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Abstract Learning-to-rank techniques have proven to be extremely useful for prioritization problems, where we rank items
in order of their estimated probabilities, and dedicate our limited resources to the top-ranked items. This work exposes a
serious problem with the state of learning-to-rank algorithms, which is that they are based on convex proxies that lead to
poor approximations. We then discuss the possibility of “exact” reranking algorithms based on mathematical programming.
We prove that a relaxed version of the “exact” problem has the same optimal solution, and provide an empirical analysis.
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1 Introduction

We are often faced with prioritization problems – how can we rank aircraft in order of vulnerability to failure? How can
we rank patients in order of priority for treatment? When we have limited resources and need to make decisions on how
to allocate them, these ranking problems become important. The quality of a ranked list is often evaluated in terms of
rank statistics. The area under the receiver operator characteristic curve (AUC, Metz, 1978; Bradley, 1997), which counts
pairwise comparisons, is a rank statistic, but it does not focus on the top of a ranked list, and is not a good evaluation
measure if we care about prioritization problems. For prioritization problems, we would use rank statistics that focus on
the top of the ranked list, such as a weighted area under the curve that focuses on the left part of the curve. Then, since
we evaluate our models using these rank statistics, we should aim to optimize them out-of-sample by optimizing them in-
sample. The learning-to-rank field (also called supervised ranking) is built from this fundamental idea. Learning-to-rank is
a natural fit for many prioritization problems. If we are able to improve the quality of a prioritization policy by even a small
amount, it can have an important practical impact. Learning-to-rank can be used to prioritize mechanical equipment for repair
(e.g., airplanes, as considered by Oza et al, 2009), it could be useful for prioritizing maintenance on the power grid (Rudin
et al, 2012, 2010), it could be used for ranking medical workers in order of likelihood that they accessed medical records
inappropriately (as considered by Menon et al, 2013), prioritizing safety inspections or lead paint inspections in dwellings
(Potash et al, 2015), ranking companies in order of likeliness of committing tax violations (see Kong and Saar-Tsechansky,
2013), ranking water pipes in order of vulnerability (as considered by Li et al, 2013), other areas of information retrieval
(Xu, 2007; Cao et al, 2007; Matveeva et al, 2006; Lafferty and Zhai, 2001; Li et al, 2007) and in almost any domain where
one measures the quality of results by rank statistics. Learning-to-rank algorithms have been used also in sentiment analysis
(Kessler and Nicolov, 2009), natural language processing (Ji et al, 2006; Collins and Koo, 2005), image retrieval (Jain and
Varma, 2011; Kang et al, 2011), and reverse-engineering product quality rating systems (Chang et al, 2012).

This work exposes a serious problem with the state of learning-to-rank algorithms, which is that they are based on convex
proxies for rank statistics, and when these convex proxies are used, computation is faster but the quality of the solution can
be poor.

We then discuss the possibility of more direct optimization of rank statistics for predictive learning-to-rank problems. In
particular, we consider a strategy of ranking with a simple ranker (logistic regression for instance) which is computationally
efficient, and then reranking only the candidates near the top of the ranked list with an “exact” method. The exact method
does not have the shortcoming that we discussed earlier for convex proxies.

For most ranking applications, we care only about the top of the ranked list; thus, as long as we rerank enough items
with the exact method, the re-ranked list is (for practical purposes) just as useful as a full ranked list would be (if we could
compute it with the exact method, which would be computationally prohibitive).

The best known theoretical guarantee on ranking methods is obtained by directly optimizing the rank statistic of interest
(as shown by theoretical bounds of Clemençon and Vayatis, 2008; Rudin and Schapire, 2009, for instance) hence our choice
of methodology – mixed-integer programming (MIP) – for reranking in this work. Our general formulation can optimize
any member of a large class rank statistics using a single mixed-integer linear program. Specifically, we can handle (a
generalization of) the large class of conditional linear rank statistics, which includes the Wilcoxon-Mann Whitney U statistic,
or equivalently the Area Under the ROC Curve, the Winner-Take-All statistic, the Discounted Cumulative Gain used in
information retrieval (Järvelin and Kekäläinen, 2000), and the Mean Reciprocal Rank.

1 Longer version (supplement) for AISTATS 2018 paper
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Exact learning-to-rank computations need to be performed carefully; we should not refrain from solving hard problems,
but certain problems are harder than others. We provide two MIP formulations aimed at the same ranking problems. The
first one works no matter what the properties of the data are. The second formulation is much faster, and is theoretically
shown to produce the same quality of result as the first formulation when there are no duplicated observations. Note that if
the observations are chosen from a continuous distribution then duplicated observations do not occur, with probability one.

One challenge in the exact learning-to-rank formulation is the way of handling ties in score. As it turns out, the original
definition of conditional linear rank statistics can be used for the purpose of evaluation but not optimization. We show that a
small change to the definition can be used for optimization.

This paper differs from our earlier technical report and non-archival conference paper (Chang et al, 2011, 2010), which
were focused on solving full problems to optimality, and did not consider reranking or regularization; our exposition for
the formulations closely follows this past work. The technique was used by Chang et al (2012) for the purpose of reverse
engineering product rankings from rating companies that do not reveal their secret rating formula.

Section 2 of this paper introduces ranking and reranking, introduces the class of conditional linear rank statistics that
we work with, and provides background on some current approximate algorithms for learning-to-rank. It also provides an
example to show how ranked statistics can be “washed out” when they are approximated by convex substitutes. Section 2
also discusses a major difference between approximation methods and exact methods for optimizing rank statistics, which
is how to handle ties in rank. As it turns out, we cannot optimize conditional linear rank statistics without changing their
definition: a tie in score needs to be counted as a mistake. Section 3 provides the two MIP formulations for ranking, and
Section 4 contains a proof that the second formulation is sufficient to solve the ranking problem provided that no observations
are duplicates of each other. Then follows an empirical discussion in Section 5, designed to highlight the tradeoffs in the
quality of the solution outlined above. Appendix A.1 contains a MIP formulation for regularized AUC maximization, and
Appendix A.2 contains a MIP formulation for a general (non bipartite) ranking problem.

The recent work most related to ours are possibly those of Ataman et al (2006) who proposed a ranking algorithm to
maximize the AUC using linear programming, and Brooks (2010), who uses a ramp loss and hard margin loss rather than a
conventional hinge loss, making their method robust to outliers, within a mixed-integer programming framework. The work
of Tan et al (2013) uses a non-mathematical-programming coordinate ascent approach, aiming to approximately optimize
the exact ranking measures, for large scale problems. There are also algorithms for ordinal regression, which is a related but
different learning problem (Li et al, 2007; Crammer et al, 2001; Herbrich et al, 1999), and listwise approaches to ranking
(Cao et al, 2007; Xia et al, 2008; Xu and Li, 2007; Yue et al, 2007).

2 Learning-to-Rank and Learning-To-Rerank

We first introduce learning-to-rank, or supervised bipartite ranking. The training data are labeled observations {(xi, yi)}ni=1,
with observations xi ∈ X ⊂ Rd and labels yi ∈ {0, 1} for all i. The observations labeled “1” are called “positive
observations,” and the observations labeled “0” are “negative observations.” There are n+ positive observations and n−
negative observations, with index sets S+ = {i : yi = 1} and S− = {k : yk = 0}. A ranking algorithm uses the
training data to produce a scoring function f : X → R that assigns each observation a real-valued score. Ideally, for a
set of test observations drawn from the same (unknown) distribution as the training data, f should rank the observations in
order of P (y = 1|x), and we measure the quality of the solution using “rank statistics,” or functions of the observations
relative to each other. Note that bipartite ranking and binary classification are fundamentally different, and there are many
works that explain the differences (e.g., Ertekin and Rudin, 2011). Briefly, classification algorithms consider a statistic of the
observations relative to a decision boundary (n comparisons) whereas ranking algorithms consider observations relative to
each other (on the order of n2 comparisons for pairwise rank statistics).

Since the evaluation of test observations uses a chosen rank statistic, the same rank statistic (or a convexified version
of it) is optimized on the training set to produce f . Regularization is added to help with generalization. Thus, a ranking
algorithm looks like:

min
f∈F

RankStatistic(f, {xi, yi}i) + C · Regularizer(f).

This is the form of algorithm we consider for the reranking step.

2.1 Reranking

We are considering reranking methods, which have two ranking steps. In the first ranking step, a base algorithm is run over
the training set, and a scoring function finitial is produced and observations are rank-ordered by the score. A threshold is
chosen, and all observations with scores above the threshold are reranked by another ranking algorithm which produces
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another scoring function f . To evaluate the quality of the solution on the test set, each test observation is evaluated first
by finitial. For the observations with scores above the threshold, they are reranked according to f . The full ranking of test
observations is produced by appending the test observations scored by f to the test observations scored only by finitial.

2.2 Rank Statistics

We will extend the definition of conditional linear rank statistics (Clemençon and Vayatis, 2008; Clemençon et al, 2008) to
include various definitions of rank. For now, we assume that there are no ties in score for any pair of observations, but we
will heavily discuss ties later, and extend this definition to include rank definitions when there are ties. For the purpose of
this section, the rank is currently defined so that the top of the list has the highest ranks, and all ranks are unique. The rank
of an observation is the number of observations with scores at or beneath it:

Rank(f(xi)) =
n∑
t=1

1[f(xt)≤f(xi)].

Thus, ranks can range from 1 at the bottom to n at the top. A conditional linear rank statistic (CLRS) created from scoring
function f : X →R is of the form

CLRS(f) =
n∑
i=1

1yi=1φ(Rank(f(xi)).

Here φ is a non-decreasing function producing only non-negative values. Without loss of generality, we define a` := φ(`),
the contribution to the score if the observation with rank ` has label +1. By properties of φ, we know 0 ≤ a1 ≤ a2 ≤ · · · ≤
an. Then

CLRS(f) =
n∑
i=1

yi

n∑
`=1

1[Rank(f(xi))=`] · a`. (1)

This class captures a broad collection of rank statistics, including the following well-known rank statistics:
– a` = `: Wilcoxon Rank Sum (WRS) statistic, which is an affine function of the Area Under the Receiver Operator

Characteristic Curve (AUC) when there are no ties in rank (that is, f such that f(xi) 6= f(xk) ∀i 6= k).

WRS(f) =
∑
i∈S+

Rank(f(xi)) = n+n− ·AUC(f) +
n+(n+ + 1)

2
.

If ties are present, we would subtract the number of ties within the positive class from the right side of the equation
above. The AUC is the fraction of correctly ranked positive-negative pairs:

AUC(f) =
1

n+n−

∑
i∈S+

∑
k∈S−

1[f(xk)<f(xi)].

