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Abstract
Infants are experts at playing, with an amazing
ability to generate novel structured behaviors in
unstructured environments that lack clear extrin-
sic reward signals. We seek to mathematically
formalize these abilities using a neural network
that implements curiosity-driven intrinsic motiva-
tion. Using a simple but ecologically naturalis-
tic simulated environment in which an agent can
move and interact with objects it sees, we propose
a “world-model” network that learns to predict
the dynamic consequences of the agent’s actions.
Simultaneously, we train a separate explicit “self-
model” that allows the agent to track the error
map of its own world-model, and then uses the
self-model to adversarially challenge the develop-
ing world-model. We demonstrate that this policy
causes the agent to explore novel and informative
interactions with its environment, leading to the
generation of a spectrum of complex behaviors,
including ego-motion prediction, object attention,
and object gathering. Moreover, the world-model
that the agent learns supports improved perfor-
mance on object dynamics prediction, detection,
localization and recognition tasks. Taken together,
our results are initial steps toward creating flexible
autonomous agents that self-supervise in complex
novel physical environments.

1. Introduction
Truly autonomous artificial agents must be able to discover
useful behaviors in complex environments without having
humans present to constantly pre-specify tasks and rewards.
This ability is beyond that of today’s most advanced au-
tonomous robots. For example, NASA’s Curiosity Rover
can only explore the Mars with a few pre-configured task
programs. This severely limits Curiosity’s long-term utility,
as it cannot set itself new tasks that will help it learn to take
better advantage of the Martian environment over time.
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Figure 1. An agent is embedded in a three-dimensional environ-
ment where it can move around, apply forces to visible objects in
close proximity, and receive visual input. What policies allow the
agent to learn a general-purpose world-model?

In contrast, human infants exhibit a wide range of inter-
esting, apparently spontaneous, visuo-motor behaviors —
including navigating their environment, seeking out and at-
tending to novel objects, and engaging physically with these
objects in novel and surprising ways (Fantz, 1964; Twomey
& Westermann, 2017; Hurley et al., 2010; Hurley & Oakes,
2015; Goupil et al., 2016; Begus et al., 2014; Gopnik et al.,
2009). In short, young children are excellent at playing —
“scientists in the crib” (Gopnik et al., 2009) who create, in-
tentionally, events that are new, informative, and exciting to
them (Sokolov, 1963; Fantz, 1964). Aside from being fun,
play behaviors are an active learning process (Settles, 2011),
driving the self-supervised learning of representations un-
derlying sensory judgments and motor planning capacities
(Kidd et al., 2012; Goupil et al., 2016; Begus et al., 2014).

But how can we use these observations on infant play to im-
prove artificial intelligence? AI theorists have long realized
that playful behavior in the absence of rewards can be math-
ematically formalized via loss functions encoding intrinsic
reward signals, in which an agent chooses actions that result
in novel but predictable states that maximize its learning
(Schmidhuber, 2010). These ideas rely on a virtuous cycle
in which the agent actively self-curricularizes as it pushes
the boundaries of what its world-model-prediction systems
can achieve. As world-modeling capacity improves, what
used to be novel becomes old hat, and the cycle starts again.

Here, we build on these ideas using the tools of modern
deep reinforcement learning to create an artificial agent that
learns to play. We construct a simulated interactive phys-
ical environment in which an agent can move around and
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Figure 2. Intrinsically-motivated self-aware agent architecture. The world-model (blue) solves a dynamics prediction problem. Simultane-
ously a self-model (red) is learned that seeks to predict the world-model’s loss. Actions are chosen to antagonize the world-model, leading
to novel and surprising events in the environment (black).

