
IEEE TRANSACTIONS ON COMMUNICATIONS 1

PABO: A Link-Layer Congestion Mitigation
Mechanism Based on Packet Bounce

Xiang Shi, Lin Wang, Member, IEEE, Fa Zhang, Kai Zheng, Senior
Member, IEEE, Max Mühlhäuser, and Zhiyong Liu

Abstract

In today’s data center, a diverse mix of throughput-sensitive long flows and delay-sensitive short
flows are commonly presented. However, commodity switches used in a typical data center network
are usually shallow-buffered for the sake of reducing queueing delay and deployment cost. The direct
outcome is that the queue occupation by long flows could potentially block the transmission of delay-
sensitive short flows, leading to degraded performance. Congestion can also be caused by the synchro-
nization of multiple TCP connections for short flows, as typically seen in the partition/aggregate traffic
pattern. The congestion is usually transient and any end-device intervention through the timeout-based
pathway would result in suboptimal performance. While multiple end-to-end transport-layer solutions
have been proposed, none of them have tackled the real challenge: reliable transmission in the network.
In this paper, we fill this gap by presenting PABO – a novel link-layer design that can mitigate congestion
by temporarily bouncing packets to upstream switches. PABO’s design fulfills the following goals: i)
providing per-flow based flow control on the link layer, ii) handling transient congestion without the
intervention of end devices, and iii) gradually back propagating the congestion signal to the source
when the network is not capable to handle the congestion. We present the detailed design of PABO and
complete a proof-of-concept implementation. We discuss the impact of system parameters on packet out-
of-order delivery and conduct extensive experiments to prove the effectiveness of PABO. We examine
the basic properties of PABO using a tree-based topology, and further evaluate the overall performance
of PABO using a realistic fattree topology for data center networks. Experiment results show that PABO
can provide prominent advantage of mitigating transient congestions and can achieve significant gain
on end-to-end delay.

I. INTRODUCTION

Nowadays, organizations like large companies or universities built various sizes of data centers
for different purpose today. To interconnect all of the data center resources together, a dedicated
network (a.k.a Data Center Network, DCN) is used to support high-speed communications
between servers with high availability in data centers. For reasons of queueing delay and
deployment cost, DCN are usually composed of shallow-bufferd commodity switches at low

A preliminary version of the paper has appeared at IEEE ICC 2017 [1]. The Corresponding Author is Zhiyong Liu
(zyliu@ict.ac.cn). This work has been supported partially by the National Natural Science Foundation of China (NSFC) Major
International Collaboration Project 61520106005, NSFC Project for Innovation Groups 61521092, and the Collaborative Research
Center 1053 (MAKI) of the German Research Foundation (DFG).

X. Shi, F. Zhang, and Zhiyong Liu are with the State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China. This work was done while X. Shi was visiting Technische Universität
Darmstadt.

L. Wang and M. Mühlhäuser are with the Telecooperation Lab at Technische Universität Darmstadt, Germany.
K. Zheng is with Huawei Technologies, Beijing, China.

February 22, 2018 DRAFT

ar
X

iv
:1

80
2.

07
42

9v
1

 [
cs

.N
I]

 2
1

Fe
b

20
18

2 IEEE TRANSACTIONS ON COMMUNICATIONS

costs. However, data center applications such as web search, recommendation systems and online
social networks can generate a diverse mix of short and long flows, demanding high utilization
for long flows, low latency for short flows, and high burst tolerance [2]. Long flows lead to queue
buildup in switches, which reduces the amount of buffer space available for delay-sensitive short
flows and burst traffic, leading to frequent packet losses and retransmissions. Meanwhile, data
center applications such as real-time applications and data intensive applications produce traffic
that follows the partition/aggregate pattern, overflowing the bottleneck switch buffer in a short
period of time. The final performance of the partition/aggregate pattern is determined by the
slowest TCP connection that suffers timeout due to packet losses. Therefore, for short flows and
bursty traffic which are delay-sensitive, even a few lost packets can trigger window reduction and
retransmission timeout, causing crucial performance degradation and high application latencies.

It has been demonstrated by [2] that the greedy fashion of the traditional TCP and its variants
fail to satisfy the performance requirements of these flows and thus, various TCP-like protocols
such as DCTCP [2] and ICTCP [3] have been proposed dedicatedly for DCN environments.
However, none of the proposals can guarantee one hundred percent prevention of packet losses or
timeouts [4] – the main culprit for performance degradation in DCNs, leaving poor performance
in most cases.

The need of end-to-end solutions (on the transport layer) for reliable data transmission comes
from the fact that reliable point-to-point transmission mechanisms (on the data link layer) are not
available in the current protocol stack. If packet processing in a link is slower than packet arrival,
excessive packets competing for the same output port of the switch will lead to queue buildup.
Continuous queue buildup will overflow the output buffer, then the subsequently arrived packets
will be dropped. Neither the source nor the destination will be explicitly notified about this
congestion and thus will have no knowledge of when and where packet losses have happened.
The dropped packets will be retransmitted by upper-layer congestion control protocols (e.g.,
TCP, DCCP), typically through a timeout-based pathway.

As one of the very few proposals toward the goal of providing reliability on the link layer,
PAUSE Frame [5] allows a switch to send a special frame (namely PAUSE frame) to its upstream
switches, which results in a temporary halt of the data transmission. However, all the flows on
the same link will be affected without considering their contributions on the congestion. To
alleviate this situation, PFC (Priority Flow Control) [6] further extends the idea to support eight
service classes and consequently, PAUSE frames can be sent independently for each service
class. Despite the lack of per-flow control, the parameters in PFC have to be carefully tuned
individually according to each network circumstance in order to guarantee congestion-free [4].

In this paper, we propose PAcket BOunce (PABO), a novel link-layer protocol design that
can provide reliable data transmission in the network. Instead of dropping the excess packets
when facing buffer saturation, PABO chooses to bounce them back to upstream switches. On
the one hand, transient congestion can be mitigated at a per-flow granularity, which can help
achieve significant performance gain for short-lived flows and burst flows as in the typical incast
scenario [7] in a DCN. On the other hand, the congestion is gradually back propagated toward
the source and can finally be handled by the source if the congestion cannot be solved right
in the network. To the best of our knowledge, PABO is among the first solutions for reliable
transmission and in-network congestion mitigation.

Our contributions can be summarized in five aspects: i) We propose a novel link-layer protocol,
PABO, that supports full reliability and can handle transient congestions in the network. ii) We

DRAFT February 22, 2018

SUBMITTED PAPER 3

present the design of PABO and explain its components in detail. iii) We complete a proof-of-
concept implementation of PABO in OMNeT++ [8]. iv) We investigate into the impact of PABO
on the level of packet out-of-order, based on which we provide some insights for configuring
PABO. v) We carry out extensive experiments to validate the basic properties of PABO using a
tree topology and to evaluate PABO’s overall performance using a realistic fattree topology.

The rest of the paper is organized as follows: Section II summarizes related work. Section
III describes the design rationale of PABO and details its components one by one. Section IV
discusses the implementation of PABO. Section V analyzes the relationship between PABO and
the level of packet out-of-order. Section VI and VII present the experimental results. Section
VIII concludes the paper.

