteration wise. This is not surpris-
ing because the per-iteration cost of LSHSM is orders of
magnitude less than SDDS. SDDS hides the computations
inside the iteration by evaluating every possible state in
each iteration, based on likelihood, is equivalent to several
random iterations combined. Such costly evaluation per
iteration can give a false impressing of less iteration.

It is clear from the plots that merely comparing iterations
and acceptance ratio can give a false impression of superi-
ority. Time wise comparison is a legitimate comparison of
overall computational efficiency. Clearly, LSHSM outper-
forms the other baselines by a large margin.

From the experiment on two large datasets we can see that:
on the KDD CUP data set, LSHSM can converge in less than
400 seconds, while RGSM and SDDS need nearly one hour
(3600 seconds) to converge. On the PubMed dataset, the
LSHSM method can converge in less than one hour, while
SDDS need more than 10 hours to converge, and RGSM
requires more than 20 hours to converge. This demonstrates
that our proposed LSHSM algorithm can be at least 10 times
faster than the state of the art algorithms in the large dataset.
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(a) S1 dataset with N = 100
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(b) S2 dataset with N = 1000
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(c) S3 Dataset with N = 10000

Figure 1. Comparing the evolution of likelihood during each iteration on different synthetic dataset.
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(a) S1 dataset with N = 100
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(b) S2 dataset with N = 1000
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(c) S3 dataset with N = 10000

Figure 2. The time wise comparison of the likelihood for difference methods on the Synthetic Dataset. LSHSM outperforms the other
baselines by a large margin. It is also clear that requiring less iteration does not mean faster convergence.

Table 2. Clustering Accuracy for Different Methods
Methods Metric S1 S2 S3 KDD Pub
RGSM NMI 0.96 0.93 0.88 0.74 0.63

Acc 0.95 0.92 0.87 0.68 0.62
SDDS NMI 0.97 0.96 0.95 0.86 0.80

Acc 0.98 0.97 0.94 0.85 0.77
LSHSM NMI 0.96 0.95 0.96 0.84 0.78

Acc 0.97 0.93 0.95 0.83 0.76

4.3.2. CLUSTERING ACCURACY COMPARISON

To evaluate the clustering performance of different algo-
rithms, we use two widely used measures (Accuracy and
NMI (Nasrabadi, 2007)). We briefly review the definition
of these two measures below:

Normalized Mutual Information (NMI) (Nasrabadi,
2007): is widely used for measuring the performance of
clustering algorithms. It can be calculated as follow:

NMI(C,C ′) =
I(C;C ′)√
H(C)H(C ′)

,

where H(C) and H(C ′) are the marginal entropies,
I(C;C ′) is the mutual information between C ′ and C.

Accuracy: The accuracy measure, which is calculated as
the percentage of target objects going to the correct cluster,

4https://archive.ics.uci.edu/ml/index.php

is defined as follow:

Accuracy =

∑k
i=1 ai
n

,

where ai is the number of data objects clustered to its cor-
responding true cluster, k is the number of cluster and n is
the number of data objects in the dataset.

Table 2 shows the clustering accuracy of different competing
methods. We can see that the LSHSM and SDDS are much
more accurate than RGSM. This observation is in agreement
with the likelihood plots. On the other hand, the accuracy
difference between LSHSM and SDDS is negligible.

From the experiments, we can conclude that the proposed
LSHSM method converged much faster than the state-of-
the-art algorithm (10x faster on the large dataset), while
achieving the same accuracy

5. Conclusion
The Split-Merge MCMC (Monte Carlo Markov Chain) is
one of the essential and popular variants of MCMC for prob-
lems with an unknown number of components. It is a well
known that the inference process of Split-Merge MCMC
is computational expensive which is not applicable for the
large-scale dataset. Existing approaches that try to speed
up the split-merge MCMC are stuck in a computational
chicken-and-egg loop problem.

In this paper, we proposed LSHSM, accelerating Split
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Figure 3. The time and iteration wise comparison of the likelihood for difference methods on the two real dataset. It is obviously that our
proposed LSHSM algorithm can be at least 10 times faster than the state of the art algorithms in the real large dataset.

Merge MCMC via probabilistic hashing. The new split-
merge MCMC has constant time update, and at the same
time the proposal is informative and needs significantly
fewer iterations than random split-merge. Overall, we ob-
tain a sweet tradeoff between convergence and per update
cost. Experiments with Gaussian Mixture Model on both
synthetic dataset and two real-world datasets demonstrate
much faster convergence and better scaling to large datasets.
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