physically act on objects it sees (Fig. 1). In this world, in-
teresting interactions are possible, but sparse unless actively
sought. We then describe a neural network architecture
through which the agent learns a world-model that predicts
the consequences of agent’s actions, either through forward
or inverse dynamics prediction. As the agent optimizes
the accuracy of its world-model, a separate explicit “self-
model” neural network simultaneously learns to predict the
errors of the agent’s own world-model. Based on the self-
model, the agent then uses an action policy that seeks to
take actions that adversarially challenge the current state
of its world-model. We demonstrate that this intrinsically-
motived self-aware architecture stably engages in the virtu-
ous reinforcement learning cycle described above, sponta-
neously learning to understand self-generated ego-motion
and to selectively pay attention to, localize, recognize, and
interact with objects, without having any of these concepts
built in. This learning occurs through an emergent active
self-supervised process in which new capacities arise at
distinct “developmental milestones” like those in human
infants. These results are steps toward creating mathemat-
ically well-motived, flexible autonomous agents that use
intrinsic motivation to learn about and spontaneously gener-
ate useful behaviors for adapting to unknown environments.

2. Related Work
Our work connects to a variety of existing ideas in self-
supervision, active learning, and deep reinforcement learn-
ing. At the most basic level, auto-encoders can develop
representations by reconstructing input images (Olshausen
& Field, 1997; Kingma & Welling, 2013). More explicit
self-supervised auxiliary tasks include semantic segmen-
tation (Hong et al., 2017), pose estimation (Mitash et al.,
2017), solving jigsaw puzzles (Noroozi & Favaro, 2016),

colorization (Zhang et al., 2016), and rotation (Spyros Gi-
daris, 2018). Self-supervision on videos in the form of
future frame prediction may have potential to surpass the
performance of the aforementioned methods (Kalchbrenner
et al., 2017), but a challenge facing frame prediction is that
most sequences in recorded videos are “boring”, with little
interesting dynamics occurring from one frame to the next.

In order to encourage interesting events to happen, it is
useful for the agent to have the capacity to interact with
its environment, or at least to select the data that it sees
in training. In traditional active learning, an agent seeks
to learn a supervised task from using little labeled data as
possible, with the ability to request more labeled data if nec-
essary (Settles, 2011; Gilad-Bachrach et al., 2005). Recent
optimization methods trade-off uncertainty and diversity to
obtain diversified sets of hard examples (Elhamifar et al.,
2013; Sener & Savarese, 2017), or use heuristics to assign
labels to data examples with high confidence while querying
labels for examples with low confidence (Wang et al., 2017).

Going beyond selection of examples from a pre-determined
set, recent work in robotics (Agrawal et al., 2016; Popov
et al., 2017) study learning tasks in interactive visuo-motor
environments. In particular, Finn & Levine (2017) and Ebert
et al. (2017) have tried to learn self-supervised visuo-motor
tasks with robot arms. The results are promising but suffer
from the challenges of having to predict forward dynamics
in pixel space and having to orchestrate random pushing
motions to generate training data. These works do not use
an intrinsically driven mechanism that would bias the robot
to explore its environment in a structured way.

Intrinsic and extrinsic reward structures have been used
to learn generic options for a variety of tasks (Chentanez
et al., 2005; Singh et al., 2010). Houthooft et al. (2016)
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demonstrated that reasonable exploration-exploitation trade-
offs can be achieved by intrinsic reward terms formulated
as information gain. Frank et al. (2014) use information
gain maximization to implement artificial curiosity on a
humanoid robot. Kulkarni et al. (2016) combine intrinsic
motivation with hierarchical action-value functions oper-
ating at different temporal scales, for goal-driven deep re-
inforcement learning. Achiam & Sastry (2017) formulate
surprise for intrinsic motivation as the KL-divergence of the
true transition probabilities from learned model probabili-
ties. Held et al. (2017) use a generator network, which is
optimized using adversarial training to produce tasks that
are always at the appropriate level of difficulty for an agent,
to automatically produce a curriculum of navigation tasks
to learn. Jaderberg et al. (2016) show that target tasks can
be improved by using auxiliary intrinsic rewards.