II. RELATED WORK

We summarize some representative works on congestion control in data center networks and
make a comparison with PABO in this section.
Transport layer. As the most frequently used transport layer protocol, TCP provides reliable
end-to-end communication on unreliable infrastructures. Despite several variants of the traditional
TCP protocol, the reactive fashion to congestion (i.e., timeout) and the slow-start nature in
adjusting the sending window size cannot satisfy the growing requirements for small predictable
latency and large sustained throughput in data center environments [2]. ICTCP [3] aims at
preventing incast congestion through adjusting the advertised windows sizes at the receiver side
by estimating the available bandwidth and RTT. DCTCP [2], another TCP variant developed for
data center environment, take advantage of the Explicit Congestion Notification (ECN) feature
[9] on switches to predict the extent of the congestion and provide smooth adjustments on the
sending window size accordingly. These end-to-end solutions do not assume any reliability in
the network and thus are orthogonal to PABO.
Network layer. AQM (Adaptive Queue Management) is an intelligent probabilistic packet
dropping mechanism designed for switch buffer to avoid global synchronization among flows
as can be frequently seen in traditional drop-tail queue settings (e.g., RED [10] and PI [11]).
ECN (Explicit Congestion Notification) [9] allows end-to-end congestion notification and ECN-
enabled switches can set a marker (i.e., CE) in the IP header of the packet to signal impending
congestion. This information will be echoed back to the sender with the ACK for this packet.
While both can provide packet drop prevention at some degree, there is no guarantee on that
no packet will be dropped. Fastlane [12] is an agile congestion notification mechanism, which
aims at informing the sender as quickly as possible to throttle the transmission rate by sending
explicit, high-priority drop notifications to the sender immediately at the congestion point.
Link layer. This research line aims at providing hop-by-hop reliability inside the network
through a backpressure-alike feedback loop. Among them, PAUSE Frame [5] is one of the
flow control mechanisms for Ethernet, basing on the idea of sending PAUSE frame to the
upstream switch to avoid buffer overflow. However, PAUSE frame is per-link based and cannot
differentiate among flows. PFC (Priority Flow Control) [6] further extends to provide individual
flow control for several pre-defined service class. While it brings about some mitigation on
inter-flow interference, the number of service class is still not enough in many circumstances.
Moreover, the parameters of both PAUSE frame and PFC are very difficult to tune to ensure full
reliability, making them unpractical [13].

February 22, 2018 DRAFT

4 IEEE TRANSACTIONS ON COMMUNICATIONS

PABO

Congestion

F1: 0.6 Gbps F2: 0.5 Gbps

H1

H1

H2

H2

H3

H3

S1

S4

S3S2

S1

S4

S3S2

Fig. 1. A motivating example to demonstrate the idea of PABO, i.e., solving network congestion without dropping packets.
We assume GigE links in the network.

DIBS [4] solves local and transient congestions by detouring packets via a random port at
the same switch when congestion occurs on a link. While adopting a similar idea of sharing
switch buffers to mitigate transient congestion, PABO has two major additional merits: i) Packets
are detoured by bouncing to upstream switches, which is more manageable and can minimize
inter-flow interference; ii) The bounced packets can also serve as a congestion notification for
upstream nodes (switches or end-hosts).

III. PABO’S DESIGN

PABO is a link-layer solution for congestion mitigation based on back-propagation. Particu-
larly, it is well suited for data center environments, where transient congestions (e.g., incast
congestion) are commonly presented [14], [15]. In addition, upper-layer congestion control
protocols can be incorporated to achieve smooth congestion handling in all circumstances by
taking advantage of the back propagation nature of PABO.

A. An Example
We provide a motivating example and explain why PABO is superior in handling congestion

by providing reliable transmission in communication networks. Assume a GigE network and
consider the scenario in Figure 1, where two short flows F1 (with rate 0.6 Gbps) and F2 (with
rate 0.5 Gbps) that consist only tens of packets are destined for the same host H3. When
congestion occurs on the link S4 - H3, PABO will bounce some of the packets to upstream
switches (i.e., S1 and S3, respectively). The number of bounced packets will depend on the
congestion level. Packet bouncing can be contagious reversely along the forwarding path. e.g.,
from S3 to S2. The bounced packets will then be forwarded to H3 again. Consequently, there
will be packets bouncing back and forth on the few links in the network until the congestion
vanishes.

B. Overview
We assume a general Combined Input and Output Queue (CIOQ) switch model [16] as depicted

in Figure 2. This simplified switch model contains following modules: the FIB (Forwarding In-
formation Base, also known as forwarding table) which contains MAC address-to-port mappings
obtained from MAC address learning, the lookup unit, the virtual output queues, the output

DRAFT February 22, 2018

SUBMITTED PAPER 5

RX Port 0 RX Port 1 RX Port 2 RX Port 3

Lookup Lookup Lookup Lookup

VOQ 0 VOQ 1 VOQ 2 VOQ 3

Crossbar

OQ 0 OQ 1 OQ 2 OQ 3

TX Port 0 TX Port 1 TX Port 2 TX Port 3

D1

DMAC

D3 1 0.8

Util

0D2 0.3

2 0.4

TX Port

Normal Bounce

Class 0 Class 1 Class 7

…

Scheduler Scheduler Scheduler Scheduler

Fig. 2. An overview of PABO’s design based on a Combined Input and Output Queue (CIOQ) switch model.

queues, and the output schedulers. Upon the arrival of a packet from any input interface, the
packet will first go through the lookup unit. The lookup unit decides the output port for the packet
by querying the FIB. Next, the packet will be passed into the corresponding virtual output queue
(illustrated as VOQ in Figure 2). The packet will then be sent to the corresponding output queue
through the crossbar and finally to the output interface by the output scheduler. Our design of
PABO involves modifications on the following components of traditional switches: the lookup
unit, the FIB, the output queue and output scheduler, and packet structure. We will discuss them
one by one in the following subsections.

C. Lookup Unit
By querying the FIB, the lookup unit obtains the output port number for a packet corresponding

to the packet’s destination. Instead of forwarding the packet directly to its destined port, PABO
introduces a probabilistic decision making process to decide where to forward the packet. Upon
packet arrival, the lookup unit calculates a probability with which the packet will be bounced
to its previous-hop switch. The calculation is based on a probability function P , which follows
the principles:
PRCP-1: The probability should be zero when the queue is almost free and should be one when
the queue is full;
PRCP-2: The probability should increase super-linearly with the queue utilization at the early
stage of bouncing back to prevent the queue from fast buildup;
PRCP-3: Packets that have already been returned should receive smaller probability to be
bounced back again.

To satisfy PRCP-3, we first define a base probability factor Pb for each packet according to the
number of times the packet has been bounced, i.e., np. When np grows, the base probability factor
should decrease dramatically to intentionally reduce the chance of a packet being persistently
bounced, as this could result in a large delay. To this end, we use an exponential decay function
in the following form for the base probability factor:

Pb(np) = e
λ

np+1 (1)

where λ > 0 is the exponential decay constant. It is always true that Pb(np) > 1 for any np ∈ Z+
0 .

We introduce a lower threshold θ ∈ [0, 1) for the output queue utilization uq and define
P (uq, ·) = 0 if 0 ≤ uq ≤ θ and P (uq, ·) = 1 if uq = 1. The first equation means that if the
output queue utilization is under the predefined threshold, i.e., the queue is underutilized, there

February 22, 2018 DRAFT

6 IEEE TRANSACTIONS ON COMMUNICATIONS

Utilization uq

0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it
y

P
(u

q
;n

p
)

0

0.2

0.4

0.6

0.8

1

3 = 0:5

Normal PABO

np = 0
np = 1
np = 2

(a)

Utilization uq

0 0.2 0.4 0.6 0.8 1

P
ro

b
ab

il
it
y

P
(u

q
;n

p
)

0

0.2

0.4

0.6

0.8

1

Normal PABO

lambda = 5
lambda = 15
lambda = 25

(b)

Fig. 3. Probability function P (uq, np) for packet bounce decision making. We set the threshold θ to 0.5: (a) we set the constant
λ to 5, and we show the curves in cases of np = 0, 1, 2, respectively, and (b) we show the curves with lambda = 5, 15, 25 in
the case of np = 0. When uq ≤ 0.5, switches forward packets normally; PABO is only involved when uq > 0.5.

is no need to bounce packets; the second equation guarantees that when the output queue is full
or overflows, all the upcoming packets have to be bounced back in order to avoid packet drops.
These two equations ensure the validity of PRCP-1. Then we define for θ < uq < 1,

P (uq, ·) = α · P−uq
b + β (2)

where α and β are constants. Noting that P (uq, ·) also satisfies (θ, 0) and (1, 1), we have

α =
P θ
b

P θ−1
b − 1

, β =
1

1− P θ−1
b

. (3)

Substituting Pb with Equation (1) and combining all the above cases, we have the closed form
of P satisfying PRCP-2 as

P (uq, np) =


0 0 ≤ uq ≤ θ,

e
λ(θ−uq)
np+1 − 1

e
λ(θ−1)
np+1 − 1

θ < uq ≤ 1.
(4)

The curves of function P , with θ = 0.5, under different utilization uq are illustrated in Figure 3.
Note that θ has a major impact on the proportion of packets that will be bounced back at a given
queue, while λ can be used to roughly control the maximum number of hops each bounced packet
will traverse. We will further verify these correlations in Section VI.

