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PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS

GEORG ZETZSCHE

ABSTRACT. We introduce a flexible class of well-quasi-orderings (WQOs) on
words that generalizes the ordering of (not necessarily contiguous) subwords.
Each such WQO induces a class of piecewise testable languages (PTLs) as
Boolean combinations of upward closed sets. In this way, a range of regular
language classes arises as PTLs. Moreover, each of the WQOs guarantees reg-
ularity of all downward closed sets. We consider two problems. First, we study
which (perhaps non-regular) language classes permit a decision procedure to
decide whether two given languages are separable by a PTL with respect to a
given WQO. Second, we want to effectively compute downward closures with
respect to these WQOs. Our first main result that for each of the WQOs,
under mild assumptions, both problems reduce to the simultaneous unbound-
edness problem (SUP) and are thus solvable for many powerful system classes.
In the second main result, we apply the framework to show decidability of sep-
arability of regular languages by BX1[<, mod], a fragment of first-order logic
with modular predicates.

1. INTRODUCTION

In the verification of infinite-state systems, it is often useful to construct finite-
state abstractions. This is because finite-state systems are much more amenable to
analysis. For example, if a pertinent property of our system is reflected in a finite-
state abstraction, then we can work with the abstraction instead of the infinite-
state system itself. Another example is that the abstraction acts as a certificate for
correctness: A violation free overapproximation of the set of behaviors of a system
certifies absence of violations in the system itself. Here, we study two types of
such abstractions: downward closures, which are overapproximations of individual
languages and separators as certificates of disjointness.

Downward closures. A particularly appealing abstraction is the downward clo-
sure, the set of all (not necessarily contiguous) subwords of the members of a
language. What makes this abstraction interesting is that since the subword or-
dering is a well-quasi-ordering (WQO), the downward closure of any language is
regular [I7, [16]. Recently, there has been progress on when the downward closure is
not only regular but can also be effectively computed. It is known that downward
closures are computable for context-free languages [T, [30], Petri net languages [14],
and stacked counter automata [32]. Moreover, recently, a general sufficient condi-
tion for computability was presented in [31I]. Using the latter, downward closures
were then shown to be computable for higher-order pushdown automata [15] and
higher-order recursion schemes [6]. Hence, downward closures are computable for
very powerful models.
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If we want to use downward closures to prove absence of violations, then using
the downward closure in this way has the disadvantage that it is not obvious how
to refine it, i.e. systematically construct a more precise overapproximation in case
the current one does not certify absence of violations. Therefore, we wish to find
abstractions that are refinable in a flexible way and still guarantee regularity and
computability.

Separability. Another type of finite-state abstractions is that of separators. Since
safety properties of multi-threaded programs can often be formulated as the dis-
jointness of two languages, one approach to this task is to use regular languages to
certify disjointness |2 [4] 22]. A separator of two languages K and L is a set S such
that K € S and L NS = (. Therefore, especially in cases where disjointness of
languages is undecidable or hard, it would be useful to have a decision procedure for
the separability problem: Given two languages, it asks whether they are separable
by a language from a particular class of separators. In particular, if we want to
apply such algorithms to infinite-state systems, it would be desirable to find large
classes of separators (and systems) for which the separability problem is decidable.

It has long been known that separability of context-free languages are undecid-
able already for very simple classes of regular languages [29, [I8] and this stifled hope
that separability would be decidable for any interesting classes of infinite-state sys-
tems and classes of separators. However, the subword ordering turned out again to
have excellent decidability properties: It was shown recently that for a wide range
of language classes, it is decidable whether two given languages are separable by a
piecewise testable language (PTL) [9]. A PTL is a finite Boolean combination of
upward closures (with respect to the subword ordering) of single words. In fact, in
turned out that (under mild closure assumptions) separability by PTL is decidable
if and only if downward closures are computable [10].

However, while this separability result applies to very expressive models of
infinite-state systems, it is still limited in terms of the separators: The small class
of PTL will not always suffice as disjointness certificates.