The AUC, when multiplied by constant n+n−, is the Mann-Whitney U statistic. The AUC has an affine relationship
with the pairwise misranking error (the fraction of positive-negative pairs in which a positive is ranked at or below a
negative):

PairwiseMisrankingError(f) = 1−AUC(f) =
1

n+n−

∑
i∈S+

∑
k∈S−

1[f(xk)≥f(xi)]. (2)

Some ranking algorithms are designed to approximately minimize the pairwise misranking error, e.g., RankBoost (Fre-
und et al, 2003).

– a` = ` · 1[`≥θ] for predetermined threshold θ: Related to the local AUC or partial AUC, which looks at the area under
the leftmost part of the ROC curve only (Clemençon and Vayatis, 2007, 2008; Dodd and Pepe, 2003). The leftmost part
of the ROC curve is the top portion of the ranked list. The top of the list is the most important in applications such as
information retrieval and maintenance.

– a` = 1[`=n]: Winner Takes All (WTA), which is 1 when the top observation in the list is positively-labeled and 0
otherwise (Burges et al, 2006).

– a` = 1
n−`+1 : Mean Reciprocal Rank (MRR) (Burges et al, 2006).

– a` = 1
log2(n−`+2) : Discounted Cumulative Gain (DCG), which is used in information retrieval (Järvelin and Kekäläinen,

2000).
– a` = 1

log2(n−`+2) · 1[`≥N ]: DCG@N, which cuts off the DCG after the top N. (See, for instance, Le et al, 2010).
– a` = `p for some p > 0: Similar to the P -Norm Push, which uses `p norms to focus on the top of the list, the same way

as an `p norm focuses on the largest elements of a vector (Rudin, 2009a).
Rank statistics have been studied in several theoretical papers (e.g., Wang et al, 2013).
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2.3 Some Known Methods for Learning-To-Rank

Current methods for learning-to-rank optimize convex proxies for the rank statistics discussed above. RankBoost (Freund
et al, 2003) uses the exponential loss function as an upper bound for the 0-1 loss within the misranking error, 1[z≤0] ≤ e−z ,
and minimizes ∑

i∈S+

∑
k∈S−

e−(f(xi)−f(xk)), (3)

whereas support vector machine ranking algorithms (e.g., Joachims, 2002; Herbrich et al, 2000; Shen and Joshi, 2003) use
the hinge loss max{0, 1− z}, that is:∑

i∈S+

∑
k∈S−

max{0, 1− (f(xi)− f(xk))}+ C‖f‖2K , (4)

where the regularization term is a reproducing kernel Hilbert space norm. Other ranking algorithms include RankProp and
RankNet (Caruana et al, 1996; Burges et al, 2005).

We note that the class of CLRS includes a very wide range of rank statistics, some of which concentrate on the top of
the list (e.g., DCG) and some that do not (e.g.,WRS), and it is not clear which conditional linear rank statistics (if any) from
the CLRS are close to the convexified loss functions (3) and (4).

Since the convexified loss functions do not necessarily represent the rank statistics of interest, it is not even necessarily
true that an algorithm for ranking will perform better for ranking than an algorithm designed for classification; in fact,
AdaBoost and RankBoost provably perform equally well for ranking under fairly general circumstances (Rudin and Schapire,
2009). Ertekin and Rudin (2011) provide a discussion and comparison of classification versus ranking methods. Ranking
algorithms ultimately aim to put the observations in order of P (y = 1|x), and so do some classification algorithms such as
logistic regression. Thus, one might consider using logistic regression for ranking (e.g., Cooper et al, 1994; Fine et al, 1997;
Perlich et al, 2003). Logistic regression minimizes:

n∑
i=1

ln
(

1 + e−yif(xi)
)
. (5)

This loss function does not closely resemble the AUC. On the other hand, it is surprising how common it is within the
literature to use logistic regression to produce a predictive model, and yet evaluate the quality of the learned model using
AUC.

Since RankBoost, RankProp, RankNet, etc., do not directly optimize any CLRS, they do not have the problem with ties
in score that we will find when we directly try to optimize a CLRS.

2.4 Why Learning-To-Rank Methods Can Fail

We prove that the exponential loss and other common loss functions may yield poor results for some rank statistics.

Theorem 1 There is a simple one-dimensional dataset for which there exist two ranked lists (called Solution 1 and Solution
2) that are completely reversed from each other (the top of one list is the bottom of the other and vice versa) such that the
WRS (the AUC), partial AUC@100, DCG, MRR and hinge loss prefer Solution 1, whereas the DCG@100, partialAUC@10
and exponential loss all prefer Solution 2.

The proof is by construction. Along the single dimension x, the dataset has 10 negatives near x=3, then 3000 positives
near x=1, then 3000 negatives near x=0, and 80 positives near x=−10. We generated each of the four clumps of points wth
a a standard deviation of 0.05 just so that there would not be ties in score. Figure 1 shows data drawn from the distribution,
where for display purposes we spread the points along the horizontal axis, but the vertical axis is the only one that matters:
one ranked list goes from top to bottom (Solution 1) and the other goes from bottom to top (Solution 2).

The bigger clumps are designed to dominate rank statistics that do not decay (or decay slowly) down the list, like the
WRS. The smaller clumps are designed to dominate rank statistics that concentrate on the top of the list, like the partial WRS
or partial DCG.

This theorem means that using the exponential loss to approximate the AUC, as RankBoost does, could give the com-
pletely opposite result than desired. It also means that using the hinge loss to approximate the partial DCG or partial AUC
could yield completely the wrong result. Further, the fact that the exponential loss and hinge loss behave differently also sug-
gests that convex losses can behave quite differently than the underlying rank statistics that they are meant to approximate.



5

Fig. 1 An illustrative distribution of data. Positive observations are gray and negative observations are black. Solution 1 ranks observations from
top to bottom, and Solution 2 ranks solutions from bottom to top.

Another way to say this is that the convexification “washes out” the differences between rank statistics. If we were directly
to optimize the rank statistic of interest, the problem discussed above would vanish.

It is not surprising that rank statistics can behave quite differently on the same dataset. Rank statistics are very different
than classification statistics. Rank statistics consider every pair of observations relative to each other, so even small changes
in a scoring function f can lead to large changes in a rank statistic. Classification is different – observations are considered
relative only to a decision boundary.

The example considered in this section also illustrates why arguments about consistency (or lack thereof) of ranking
methods (e.g., Kotlowski et al, 2011) are not generally relevant for practice. Sometimes these arguments rely on incorrect
assumptions about the class of models used for ranking with respect to the underlying distribution of the data. These argu-
ments also depend on how the modeler is assumed to “change” this class as the sample size increases to infinity. The tightest
bounds available for limited function classes and for finite data are those from statistical learning theory. Those bounds
support optimizing rank statistics.

To optimize rank statistics, there is a need for more refined models; however, this refinement comes at a computational
cost of solving a harder problem. This thought has been considered in several previous works on learning-to-rank (Le et al,
2010; Ertekin and Rudin, 2011; Tan et al, 2013; Chakrabarti et al, 2008; Qin et al, 2013).

2.5 Most Learning-To-Rank Methods Have The Problem Discussed Above

The class of CLRS includes a very wide range of rank statistics, some of which concentrate on the top of the list (e.g.,
DCG) and some that do not (e.g.,WRS), and it is not clear which conditional linear rank statistics (if any) from the CLRS
are close to the convexified loss functions of the ranking algorithms. RankBoost is not the only algorithm where problems
can occur, and they can also occur for support vector machine ranking algorithms (e.g., Joachims, 2002; Herbrich et al,
2000) and algorithms like RankProp and RankNet (Caruana et al, 1996; Burges et al, 2005). The methods of Ataman et al
(2006), Brooks (2010), and Tan et al (2013) have used linear relaxations or greedy methods for learning to rank, rather than
exact reranking, which will have similar issues; if one optimizes the wrong rank statistic, one may not achieve the correct
answer. Logistic regression is commonly used for ranking. Logistic regression minimizes:

∑n
i=1 ln

(
1 + e−yif(xi)

)
. This

loss function does not closely resemble AUC. On the other hand, it is surprising how common it is to use logistic regression
to produce a predictive model, and yet evaluate the quality of the model using AUC.

The fundamental premise of learning-to-rank is that better test performance can be achieved by optimizing the perfor-
mance measure (a rank statistic) on the training set. This means that one should choose to optimize differently for each rank
statistic. However, in practice when the same convex substitute is used to approximate a variety of rank statistics, it directly
undermines this fundamental premise, and could compromise the quality of the solution. If convexified rank statistics are
a reasonable substitute for rank statistics, we would expect to see that (i) the rank statistics are reasonably approximated by
their convexified versions, (ii) if we consider several convex proxies for the same rank statistic (in this case AUC), then they
should all behave very similarly to each other, and similarly to the true (non-convexified) AUC. However, as we discussed,
neither of these are true.

2.6 Ties and Problematic, Thus Use ResolvedRank and Subrank

Dealing with ties in rank is critical when directly optimizing rank statistics. If a tie in rank between a positive and negative
is considered as correct, then an optimal learning algorithm would produce the trivial scoring function f(x) = constant ∀x;
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Label yi + + − − − + + − +
Score f(xi) 6.2 6.2 5.8 4.6 3.1 3.1 2.3 1.7 1.7
SubRank 7 7 6 5 3 3 2 0 0
ResolvedRank 8 7 6 5 4 3 2 1 0

Fig. 2 Demonstration of rank definitions.

this solution would unfortunately attain the highest possible score when optimizing any pairwise rank statistic. This problem
happens, for instance, with the definition of Clemençon and Vayatis (2008), that is:

RankCV(f(xi)) =
n∑
k=1

1f(xk)≤f(xi),

which counts ties in score as correct. Using this definition for rank in the CLRS:

CLRSCV(f) =
n∑
i=1

yi

n∑
`=1

1[RankCV(f(xi))=`] · a`. (6)

we find that optimizing CLRSCV directly yields the trivial solution that all observations get the same score. So this definition
of rank should not be used.

We need to encourage our ranking algorithm not to produce ties in score, and thus in rank. To do this, we pessimistically
consider a tie between and positive and a negative as a misrank. We will use two definitions of rank within the CLRS
– ResolvedRanks and Subranks. For ResolvedRanks, when negatives are tied with positives, we force the negatives to be
higher ranked. For Subranks, we do not force this, but when we optimize the CLRS, we will prove that ties are resolved this
way anyway.

The assignment of ResolvedRanks and Subranks are not unique, there can be multiple ways to assign ResolvedRanks or
Subranks for a set of observations.

We define the Subrank by the following formula:

Subrank(f(xi)) =
n∑
k=1

1[f(xk)<f(xi)], ∀i = 1, . . . , n.