Closest to our work in its formulation of an intrinsic reward
signal is Pathak et al. (2017). Their work uses curiosity
to antagonize a future prediction signal in the latent space
of a inverse dynamics prediction task to improve learning
in video games, showing that intrinsic motivation leads to
faster floor-plan exploration in a 2D game environment. Our
work differs from theirs in using a physically realistic three-
dimensional environment, and shows how in this context,
intrinsic motivation can lead to substantially more sophisti-
cated agent-object behavior generation (the “playing”). We
also show the learned representation transfers to improved
performance on analogs of real-world visual tasks, such as
object localization and recognition. Underlying the differ-
ence of our technical approach is our introduction of an
explicit self-model, representing the agent’s awareness of
its own internal state. This difference can be viewed in RL
terms as the use of a more explicit model-based architecture
(ours) in place of a model-free setup. To our knowledge, a
self-supervised setup in which an explicitly self-modeling
agent uses intrinsic motivation to learn about and restructure
its environment has not been explored prior to this work.

3. Interactive Physical Environment
Our agent is situated in a physically realistic simulated en-
vironment (black in Fig. 2) built in Unity 3D (Fig. 1)
along with several objects. These objects interact according
to Newtonian physics as simulated by the PhysX engine.
The agent’s avatar is a sphere that swivels in place, moves
around, and receives RGB images from a forward-facing
camera (as in Fig. 1). The agent can apply forces and
torques in all three dimensions to any object(s) that are both
in view and within a fixed distance δ of the agent’s position.
Although the floor and walls of the environment are static,
the agent and objects can collide with them. The action
space of the agent is a subset of R2+6N , in which the first 2
dimensions specify ego-motion, restricting agent movement

to forward/backward motion vfwd and horizontal planar ro-
tation vθ, while the remaining 6N dimensions specify the
forces fx, fy, fz and torques τx, τyτz applied to N objects
sorted from the lower-leftmost to the upper-rightmost object
relative to the agent’s field of view. All coordinates are
bounded by constants and normalized to 1.

4. Agent Architecture
Our agent consists of a world-model and a self-model (Fig.
2). The world-model is tasked to learn a dynamics predic-
tion problem based on inputs from the environment. The
self-model tries to estimate the world-model’s losses several
time steps into the future, as a function of potential agent ac-
tions. An action choice policy based on the self-model then
chooses actions that antagonize the world-model’s learning.
In this section, we formalize these ideas mathematically.

4.1. World-Model

Figuring out a tractable dynamics prediction problem to
make the target of intrinsic motivation is an important first
challenge. We begin with an abstract mathematical treat-
ment to expose the key issues. Let (S, P,O,A) define a
partially observable Markov Decision Process (POMDP)
with state space S, transition dynamics P , observations O,
and action space A but no specified external reward. In the
physics environment described above, states S encode the
positions, velocities, and physical properties of an agent
and objects in a 3-D physical space. Dynamics P are the
(deterministic) updates given by Newtonian physics. Ob-
servations O are the images rendered by an agent-mounted
camera. Actions A encode self-motions of the agent as well
as and forces/torques that the agent can apply to objects.

Within this context, agents make decisions about what action
to take at each time, accumulating histories of state-action
pairs {(s0, a0), . . . , (st, at), . . .}. LetH be the set of (fixed-
length) windows in such histories. Informally, a dynamics
prediction problem is a pairing of complementary subsets
of data — “inputs” and “true values” — generated from
H . The goal of the agent is to learn the map from inputs
to true-values. Mathematically, we define this as a five-
tuple (X,Y, ξt, ηt, L), where X is the input space, Y is
the true-value space, ξt is a (possibly time-varying) map
from histories to inputs, and η is a (possibly time-varying)
map from histories to true-values, and L is a “loss function”
L : Y × Y → R≥0 such that L(y, y) = 0 for y ∈ Y :

H

X Y

ξt ηt

ωt
The agent is equipped with a time-evolving world-model,
which is a map ωθt : X → Y , defined by learnable pa-
rameters θt. The agent attempts to evolve θt over time so
that Lω = L(ωθt(ξt(h)), ηt(h)) is minimized. In words,
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the agent’s world-model (blue in Fig. 2) tries to learn to
reconstruct the missing true-value from the input datum.
This is done regardless of whether ξt and ηt actually induce
a well-defined mapping X → Y that makes the diagram
above commute. Obstructions to the existence of such a
commuting map arise from the degeneracy of the system
dynamics P (situations where the same input corresponds
to two different true-values).