Contribution. This work makes two contributions, a conceptual one and a tech-
nical one. The conceptual contribution is the introduction of a fairly flexible class
of WQOs on words. These are refinable and provide generalizations of the sub-
word ordering. These orders are parameterized by transducers, counter automata
or other objects and can be chosen to reflect various properties of words. More-
over, the classes of corresponding PTLs are a surprisingly rich collection of classes
of regular languages.

Moreover, it is shown that all these orders have the same pleasant properties
in terms of downward closure computation and decidability of PTL-separability
as the subword ordering. More specifically, it is shown that (under mild assump-
tions), decidability of the abovementioned unboundedness problem again charac-
terizes (1) those language classes for which downward closures are computable
and (2) those classes where separability by PTL is decidable.

In addition, it turns out that this framework can also be used to obtain decidable
separability of regular languages by B31[<, mod], a fragment of first-order logic with
modular predicates. This is technically relatively involved and generalizes the fact
that definability of regular languages in BX;[<, mod] is decidable [5].
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2. PRELIMINARIES

If ¥ is an alphabet, ¥* denotes the set of words over . The empty word is
denoted by € € X*. A quasi-order is an ordering that is reflexive and transitive.
An ordering (X, <) is called a well-quasi-ordering (WQO) if for every sequence
Z1,%2,... € X, there are indices ¢ < j with x; < x;. This is equivalent to requiring
that every sequence x1, 2, ... € X contains an infinite subsequence =, z5,... € X
that is ascending, meaning z; =< z’ for i < j. For a subset L C X, we define
IxL={zxe X |Tyeliz<ytandtiL={re€ X |3y e L:y =<z} Theseare
called the downward closure and upward closure of L, respectively. A set L C X
is called downward closed (upward closed) if ;L = L (1<L = L). A (defining)
property of well-quasi-orderings is that for every non-empty upward-closed set U,
there are finitely many elements x1,...,x, € U such that U = 1 {x1,...,2,}.
See [20] for an introduction. An ordering (¥*, <) on words is called multiplicative
if uy < vy and us < vy implies ujus < v1vs.

For words u,v € ¥*, we write u < v if w = uy---u, and v = vouivy - - - upv, for
SOMe Uy, ..., Un, Vo, ---,Uy € L*. This ordering is called the subword ordering and
it is well-known that this is a well-quasi-ordering [17].

A well-studied class of regular languages is that of the piecewise testable lan-
guages. Classically, a language L C ¥* is a piecewise testable language (PTL) [27]
if it is a finite Boolean combination of sets of the form T w for w € ¥*. However,
this notion makes sense for any WQO (X, <) [13] and we call aset L C X piecewise
testable if it is a finite Boolean combination of sets 15z for x € X.

A (finite-state) transducer is a finite automaton where every edge reads input
and produces output. For a transducer T' and a language L, the language T'L
consists of all words output by the transducer while reading a word from L. A
class of languages C is called a full trio if it is effectively closed under rational
transductions, i.e. if TL € C for each L € C and each rational transduction 7.

3. PARAMETERIZED WQOS AND MAIN RESULTS

In this section, we introduce the parameterized WQOs on words, state the main
results of this work, and present some applications. We define the class of param-
eterized WQOs inductively using rules (Rules [1 to B). The simplest example is
Higman’s subword ordering.

Rule 1. For each &, (X%, <) is a parameterized WQO.

Orderings defined by transducers. To make things more interesting, we have
a type of WQOs that are defined by functions. Suppose X and Y are sets and we
have a function f: X — Y. A general way of constructing a WQO on X is to take
a WQO (Y, <) and set <y &’ if and only if f(z) < f(2’). It is immediate from
the definition that then <; is a WQO on X. We apply this idea to transducers.

A finite-state transducer over ¥ and I is a tuple T = (Q, X, T, E, I, F'), where Q
is a finite set of states, E C Q x (XU {e}) x (TU{e}) x Q is its set of edges, I C Q
is the set of initial states, and F C @ is the set of final states. Transducers accept
sets of pairs of words. A run of T is a sequence

(QO,ul, U1, Q1)(Q1,u27027 QQ) T (anla Unpy Un, (Jn)
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of edges such that gy € I, g, € F. The pair read by the run is (u1 - Up, V1 - - V).
Then, T realizes the relation

T(T) = {(u,v) € ¥* xI'" | (u,v) is read by a run of T }.