The Subrank of observation i is the number of observations that score strictly below it. Subranks range from 0 to n− 1 and
the CLRS becomes:

CLRSSubrank(f) =
n∑
i=1

yi

n∑
`=1

1[Subrank(f(xi))=`−1] · a`. (7)

Observations with equal score have tied Subranks.
ResolvedRanks are defined as follows, where the tied ranks are resolved pessimistically. ResolvedRanks are assigned so

that:

1. The ResolvedRank of an observation is greater than or equal to its Subrank.
2. If a positive observation and a negative observation have the same score, then the negative observation gets a higher

ResolvedRank.
3. Each possible ResolvedRank, 0 through n− 1, is assigned to exactly one observation.

The SubRanks and ResolvedRanks are equal to each other when there are no ties in score. We provide one possible
assignment of Subranks and ResolvedRanks in Figure 2 to demonstrate the treatment of ties. We then have the CLRS with
ResolvedRanks as:

CLRSResolvedRank(f) =
n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a`. (8)

The ResolvedRanks are the quantity of interest, as optimizing them will provide a scoring function with minimal misranks
and minimal ties between positives and negatives.

Note that ties are not fundamental in other statistical uses of rank statistics, such as hypothesis testing. Ties are usually
addressed by fixing them, or assigning the tied observations a (possibly fractional) rank that is the average (e.g., tied ob-
servations would get ranks 7.5 rather than 7 and 8) (see Tamhane and Dunlop, 2000; Wackerly et al, 2002). Ties are not
treated uniformly across statistical applications (Savage, 1957), and there has been comparative work on treatment of ties
(e.g., Putter, 1955). This differs from when we optimize rank statistics, where ties are of central importance as we discussed.
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3 Reranking Formulations Using ResolvedRanks and Subranks

Here we produce the two formulations – one for optimizing the regularized CLRS with ResolvedRanks, and the other for
optimizing the regularized CLRS with Subranks.

3.1 Maximize the Regularized CLRS with ResolvedRanks

We would like to optimize the general CLRS, for any choices of the a`’s, where we want to penalize ties in rank be-
tween positives and negatives, and we would also like a full ranking of observations. Thus, we will directly optimize
CLRSResolvedRank(f) + C · Regularizer(f) for our reranking algorithm. Our hypothesis space is the space of linear scor-
ing functions f(xi) = wTxi, where w ∈ Rd.

max
w∈Rd

CLRSResolvedRank(w)− C‖w‖0

= max
w∈Rd

n∑
i=1

yi

n∑
`=1

1[ResolvedRank(wTxi))=`−1] · a` − C‖w‖0.

Nonlinearities can be incorporated as usual by including additional variables, such as indicator variables or nonlinear func-
tions of the original variables. We optimize over choices for vector w.

Building up to the formulation, we will create the binary variable ti` so that it is 1 for ` ≤ ResolvedRank(f(xi)) + 1
and 0 otherwise. That is, if observation i has ResolvedRank equal to 5, then ti1, ..., ti6 are all 1 and ti7, ..., tin are 0. Then

n∑
`=1

(a` − a`−1)ti` (9)

is a telescoping sum for ` ≤ResolvedRank(f(xi))+1. When we define a0 = 0, the sum (9) becomes simply aResolvedRank(f(xi))+1,
or equivalently, the term from (8):

n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a`.

As in (8) we multiply by yi and sum over observations to produce the CLRSResolvedRank. Doing this to (9), CLRSResolvedRank

becomes:
n∑
i=1

yi

n∑
`=1

(a` − a`−1)ti` where a0 = 0.

By definition ti1 = 1 for all i, so we can simplify the CLRSResolvedRank function above to:

∑
i∈S+

(
n∑
`=2

(a` − a`−1)ti` + a1

)
= |S+|a1 +

∑
i∈S+

n∑
`=2

(a` − a`−1)ti`.

Note that the differences a` − a`−1 are all nonnegative. When they are zero they cannot contribute to the CLRSResolvedRank

function. When they are strictly positive there can be a contribution made to the CLRSResolvedRank function. Thus, we introduce
notation ã` = a` − a`−1 and Sr = {` ≥ 2 : ã > 0} which are used in both formulations below. The CLRSResolvedRank

becomes:
|S+|a1 +

∑
i∈S+

∑
`∈Sr

ã`ti`. (10)

We will maximize this, which means that the ti`’s will be set to 1 when possible, because the ã`’s in the sum are all positive.
When we maximize, we do not need the constant |S+|a1 term.

We define integer variables ri ∈ [0, n − 1] to represent the ResolvedRanks of the observations.Variables ri and ti` are
related in that ti` can only be 1 when ` ≤ ri + 1, implying ti` ≤ ri

`−1 .
We use linear scoring functions, so the score of instance xi is wTxi. Variables zik are indicators of whether the score of

observation i is above the score of observation k. Thus we want to have zik = 1 if wTxi > wTxk and zik = 0 otherwise.
Beyond this we want to ensure no ties in score, so we want all scores to be at least ε apart. This will be discussed further
momentarily.
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Our first ranking algorithm is below, which maximizes the regularized CLRS using ResolvedRanks.

argmaxw,γj ,zik,ti`,ri∀i,k,`,j
∑
i∈S+

∑
`∈Sr

ãlti` − C
∑
j

γj subject to (11)

zik ≤ wT (xi − xk) + 1− ε, ∀i, k = 1, . . . , n, (12)

zik ≥ wT (xi − xk), ∀i, k = 1, . . . , n, (13)

γj ≥ wj (14)

γj ≥ −wj (15)

ri − rk ≥ 1 + n(zik − 1), ∀i, k = 1, . . . , n, (16)

rk − ri ≥ 1− nzik, ∀i ∈ S+, k ∈ S−, (17)

rk − ri ≥ 1− nzik, ∀i, k ∈ S+, i < k, (18)

rk − ri ≥ 1− nzik, ∀i, k ∈ S−, i < k, (19)

ti` ≤
ri

`− 1
, ∀i ∈ S+, ` ∈ Sr, (20)

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

0 ≤ ri ≤ n− 1, ∀i = 1, . . . , n,

zik ∈ {0, 1}, ∀i, k = 1, . . . , n,

ti` ∈ {0, 1}, ∀i ∈ S+, ` ∈ Sr,
γj ∈ {0, 1}, ∀j ∈ {1, ...d}. (21)

To ensure that solutions with ranks that are close together are not feasible, Constraint (12) forces zik = 0 if wTxi−wTxk <
ε, and Constraint (13) forces zik = 1 if wTxi − wTxk > 0. Thus, a solution where any two observations have a score
difference above 0 and less than ε is not feasible. (Note that these constraints alone do not prevent a score difference of
exactly 0; for that we need the constraints that follow.) Constraints (14) and (15) define the γj’s to be indicators of nonzero
coefficients wj .

Constraints (16)-(19) are the “tie resolution” equations. Constraint (16) says that for any pair (xi,xk), if the score of
i is larger than that of k so that zik = 1, then ri ≥ rk + 1. That handles the assignment of ranks when there are no ties,
so now we need only to resolve ties in the score. We have Constraint (17) that applies to positive-negative pairs: when the
pair is tied, this constraint forces the negative observation to have higher rank. Similarly, Constraints (18) and (19) apply
to positive-positive pairs and negative-negative pairs respectively, and state that ties are broken lexicographically, that is,
according to their index in the dataset.

We discussed Constraint (20) earlier, which provides the definition of ti` so that ti` = 1 whenever ` ≤ ri + 1. Also we
force the wj’s to be between -1 and 1 so their values do not go to infinity and so that the ε values are meaningful, in that they
can be considered relative to the maximum possible range of wj .

3.2 Maximize the Regularized CLRS with Subranks

We are solving:

max
w∈Rd

CLRSSubrank(w)− C‖w‖0

= max
w∈Rd

n∑
i=1

yi

n∑
`=1

1[Subrank(wTxi))=`−1] · a` − C‖w‖0.

Maximizing the Subrank problem is much easier, since we do not want to force a unique assignment of ranks. This means
the “tie resolution” equations are no longer present. We can directly assign a Subrank for observation i by ri =

∑n
k=1 zik

because it is exactly the count of observations ranked beneath observation i; that way the ri variables do not even need to
appear in the formulation.
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Here is the formulation:

argmaxw,γj ,zik,ti`∀i,k,`,j
∑
i∈S+

∑
`∈Sr

ãlti` − C
∑
j

γj subject to (22)

ti` ≤
1

`− 1

n∑
k=1

zik, ∀i ∈ S+, ` ∈ Sr, (23)

zik ≤ wT (xi − xk) + 1− ε, ∀i ∈ S+, k = 1, . . . , n, (24)

γj ≥ wj (25)

γj ≥ −wj (26)

zik + zki = 1[xi 6=xk], ∀i, k ∈ S+, (27)

ti` ≥ ti,`+1, ∀i ∈ S+, ` ∈ Sr \max(` ∈ Sr), (28)∑
i∈S+

∑
`∈Sr

ãlti` ≤
n∑
`=1

a`, (29)

zik = 0, ∀i ∈ S+, k = 1, . . . , n,xi = xk, (30)

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

ti`, zik, γj ∈ {0, 1}, ∀i ∈ S+, ` ∈ Sr, k = 1, . . . , n, j ∈ {1, ...d}.

Constraint (23) is similar to Constraint (20) from the ResolvedRank formulation. Since we are maximizing with respect
to the ti`’s, the zik’s will naturally be maximized by Constraint (23). Thus we need to again force the zik’s down to 0 when
wTxi−wTxk < ε, which is done via Constraint (24). Constraints (25) and (26) define the γj’s to be indicators of nonzero
coefficients wj . It is not necessary to include Constraints (27) through (30); they are there only to speed up computation, by
helping to make the linear relaxation of the integer program closer to the set of feasible integer points. For the experiments
in this paper they did not substantially speed up computation and we chose not to use them.

Beyond the formulations presented here, we have placed a formulation for optimizing the regularized AUC in the Ap-
pendix A.1 and another formulation for optimizing the general pairwise rank statistic that inspired RankBoost (Freund et al,
2003) in Appendix A.2.

4 Why Subranks Are Often Sufficient

The ResolvedRank formulation above has 2d + n2 + n+|Sr| + n variables, which is the total number of w, γ, z, t, and
r variables. The Subrank formulation on the other hand has only 2d + n+n + n+|Sr| variables, since we only have w, γ,
z, and t. This difference of n− · n + n variables can heavily influence the speed at which we are able to find a solution.
We would ultimately like to get away with solving the Subrank problem rather than the ResolvedRank problem. This would
allow us to scale up our reranking problem substantially. In this section we will show why this is generally possible.

Denote the objectives as follows, where we have f(xi) = wTxi.

GRR(f) :=
n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a` − C‖w‖0

GSub(f) :=
n∑
i=1

yi

n∑
`=1

1[Subrank(f(xi))=`−1] · a` − C‖w‖0.