D. FIB
The FIB maintains mappings between the packet destination MAC address and the corre-

sponding output port (i.e., interface) that the packet should be forwarded to. In PABO’s design,
the lookup unit relies on two parameters, uq and np, to make the forwarding decision for each
packet as we just discussed. While np can be obtained from the packet as we will describe in
Section III-F, uq needs to be available after the inquiry to the FIB from the lookup unit. To
achieve this, we introduce an extra column named “Util” in the forwarding table, as shown in
Figure 2. In addition to maintaining the MAC-port mappings, the FIB also monitors and updates
the output queue utilization uq for each output port. When a packet is forwarded to an output

DRAFT February 22, 2018

SUBMITTED PAPER 7

queue, the utilization uq of the queue will be updated by the following equation uq ← uq+1/Cq,
where Cq is the maximum capacity of the queue. When a packet is expelled by the scheduler
at an output queue, the corresponding value of uq in the FIB is also updated according to the
following equation uq ← uq − 1/Cq.

E. Output Queue

We separate the bounced packets from the normal packets by assigning the bounced packets
higher priority at the output queue (illustrated as OQ in Figure 2). This is due to the observation
that compared to normal packets, packets that have already been bounced should be processed
earlier as they have already been delayed during the bouncing process. To this end, we introduce
two virtual sub-queues for the output queue, namely bounce queue and normal queue (for every
service class). The packets in the bounce queue will enjoy higher priorities when being scheduled
by the output scheduler. For simplicity we adopt a straightforward scheduling strategy and we
modify the output scheduler such that packets from the normal queue will be transmitted only
if the bounce queue is empty. In a sequel, the bouncing delay will be compensated by reducing
their queueing delay during their retry process.

F. Packet

Each packet in the network will carry a counter np to indicate how many times the packet
has been bounced back. Take again the example in Figure 1. When congestion occurs at S4-H3,
suppose the last normally reached switch for the packets from both flows F1 and F2 is S4. For
packets from flow F2 that are bounced back to S3 by S4, the value of np will be increased by
one. When the bounced packets are forwarded out normally to S4, the value of np will stay
the same. If these packets are bounced from S4 to S3 again, np will increase to record the new
bounce behaviors. This counter np will be used by the lookup unit in switches as an input for the
bounce probability calculation. By carefully setting the probability functions as we have already
discussed, the probability that a packet is bounced back consistently for multiple times will be
significantly reduced.

G. End-host Support

When persistent congestion occurs, there will be packets bounced straight back to the source
along the reverse direction of the forwarding path. While end-host involvement is required to
support this circumstance, the bounced packets can also serve as a congestion notification for
upper-layer congestion control protocols. When receiving a bounced packet, the source will be
notified that the congestion has happened along the forwarding path, and exceeds the ability of
the network to handle it. In such cases, the source would reduce its sending rate. The extent of
this rate adjustment will depend on the severity of the congestion, measured by for example the
number of bounced packets the source has received during a certain amount of time. We claim
that more sophisticated transport layer congestion control protocols can also be incorporated to
further handle the congestion smoothly. The bounced packets received by the source will be
injected into the source’s output queue again for further retransmission, which also ensures that
no packets will be dropped.

February 22, 2018 DRAFT

8 IEEE TRANSACTIONS ON COMMUNICATIONS

IV. IMPLEMENTATION

To validate the effectiveness of PABO, we completed a proof-of-concept implementation based
on the INET framework for OMNeT++ [8]. Our implementation code is open-sourced at [17]. By
overriding the corresponding link-layer modules, we created Ethernet switches and host models
that can support PABO. The detailed modifications made to each module will be explained in
the following.
EtherSwitch. We mainly modify the implementation of its submodules including MACTable,
MACRelayUnit, EtherQosQueue. We introduce a float-point variable for each entry in the
MACTable module to keep track of the output queue utilization at the corresponding output
interface. In MACRelayUnit, We alter the implementation of the forwarding strategy (i.e., func-
tion handleAndDispatchFrame) by applying our probability-based forwarding decision making
mechanism. The utilization variable in the MACTable is also updated accordingly after a for-
warding decision has been made. Furthermore, we disable the MAC address self-learning process
when receiving bounced packets, as the destination addresses of bounced packets are already
in the forwarding table. EtherQosQueue is a typical buffer module type, which is composed
of classifier, queue, and scheduler. In addition to the default dataQueue (as normalQueue), we
introduce another queue called bounceQueue. We alter the classifier in order to separate bounced
packets from normal ones. Bounced packets are stored in bounceQueue, while normal packets
are sent into normalQueue. The normalQueue and bounceQueue are with the DropTailQueue
type. Finally, we modify the output scheduler PriorityScheduler where we give priorities to
the packets in the bounceQueue to reduce delay.
EtherFrame. This is a message type representing link-layer frame. It contains the common
header fields and payloads. To keep track of the value of np, i.e., the number of times the packet
has been bounced back, we add a non-negative integer counter bouncedHop in the header. This
counter will increase by one every time the packet is bounced back by one hop and will stay the
same if the packet is forwarded normally. Then we introduce three other parameters for further
analysis. We introduce another counter bouncedDistance for each packet to indicate how far
(measured by the number of hops) it has been bounced from its last normally reached switch
before it was first bounced. This counter will increase by one if the packet is bounced and will
decrease by one if the packet is normally forwarded. For each packet, to record the farthest
distance it has been bounced, we introduce the parameter maxBouncedDistance. Meanwhile,
we also add a non-negative integer counter totalHop to record the total number of hops (normal
plus bounced, including the sender) that the packet has traversed in the network.
Host. The host is StandardHost type – an example host contains modules related to link
layer, network layer, transport layer and application layer. We mainly make modifications to
the link layer of the StandardHost to generate our host model. Ideally, PABO is so far only
used for mitigating transient congestion in the network without the involvement of end-hosts.
However, it is possible that the congestion condition persists too long and the bounced packets
will finally reach the sender. To handle this situation, we modify the EtherMAC module in the
StandardHost to avoid dropping bounced packets that are not destined for this host. Then we
modify the EtherEncap module to check whether there is bounced packet or not. If so, the
bounced packets will be sent to the sender’s buffer for retransimission. Note that the type of
sender’s buffer is also EtherQosQueue. As a result, the same modifications we made for switches
can also be applied for EtherHost.

In addition to the PABO implementation, we make some special modifications to the transport

DRAFT February 22, 2018

SUBMITTED PAPER 9

layer of the StandardHost for the purpose of measuring the level of packet out-of-order.
In the TCP sender, we record the sending order of each packet into a special queue called
sentSeqQueue. We maintain a send counter in the TCP sender. Every time a new packet is sent,
the packet is labeled with a unique sending order si, and this mapping information (packet i, si)
will be recorded into sentSeqQueue until the packet i is ACKed. If packet i is retransmitted, the
sender will look up in sentSeqQueue to find the corresponding si, and label the retransmitted
packet with it. In the TCP receiver, we maintain a receive counter. Each received packet is
assigned a receiving order ri (loss and duplicate packets are ignored). For each packet, we
calculate the difference between its si and ri. Finally, we can get a distribution of displacement
of packets, which will be used for further analysis.