Relations of this form are called rational transductions. A transduction is functional
if for every u € ¥*, there is ezactly one v € I'* with (u,v) € T(T). In other words,
T(T) is a function T(7): £* — I'* and we can use it to define a WQO.

Rule 2. Let f: ¥* — T be a functional transduction. If (I'*, <) is a parameterized
WQO, then so is (X%, <y).

Conjunctions. Another way to build a WQO on a set is to combine two existing
WQOs. Suppose (X, =1) and (X, <) are WQOs. Their conjunction is the ordering
(X, =) with < 2’ if and only if x <1 2’ and 2 <5 2’. Then (X, <) is a WQO via
the characterization using ascending subsequences.

Rule 3. If (X*,=1) and (X*,=2) are parameterized WQOs, then so is their con-
Junction (¥*, <X).

Examples. Using the three building blocks in Rules [I] to Bl we can construct a
wealth of WQOs on words. Let us mention a few examples, including the accom-
panying classes of PTL.

Labeling transductions. Our first class of examples concerns orderings whose
PTLs are fragments of first-order logic with additional predicates. A labeling trans-
duction is a functional transduction f: ¥* — (3 x A)* for some alphabet A la-
bels such that for each w = a1---a, € ¥*, a1,...,a, € X, we have f(w) =
(a1,41) - (an,,) for some £q,..., 0, € A.

In this case, we can interpret <y-PTLs logically. To each word w = a1 ---ay,
ai,...,ay € X, we associate a finite relational structure 91, as follows. Its domain
is D = {1,...,n} and as predicates, it has the binary <, unary letter predicates
P, for a € ¥, and for each ¢ € A, we have a unary predicate m,. While the
predicates < and P, are interpreted as expected, we have to explain 7. If f(w) =
(a1,41) - (an,£,), then (i) expresses that ¢; = £. Hence, the 7, give access to
the labels produced by f. We denote the BX;-fragment (Boolean combinations of
¥;-formulas) as BX1[<, f].

Suppose My and My are relational structures over the same signature. An
embedding of MMy in My is an injective mapping from the domain of 9M; to the
domain of My such that each predicate holds for a tuple in 9t if and only the
predicate holds for the image of that tuple. This defines a quasi-ordering: We write
Ny — My if My can be embedded into My. Observe that for u,v € ¥*, we have
u <¢ v if and only if 9M,, — M,,.

It was shown in [13] that if the embedding order is a WQO on a set of structures,
then the BY;-fragment (i.e. Boolean combinations of ¥; formulas) can express
precisely the PTL with respect to <. This implies that the languages definable in
BY4[<, f] are precisely the <-PTL.

To illustrate the utility of the fragments BX1[<, f], suppose we are given regular
languages W;, P;, S;, for ¢ € [1,n]. Suppose we have for each i € [1,n] a 0-ary
predicate w; that expresses that our whole word belongs to W;. For each i € [1,n]
we also have unary predicates pre; and suf;, which express that the prefix and
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suffix, respectively, corresponding to the current position, belongs to P; and .5,
respectively. Then the corresponding fragment

BY1[<, (Wi)ie[1,n]» (Pre;)iefi,n]» (SUfi)iei,n]

can clearly be realized as BYq[<, f].

Of course, we can capture many other predicates by labeling transducers. For
example, it is easy to realize a predicates for “the distance to the closest position to
the left with an a is congruent k modulo d” (for some fixed d). Finally, let us observe
in passing that instead of enriching B3 [<], we could also construct fragments that
do not have access to letters: If f just produces labels (and no input letters), we
obtain a logic where, for example, we can only express whether “this position is
even and carries an a”.