In this section, we will ultimately prove that any maximizer of GSub also maximizes GRR. This is true under a very general
condition, which is that there are no exactly duplicated observations. The reason for this condition is not completely obvious.
In the Subrank formulation, if two observations are exactly the same, they will always get the same score and Subrank -
there is no mechanism to resolve ties and assign ranks. This causes problems when approximating the ResolvedRank with
the Subrank. We remark however, that this should not be a problem in practice. First, we can check in advance whether any
of our observations are exact copies of each other, so we know whether it is likely to be a problem. Second, if we do have
duplicated observations, we can always slightly perturb the x values of the duplicated observations so they are not identical.
Third, we remark that if the data are chosen from a continuous distribution, with probability 1 the observations will all be
distinct anyway. We have found that in practice the Subrank formulation does not have problems even when there are ties.

In the first part of the section, we consider whether there are maximizers of GRR that have no ties in score, in other
words, solutions w where f(xi) 6= f(xk) for any two observations i and k. Assuming such solutions exist, we then show
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that any maximizer of GSub is also a maximizer of GRR. This is the result within Theorem 2. In the second part of the
section, we show that the assumption we made for Theorem 2 is always satisfied, assuming no duplicated observations. That
is, a maximizer of GRR with no ties in score exists. The outline within our technical report (Chang et al, 2011) follows a
similar outline but does not include regularization.

The following lemma establishes basic facts about the two objectives:

Lemma 1 GSub(f) ≤ GRR(f) for all f . Further, GSub(f) = GRR(f) for all f with no ties.

Proof Choose any function f . Since by definition Subrank(f(xi))≤ ResolvedRank(f(xi)) ∀i, and since the a` are nonde-
creasing,

n∑
`=1

1[Subrank(f(xi))=`−1] · a` = a(Subrank(f(xi))+1) (31)

≤ a(ResolvedRank(f(xi))+1)

=
n∑
`=1

1[ResolvedRank(f(xi))=`−1] · a` ∀i.

Multiplying both sides by yi, summing over i and subtracting the regularization term from both sides yields GSub(f) ≤
GRR(f). When no ties are present (that is, f(xi) 6= f(xk) ∀i 6= k), Subranks and ResolvedRanks are equal, and the
inequality above becomes an equality, and in that case, GSub(f) = GRR(f).

This lemma will be used within the following theorem which says that maximizers of GSub are maximizers of GRR.

Theorem 2 Assume that the set argmaxfGRR(f) contains at least one function f̄ having no ties in score. Then any f∗

such that f∗ ∈ argmaxfGSub(f) also obeys f∗ ∈ argmaxfGRR(f).

Proof Assume there exists f̄ ∈ argmaxfGRR(f) such that there are no ties in score. Since f̄ is a maximizer of GRR and
does not have ties, it is also a maximizer of GSub by Lemma 1:

GSub(f̄) = GRR(f̄) = max
f

GRR(f) ≥ max
f

GSub(f), thus GSub(f̄) = max
f

GSub(f).

Let f∗ be an arbitrary maximizer of GSub(f) (not necessarily tie-free). We claim that f? is also a maximizer of GRR.
Otherwise,

GRR(f?) < GRR(f̄)
(a)
= GSub(f̄)

(b)
= GSub(f?)

(c)

≤ GRR(f?),

which is a contradiction. Equation (a) comes from Lemma 1 applied to f̄ . Equation (b) comes from the fact that both f̄ and
f∗ are maximizers of GSub. Inequality (c) comes from Lemma 1 applied to f∗.

Interestingly enough, it is true that if f̄ maximizes GRR(f) and it has no ties, then f̄ also maximizes GSub(f). In
particular,

max
f

GSub(f) ≤ max
f

GRR(f) ≤ GRR(f̄) = GSub(f̄).

Note that so far, the results about GRR and GSub hold for functions from any arbitrary set; we did not need to have
f = wTx in the preceding computations. In what follows we take advantage of the fact that f is a linear combination
of features in order to perturb the function away from ties in score. With this method we will be able to achieve the same
maximal value of GRR but with no ties.

Define M to be the maximum absolute value of the features, so that for all i, j, we have |xij | ≤M .

Lemma 2 If we are given f̄ ∈ argmaxfGRR(f) that yields a scoring function f̄(x) = w̄Tx with ties, it is possible to
construct a perturbed scoring function f̂ that:

i preserves all pairwise orderings, f̄(xi) > f̄(xk)⇒ f̂(xi) > f̂(xk),
ii has no ties, f̂(xi) 6= f̂(xk) for all i, k.
iii has ‖w̄‖0 = ‖ŵ‖0.

This result holds whenever no observations are duplicates of each other, xi 6= xk ∀i, k.

Proof We will construct f̂(x) = ŵTx using the following procedure:



11

Step 1 Find the nonzero indices of w̄: let J̄ := {j : w̄j 6= 0}. Choose a unit vector v in R|J| uniformly at random.
Construct vector u ∈ Rd to be equivalent to v for u restricted to the dimensions J and 0 otherwise.

Step 2 Choose real number δ to be between 0 and η, where

η = min

{
marginw̄

2M
√
d
,min
j∈J̄
|wj |

}
where in the above expression

marginw̄ = min
{i,k:f̄(xi)>f̄(xk)}

(
f̄(xi)− f̄(xk)

)
.

Step 3 Construct ŵ as follows: ŵ = w̄ + δu.

With probability one, we will show that f̂(x) = ŵTx preserves pairwise orderings of f̄ but with no ties.
We will prove each part of the lemma separately.

Proof of (i) We choose any two observations xi and xk where f̄(xi) > f̄(xk), and we need to show that f̂(xi) > f̂(xk).

f̂(xi)− f̂(xk) = (w̄ + δu)T (xi − xk) = w̄T (xi − xk) + δuT (xi − xk)

= f̄(xi)− f̄(xk) + δuT (xi − xk) ≥ marginw̄ + δuT (xi − xk). (32)

In order to bound the right hand side away from zero we will use that:

‖xi − xk‖2 =

 d∑
j=1

(xij − xkj)2

1/2

≤

 d∑
j=1

(2M)2

1/2

= 2M
√
d. (33)

Now, ∣∣∣δuT (xi − xk)
∣∣∣ (a)

≤ δ‖u‖2‖xi − xk‖2
(b)

≤ δ · 2M
√
d

(c)
<

marginw̄

2M
√
d
· 2M

√
d = marginw̄.

Here, inequality (a) follows from the Cauchy-Schwarz inequality, (b) follows from (33) and that ‖u‖2 = 1, and (c) follows
from the bound on δ from Step 2 of the procedure for constructing f̂ above. Thus δuT (xi − xk) > −marginw̄, which
combined with (32) yields

f̂(xi)− f̂(xk) ≥ marginw̄ + δuT (xi − xk) > marginw̄ −marginw̄ = 0.

Proof of (ii) We show that f̂ has no ties f̂(xi) 6= f̂(xk) for all i, k. This must be true with probability 1 over the choice of
random vector u.

Since we know that all pairwise inequalities are preserved, we need to ensure only that ties become untied through the
perturbation u. Thus, let us consider tied observations xi and xk, so f̄(xi) = f̄(xk). We need to show that they become
untied: we need to show |f̂(xi)− f̂(xk)| > 0. Consider |f̂(xi)− f̂(xk)|:

|f̂(xi)− f̂(xk)| =
∣∣∣(w̄ + δu)T (xi − xk)

∣∣∣ =
∣∣∣w̄T (xi − xk) + δuT (xi − xk)

∣∣∣
= |δ|

∣∣∣uT (xi − xk)
∣∣∣ .

We now use the key assumption that no two observations are duplicates – this implies that at least one entry of vector
xi − xk is nonzero. Further, since u is a random vector, the probability that it is orthogonal to vector xi − xk is zero. So,
with probability one with respect to the choice of u, we have

∣∣∣uT (xi − xk)
∣∣∣ > 0. From the expression above,

|f̂(xi)− f̂(xk)| = |δ|
∣∣∣uT (x1 − x2)

∣∣∣ > 0.

Proof of (iii) By our definitions, ŵ = w̄ + δu, δ ≤ minj∈J̄ |wj |, and u is only nonzero in the components where w̄ is not
0. Each component of u is nonzero with probability 1. For component j where w̄j 6= 0, we have |δuj | ≤ δ‖u‖2 ≤ δ ≤
minj′∈J̄ w̄j′ ≤ w̄j which means |ŵj | = |w̄j + δuj | > 0. So, for all components where w̄ is nonzero, we also have ŵ
nonzero in those components. Further, for all components where w̄ is zero, we also have ŵ zero in those components. Thus
‖w̄‖0 = ‖ŵ‖0.

The result below establishes the main result of the section, which is that if we optimize GSub, we get an optimizer of
GRR even though it is a much more complex optimization problem to optimize GRR directly.
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Theorem 3 Given f∗ ∈ argmaxfGSub(f), then f∗ ∈ argmaxfGRR(f).
This holds when there are no duplicated observations, xi 6= xk ∀i, k where i 6= k.

Proof We will show that the assumption of Theorem 2, which says that GRR has a maximizer with no ties, is always true.
This will give us the desired result. Let f̄ ∈ argmaxfGRR(f). Either f̄ has no ties already, in which case there is nothing
to prove, or it does have ties. If so, we can take its vector w̄ and perturb it using Lemma 2. The resulting vector ŵ has no
ties. We need only to show that ŵ also maximizes GRR. To do this we will show GRR(f̂) ≥ GRR(f̄).

We know that

GRR(f̄) =
n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f̄(xi))=`−1] · a` − c‖w̄‖0

=
∑
i∈S+

a(ResolvedRank(f̄(xi))+1) − c‖w̄‖0,

GRR(f̂) =
n∑
i=1

yi

n∑
`=1

1[ResolvedRank(f̂(xi))=`−1] · a` − c‖ŵ‖0

=
∑
i∈S+

a(ResolvedRank(f̂(xi))+1) − c‖ŵ‖0,

and ‖w̄‖0 = ‖ŵ‖0 by Lemma 2. We know that a1 ≤ a2 ≤ · · · ≤ an. Thus, as long as the ResolvedRanks of the positive
observations according to f̂ are the same or higher than their ResolvedRanks according to f̄ , we are done.

Consider the untied observations of f̄ , which are {i : f̄(xi) 6= f̄(xk) for any k}. Those observations have ResolvedRank(f̄(xi))
= ResolvedRank(f̂(xi)) by Lemma 2(i) which says that all pairwise orderings are preserved.

What remains is to consider the tied observations of f̄ , which are {i : f̄(xi) = f̄(xk) for some k}. Consider a set
of tied observations xα, ...,xζ where f(xα) = ... = f(xζ). If their labels are all equal, yα = ... = yζ , then regardless
of how they are permuted to create the ResolvedRank in either f̄ or f̂ , the total contribution of those observations to the
GRR will be the same. If the labels in the set differ, then f̄ assigns ResolvedRanks pessimistically, so that the negatives all
have ResolvedRanks above the positive (according to the definition of ResolvedRanks). This means that by perturbing the
solution, f̂ could potentially increase the ranks of some of these tied positive observations. In that case, some of the a`’s of
f̂ become larger than those of f̄ . Thus, GRR(f̂) ≥ GRR(f̄) and we are done.