The most natural dynamics problem is forward dynamics
prediction. For notational convenience, for any histori-
cal observable x, let xtk0:k1

for k0 ≤ k1 denote the se-
quence of values (xt+k0 , . . . , xt+k1). For b steps in the
past and f steps in the future, let ht = (st−b:f , a

t
−b:f−1)

define the temporal observation window available to the
agent. Forward dynamics prediction is now defined by let-
ting ξF (ht) = (ot−b:0, a

t
−b:f−1) and ηF (ht) = ot1:f , where

ot is the observation corresponding to state st. In other
words, the agent is trying to predict the next (several) obser-
vation given past observations, past actions, and its current
action. In real 3-D physical domains, the true-values ot1:f

correspond to f bitmap image arrays of future frames, and
the loss function LF is either `2 loss on pixels, or some dis-
cretization thereof. Despite recent progress on the frame pre-
diction problem (Kalchbrenner et al., 2017; Finn & Levine,
2017), it remains quite challenging, in part because the
dimensionality of the true-value space is so large.

In practice, it can be substantially easier to solve the in-
verse dynamics prediction. This is defined by ξI(ht) =
(ot−b:f , a

t
−b:−1, a

t
1:f−1) and ηI(ht) = at. In other words,

the agent is trying to “post-dict” which current action was
needed to have generated the observed sequence of observa-
tions, given knowledge of its past and future actions. Here,
the loss function LI is computed on low-dimensional action
space, a problem that has proven tractable (Agrawal et al.,
2016). However, it can suffer from substantial degeneracy:
consider the case of an agent pressing an object downward
into the ground. No matter what the force downward applied
is, the object does not move, so input information in X (the
sequence of object positions) is insufficient to determine
what the true-value in Y (the action) was.

A more sophisticated concept that tries to solve both high-
dimensionality and degeneracy simultaneously is latent
space future prediction (Pathak et al., 2017). In this case,
we begin with a system solving the inverse dynamics predic-
tion problem, and assume that its parametrization of world-
models factor into a composition ωIθt = dβt ◦ eαt where
αt and βt are non-overlapping sets of parameters. In this
case, we call et = eαt

the encoding, dt = dαt
the decoding,

and the range of et the latent space L of the problem. Now,
we define (time-varying) ξtLF , η

t
LF as the 1-time-step future

prediction problem on trajectories in L given by the time-
varying encoding, i.e. by ξtLF (ht) = (et(o

t)−b:0, a
t
−b:0)

and ηtLF (ht) = et(ot+1). The inverse-prediction world-
model ωI and latent-space world-model ωLF evolve sepa-
rately but simultaneously. If L is sufficiently low dimen-
sional, this may be a good compromise task.

In this work, we explore both inverse dynamics and latent
space future prediction as world-model tasks.

4.2. Explicit Self-Model

The agent’s goal is to antagonize its world-model, so if it
could predict Lωt

incurred at future time steps as a function
of its current action, a simple antagonistic policy could seek
to maximize Lωt over some number of time steps in the
future. Given st and a proposed next action a, the self-
model Λ (red in Fig. 2) predicts

Λ(st, at) = p(c | st, a) ∈
T∏
t=1

P([C]), (1)

probability distributions over C discrete (via thresholding)
classes of world-model loss for a set number T of future
time steps. It is penalized with a softmax cross-entropy loss.
Note that all future losses aside from the first one, depend
not only on the state of the world-model, but also on future
actions taken, and the self-model hence needs to predict in
expectation over future policy.