Orderings defined by finite automata. Our second example slightly specializes
the first example. The reason we make it explicit is that we shall present explicit
ideal representations that will be applied to decide separability of regular languages
by BX[<,mod]. The example still generalizes the subword order. While in the
latter, a smaller word is obtained by deleting arbitrary infixes, these orders use an
automaton to restrict the permitted deletion.

A finite automaton is a tuple A = (Q, %, E, I, F), where @ is a finite set of states,
3 is the input alphabet, E C @ x X x @ is the set of edges, I C @ is the set of
initial states, and F' C @ is the set of final states. The language L(A) is defined in
the usual way. Here, we use automata as a means to assign a labeling to an input
word. A labeling is defined by a run. A run of Aonw =ay---an, a1,...,a, € %,
is a sequence

(90,a1,q1)(q1,02,92) - - (Gn—1,0n,qn) € E*

with go € I and ¢, € F. By Runs(A), denote the set of runs of A. Since we want
A to label every word from ¥*, we call an automaton A a labeling automaton if
for each word w € L(A), A has exactly one run on w. In this case, we write A(w)
for the run of A on w. Moreover, we define o 4(w) = (p, q), where p and ¢ are the
first and last state, respectively, visited during w’s run. Hence, such an automaton
defines a map A: X% — E*.

Let u <4 v if and only if v is obtained from u by “inserting loops of A”. In
other words, v can be written as v = ugvius - - - vV, With u = ug - - - u,, such that
the run of A on v occupies the same state before reading v; and after reading v;.
Equivalently, we have u < 4 v if and only if 0. 4(u) = 0 4(v) and A(u) < A(v). The
order < 4 is a parameterized WQO: The order < with u < v if and only if o.4(u) =
o.4(v) is parameterized because we can use a functional transduction f that maps u
to the length-1 word o4 (u) in (Q x @)*. Moreover, with a functional transduction
¢ that maps a word w to its run A(w), the ordering <4 is the conjunction of <
and <.

e If A consists of just one state and a loop for every a € X, then < 4 is the
ordinary subword ordering.

e Suppose B is a complete deterministic automaton accepting a regular lan-
guage L C ¥*. Then L is simultaneously upward closed and downward
closed with respect to <4, where A is obtained from B by making all
states final. In particular, every regular language can occur as an upward
closure and as a downward closure with respect to some =< 4.
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As for labeling transducers, we can consider logical fragments where =< 4 is the
embedding order. Again, our signature consists of <, P, for a € ¥. Furthermore,
for each ¢ € @, we have the 0-ary predicates ¢, and 7, and unary predicates A,
and pq. Let (go,a1,¢1) - (gn-1, Gn, qn) be the run of A on w. Then A,(i) is true
iff ¢;—1 = q. Moreover, p,(i) holds iff ¢; = ¢q. Hence, A\; and p, give access to
the state occupied by A to the left and to the right of each position, respectively.
Accordingly, ¢4 and 7, concern the first and the last state: ¢, is satisfied iff go = ¢
and 7, is true iff ¢, = gq.

As an example, let My be the automaton that consists of a single cycle of length
d so that on each input letter, My moves one step forward in the cycle. This is
equivalent to having a predicate for each k € [1,d] that express that the current
position is congruent k£ modulo d. Moreover, we have a predicate for each k € [1,d]
to express that the length of the word is k¥ modulo d. This is sometimes denoted
BY1[<,modg]. If these predicates are available for every d, the resulting class is
denoted BX;[<, mod] [5] and will be the subject of Theorem B7

Multiplicative well-partial orders. Ehrenfeucht et al. [IT] have shown that a
language is regular if and only if it is upward closed with respect to some multi-
plicative WQO. For the “only if” direction, they provide the syntactic congruence,
which, as a finite-index equivalence, is a WQO. Here, we exhibit a natural exam-
ple of a well-partial order for which a given regular language is upward closed.
Suppose M is a finite monoid and #: ¥* — M is a morphism that recognizes
the language L C X*, ie. L = 07%O(L)). Let f: X* — (M? x ¥ x M?)*

be the functional transduction such that for w = a1 - an, a1,...,a, € X, we
have f(w) = (o,70,a1,41,71)* (bn—-1,"n-1,n,n, ), where £; = 6(a1 ---a;) and
ri = 6(ait1---an). Then we have u <y v if and only if v can be written as

UV = UgU1Uq - + - Uplhy, sSuch that O(ug - - u;—1v;) = O(ug - -ui—1) and O(viu; - - up) =
O(u; - - - uy) for i € [1,n]. In this case, we write <y for <.