The result in Theorem 3 shows why optimizing GSub is sufficient to obtain the maximizer of GRR. This provides the
underpinning for use of the Subrank formulation.

5 Empirical Discussion of Learning-To-Rank

Through our experiments with the Subrank formulation, we made several observations, which we will present empirical
results to support below.

Observation 1: There are some datasets where reranking can substantially improve the quality of the solution.

We present comparative results on the performance of several baseline ranking methods methods, namely Logistic Regres-
sion (LR), Support Vector Machines (SVM), RankBoost (RB), and the P-Norm Push for p = 2 and for the Subrank MIP
formulations at 4 different levels of the cutoff K for reranking. For the SVM, we tried regularization parameters 10−1,
10−2, . . ., 10−6 and reported the best result. We chose datasets with the right level of imbalance so that not all of the top
observations belong to a single class; this ensures that the rank statistics are meaningful at the top of the list. We used several
datasets that are suitable for the type of method we are proposing, namely:

– ROC Flexibility: This dataset is designed specifically to show differences in rank statistics (Rudin, 2009b). Note that this
dataset has ties, but the ties do not seem to influence the quality of the solution. (It is generally possible in practice to use
the Subrank formulation even in the case of ties.) (n = 500, d = 5)

– Abalone19: This dataset is an imbalanced version of the Abalone dataset where the positive observations belong to class
19. It is available from the KEEL repository (Alcalá-Fdez et al, 2011). It contains information about sex, length, height,
and weight, and the goal is to determine the age of the abalone (19). (n = 4174, d = 8)

– UIS from the UMass Aids Research Unit (Hosmer et al, 2013): This dataset contains information about each patient’s
age, race, depression level at admission, drug usage, number of prior drug treatments, and current treatment, and the
label represents whether the patient remained drug free for 12 months afterwards. (n = 575, d = 8)
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– Travel: This dataset is from a survey of transportation uses between three Australian cities (Hosmer et al, 2013). It
contains information about what modes of traffic are used (e.g., public bus, airplane, train, car) which is what we aim
to predict, and features include the travel time, waiting time at the terminal, the cost of transportation, the commuters’
household income level, and the size of the party involved in the commute. (n = 840, d = 7)

– NHANES (physical activity): This dataset contains health information about patients including physical activity levels,
height, weight, age, gender, blood pressure, marital status, cholesterol, etc. (Hosmer et al, 2013). The goal is to predict
whether the person is considered to be obese. (n = 600, d = 21)

– Pima Indians Diabetes, from the National Institute of Diabetes and Digestive and Kidney Diseases, available from the
UCI Machine Learning Repository (Bache and Lichman, 2013): The goal is to predict whether a woman will test positive
for diabetes during her pregnancy, based on measurements of her blood glucose concentration in an oral glucose tolerance
test, her blood pressure, body mass index, age, and other characteristics. (n = 768, d = 8)

– Gaussians: This is a synthetic 2 dimensional dataset, with 1250 points subsampled from a population containing two big
clumps of training examples, each entry of each observation drawn from a normal distribution with variance 0.5, where
the positive clump (3000 points) was generated with mean (0,1), and the negative clump (3000 points) was generated
with mean (0,0). These bigger clumps are designed to dominate the WRS. In addition, there is a smaller 10 point negative
clump generated with mean (10,1) and noise components each drawn from a normal with standard deviation 0.05, and a
positive clump of 200 points generated with mean (0,-3) and noise drawn with standard deviation 0.05. Note that we do
not expect the “flipping” to occur here as it did in Section 2.4 since we are using DCG, which is much more difficult to
distinguish from WRS than a steeper rank statistic. (n = 1250, d = 2)

For the MIP-based methods, we used logistic regression as the base ranker, and the reranker was learned from the topK. We
varied K between 50, 100, 150, and we also used the full list. An exception is made for the Abalone19 data set, for whichK
varies between 250, 500 and 750 instead because Abalone19 is a highly imbalanced data set. We stopped the computation
after 2 hours for each trial (1 hour for the ROC flexibility dataset), which gives a higher chance for the lower-K rerankers to
solve to optimality. Most of the K=50 experiments for the ROC flexibility dataset solved to optimality within 5 minutes. The
reported means and standard deviations were computed over 10 randomly chosen training and test splits, where the same
splits were used for all datasets. We chose to evaluate according to the DCG measure as it is used heavily in information
retrieval applications (Järvelin and Kekäläinen, 2000). Al-Maskari et al (2007) report that DCG is similar to the way humans
evaluate search results, based on a study of user satisfaction. We used C = 10−3 for the ROC Flexibility dataset, and
C = 10−4 for the other datasets. Note that for the DCG measure in particular, it is difficult to see a large improvement;
for instance even on the extreme experiment in Section 2.4 the improvement in DCG from flipping the classifier completely
upside down was only 16%.

Table 1 shows the results of our experiments, where we highlighted the best algorithm for each dataset on both training
and test in bold, and used italics to represent test set results that are not statistically significantly worse than the best algorithm
according to a matched pairs t-test with significance level α = 0.05. In terms of predictive performance, the smaller K
models performed consistently well on these data, achieving the best test performance on all of these datasets. On some of
the datasets, we see a ∼10% average performance improvement from reranking. (The magnitude is not too much different
as from the experiment in Section 2.4 where the classifier flips upside down.) On the Travel dataset in particular, the K=50
reranking model had superior results over all of the baselines uniformly across all 10 trials.

The work of Chang et al (2012) shows the benefits of carrying the computation to optimality on a specialized application
of MIP learning-to-rank for reverse-engineering product quality rankings.

Observation 2: There is a tradeoff between computation and quality of solution.

If the number of elements to rerank (denoted by K) is too small, the solution will not generalize as well. Theoretical results
of Rudin (2009a) suggest that there is a tradeoff between how well we can generalize and how much the rank statistic is
focused on the top of the ranked list. The main result of that work shows that if the rank statistic concentrates very much at the
top of the list (like, for instance, the mean reciprocal rank statistic) then we require more observations in order to generalize
well. If the number of observations is too small, learning-to-rank methods may not be beneficial over traditional learning
methods like logistic regression. Further, if the number of observations is too small, then the variation from training to test
will be much larger than the gain in training error from using the correct rank statistic; again in that case, learning-to-rank
would not be beneficial.

If the number of elements K is too large, we will not be able to sufficiently solve the reranking problem within the
allotted time, and the solution again could suffer. This reinforces our point that we should not refrain from solving hard
problems, particularly on the scale of reranking, but certain hard problems are harder than others and the computation needs
to be done carefully.
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Again consider Table 1. Note that the K = 50 and K = 100 rerankers perform consistently well on these datasets, both
in training and in testing. However, if K is set too large, the optimization on the training set will not be able to be solved
close to optimality in the allotted time, and the quality of the solution will be degraded. This is an explicit tradeoff between
computation and the quality of the solution.

Observation 3: There are some datasets for which the variance of the result is larger than the differences in the rank statistics
themselves.

These are cases where better relative training values do not necessarily lead to better relative test values. In these cases we
do not think it is worthwhile to use ranking algorithms at all, let alone reranking algorithms. For these datasets, logistic
regression may suffice. The cases where reranking/ranking makes a difference are cases where the variance of the training
and test values are small enough that we can reliably distinguish between the different rank statistics.

We present results on three datasets in Table 2, computed in the same way as the results in Table 1, for which various
things have gone wrong, such as the optimizer not being able to achieve the best result on the training set, but even worse,
the results are inconsistent between training and test. The algorithm that optimizes best over the training set is not the same
algorithm that achieves the best out-of-sample quality. These are cases where the algorithms do not generalize well enough
so that a ranking algorithm is needed. The datasets used here are the Haberman survival dataset from the UCI Machine
Learning Repository (Bache and Lichman, 2013) (n = 300, d = 3), Poly-pharmacy study on drug consumption (Hosmer
et al, 2013) (n = 500, d = 13), and data from the GLOW study on fracture risk (Hosmer et al, 2013) (n = 500, d = 14).

Observation 4: As long as the margin parameter ε is sufficiently small without being too small so that the solver will not
recognize it, the quality of the solution is maintained. The regularization parameter C also can have an influence on the
quality of the solution, and it is useful not to over-regularize or under-regularize.

Note that if ε is too large, the solver will not be able to force all of the inequalities to be strictly satisfied with margin ε. This
could force many good solutions to be considered infeasible and this may ruin the quality of the solution. It could also cause
problems with convergence of the optimization problem. When ε is smaller, it increases the size of the feasible solution
space, so the problem is easier to solve. On the other hand, if ε is too small, the solver will have trouble recognizing the
inequality and may have numerical problems.

In Table 3 we show what happens when the value of ε is varied on two of our datasets. We can see from Table 3 that as ε
decreases by orders of magnitude the solution generally improves, but then at some point degrades. For the ROC Flexibility
data, the ε = 10−5 setting consistently performed better than the ε = 10−6 setting over all 10 trials in both training and
test. A similar observation holds for UIS, in that the ε = 10−5 setting was able to optimize better than the ε = 10−6 setting
over all 10 trials on the training set.

Table 3 Different selections of ε

Dataset 10−1 10−2 10−3 10−4 10−5 10−6

ROC2 train 31.62± 1.25 31.85± 1.26 31.93± 1.36 31.84± 1.36 32.02± 1.30 31.58± 1.26
test 31.59± 2.07 31.91± 1.57 32.10± 1.28 32.09± 1.31 32.21± 1.32 31.74± 1.26

UIS train 19.70± 1.23 19.73± 1.24 19.80± 1.09 19.76± 1.27 19.73± 1.17 19.08± 1.40
test 18.40± 1.09 18.03± 1.06 18.34± 1.20 18.64± 1.51 17.88± 1.66 18.23± 0.75

Table 4 shows the training and test performance as the regularization parameter C is varied over several orders of
magnitude. As one would expect, a small amount of regularization helps performance, but too much regularization hurts
performance as we start to sacrifice prediction quality for sparseness.

Table 4 Training and test performance for varying values of regularization parameter C.