V. PACKET OUT-OF-ORDER ANALYSIS

Packets arriving at receiver disobeying their sending order is called packet out-of-order delivery
[18]. TCP requires the in-order of packets, which means the receiving order of the packets is
supposed to be the same as their sending order. Out-of-order packets will generate sequence holes
on the receiver side and then, TCP will duplicate the ACK to request the missing packets. Three
continuous duplicate ACKs will trigger spurious fast retransmission [19], bringing unnecessary
packet delay as well as reduced congestion window. Studies have shown that packet out-of-
order delivery is not rare [20], [21] and it can be caused by multiple factors such as packet loss,
parallelism within routers or switches, different path delays in packet-level multi-path routing,
route fluttering and so on [18]. In our case, PABO allows packets to be retuned on the forwarding
path in order to prevent packet loss. On the other hand, this bouncing behavior will disturb the
packet forwarding direction, thus inevitably leading to increased number of out-of-order packets.
In this section, we will dissect the impact of each of the system parameters (e.g., θ and λ in
the bounce probability function (4)) to packet out-of-order. From the analysis, we show how the
parameters could be tuned in order to balance the efficiency of PABO and its negative effect on
packet out-of-order.

A. Measuring Packet Out-of-Order
To measure the level of packet out-of-order delivery in a packet stream, various methods have

been proposed. Among them, Reorder Density (RD) captures packet out-of-order delivery by
a weighted distribution of the displacement of packets [22]. Consider a sequence of packets
sent in the order of [1, 2, ..., N], which is referred to as sending index si for packet i. When
arriving at the receiver side, each packet i will be assigned a receiving index recording the order
of reception, denoted by ri. The difference between the sending index and the receiving index,
denoted by di for each packet i, is calculated as

di = ri − si. (5)

If di > 0, packet i is considered to be late; di < 0 means that packet i arrives earlier than
expected; di = 0 means there is no out-of-order event occurred. RD also introduces a threshold
DT > 0 on |di|, beyond which an early or a late packet is deemed lost. Lost or duplicated packets
will not be assigned any receive index. Then, we define distribution vector S[k] which contains
the number of packets with a displacement of k. By normalizing it to the total number of non-
duplicated received packets N , we obtain the following weighted distribution of displacements,
denoted by RD[k].

February 22, 2018 DRAFT

10 IEEE TRANSACTIONS ON COMMUNICATIONS

H1

H2

H3
H4

S1

S2

S3

S4

S5

S6

S7

Fig. 4. The network topology used for investigating the impact of PABO on the level of packet out-of-order, and also for
conducting the hop-by-hop evaluation of PABO.

RD[k] =
S[k]

N
,−DT ≤ k ≤ DT . (6)

Based on RD, we now derive a new metric called reorder entropy to quantitatively analyze the
properties of the distribution [23]. Reorder entropy uses a single value to characterize the level
of out-of-order in a packet stream, reflecting the fraction of packets displaced and the severity
of packet displacement. The formal definition of reorder entropy is given by

ER = (−1) ·
i=DT∑
i=−DT

(RD[i] · lnRD[i]). (7)

It can be verified that larger reordering entropies represent a more dispersed distribution of
packet displacement, translating into a more severe packet out-of-order event. If there is no
packet out-of-order at all, the reorder entropy should be equal to zero.

B. Impact of PABO on Reorder Entropy

To explore the impact of PABO on packet out-of-order, we conduct some experiments to
investigate how the reorder entropy changes with different PABO parameters. In particular, we
tune the values for parameters θ and λ in the bounce probability function as in Equation (4) and
we report our major observations, based on which we discuss possible ways to improve PABO
in terms of packet out-of-order.
Simulation Setup. We adopt a tree-based network topology consisting of three servers (i.e., H1,
H2 and H3) and one client (i.e., H4) connected by seven switches, as depicted in Figure 4. All the
links in the network are assumed to have the same rate of 1Gbps. We consider a scenario where
the client establishes and maintains three concurrent TCP connections with the three servers,
respectively. The topology shows that the client is three-hop away from each of the servers and
the data streams from all the servers will be aggregated at the last-hop switch directly connected
to the client. All the experimental results presented in this section will be combined measurement
results of the three concurrent TCP connections.
Traffic. We create communication patterns in the considered scenario to simulate the expected
congestion conditions. In our experiment, we set up one TCP session for each of the TCP
connections during the whole simulation time. Each of the TCP session includes four TCP
requests, in which the hosts behave in a request-reply style: The client sends a request (200B)
with the expected reply length (1MiB) to the server, then the server responds immediately with

DRAFT February 22, 2018

SUBMITTED PAPER 11

50
40

30
20

6
10

01
0.8

0.6
3

0.4
0.2

0
1.5
2

2.5
3

3.5
4

4.5

En
tro
py

Fig. 5. The relationship between θ, λ in bounce probability function and entropy.

the requested length of data. Each TCP request represent an appearance of transient congestion
at switch S7 due to the fact that all the three servers will send data to the client in a synchronized
fashion. This setting simply emulates the partition/aggregate traffic pattern that is very popular
in a data center network and can be conveniently monitored. In the rest of the paper, we will
refer to it as the partition/aggregate traffic for ease of expression. The time gap between TCP
requests is set to one second, which is enough to avoid overlaps between the periodic congestion
appearances. To simulate a transient congestion (e.g., incast congestion), we set buffer sizes to
be small and flow rates to be bursty. More specifically, the queue capacities of both dataQueue
and bouncedQueue in all the switches and hosts are set to 100. To remove the limit on flow
rate by the congestion control mechanism in TCP, we set ssthresh to be arbitrarily high so
that the servers will perform slow start without the limit of ssthresh. At the same time, the
advertised window of the client is set to 45535 bytes to enable the growth of flow rate. We also
disable fast retransmission in TCP and set the retransmission timeout (RTO) to its upper bound
240s [24]. This way, the packet out-of-order caused by packet retransmission is eliminated so
we can observe the packet out-of-order brought only by the bouncing behavior of PABO.
Overview of Packet Out-of-Order Delivery. We first present a brief overview of packet out-of-
order delivery under different parameter settings. We use reorder entropy (referred to as entropy
hereafter for the ease of expression) to quantify the level of packet out-of-order. By tuning the
values for the parameters, namely θ and λ, we make observations on how the entropy changes
accordingly. The experimental results are depicted in Figure 5. As we can observe that, the
entropy declines along the θ axis, e.g., when θ increases, the threshold for PABO to bounce
back packets becomes higher and thus, less packets will be bounced under a certain traffic
condition, as a result of which packet out-of-order is less severe. Along the λ axis, the variation
of entropy is less significant. Note that the entropy converges to a minimal point in cases that
the switch will only bounce back packets when the buffer is full.
Separate Impact of Parameters θ and λ. We now focus on analyzing how θ and λ affect on
packet out-of-order separately. In addition to the reorder entropy which measures the level of
packet out-of-order, we calculate the variance of the buffer utilization of all the switches in the
network. Note that the variance can be used to roughly characterize the effectiveness of PABO
as PABO utilizes the buffer of upstream switches to avoid packet loss, leading to a more even

February 22, 2018 DRAFT

12 IEEE TRANSACTIONS ON COMMUNICATIONS

distribution of packets among the switch buffers in the network. Meanwhile, we define timeRatio
to measure the scope of affected packets under different pairs of θ and λ. For those utilization of
the buffers that will be considered during the probabilistic decision making process, we calculate
the average time ratio of them over θ.

Figure 6 depicts the separate impact of θ and λ on the reorder entropy, the variance, and
the timeRatio. We select three representative values for θ and λ respectively to conduct further
analysis. It can be generated observed that the reorder entropy in all the six figures is highly
correlated to timeRatio, which confirms that PABO can affect the level of packet out-of-order.