In the context of a 3-D physical environment, loss predic-
tions can be interpreted as self prediction maps Λst [a] over
action space given a current state st. This interpretation is
useful for intuitively visualizing what strategy the agent is
taking in any given situation (see Fig 4).

4.3. Adversarial Action Choice Policy

Given the self-model, the agent can use a simple mechanism
to choose its actions. The self-model provides, given st and
a proposed next action a, a map

S ×A→
T∏
t=1

P([C]). (2)

Given an additional summary mapping

σ : map(A,

T∏
t=1

P([C]))→ map(A,R), (3)

this provides us a real-valued map a 7→ σΛ(a) =
σ(Λ(st, a)), which then allows us to define a probability
distribution on the next action chosen

π(a) ∼ exp(βσΛ(a)) (4)
with given hyperparameter β. In what follows, we use as
σ sum over expectation values for each time step, although
more sophisticated functions to combine rewards over time
are possible (Schulman et al., 2017). In practice, we execute
our policy by evaluating Lst,at−1(a) for K uniform random
samples in A. We then sample from a K-way discrete
distribution with probabilities proportional to eq. (4).
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4.4. Models and Metrics of Comparison

We use convolutional neural networks as the base architec-
ture to learn both world-models ωθ and self-models Λψ . In
the specific experiments described below, these networks
have an encoding structure with a common architecture in-
volving twelve convolutional layers, two-stride max pools
every other layer, and one fully-connected layer, to encode
all states into a lower-dimensional latent space L, with
shared weights across time. For the inverse dynamics task,
the top encoding layer of the network is combined with
actions {at′ | t′ 6= t}, fed into a two-layer fully-connected
network, on top of which a softmax classifier is used to
predict action at. For the latent space future prediction task,
the top encoding layer is used as the latent space L, and
the latent model ωLF is estimated with another copy of the
encoding network. For the self-model, the top encoding
layer is combined with action at, and then fed into a two-
layer fully connected network to predict world-model loss
with that action. Parameters θ, ψ are trained end-to-end by
stochastic gradient descent from randomly initialization.

We compare a variety of agents defined by different combi-
nations of world-model task and policy mechanism. Several
baseline models include the inverse dynamics (ID) prob-
lem with a random action policy (ID-RP), the ID problem
with random-weight encoding and random policy (IDRW-
RP), and the ID problem with random-weight encoding and
self-model based policy (IDRW-SP). These baselines are
compared to more powerful agents with a fully learnable
encoding and the self-model policy, both for the ID problem
(ID-SP), and the latent space future prediction (LF-SP).

For each of these on comparison models, we evaluate three
types of metrics: (1) Dynamics prediction tasks where we
measure the inverse dynamics prediction performance on
two held-out validation subsets of data: (i) an easy dataset
drawing from the uncontrolled background distribution of
events (i.e. the random policy), dominated by ego-motion;
and (ii) a hard dataset that is enriched for events that we
have observed to be challenging — e.g. frames in which one
or more object is present. This metric measures active learn-
ing gains, assessing to what extent the agent self-constructs
training data for the hard subset while retaining performance
on the easy dataset. We also look at (2) emergent behavior,
quantifying the appearance of interesting behaviors such
as attention to and acting on objects (as opposed to mere
self-motion), navigation and planning, and ability to cause
multiple objects to interact. We track not only how much
time the agent spends playing with an object, but also the
relationship between when this behavior appears and other
observables, such as sharp changes in overall world-model
loss. Finally, we measure (3) task transfer, including the
ability of the agent model to predict object presence, loca-
tion, and category identity.

5. Experiments
We randomly place the agent and up to two objects in a
square 10 by 10 units room. In total, we train the agent on
16 blue objects with different shapes, i.e. cones, cylinders,
cuboids, pyramids, and spheroids of varied aspect ratios. We
gather data using 16 simulation instances asynchronously
with different seeds and objects. We reinitialize the scene
every 213 to 215 steps. Each simulation maintains a buffer of
250 time steps. For model updates 2 examples are randomly
sampled from each simulation buffer to form a batch of size
32. We train our models using the Adam algorithm (Kingma
& Ba, 2014), with a learning rate of 0.0001.