Dataset C = 10−1 C = 10−2 C = 10−3 C = 10−4 C = 10−5 C = 10−6

ROC train 31.31± 1.52 31.31± 1.72 31.84± 1.36 31.94± 1.20 32.02± 1.30 31.86± 1.35
test 31.35± 1.48 31.30± 1.57 32.09± 1.31 32.06± 1.53 32.21± 1.32 32.01± 1.35

UIS train 19.15± 1.24 19.36± 1.02 19.69± 1.01 19.76± 1.27 19.89± 1.24 19.68± 1.08
test 17.94± 1.11 18.15± 1.54 17.92± 1.57 18.64± 1.51 17.94± 1.12 17.74± 1.76

2 The regularization constant C is set to 10−3 for this dataset.
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Fig. 3 Objective values and optimality gap over time for ROC Flexibility dataset
Fold 1 Fold 2

Fold 3 Fold 4

Observation 5: Proving optimality takes longer than finding a reasonable solution.

Figures 3 shows the objective values and the upper bound on the optimality gap over time for four folds of the ROC Flexibility
dataset, where K is 100 and C is 10−4. Figure 4 shows the analogous plots for the UIS dataset. Usually a good solution
is found within a few minutes, whereas proving optimality of the solution takes much longer. We do not require a proof of
optimality to use the solution.

6 Conclusion

As shown through our discussion, using a computationally expensive reranking step may help to improve the quality of
the solution for reranking problems. This can be useful in application domains such as maintenance prioritization and drug
discovery where the extra time spent in obtaining the best possible solution can be very worthwhile. We proved an analytical
reduction from the problem that we really want to solve (the ResolvedRank formulation) to a much more computationally
tractable problem (the Subrank formulation). Through an experimental discussion, we explicitly showed the tradeoff between
computation and the quality of the solution.
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Fig. 4 Objective values and optimality gap over time for UIS dataset
Fold 1 Fold 2

Fold 3 Fold 4
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Ertekin Ş, Rudin C (2011) On equivalence relationships between classification and ranking algorithms. Journal of Machine
Learning Research 12:2905–2929

Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ, Kapoor WN (1997) A
prediction rule to identify low-risk patients with community-acquired pneumonia. The New England Journal of Medicine
pp 243–250

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research 4:933–969

Herbrich R, Graepel T, Obermayer K (1999) Large margin rank boundaries for ordinal regression. NIPS pp 115–132
Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression. Advances in Large Margin

Classifiers
Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied Logistic Regression: Third Edition. John Wiley & Sons Inc.
Jain V, Varma M (2011) Learning to re-rank: Query-dependent image re-ranking using click data. In: Proc. 20th International

Conference on World Wide Web (WWW), pp 277–286
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A Appendix

A.1 Formulation to Maximize Regularized AUC

Again we want to have zik = 1 if wTxi > wTxk and zik = 0 otherwise. We want to maximize the sum of the zik’s which is the number of
correctly ranked positive-negative pairs. If wTxi −wTxk ≤ ε then it is not considered to be correctly ranked. So we need to impose that zik is
0 when wTxi −wTxk − ε ≤ 0; that is, when 1 plus this quantity is less than 1, zik is 0. Thus, we impose

zik ≤ 1 +wTxi −wTxk − ε.
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Table 5 Detailed experimental results on ROC Flexibility

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 29.12 29.65 31.02 32.34 31.11 30.93 32.27 33.91 32.84 28.95 31.21 1.65
test 31.52 32.16 33.13 28.64 29.73 31.98 31.59 30.39 30.92 33.45 31.35 1.48

SVM train 29.19 29.74 30.83 32.15 31.27 30.84 32.26 32.34 32.81 27.97 30.94 1.57
test 31.63 32.34 33.09 28.93 29.39 31.94 31.54 28.49 30.92 32.76 31.10 1.63

RB train 28.34 27.53 28.04 31.12 30.02 28.63 28.04 30.82 30.14 27.36 29.00 1.39
test 30.39 30.91 29.98 27.37 28.89 29.69 29.50 27.84 28.90 32.23 29.57 1.43

P-norm Push train 29.12 29.64 30.85 32.46 31.37 30.93 32.27 33.75 32.81 30.10 31.33 1.48
test 31.52 32.14 33.01 29.08 29.39 32.00 31.59 30.25 30.91 34.36 31.43 1.61

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 31.35 30.60 31.02 33.74 32.78 30.93 32.27 33.91 32.84 30.20 31.96 1.32
test 33.10 33.44 33.13 30.92 31.70 31.98 31.59 30.39 30.92 34.45 32.16 1.31

K = 100
train 31.44 30.65 30.37 33.82 32.52 30.93 31.71 33.88 32.84 30.28 31.84 1.36
test 33.12 33.52 32.59 31.01 31.48 31.98 31.29 30.45 30.92 34.51 32.09 1.31

K = 150
train 30.63 30.69 31.06 32.78 32.13 31.27 32.27 32.95 33.00 29.78 31.65 1.12
test 32.14 33.55 33.19 29.32 30.67 32.33 31.59 29.40 31.10 34.13 31.74 1.65

Full MIO train 26.92 27.15 27.04 28.14 30.90 30.99 26.41 30.12 26.96 29.69 28.43 1.80
test 28.76 29.08 29.16 25.75 28.57 31.95 28.34 27.34 26.74 33.92 28.96 2.40

Regularization is included as usual. The formulation is:

max
w,γj ,zik∀j,i,k

∑
i∈S+

∑
k∈S−

zik − C
∑
j

γj

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i ∈ S+, k ∈ S−,
γj ≥ wj , ∀j = 1, . . . , d,

γj ≥ −wj , ∀j = 1, . . . , d,

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

zik, γj ∈ {0, 1}, ∀i ∈ S+, k ∈ S−, j ∈ {1, ...d}.

A.2 Ranking for the General Pairwise Preference Case

RankBoost (Freund et al, 2003) was designed to handle any pairwise preference information. Here we present an exact, regularized version of
RankBoost’s objective. Define the labels as π(xi,xk) = πik , where πik is 1 if xi should be ranked higher than xk . If πik = 0 there is no
information about the relative ranking of i to k. Then we try to maximize the number of pairs for which the model is able to rank xi above xk and
for which the label for the pair is πik = 1:

NumAgreedPairs =
n∑
i=1

n∑
k=1

πik1[f(xi)>f(xk)].

We will maximize a regularized version of this, as follows:

max
w,γj ,zik∀j,i,k

n∑
i=1

n∑
k=1

πikzik − C
∑
j

γj

s.t. zik ≤ wT (xi − xk) + 1− ε, ∀i, k = 1, . . . , n,

− 1 ≤ wj ≤ 1, ∀j = 1, . . . , d,

γj ≥ wj , ∀j = 1, . . . , d,

γj ≥ −wj , ∀j = 1, . . . , d,

zik, γj ∈ {0, 1}, ∀i, k = 1, . . . , n, j ∈ {1, ...d}.

By special choices of π, the pairwise rank statistic can be made to include multipartite ranking (Rajaram and Agarwal, 2005), which can
be similar to ordinal regression. In this case we have several classes, where observations in one class should be ranked above (or below) all the
observations in another class.

πik =

{
1 if observations in Class(xi) should be ranked above observations in Class(xk),
0 otherwise.

If there are only two classes, then we are back to the AUC or equivalently the WRS statistic.

A.3 Experimental Results
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Table 6 Detailed experimental results on Abalone19

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 3.50 3.56 3.92 3.69 3.56 3.94 2.66 4.19 3.92 3.35 3.63 0.43
test 3.01 2.91 3.03 3.14 2.75 3.32 3.76 2.22 2.53 2.94 2.96 0.42

SVM train 3.46 3.43 3.46 3.39 3.51 2.99 2.46 4.23 3.85 3.37 3.41 0.47
test 2.94 2.80 3.22 3.18 2.78 3.32 4.22 2.31 2.49 2.92 3.02 0.53

RB train 3.73 3.91 2.56 3.32 3.51 2.69 2.34 4.04 3.87 4.06 3.40 0.65
test 2.47 2.49 2.76 2.89 2.60 3.08 3.66 1.92 2.13 2.62 2.66 0.49

P-norm Push train 3.44 3.52 3.74 3.40 3.45 3.04 2.44 4.20 3.80 3.33 3.44 0.47
test 2.97 2.79 3.05 3.08 2.77 3.23 4.33 2.65 2.55 2.86 3.03 0.50

M
IO

-b
as

ed
m

et
ho

ds K = 250
train 5.24 4.52 4.82 4.86 5.37 4.58 3.84 5.57 5.69 4.44 4.89 0.58
test 2.88 3.25 2.99 3.33 3.15 3.22 3.41 2.37 2.26 3.91 3.08 0.49

K = 500
train 4.49 3.72 4.70 4.60 5.10 4.01 3.66 5.04 4.68 4.49 4.45 0.50
test 2.85 2.87 2.89 3.12 2.50 3.11 3.36 2.20 2.70 3.26 2.89 0.35

K = 750
train 3.79 3.55 4.75 3.94 4.95 3.90 3.57 4.83 3.74 4.27 4.13 0.53
test 2.64 2.96 2.80 2.90 2.61 3.25 3.14 1.92 2.47 2.96 2.76 0.38

Full MIO train 2.60 2.37 2.29 2.54 2.66 2.14 2.00 3.11 2.79 2.89 2.54 0.35
test 2.22 2.47 2.47 2.98 2.07 2.78 3.24 1.66 1.99 2.32 2.42 0.48

Table 7 Detailed experimental results on UIS

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 18.94 18.64 17.99 19.21 18.50 17.69 21.46 19.38 20.10 16.69 18.86 1.32
test 17.11 17.84 17.11 16.87 18.72 17.99 17.03 18.15 17.40 20.57 17.88 1.11

SVM train 18.37 17.83 17.67 18.39 18.20 17.64 21.17 19.13 20.00 16.18 18.46 1.38
test 16.91 17.62 17.32 16.78 18.73 17.71 16.91 18.12 17.18 20.80 17.81 1.21

RB train 20.40 19.13 19.59 20.40 18.46 18.31 21.97 19.30 20.10 16.69 19.44 1.44
test 16.18 17.77 18.33 16.30 19.88 17.81 15.64 18.00 17.39 19.67 17.70 1.40

P-norm Push train 18.93 17.92 17.93 19.18 18.49 17.68 21.55 19.42 20.10 16.60 18.78 1.40
test 17.09 17.82 17.19 16.86 18.73 17.96 17.04 18.22 17.42 20.61 17.89 1.13

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 20.53 20.23 20.52 21.13 19.34 20.32 22.43 20.90 21.25 17.81 20.45 1.23
test 19.40 19.00 16.57 17.94 18.65 19.73 17.15 16.56 16.14 18.87 18.00 1.31

K = 100
train 20.70 19.66 19.92 20.20 18.33 19.64 21.78 20.04 20.26 17.11 19.76 1.27
test 18.94 18.69 18.06 18.00 20.60 19.48 15.42 18.93 17.67 20.58 18.64 1.51

K = 150
train 19.91 18.97 19.37 19.53 18.02 19.79 20.32 19.80 20.01 16.90 19.26 1.05
test 17.59 17.24 18.68 17.11 18.47 17.86 15.64 17.01 16.34 22.00 17.79 1.73