Figure 6 (a)-(c) illustrate the impact of parameter θ on packet out-of-order. According to
Equation (4), larger θ means the less effectiveness of PABO. We can observe in the three figures
that timeRatio reflecting the affected scope of PABO decreases gradually to a steady point. This
is because most switches are under low utilization, thus the change of θ in a lower range can
affect more switches. As PABO is gradually losing its influence, we can observe that the variance
in the three figures grows with similar tendency. However, the decrease tendency is different for
the reorder entropy. In Figure 6(a), the entropy changes relatively stable comparing to the other
two figures. This can be explained by the change of affected scope of packets: when λ is at
small value (e.g. λ = 1), the change of θ has much less impact on timeRatio. In Figure 6(b)
and (c), the entropy drops sharply at first, then remains stable in the middle area, followed by
a further decrease in the end. This is basically in accordance with the change of timeRatio.
The final decline is reasonable, as the switches are trying to avoid packet bounces as much as
possible.

Figure 6 (d)-(f) depict the influence of parameter λ on packet out-of-order. It is known that
larger λ means the more effectiveness of PABO. In pace with the growth of λ, timeRatio increases
and the variance decreases with a reasonable range of fluctuation. Moreover, we can observe
from the ordinate range of the above figures that larger θ leads to the reduced influence of λ on
timeRatio. When θ is very close to 1 (e.g. in Figure 6 (f)), the influence of λ can be ignored,
since it hardly affects the bounce probability. As is demonstrated in Figure 6 (d) that the entropy
rises rapidly at first and then remains a steady point. However, Figure 6 (e) illustrates an opposite
tendency of entropy. This is because when θ = 0.5, S7 is the only switch among the topology
in Figure 4 that satisfies the condition for bouncing back packets. As λ rises, the percentage of
bounced packets continues to grow util it is infinitely close to 1. In this case, higher bounce
back percentage at S7 leads to lower entropy, as the bouncing back process of the packets is
comparable with experiencing an equally extended path.

C. Discussion
As stated above, the effectiveness of PABO can be a tradeoff when deciding the values of

θ and λ. The main idea of PABO is to utilize the buffer of upstream switches to avoid packet
loss, making the packets more evenly distributed in the network. Consequently, the transient
congestion (e.g. the incast problem) is relieved. Higher influence of PABO brings the stronger
ability to mitigate transient congestion in the network, which can also result in more severe
packet out-of-order. Severe packet out-of-order can lead to the performance collapse of the
related TCP connection. Therefore, we should balance between the variance and the reorder
entropy by carefully choosing the parameters for target networks. Focusing on this tradeoff, the
recommended solution is to control the bounce back scope around the congestion point. This
means when there is a congestion, θ should be set to just exclude the switches which are not

DRAFT February 22, 2018

SUBMITTED PAPER 13
Ti

m
eR

at
io

0

0.01
6 = 1

3
0 0.2 0.4 0.6 0.8 1

En
tro

py

1

2

3

4

5

Va
ria

nc
e

#10-3

0

0.5

1

1.5

2

Entropy
Variance

(a)

Ti
m
eR

at
io

0

0.01

0.02
6 = 25

3
0 0.2 0.4 0.6 0.8 1

En
tro
py

1

2

3

4

5

Va
ria
nc
e

#10-3

0

0.5

1

1.5

2

Entropy
Variance

(b)

Ti
m
eR

at
io

0

0.01

0.02
6 = 50

3
0 0.2 0.4 0.6 0.8 1

En
tro
py

1

2

3

4

5

Va
ria
nc
e

#10-3

0

0.5

1

1.5

2

Entropy
Variance

(c)

Ti
m
eR

at
io

0

0.01

0.02
3 = 0.1

6
0 10 20 30 40 50

En
tro
py

3.5

4

4.5

Va
ria
nc
e

#10-4

2

5

8

Entropy
Variance

(d)

Ti
m
eR

at
io #10-3

2

2.2

2.4
3 = 0.5

6
0 10 20 30 40 50

En
tro
py

2.5

3

3.5

4

Va
ria
nc
e

#10-3

1

1.2

1.4

1.6
Entropy
Variance

(e)

Ti
m
eR

at
io #10-3

1.35

1.4

1.45
3 = 0.95

6
0 10 20 30 40 50

En
tro
py

2.2

2.4

2.6

Va
ria
nc
e

#10-3

1.8

1.88

1.96
Entropy
Variance

(f)

Fig. 6. Separate impact of parameter θ, λ in bounce probability function on reorder entropy, variance and timeRatio.

faced with the danger of packet loss. There is no need to set the θ too large, for the reduced
reorder entropy is not worth to compensate for the increased variance. If the bounce back scope
is limited to be just around the congestion point by θ, larger λ representing higher bounce back
percentage is preferred to reduce both the reorder entropy and the variance.

VI. HOP-BY-HOP EVALUATION

We first conduct simulation studies at a hop-by-hop level to evaluate the performance of
PABO, and we report the experimental results in this section.

A. Simulation Setup
We adopt the same topology as Section V in Figure 4, except that the hosts don’t contain any

high layer protocols (i.e., IP, TCP). We focus on only one direction data retransmission for the
moment, where three senders (i.e., H1, H2 and H3) send data simultaneously to a single receiver
(i.e., H4). The data from all the senders will be aggregated at the last-hop switch (i.e., S7), in
which the congestion appears. The duration of all the simulations is set to one second to cover
multiple appearances of periodic congestions. The links in the network are assumed to have the
same rate of 1Gbps.
Traffic. We imitate a periodic uniform flow by altering the traffic generating module. We fix the
burst number to be one and set the sendInterval to small values. Then, we introduce a new
parameter numPacketsPerGenerate to specify the number of packets to be sent in each generat-
ing. The duration of each generating can be roughly calculated by numPacketsPerGenerate ×
sendInterval. As the overlap of two consecutive generatings may bring persistent congestions
which will overflow the sender’s buffer, we modify the EtherTrafGen module to enable pause
after every generating. To guarantee fine-grained control over the sending rate, we fix the value

February 22, 2018 DRAFT

14 IEEE TRANSACTIONS ON COMMUNICATIONS

TABLE I
DISTRIBUTION OF maxBouncedDistance

Scenario # of maxBouncedDistance
0 1 2 3

Mild 43.45% 56.55% – –
Moderate 14.73% 85.27% – –

Severe 8.82% 84.14% 7.04% –

of sendInterval to be 10µs. Then, we control the rate by tuning numPacketsPerGenerate to
simulate congestions in different severities. We set pauseInterval to be 0.2s, which is sufficient
to avoid overlaps between two consecutive congestions.
Queue. The input and output queues of both hosts and switches are with the DropTailQueue
type. When using PABO, the capacities of both normalQueue and bounceQueue in switches
are set to be 500 by default. And we specially allocate larger buffers of size 1500 to both
normalQueue and bounceQueue in senders to avoid packet loss at the sender side. In the cases
without PABO where bounceQueue are not used, we double the capacities of normalQueue in
both switches and senders for fairness concerning.
Packets. All the packets generated are in the IEEE 802.3 frame formats with the payload size
set to be 1500 bytes.

B. Effectiveness under Different Congestion Severities
We validate the effectiveness of PABO by comparing it to the standard link-layer protocol

under three different severities of congestion. Parameters of bounce probability function P are
fixed as λ = 50, θ = 0.8. We set numPacketsPerGenerate to 500, 1500, 2500 to simulate
different severities of congestion, which are respectively referred to as mild, moderate, and severe.
We also measure the cases without PABO under the same traffic conditions and experimental
results show a packet drop rate of 0.13%, 44.46%, 53.34% at S7, respectively. Note that the
retransmission of those lost packets by upper-layer protocols could generally result in an order
of magnitude increase on packet delay due to the timeout-based fashion [7].

When PABO is involved, packet loss can be prevented. The number of bounced packets
at each switch in all the three scenarios is illustrated in Figure 7(a) and the proportion of
maxBouncedDistance is shown in Table II. As we can observe that, only switch S7 has bounced
56.55% of all the packets in the mild scenario. When the extent of the congestion becomes larger,
as in the moderate scenario, switches that are one hop from the receiver (i.e. H4), have bounced
packets and there are in total 85.27% of the packets have been bounced one hop away from
its last normally reached switch. When the congestion becomes very severe, all the switches
will be activated for bouncing packets, while there are still up to 8.82% of the packets being
successfully transmitted without any interference.