We first place the agent into a room with one object, and
evaluate its ability to predict inverse dynamics, and attend
to, localize, recognize and navigate towards objects.

Ego-motion learning. Fig. 3 (a) shows the total training
loss curves of the ID-SP, LF-SP models and baselines. The
random-encoding IDRW-RP model (green) learns ineffec-
tively on the background random data distribution. All other
models learn ego-motion prediction effectively. The ID-RP
model quickly converges to a low loss value, where it re-
mains from then on, having effectively learned ego-motion
prediction without an antagonistic policy since ego-motion
interactions are common in the background random data
distribution. The ID-SP and LF-SP models also learn ego-
motion effectively, as seen in the initial decrease of their
loss seen in Fig. 3 (a), and in the low final loss in Fig. 3 (c)
which depicts the easy ego-motion validation dataset. The
ego-motion accuracy reported in Table 1 is close to the total
validation accuracy reached at this point.

Emergence of object attention. For both learned-weight
agents implementing SP, loss increases after an initial de-
crease due to ego-motion learning, as seen in Fig. 3 (a).
As shown in Fig. 3 (b), this loss increase corresponds to
emergence of object attention. Both ID-SP and LF-SP agent
exhibit increased frequency of frames with an object present,
coinciding with the increase in world-model loss, though
in the ID-SP agent this is substantially more pronounced.
After convergence, the ID-SP agent is interacting with ob-
jects about 60 % of the time. Baselines models almost never
interact with the object. World-model loss increases for the
self-model driven agents, since object interactions are much
harder to predict than simple ego-motions.

Navigation and planning. SP agents also exhibit naviga-
tion and planning abilities. In Fig. 4 we give visualizations
of self prediction maps projected onto the agent’s position
at the respective time. The maps are generated by uniformly
sampling 1000 actions a from the action spaceA, evaluating
Λst(a) and applying a post-processing smoothing algorithm.
We show an exemplary sequence of 12 time steps. The self
prediction maps show the agent predicting a higher loss
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Ego motion 
learning

Emergence of object attention Object interaction learning

* °

(a) World-model training loss

°* * °

(b) Object frequency (c) Easy dataset (ego-motion) (d) Hard dataset (object interactions)

Figure 3. 1 object experiments. (a) World-model training loss. (b) Percentage of frames in which an object is present. (c) World-model
test-set loss on “easy” ego-motion-only data, with no objects present. (d) World-model test-set loss on “hard” validation data, with object
present, where agent must solve object physics prediction.

(red) for actions moving it towards the object to reach a play
state. As a result, the self-model driven agents take actions
to navigate closer to the object.

Improved object dynamics prediction. Object attention
and navigation lead SP agents to substantially different data
distributions than baselines. We evaluate the inverse dy-
namics prediction performance on the held out hard ob-
ject interaction validation set. Here, the ID-SP and LF-SP
agents outperform the baselines on predicting the harder
object interaction subset by a significant margin, showing
that increased object attention translates to improved inverse
dynamics prediction (see Fig. 3 (d) and Table 1). Crucially,
even though ID-SP and LF-SP have substantially decreased
the fraction of time spent on ego-motion interactions as
was previously observed in Fig. 3 (c), they still retain high
performance on that “easier” task.

Improved task transfers. We next measure the agent’s abil-
ities to solve tasks for which they were not directly trained,
including object presence, localization, and recognition. We
build linear estimators on learned features from each agent
world-model, trained on off-line validation datasets con-
sisting of 16,000 image pairs labeled, respectively, with
the object’s presence, its pixel-wise 2D centroid position,
or 16-way object category. Results are reported on test
sets comprising 8,000 image pairs each. Note that the test
sets contain substantial variation in position, pose and size,
rendering these tasks nontrivial. Self-model driven agents
substantially outperform alternatives on all three transfer
tasks, As shown in Table 1, the SP (T = 5) agent outper-
forms baselines on inverse dynamics and object presence
metrics, while ID-SP outperforms LF-SP on localization

and recognition.