Full MIO train 19.06 18.99 18.10 19.90 17.39 18.89 21.68 19.03 19.11 16.24 18.84 1.44
test 18.47 17.07 18.08 18.03 18.42 18.42 17.02 17.38 17.16 18.82 17.89 0.67

Table 8 Detailed experimental results on Travel

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 31.48 26.63 27.22 28.60 29.25 28.44 27.94 28.70 25.55 27.81 28.16 1.60
test 23.94 28.69 28.34 26.98 26.76 25.57 27.88 26.95 30.02 28.03 27.32 1.70

SVM train 31.08 26.13 26.75 28.23 28.58 27.17 27.29 28.26 25.12 27.29 27.59 1.61
test 23.41 27.74 27.84 26.93 26.37 24.56 27.22 26.58 29.65 27.79 26.81 1.76

RB train 29.83 25.00 25.31 27.01 27.70 27.28 26.72 26.63 24.09 26.20 26.57 1.60
test 21.93 26.46 26.35 24.33 23.36 24.00 25.20 25.01 27.48 25.40 24.95 1.63

P-norm Push train 31.52 26.62 27.12 28.49 29.26 28.37 27.93 28.49 25.52 27.61 28.09 1.62
test 24.05 28.39 28.25 26.80 26.78 25.51 27.86 26.74 30.00 28.01 27.24 1.66

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 31.69 26.91 27.18 28.73 29.31 28.74 28.19 28.83 25.58 27.87 28.30 1.63
test 24.26 29.20 28.48 27.05 26.88 26.42 28.15 26.97 30.46 28.24 27.61 1.70

K = 100
train 31.19 27.05 27.01 28.81 29.62 28.75 27.65 28.53 25.54 28.23 28.24 1.56
test 24.15 29.63 28.46 27.01 26.31 27.15 26.55 27.48 29.39 27.81 27.39 1.60

K = 150
train 28.76 26.28 25.39 27.95 29.24 27.50 26.90 28.28 24.99 25.93 27.12 1.45
test 20.99 28.16 26.59 26.53 26.21 23.86 25.99 26.78 29.19 25.68 26.00 2.26

Full MIO train 29.57 26.14 26.84 26.55 28.62 26.38 25.85 27.93 25.08 26.44 26.94 1.36
test 23.16 27.82 27.61 25.01 26.30 24.42 26.41 26.01 29.55 26.85 26.31 1.83
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Table 9 Detailed experimental results on NHANES

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 14.50 12.76 16.84 13.89 17.18 15.84 14.62 13.89 15.25 12.14 14.69 1.63
test 14.43 14.16 10.31 14.63 10.33 11.78 14.74 13.42 12.39 14.40 13.06 1.74

SVM train 13.04 11.42 15.80 12.64 16.63 15.72 13.57 13.17 14.99 11.31 13.83 1.87
test 14.33 14.08 10.27 14.63 10.13 11.75 14.86 13.33 12.12 14.27 12.98 1.79

RB train 13.05 12.05 16.73 13.35 16.84 15.20 12.93 13.03 13.87 10.40 13.75 2.01
test 11.95 13.68 9.78 13.06 9.31 10.67 12.49 12.43 12.67 14.98 12.10 1.75

P-norm Push train 14.43 12.53 16.63 13.53 16.12 15.89 14.49 13.74 15.32 11.87 14.46 1.57
test 14.28 14.39 10.10 14.76 10.24 11.85 14.88 13.63 13.30 14.41 13.18 1.82

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 15.32 13.04 17.90 14.96 17.84 17.02 14.95 14.64 15.77 13.35 15.48 1.69
test 14.54 14.39 10.38 13.37 11.07 13.33 14.65 12.99 13.11 14.74 13.26 1.50

K = 100
train 14.11 11.83 17.52 13.77 18.28 16.48 14.49 13.75 15.04 14.95 15.02 1.93
test 13.58 14.25 10.29 12.76 9.83 12.96 13.53 12.27 14.95 12.74 12.71 1.61

K = 150
train 14.30 12.49 16.91 14.87 16.40 16.56 14.83 13.89 14.77 12.27 14.73 1.59
test 13.83 14.30 10.73 12.75 10.44 11.91 14.86 13.75 12.40 14.38 12.94 1.55

Full MIO train 13.36 12.11 15.79 13.48 15.66 14.48 14.17 13.25 14.13 12.21 13.87 1.25
test 14.46 14.75 10.42 14.83 10.19 11.76 14.53 13.44 12.19 14.37 13.09 1.82

Table 10 Detailed experimental results on Pima

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 37.27 38.05 33.65 33.84 34.54 33.02 36.10 36.57 35.96 35.98 35.50 1.66
test 32.64 31.77 36.70 36.07 34.88 36.47 33.85 32.22 34.22 32.94 34.18 1.81

SVM train 36.69 37.74 33.52 33.59 34.29 32.93 36.08 36.53 35.88 35.71 35.30 1.61
test 31.91 31.93 36.73 35.66 34.64 36.41 33.90 32.19 34.24 32.77 34.04 1.83

RB train 37.65 36.95 34.29 34.36 35.12 33.27 36.56 36.96 36.29 36.57 35.80 1.44
test 32.23 31.17 35.97 36.14 34.26 35.40 33.37 33.17 34.02 32.53 33.83 1.65

P-norm Push train 37.39 38.25 33.74 33.99 34.79 33.11 36.20 36.62 36.10 36.26 35.64 1.67
test 32.64 31.70 36.67 36.04 35.10 36.65 33.76 32.21 34.20 33.42 34.24 1.82

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 37.41 38.36 33.74 34.17 34.56 33.30 36.52 36.71 36.31 36.39 35.75 1.67
test 32.70 32.18 36.28 36.36 34.91 37.37 33.07 33.86 34.50 33.19 34.44 1.76

K = 100
train 37.58 37.99 33.54 33.67 34.75 33.10 35.10 36.30 36.22 36.07 35.43 1.69
test 31.41 30.77 33.82 35.93 35.42 35.57 32.34 33.97 33.03 33.31 33.56 1.87

K = 150
train 37.25 37.97 33.00 33.53 34.14 31.35 35.35 36.40 35.54 33.99 34.85 1.96
test 32.50 31.75 35.93 36.03 35.62 37.05 32.22 32.38 32.98 30.74 33.72 2.21

Full MIO train 37.16 37.69 33.78 33.98 34.07 31.99 35.14 36.21 31.71 35.95 34.77 2.03
test 32.48 31.85 36.06 35.60 35.02 35.19 33.40 32.50 31.10 33.35 33.65 2.01

Table 11 Detailed experimental results on the Gaussians data set

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 69.23 68.26 67.17 68.13 75.38 72.75 68.76 67.18 67.24 68.39 69.25 2.70
test 64.89 65.62 66.88 65.49 59.25 61.51 64.61 66.58 66.65 65.41 64.89 2.45

SVM train 69.30 68.27 67.15 68.19 75.39 72.74 68.90 67.18 67.24 68.38 69.28 2.70
test 64.92 65.64 66.90 65.59 59.26 61.52 64.81 66.58 66.65 65.41 64.73 2.45

RB train 71.14 70.53 69.43 70.51 76.05 74.28 70.21 70.04 69.70 71.22 71.31 2.15
test 67.58 68.68 68.36 67.81 62.49 64.78 66.91 68.40 69.40 69.36 67.13 2.06

P-norm Push train 69.22 68.21 67.19 68.12 75.39 72.75 68.69 67.18 67.26 68.38 69.24 2.70
test 64.86 65.45 66.86 65.46 59.26 61.51 64.47 66.57 66.65 65.38 64.65 2.43

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 71.32 70.56 69.36 71.28 76.57 74.59 71.69 70.16 70.03 71.61 71.72 2.22
test 68.57 69.10 70.38 68.45 62.99 65.26 67.82 69.73 69.81 68.22 68.03 2.27

K = 100
train 71.27 70.43 69.61 71.39 76.56 74.59 71.61 70.33 70.06 71.81 71.76 2.18
test 68.48 69.12 70.25 68.26 63.05 65.11 67.58 69.81 69.82 67.64 67.91 2.27

K = 150
train 71.01 70.55 69.08 71.41 76.45 74.54 71.76 69.95 69.41 71.67 71.58 2.30
test 67.31 69.37 70.34 68.46 62.55 65.41 68.01 68.38 69.92 68.11 67.79 2.30

Full MIO train 62.81 63.50 61.76 65.16 70.67 66.56 62.53 64.68 64.62 64.69 64.70 2.53
test 61.28 61.58 62.34 60.50 55.83 55.89 59.76 59.87 61.02 60.81 59.89 2.26

Table 12 Detailed experimental results on Haberman Survival

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 13.45 11.92 14.94 13.98 13.18 13.08 12.47 12.88 12.28 11.17 12.94 1.07
test 11.45 13.79 10.69 12.01 13.02 13.13 13.47 12.84 13.24 14.58 12.82 1.15

SVM train 13.43 11.96 15.02 13.83 13.16 13.19 12.52 12.82 12.34 11.18 12.95 1.06
test 11.42 13.79 10.70 11.52 13.08 13.06 12.78 12.82 12.58 14.56 12.63 1.15

RB train 14.35 13.55 16.48 13.83 13.84 13.81 13.95 14.47 13.89 11.33 13.95 1.24
test 11.29 13.08 9.60 11.85 12.13 12.62 12.39 11.33 12.74 13.01 12.01 1.06

P-norm Push train 13.44 11.91 14.88 14.00 13.18 13.11 12.50 12.92 12.26 11.17 12.94 1.06
test 11.51 13.66 10.72 11.98 12.94 13.14 12.84 12.80 12.24 14.55 12.64 1.09

M
IO

-b
as

ed K = 50
train 13.68 11.91 14.92 14.12 12.95 13.00 12.54 14.39 12.49 11.02 13.10 1.19
test 10.10 13.82 10.62 11.99 12.92 13.07 13.48 11.88 13.93 14.60 12.64 1.47

K = 100
train 14.16 12.13 14.94 14.45 12.98 13.03 11.87 12.85 12.63 11.14 13.02 1.20
test 11.65 13.05 10.52 12.24 12.95 13.19 13.67 12.81 13.23 14.66 12.80 1.13

Full MIO train 13.90 12.45 14.92 13.92 12.91 13.26 12.53 12.82 12.97 11.63 13.13 0.92
test 11.62 13.26 10.60 11.44 12.62 12.82 12.47 12.76 12.61 14.42 12.46 1.05
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Table 13 Detailed experimental results on Polypharm

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 17.69 20.69 20.52 19.93 18.63 19.69 21.49 17.99 17.35 20.27 19.43 1.42
test 18.60 15.65 15.84 16.40 18.60 17.41 14.74 17.82 20.12 17.14 17.23 1.63