The zero packet loss guarantee is achieved at the sacrifice of delay, as bouncing a packet
would inevitably increases its totalHop. To measure the delay stretch brought by PABO, we
collect the values for totalHop from all the packets in three scenarios and presented the CDFs
in Figure 7(b). We can observe that almost all packets experience a delay no more than 5 hops
in the mild scenario, and up to 86.64% of the packets traverse no more than 11 hops in the

DRAFT February 22, 2018

SUBMITTED PAPER 15

Switch
1 2 3 4 5 6 7

N
u
m

b
er

o
f
B
o
u
n
ce

d
P
a
ck

et
s

#104

0

1

2

3

4

5

6

7
Mild
Moderate
Severe

(a)

Delay (totalHop)
0 10 20 30 40 50 60

C
D

F

0

0.2

0.4

0.6

0.8

1

(11, 86.64%)

Mild
Moderate
Severe

(b)

Fig. 7. Performance results of PABO: (a) Packet bounce frequency under different severities of congestion, and (b) the CDF
of the end-to-end delay measured by totalHop.

Simulation Time (s)
0 0.2 0.4 0.6 0.8 1O

u
tp

u
t
Q

u
eu

e
U

ti
li
za

ti
o
n

(#
1
0
0
%

)

0

0.2

0.4

0.6

0.8
S4-Avg
S5-Avg
S6-Avg
S7-Avg

(a)

Simulation Time (s)
0 0.005 0.01 0.015 0.02O

u
tp

u
t
Q

u
eu

e
U
ti
li
za

ti
o
n

(#
1
0
0
%

)

0

0.2

0.4

0.6

0.8 S4-Avg
S5-Avg
S6-Avg
S7-Avg
S7-Normal
S7-Bounce

(b)

Fig. 8. Switch output queue utilization under the mild scenario: (a) over the whole duration of the simulation, and (b) over
the first traffic peak.

severe scenario, which are still no more than four times the delay in the normal case. This is
quite acceptable compared to the orders of magnitude delay increases in retransmission-based
approaches.

We also monitor the output queue utilization of switch S4, S5, S6, and S7 in the mild scenario,
and the results are depicted in Figure 8. We monitor the utilization levels of normalQueue and
bounceQueue separately, and calculate the average utilization of the two queues at the output.
Figure 8(a) depicts the average utilization of the relevant switches over the whole duration of the
simulation which includes five appearances of transient congestion. We then focus on the first
traffic peak as illustrated in Figure 8(b), where we notice that when the normalQueue utilization
of S7 becomes high, packets are bounced to upstream switches S4, S5, and S6 and thus, the
bounceQueue at S4, S5, S6, as well as S7, will be used instead of overflowing the normalQueue
of S7. When the traffic volume declines, the queues at S4, S5, and S6 will be firstly cleared
up and then finally the congestion vanishes with the drop of the average (first bounce and then
normal) queue utilization of S7. This verifies our claim that PABO can avoid packet loss and
handle congestion by temporarily utilizing the buffers of upstream switches.

February 22, 2018 DRAFT

16 IEEE TRANSACTIONS ON COMMUNICATIONS

Threshold 3 for Queue Utilization
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
ro

p
o
rt

io
n

o
f
B
o
u
n
ce

d
P
a
ck

et
s

0.85

0.9

0.95

1
Measured values
Interpolation

(a)

Exponential Decay Constant 6
0 20 40 60 80 100 120 140 160

A
v
er

a
g
e

to
ta

lH
o
p

6.1

6.3

6.5

(b)

Fig. 9. Impact of the parameters (a) θ and (b) λ on the proportion of bounced packets and the average end-to-end delay
measured by totalHop, respectively.

C. Impact of Parameters

We also explore the impact of the parameters on the effectiveness of PABO in the moderate
scenario. We focus mainly on two parameters in the bounce probability function P and the
experimental results are shown in Figure 9. We measure the impact of threshold θ for queue
utilization on the proportion of packets being bounced and the exponential decay constant λ on
the average number of total hops for all packets, respectively. When setting λ to a fixed value
50, we notice a clear trend that the proportion of bounced packets decreases linearly with the
increase of θ, as depicted in Figure 9(a). Similarly, we fix θ to be 0.8 and observe that the
average number of total hops, i.e., totalHop, increases gradually stable with the increase of λ
from 0 to 160. Thereafter, it remains stable with only a negligible variation.

The values for the parameters should be determined according to the needs of the network
operator. The general principle is: smaller θ and larger λ improve the effectiveness of PABO,
which tends to avoid the congestion at a earlier time; while larger θ and smaller λ would prefer
to reduce the sensitivity of PABO, thus delay the absorption of the congestion.

VII. END-TO-END EVALUATION IN REALISTIC TOPOLOGY

We further evaluate the performance of PABO in the Fattree network topology [25] and we
present the experimental results in this section. We simulate different traffic patterns (many-to-
one, many-to-many) to observe the performance of PABO, then we present the parameter study
of θ about the impact of PABO on reorder entropy, per-packet delay and end-to-end delay.

A. Two-level Routing Table Implementation

Based on EtherSwitch with PABO mechanism, we created a FattreeSwitch implementing
the two-level routing table of Fattree. Owing to the fact that EtherSwitch module does not
contain network layer, we implement the two-level routing table on the link layer by applying
the following modifications.
Addressing. Firstly, in line with the Fattree addressing scheme, we make a one-to-one mapping
between an IP address and a MAC address. To illustrate, the IP address 10.0.0.1 corresponds to
the MAC address 0A-AA-0A-00-00-01. All MAC addresses share the same first two octets 0A-
AA, and the rest are transformed equivalently. Then we assign the transformed MAC addresses

DRAFT February 22, 2018

SUBMITTED PAPER 17

to each switch and host. Note that all the MAC ports of a switch share the same MAC address
for simplicity, which will not effect any experimental results.
Structure. Secondly, we modify the structure of MACTable to allow entries containing prefixes
and suffixes (i.e., /m prefixes are the masks used for left-handed matching, /m suffixes are the
masks used for right-handed matching).
Lookup. Thirdly, we modify the lookup unit of MACTable to allow two-level route lookup.
Prefixes are basically intended for route matching of intra-pod traffic, while suffixes for inter-
pod traffic. The value of prefix or suffix is simply used to check the number of octets required
for comparison. To be more specific, if we want to match an entry in the MACTable with a
left-handed prefix of N (e.g. 24), we should find from left to right at least N/8 (e.g. 3) identical
octets between this entry and the destination MAC address, excluding the same first two octets.
This also applies to the match of a right-handed suffix except that the matching direction is from
right to left.
Routing Example. Here we explain the Fattree two-level routing algorithm implemented in
Figure 10. For the hosts connected to each lower-level switch (e.g. S1) in this Fattree structure,
the last octets of the left hosts are 02, and the last octets of the right hosts are 03. Based on
the last octet of the destination MAC address, the algorithm uses the prefix/suffix matching to
disperse different traffic, which we will explain in a simplified way. In the fattree topology,
each pod follows similar rules on packet routing. We take pod 0 as an example to explain
inter-pod routing and intra-pod routing separately. For ease of expression, we refer to S1, S3 as
the left-side switches, and S2, S4 as the right-side switches. For inter-pod traffic, the left-side
switches route a packet destined for another pod to the port number same as the last octet of its
destination MAC address (e.g. packet addressed to 02 forwarded to port 2 and 03 forwarded to
port 3). The right-side switches work in an opposite way (e.g. packet addressed to 02 forwarded
to port 3 and 03 forwarded to port 2). We give an example to explain the route decisions taken
for a packet from the inter-pod traffic: source H2 to destination H10, which is illustrated in
Figure 10. Marked in the picture are the port numbers of the switches. As the last octet of its
destination is 03, the packet first take the port 3 of S1, then goes out at the port 2 of S4 to
C3, after which there is only one path to take: to be transmitted to the destination pod, then
the destination subnet switch where it is finally switched to its destination host. For intra-pod
traffic, the first-hop switch follows the same rules as in inter-pod routing, then the second-hop
switch route the packet to its destination subnet switch, and finally the destination host.