Emergence of multi-object interactions. In a second ex-
periment we increase the number of objects to two. At
the beginning of the training of the two object experiment
we observe similar stages as for the one object experiment
(Fig. 5 (a)) for both ID-SP and LF-SP. The loss temporar-
ily decreases as the agent learns to predict its ego-motion
and rises when its attention shifts towards objects which
it then interacts with. For ID-SP agents with sufficiently
long time horizon (e.g. T = 40), we robustly observe the
emergence of an additional stage in which the loss increases
further corresponding to the agent gathering and playing
with two objects simultaneously. This is reflected in an
increase in two object play time (Fig. 5 (c)) over one ob-
ject play time (Fig. 5 (b)). Moreover, the average distance
between the agent and the objects decreases over time as
seen in Fig. 5 (c). We do not observe this additional stage
either for ID-SP shorter time horizon (e.g. T = 5) or for
the LF-SP model even with longer horizons (e.g. T = 40).
Unsurprisingly, the ID-RP baseline with its random policy
experiences a quick loss drop and flattening out of loss. The
ID-SP agent has discovered how to take advantage of the
increased difficulty and therefore “interestingness” of two
object configurations (compare blue with green horizontal
line in Fig. 5 (a)). Interestingly, we find that training with
two objects present improves recognition transfer perfor-
mance as compared to one object scenarios, potentially due
to the greater complexity of two-object configurations (Ta-
ble 1). This is especially notable for the ID-SP (T = 40)
agent which constructs a substantially increased percentage
of two-object events.
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t t+1 t+2 t+3 t+4 t+5

t+6 t+7 t+8 t+9 t+10 t+11

Figure 4. Navigation and planning behavior. Exemplary model roll-out for 12 consecutive time steps. Red force vectors on the objects
depict the predicted actions that would maximize the world-models loss. Ego-motion self prediction maps are drawn at the center of the
agents position. Red colors correspond to high and blue colors to low loss predictions. The agent starts off without seeing an object and
predicts higher loss if it turns around to explore for an object. Once an object is in view the self-model predicts higher loss if the agent
approaches an object if it is far away, or turns towards an object to keep it in view once it is close.

Table 1. Performance comparison. Ego-motion (vfwd, vθ) and interaction (f, τ ) accuracy in % is compared for play and non-play states.
Object frequency, presence and recognition are measured in % and localization in mean pixel error. All models were trained with one
object per room unless otherwise stated.

TASK IDRW-RP IDRW-SP ID-RP ID-SP LF-SP

vfwd ACCURACY — EASY 65.9 56.0 96.0 95.3 95.3
vθ ACCURACY — EASY 82.9 75.2 98.7 98.4 98.5
vfwd ACCURACY — HARD 62.4 69.2 90.4 95.9 95.4
vθ ACCURACY — HARD 79.0 80.0 95.5 98.2 98.1
f ACCURACY — HARD 20.8 33.1 42.1 51.1 45.1
τ ACCURACY — HARD 20.9 32.1 41.3 43.2 43.2
OBJECT FREQUENCY 0.50 47.9 0.40 61.1 12.8

OBJECT PRESENCE ERROR 4.0 3.0 0.92 0.92 0.60
LOCALIZATION ERROR [PX] 15.04 10.14 5.94 4.36 5.94
RECOGNITION ACCURACY 13.0 21.99 12.3 28.5 18.7