SVM train 17.57 20.69 20.15 19.85 18.24 19.60 21.46 17.48 17.06 20.26 19.24 1.53
test 18.51 16.84 17.54 16.93 18.47 17.34 14.67 19.63 20.11 17.09 17.71 1.56

RB train 17.65 20.52 20.10 19.97 17.81 19.75 21.03 16.90 17.15 20.25 19.11 1.55
test 18.98 15.59 16.99 16.10 18.51 17.01 14.89 19.35 19.90 16.67 17.40 1.70

P-norm Push train 17.30 19.43 19.80 18.71 16.76 19.30 20.53 19.34 18.98 17.16 18.73 1.25
test 20.36 17.34 17.75 18.87 19.33 16.96 15.66 17.51 17.95 18.79 18.05 1.33

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 17.71 19.64 19.95 18.91 19.65 19.48 20.64 19.05 19.37 17.68 19.21 0.93
test 20.25 16.30 17.02 16.71 18.18 17.58 15.47 17.55 16.49 18.20 17.37 1.33

K = 100
train 17.09 19.29 19.60 18.41 16.89 19.40 20.64 18.07 19.54 17.38 18.63 1.25
test 19.88 16.82 17.53 18.39 16.96 16.53 15.69 17.40 17.57 19.13 17.59 1.25

K = 150
train 17.11 17.78 17.75 17.77 16.43 19.21 18.99 18.76 19.54 17.05 18.04 1.04
test 19.93 16.15 13.85 17.70 17.55 17.97 14.21 17.81 16.84 19.54 17.16 1.99

Full MIO train 16.95 18.71 19.40 17.21 16.94 18.35 20.33 18.48 19.26 15.92 18.16 1.36
test 20.05 16.50 17.41 17.68 18.73 14.62 15.84 16.92 16.16 18.28 17.22 1.57

Table 14 Detailed experimental results on Glow500

Runs Statistics
Algorithm 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

B
as

el
in

e
m

et
ho

ds LR train 14.66 17.70 18.65 17.44 18.44 17.84 16.95 16.51 16.57 17.87 17.26 1.16
test 18.32 15.45 16.06 17.11 14.78 17.68 17.64 16.90 17.45 15.43 16.68 1.18

SVM train 13.94 17.13 18.67 16.92 17.57 17.80 16.18 15.41 15.07 16.52 16.52 1.41
test 18.48 15.83 15.59 17.11 16.31 17.63 18.21 17.90 18.91 16.59 17.26 1.15

RB train 14.34 17.77 18.65 18.12 17.91 17.22 17.94 16.31 16.42 17.65 17.23 1.25
test 18.48 16.44 16.77 16.29 16.32 17.71 16.83 17.37 17.20 16.67 17.01 0.69

P-norm Push train 14.10 17.67 18.96 17.36 18.52 17.97 16.56 15.66 16.19 17.22 17.02 1.44
test 18.35 15.92 15.68 17.56 15.41 18.07 18.65 18.01 18.45 16.28 17.24 1.27

M
IO

-b
as

ed
m

et
ho

ds K = 50
train 15.62 18.85 19.20 19.02 19.21 18.65 18.30 17.31 16.74 19.12 18.20 1.24
test 16.89 15.23 17.18 16.43 17.03 18.33 17.65 17.30 17.15 14.68 16.79 1.09

K = 100
train 15.30 18.27 18.51 18.32 19.42 18.30 17.86 16.18 16.93 17.89 17.70 1.22
test 17.38 16.82 15.39 17.69 16.18 18.50 19.06 15.74 19.68 14.59 17.10 1.66

K = 150
train 14.53 17.85 18.69 17.90 18.81 17.25 16.87 15.85 15.53 17.53 17.08 1.40
test 19.26 14.85 15.58 16.73 16.07 17.40 17.27 18.28 16.70 15.65 16.78 1.33

Full MIO train 13.51 17.51 17.46 16.46 18.40 16.97 16.71 16.35 16.64 16.94 16.69 1.28
test 16.47 15.59 15.74 15.78 15.54 17.26 15.72 18.12 19.36 15.22 16.48 1.35

Table 15 Detailed experimental results on ROC Flexibility, with different c and ε values.

Runs Statistics
Parameter values 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

K
=

1
0
0
,ε

=
1
0
−

4

c = 10−1 train 29.12 29.65 31.02 32.34 31.11 30.93 32.27 33.91 32.84 29.95 31.31 1.52
test 31.52 32.16 33.13 28.64 29.73 31.98 31.59 30.39 30.92 33.45 31.35 1.48

c = 10−2 train 30.35 30.18 27.91 33.80 31.82 30.93 32.27 32.71 32.84 30.28 31.31 1.72
test 31.78 32.42 29.64 30.97 30.35 31.98 31.59 28.83 30.92 34.51 31.30 1.57

c = 10−3 train 31.44 30.65 30.37 33.82 32.52 30.93 31.71 33.88 32.84 30.28 31.84 1.36
test 33.12 33.52 32.59 31.01 31.48 31.98 31.29 30.45 30.92 34.51 32.09 1.31

c = 10−4 train 31.50 30.69 31.06 33.14 32.74 30.93 32.27 33.93 32.84 30.35 31.94 1.20
test 33.17 33.55 33.19 29.59 31.65 31.98 31.59 30.48 30.92 34.52 32.06 1.53

c = 10−5 train 31.50 30.69 31.06 33.86 32.74 30.93 32.27 33.93 32.84 30.35 32.02 1.30
test 33.17 33.55 33.19 31.08 31.65 31.98 31.59 30.48 30.92 34.52 32.21 1.32

c = 10−6 train 30.63 30.60 31.06 33.86 32.13 30.93 32.27 33.93 32.84 30.35 31.86 1.35
test 32.14 33.55 33.19 31.08 30.67 31.98 31.59 30.48 30.92 34.52 32.01 1.35

K
=

1
0
0
,c

=
1
0
−

3

ε = 10−1 train 31.45 30.69 31.06 33.05 30.08 30.93 32.27 33.65 32.84 30.24 31.62 1.25
test 32.12 33.55 33.19 29.21 28.21 31.98 31.59 29.62 30.92 34.47 31.59 2.07

ε = 10−2 train 30.63 30.69 31.06 33.05 32.74 30.93 32.27 33.92 32.84 30.35 31.85 1.26
test 32.14 33.55 33.19 29.11 31.65 31.98 31.59 30.49 30.92 34.52 31.91 1.57

ε = 10−3 train 30.63 30.69 31.06 33.84 32.74 30.93 32.27 33.93 32.84 30.35 31.93 1.36
test 32.14 33.55 33.19 31.03 31.65 31.98 31.59 30.48 30.92 34.52 32.10 1.28

ε = 10−4 train 31.44 30.65 30.37 33.82 32.52 30.93 31.71 33.88 32.84 30.28 31.84 1.36
test 33.12 33.52 32.59 31.01 31.48 31.98 31.29 30.45 30.92 34.51 32.09 1.31

ε = 10−5 train 31.50 30.69 31.06 33.86 32.74 30.93 32.27 33.93 32.84 30.35 32.02 1.30
test 33.17 33.55 33.19 31.08 31.65 31.98 31.59 30.48 30.92 34.52 32.21 1.32

ε = 10−6 train 31.38 30.19 31.06 33.74 31.55 30.93 31.93 33.90 32.84 28.27 31.58 1.68
test 33.07 33.04 33.19 30.92 29.61 31.98 31.48 30.41 30.92 32.75 31.74 1.26
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Table 16 Detailed experimental results on UIS, with different c and ε values.

Runs Statistics
Parameter values 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.

K
=

1
0
0
,ε

=
1
0
−

4

c = 10−1 train 18.94 18.64 17.99 19.21 18.50 20.25 21.46 19.38 20.10 17.08 19.15 1.24
test 17.11 17.84 17.11 16.87 18.72 18.72 17.03 18.15 17.40 20.44 17.94 1.11

c = 10−2 train 19.39 18.86 19.75 19.85 18.56 19.45 21.40 19.32 19.63 17.39 19.36 1.02
test 18.21 18.39 17.14 17.84 20.71 16.78 16.05 18.44 17.20 20.70 18.15 1.54

c = 10−3 train 20.17 19.92 19.47 19.80 18.81 20.16 21.46 19.82 19.71 17.53 19.69 1.01
test 18.44 18.30 17.43 17.23 19.83 18.73 16.15 16.09 16.31 20.67 17.92 1.57

c = 10−4 train 20.70 19.66 19.92 20.20 18.33 19.64 21.78 20.04 20.26 17.11 19.76 1.27
test 18.94 18.69 18.06 18.00 20.60 19.48 15.42 18.93 17.67 20.58 18.64 1.51

c = 10−5 train 20.55 19.03 19.73 20.83 19.00 19.46 22.16 20.02 20.48 17.61 19.89 1.24
test 18.84 18.71 16.98 17.49 18.53 18.17 16.67 17.21 16.73 20.12 17.94 1.12

c = 10−6 train 20.67 19.95 19.51 19.83 18.88 19.22 21.70 19.76 19.70 17.55 19.68 1.08
test 18.41 17.52 16.80 17.90 18.30 19.93 15.38 15.92 16.25 20.96 17.74 1.76

K
=

1
0
0
,c

=
1
0
−

4

ε = 10−1 train 20.22 19.26 19.37 20.45 18.86 19.90 21.87 19.88 20.08 17.10 19.70 1.23
test 18.78 17.65 17.07 17.80 18.78 19.71 17.22 18.38 18.11 20.53 18.40 1.09

ε = 10−2 train 20.22 19.61 19.64 20.43 18.15 19.54 22.17 19.88 20.04 17.61 19.73 1.24
test 18.28 18.56 18.45 17.39 19.47 17.11 16.71 18.42 16.46 19.44 18.03 1.06

ε = 10−3 train 20.97 19.30 20.06 19.65 18.61 20.07 21.35 20.10 20.26 17.63 19.80 1.09
test 17.98 18.00 18.01 17.46 20.04 18.67 16.45 17.91 18.26 20.60 18.34 1.20

ε = 10−4 train 20.70 19.66 19.92 20.20 18.33 19.64 21.78 20.04 20.26 17.11 19.76 1.27
test 18.94 18.69 18.06 18.00 20.60 19.48 15.42 18.93 17.67 20.58 18.64 1.51

ε = 10−5 train 20.43 19.81 19.53 19.98 18.47 20.09 21.55 19.95 20.32 17.20 19.73 1.17
test 17.06 18.74 16.70 17.95 19.08 19.08 15.03 17.83 16.45 20.86 17.88 1.66

ε = 10−6 train 20.16 18.37 19.53 18.15 18.50 18.81 21.46 19.38 20.10 16.32 19.08 1.40
test 18.23 18.24 17.66 18.23 18.72 19.51 17.03 18.15 17.40 19.12 18.23 0.75
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