B. Simulation Setup
We use the Fattree network topology depicted in Figure 10 to evaluate the performance of

PABO. We initialize the MACTable of all the FattreeSwitch using input files that give all the
prefixes and suffixes, and turn off the update function. Meanwhile, to avoid the broadcast storm
brought by ARP request of the hosts, we statically initialize all the hosts with the IP-address-
to-MAC-address mapping information. The duration of all the simulations is set to ten second,
which can cover multiple appearances of periodic congestions. The links in the network are
assumed to have the same rate of 1Gbps.
Traffic. We simulate different traffic patterns by changing the number of servers and clients.
For each TCP connection, we use the same traffic and buffer setup as Section V, except that the
advertised window is set to 50000 bytes. When using PABO, we disable all the retransmissions
(both fast retransmit and retransmission timeout) as well as skipping the related window reduction

February 22, 2018 DRAFT

18 IEEE TRANSACTIONS ON COMMUNICATIONS

H1 H2

S1

S3

H3 H4

S2

S4

H5 H6

S5

S7

H7 H8

S6

S8

H9 H10

S9

S11

H11 H12

S10

S12

H13 H14

S13

S15

H15 H16

S14

S16

C1 C2 C3 C4

X-X-X-02 X-X-X-03 X-X-X-02 X-X-X-03

0 1

2
3

0 1

2 3

0
1

2 3

0
1

32

Pod 0 Pod 1 Pod 2 Pod 3

Fig. 10. The fattree topology used for evaluating the performance of PABO.

TABLE II
DISTRIBUTION OF maxBouncedDistance

Scenario # of maxBouncedDistance
0 1 2

3 to 1 50.17% 49.83% –
6 to 1 53.24% 46.76% –
9 to 1 56.71% 43.29% –

12 to 1 57.68% 42.32% –
m to m 38.37% 61.63% –

intended for congestion control, as the retransmissions are unnecessary due to the reliability
of PABO. In the cases without PABO, we adopt the TCP Reno protocol to provide network
congestion control.
PABO Configuration. We set the system parameters θ = 0.95, λ = 50 in both many-to-one
and many-to-many scenario experiment.

C. Many-to-One Scenario

First, we mimic the partition/aggregate traffic by specifying multiple servers responding to
one client (i.e., H9) in a synchronized fashion. We simulate different severities of congestion
by changing the number of servers (i.e., 3 to 1, 6 to 1, 9 to 1, 12 to 1). And we observe how
PABO performs in different congestions comparing to cases without PABO.

Figure 11 demonstrates the packet bounce frequency of each switch under different many-to-
one scenario. In the 3 to 1 congestion scenario, we choose one host from each pod to be the
servers except the pod with the client H9, i.e., H1, H5, H13. The first aggregate switch of the
three connections is C1. When PABO is not working, the core switch C1 will be the only switch

DRAFT February 22, 2018

SUBMITTED PAPER 19

3 to 1
6 to 1
9 to 1
12 to 1

Switch
c1 c4 s11 s12 s9

N
u
m

b
er

o
f
B
o
u
n
ce

d
P
a
ck

et
s

0.2

0.4

0.6

#104

1
2
3
4 3 to 1

6 to 1
9 to 1
12 to 1

Fig. 11. Packet bounce frequency under different many-to-one scenario.

to experience packet losses with an overall drop rate of 0.33%. As PABO participates, only C1
bounce back packets to avoid packet loss at a bounce percentage of 49.83%.

In the 6 to 1 congestion scenario, we add one server from each pod except pod 2, i.e., H3,
H7, H15, then S9 is congested with a drop rate of 0.51%. There is no significant increase in
drop rate and the number of drop location, as the congestion control mechanism of TCP Reno
is taking effect. For PABO, we can see that as the first aggregate switches each gathering traffic
flows of three connections, C1 and C4 bounce back packets to mitigate congestion. Since most
of the congestion resulted from aggregating three connections is mitigate by the bouncing back
of C1, C4. There is only a small scale of bounce back in S11 and no bounce back in S12. The
highest proportion of bouncing back is in S9 as it is the last hop that gathers all the traffic flows
to H9.

In the 9 to 1 congestion scenario,we further add a server from each pod except pod 2, i.e.,
H2, H8 and H14. In this scenario, pod switch S9 is congested with a drop rate of 0.45% without
PABO. When PABO is involved, as aggregate switches of five traffic flows from H1, H2, H5,
H13 and H14, C1 and S11 bounce back packets. For traffic flows from H3, H7, H8 and H15,
the aggregate switch C4 bounces back packets. As the only path to H9, S9 still account for the
highest percentage of bouncing back. In total, 43.29% of all the packets are bounced back.

In the 12 to 1 congestion scenario, all of the hosts in the first two pod and three out of four
hosts (i.e., H13, H14, H15) in the last pod are the servers, together with a special intra-pod
traffic brought by H11. Without PABO, both pod switch S9 and core switch C1 are congested
with a total drop rate of 0.52%, while 32.6% of the drop event happen in C1 and 67.4% happen
in S9. With PABO taking effect, C1, C4, S11, S12 and S9 bounce back 42.32% of the packets.

For all the many-to-one scenarios, Table II shows that as the number of servers increases, the
percentage of bounced packet decreases although the congestion is getting more severe. This is
reasonable because though the percentage of bounced packets is smaller, each bounced packet
is bounced back and forth more frequently around the congestion point.

Figure 12 shows the CDF of absolute packet displacement measured by RD in the 12 to
1 scenario. In cases with PABO, because of the severe congestion, approximately 50% of the
packets arrive at their destination out of order. The max absolute value of displacement is 95.

February 22, 2018 DRAFT

20 IEEE TRANSACTIONS ON COMMUNICATIONS

Absolute Displacement jkj
0 20 40 60 80

C
D

F
0.5

0.6

0.7

0.8

0.9

1

PABO
noPABO

Fig. 12. The CDF of absolute packet displacement in the 12 to 1 scenario.

In cases without PABO, packet loss is the main reason of packet out-of-order. Although the
level of out-of-order is much less severe, the max absolute value of displacement is up to 76.
This means there are still packets with large displacement values which are enough to trigger
retransmission timeout.

We also focus on the time delay comparison between cases with PABO and cases without
PABO. Figure 13 illustrates the average time delay per packet, regarding the time spent of every
received packet from its source to destination. It shows that the average per-packet delay of
PABO is slightly higher than cases without PABO, which is because some of the packets are
bounced back to avoid packet loss. Moreover, with the growth of the server number in the
many-to-one scenario, the standard deviation of per-packet delay increases as the congestion is
becoming more severe. This confirm our statement that smaller percentage of bounced packets in
more severe congestion means that bounced packets are bounced back and forth more frequently.
For all the many-to-one despite the 12 to 1 scenario, the basic trend for per-packet delay is very
related to the degree of congestion. The exception is because the path of the special intra-pod
traffic existed only in the 12 to 1 scenario is much shorter than the others.

Figure 14 depicts the average end-to-end delay of all TCP connections in each scenario, from
which we can see that cases with PABO has obvious advantage over cases without PABO in all
the scenarios, for retransmission-based approaches of TCP Reno bring orders of magnitude delay
increases. Moreover, the advantage of PABO on end-to-end delay in the many-to-one scenario
grows increasingly evident with the congestion becoming more severe (excluding the 12 to 1
scenario for the influence of intra-pod traffic).