RECOGNITION ACCURACY – 2 OBJECT TRAINING 12.0 - 16.1 39.7 21.1

6. Discussion
We have constructed a simple and general intrinsic moti-
vation mechanism in which a physically-embedded agent
makes a world-model, then explicitly creates a “self-aware”
meta-model of its own world-model, and then uses this self-
model to adversarially antagonize the world-model. We
have shown that this architecture allows an agent to spon-
taneously generate a spectrum of emergent naturalistic be-
haviors. Through self-curricularization in an active learning
process the agent achieves several “developmental mile-
stones” of suitably increasing complexity as it learns to
“play”. Starting with random actions, it quickly learns the
dynamics of its own ego-motion. Then, without being given
an explicit supervision signal as to the presence or location
of an object, it discards ego-motion prediction as boring
and begins to focus its attention on objects, which are more

interesting. Lastly, when multiple objects are available, it
gathers the objects so as to bring them into interaction range
of each other. Throughout, the agent finds its way towards a
more challenging data distribution that is at each moment
just hard enough to expose the agent to new situations, but
still understandable and exploitable by the agent. This in-
trinsically motived policy leads to performance gains in its
understanding of object dynamics and other useful tasks for
which the system did not receive an explicit training signal.

This occurs without any pre-trained visual backbone — the
world-model was intentionally not initialized with filter
weights pre-trained on (e.g.) ImageNet classification. This
result constitutes partial progress in replacing the training of
a visual backbone through a task such as large-scale image
classification with an interactive self-supervised task and is
a proof-of-concept that more complex milestones can be po-
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Ego motion learning Emergence of object attention 1 object learning 2 object learning

1 object loss

2 object loss

°* x

(a) World-model training loss

x°* x x

(b) One Object frequency (c) Two Object frequency (d) Average agent-object distance

Figure 5. 2 object experiments. (a) World-model training loss. (b) Percentage of frames in which one object is present. (c) Percentage of
frames in which two objects are present. (d) Average distance between agent and objects in Unity units. For this average to be low (e.g.
values of approximately two) both objects must be close to the agent simultaneously.

tentially reached while developing an understanding of ob-
ject categories and physical relations. This combination of
spontaneous behavior leading to an improved world-model
is well suited to designing agents that must self-supervise
in real-world reinforcement learning scenarios in which
rewards are sparse or potentially unknown.

7. Future Work
A variety of limitations of the current work will need to
be overcome in future work. First, to make our results
better transfer to the real world, our environment and agent
themselves need to be more realistic. On the one hand,
better graphics and physics, with more varied and interesting
visual objects, will be important to allow better transfer of
learned behavior to real-world visuo-motor interactions. It
will also be important to create a properly embodied agent
with visible arms and tactile feedback, allowing for more
realistic interactions. In addition, including other animate
agents will not only lead to more complex interactions, but
potentially also better learning through imitation (Ho &
Ermon, 2016). In this scenario, the self-model component
of our architecture will need to be not only aware of the
agent itself, but also make predictions about the actions of
other agents — connecting to what is known in cognitive
science as theory of mind (Saxe & Kanwisher, 2003).

Second, the reinforcement learning techniques used should
be improved to better handle more complex interactions
beyond those demonstrated here. For interactions that are
part of a larger experiment, e.g. placing an object on a table

or a ramp and then watching it fall, sophisticated RL poli-
cies are likely to be necessary, with better ability to handle
temporally extended reward schedules. It will also likely
be necessary to use recurrent networks to meet working
memory demands in such scenarios.

Third, our world-model needs to use better representations
to improve at predicting such complex interactions. Our
current approach suffers from degenerate cases in the in-
verse dynamics prediction problem — the problem does not
correspond to a well-defined map. Though the latent space
approach of (Pathak et al., 2017) is meant in part to amelio-
rate this issue, we have not yet found an entirely effective
solution in our context. To resolve this issue, it will likely be
key to both innovate on which dynamics prediction tasks to
use for the world-model and better integrate their interaction
with antagonistic action policies in the self-model.

Ultimately, by combining solutions to each of these chal-
lenges, we hope to build, and mathematically understand,
substantially more effective autonomous agents.
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