D. Many-to-Many Scenario
Second, we evaluate PABO under the many-to-many scenario, which consists of two 3 to 1

partition/aggregate traffic. In this scenario, H1, H5 and H13 are the servers which respond to the
request of client H9. In the meantime, H4, H8 and H16 respond to the request of client H10.
For each 3 to 1 traffic, the first aggregate switches are the core switch C1 and C2 respectively.
Then the two 3 to 1 traffic aggregate at S11 and go separately at the output ports of S9. Without
PABO, the drop rate is 0.54%, with all the packet losses occur in S11. By using PABO, 61.63%
of the packets are bounced back, with 18.35% bounced at C1 , 18.77% at C2 and 62.88% at S11.

DRAFT February 22, 2018

SUBMITTED PAPER 21

3 to 1 6 to 1 9 to 1 12 to 1 m to m

P
er

-P
a
ck

et
D

el
ay

#10-3

0

0.5

1

1.5

2

2.5

3
PABO
noPABO

Fig. 13. Average time delay per packet under different congestion scenario.

3 to 1 6 to 1 9 to 1 12 to 1 m to m

E
n
d
-t
o
-E

n
d

D
el
ay

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
PABO
noPABO

Fig. 14. Average end-to-end delay of all TCP connections in each congestion scenario.

In the many-to-many scenario, the per-packet delay of PABO is still higher than cases without
PABO, for over half of all the packets are bounced back. As for the end-to-end delay results,
PABO still has great advantage over the normal case.

E. Impact of Parameter θ

We make evaluations to observe how the parameter θ in the bounce probability function of
PABO affects on the experiment results under the many to many scenario. We neglect the small
values of θ, because it’s unnecessary to bounce back too early. Therefore, we only focus on the
domain of θ ≥ 0.5. The results are illustrated in Figure 15. It shows that with the increase of θ,
entropy remains stable then drops when θ is close to 1, which is similar to the previous result
in Section V. As to the effect of θ on the end-to-end delay, it shows no obvious regularity. For
sooner or later PABO starts to bounce back packets, the bounced packets are absorbed inside
the network to queue up for being finally handled by the destination end host. Therefore when
using PABO, the arrival time of the last packet is determined by the limit of the last hop switch
connected to the destination, rather than the bouncing back threshold θ. For results of per-packet

February 22, 2018 DRAFT

22 IEEE TRANSACTIONS ON COMMUNICATIONS

En
tro

py

2

3.5

5

0

0.05

0.1

PABO
noPABO

En
d-

to
-E

nd
 D

el
ay

0.02

0.04

0.06

0.3

0.35

0.4

PABO
noPABO

3
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1Pe

r-P
ac

ke
t D

el
ay

#10-3

1

1.5

2 #10-3

0.5

1

1.5

PABO
noPABO

Fig. 15. The relationship between θ, entropy, per-packet delay and end-to-end delay in the many-to-many scenario.

delay, there is also no obvious regularity. Smaller values of θ avoid congestion at an earlier time,
which result in larger percentage of bounced packets and relatively smaller bounced frequency
for each packet. Similarly, larger θ values tend to avoid packet loss as well as maintaining
high utilization of switches, thus the percentage of bounced packets is smaller and the bounced
packets are bounced back and forth more frequently.

VIII. CONCLUSION

In this paper, we proposed a reliable data transmission protocol – PABO, for the link layer.
When facing buffer saturation, PABO bounces the excess packets to upstream switches to avoid
packet loss, which can mitigate transient congestion in network at a per-flow granularity. We
complete a proof-of-concept implementation, and investigate into the impact of PABO on the
level of packet out-of-order, then we provide useful insights for configuring PABO. Extensive
simulations have proved the effectiveness of PABO, showing that PABO has obvious superiority
of end-to-end delay over the traditional protocol stack by guaranteeing zero packet loss in all
cases.

REFERENCES

[1] X. Shi, L. Wang, F. Zhang, K. Zheng, and Z. Liu, “Pabo: Congestion mitigation via packet bounce,” in Communications
(ICC), 2017 IEEE International Conference on Communications. IEEE, 2017, pp. 1–6.

[2] M. Alizadeh, A. G. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center
TCP (DCTCP),” in SIGCOMM, 2010, pp. 63–74.

[3] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: incast congestion control for TCP in data center networks,” in CoNEXT,
2010, p. 13.

[4] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye, “DIBS: just-in-time congestion mitigation for data
centers,” in EuroSys, 2014, pp. 6:1–6:14.

[5] IEEE Std 802.3x-1997, pp. 1–324, 1997.
[6] O. Feuser and A. Wenzel, “On the effects of the IEEE 802.3x flow control in full-duplex ethernet lans,” in LCN, 1999,

pp. 160–161.
[7] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding TCP incast throughput collapse in datacenter

networks,” in WREN, 2009, pp. 73–82.
[8] OMNeT++, https://inet.omnetpp.org/.
[9] Explicit Congestion Notification, https://tools.ietf.org/rfc/rfc3168.txt.

[10] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1,
no. 4, pp. 397–413, 1993.

DRAFT February 22, 2018

SUBMITTED PAPER 23

[11] C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong, “On designing improved controllers for AQM routers supporting TCP
flows,” in INFOCOM, 2001, pp. 1726–1734.

[12] D. Zats, A. P. Iyer, G. Ananthanarayanan, R. Agarwal, R. H. Katz, I. Stoica, and A. Vahdat, “Fastlane: making short flows
shorter with agile drop notification,” in SOCC, 2015, pp. 84–96.

[13] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz, “Detail: reducing the flow completion time tail in datacenter
networks,” in SIGCOMM, 2012, pp. 139–150.

[14] S. Kandula and R. Mahajan, “Sampling biases in network path measurements and what to do about it,” in IMC, 2009, pp.
156–169.

[15] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,” in HotNets, 2009.
[16] A. Kesselman and A. Rosén, “Scheduling policies for CIOQ switches,” J. Algorithms, vol. 60, no. 1, pp. 60–83, 2006.
[17] PABO, https://github.com/Xiang-Shi/PacketBounce.
[18] K.-C. Leung, V. O. Li, and D. Yang, “An overview of packet reordering in transmission control protocol (tcp): problems,

solutions, and challenges,” IEEE transactions on parallel and distributed systems, vol. 18, no. 4, 2007.
[19] R. Ludwig and R. H. Katz, “The eifel algorithm: making tcp robust against spurious retransmissions,” ACM SIGCOMM

Computer Communication Review, vol. 30, no. 1, pp. 30–36, 2000.
[20] J. C. Bennett, C. Partridge, and N. Shectman, “Packet reordering is not pathological network behavior,” IEEE/ACM

Transactions on Networking (TON), vol. 7, no. 6, pp. 789–798, 1999.
[21] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Transactions on Networking (TON), vol. 7, no. 3, pp.

277–292, 1999.
[22] A. Jayasumana, “Improved packet reordering metrics,” 2008.
[23] B. Ye, A. P. Jayasumana, and N. M. Piratla, “On monitoring of end-to-end packet reordering over the internet,” in

Networking and Services, 2006. ICNS’06. International conference on. IEEE, 2006, pp. 3–3.
[24] R. Braden, “Rfc-1122: Requirements for internet hosts-communication layers,” vol. 11, no. 3, pp. 82–89, 1989.
[25] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” in ACM SIGCOMM

Computer Communication Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

February 22, 2018 DRAFT

	I Introduction
	II Related Work
	III PABO's Design
	III-A An Example
	III-B Overview
	III-C Lookup Unit
	III-D FIB
	III-E Output Queue
	III-F Packet
	III-G End-host Support

	IV Implementation
	V Packet Out-of-Order Analysis
	V-A Measuring Packet Out-of-Order
	V-B Impact of PABO on Reorder Entropy
	V-C Discussion

	VI Hop-by-Hop Evaluation
	VI-A Simulation Setup
	VI-B Effectiveness under Different Congestion Severities
	VI-C Impact of Parameters

	VII End-to-End Evaluation in Realistic Topology
	VII-A Two-level Routing Table Implementation
	VII-B Simulation Setup
	VII-C Many-to-One Scenario
	VII-D Many-to-Many Scenario
	VII-E Impact of Parameter

	VIII Conclusion
	References