Note that =<y is multiplicative and L is <g-upward closed. Thus, the order =<y
is a natural example that shows: A language is regular if and only if it is upward
closed with respect to some multiplicative well-partial order.

Remark 3.1. Another source of WQOs on words is [3], where Bucher et al. have
studied a class of multiplicative orderings on words arising from rewriting systems.
They show that all WQOs considered there can be represented by finite monoids
equipped with a multiplicative quasi-order. Given such a monoid (M, <) and a
morphism 6: ¥* — M, they set u Cg v if and only if u = uy -+ - up, u1,...,uy, € X,
and v = vy ---v, such that 6(u;) < 6(v;). However, they leave open for which
monoids (M, <) the order Cy is a WQO.

In the case that 6 above is a morphism into a finite group (whose order is the
equality), the order <y coincides with Cy. However, while the orderings consid-
ered by Bucher et al. are always multiplicative, this is not always the case for
parameterized WQOs.

Orderings defined by counter automata. We can also use automata with
counters to produce parameterized WQOs. A counter automaton is a tuple A =
(Q,X,C,E,I,F), where Q is a finite set of states, ¥ is the input alphabet, C is a
set of counters, E C Q x (AU {e}) x N® x @Q is the finite set of edges, I C Q is
the set of initial states, and F' C @ is the set of final states. A configuration of A
is a tuple (q,w, ), where ¢ € Q, w € A*, u € N, The step relation is defined
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as follows. We have (¢, w,u) =4 (¢',w', ') iff there is an edge (¢q,v,v,q') € E
such that w' = wv and ¢/ = p+v. A run (arriving ot p) on an input word w is
a sequence (qo,wo, f0); - - - » (qns Wn, fin) such that (gi—1,wi—1, pri—1) = A (¢, wi, p;)
forie[l,n],q €1, wyp=¢, po =0, ¢, € F, and w,, = w.

We use counter automata not primarily as accepting devices, but rather to define
maps and to specify unboundedness properties. We call A a counting automaton
if it has exactly one run for every word w € ¥*. In this case, it defines a function
A: ¥* — N We have A(w) = p iff A has a run on w arriving at .

This gives rise to an ordering: Let A4 be a counting automaton. Then, given
u,v € X*, let u <4 v if and only if A(u) < A(v). This is a parameterized WQO
for the following reason. For each ¢ € C, we can build a functional transduction
fe: * — {c}* that operates like A, but instead of incrementing ¢, it outputs a c.
Then, = 4 is the conjunction of all the WQOs <y, for c € C.

Let k € N and Cy = {ay,by,cy | u € XK}, We say that a word u occurs at
position £ in v if v = zuy with |z| = ¢ — 1. Tt is easy to construct a counting
automaton P with counter set Cj, that satisfies Py (w) = p iff for each u € vk

e if u is a prefix of w, then p(a,) =1, otherwise p(a,) =0,

e if u is a suffix of w, then u(b,) = 1, otherwise u(b,) = 0,

e 1i(cy) is the number of positions in w where u occurs.
Using this counting automaton, we can realize another class of regular languages.
Let k € N. A k-locally threshold testable language is a finite Boolean combination
of sets of the form

e uX* for some u € N=F,
e Y*u for some u € X=F, or
e {w € X* | u occurs at > ¢ positions in w} for some u € ¥=F and ¢ € N.

The class of k-locally threshold testable languages is denoted LTTj. Observe that
the <p,-PTL are precisely the k-locally threshold testable languages. Indeed, each
of the basic building blocks of k-locally threshold testable languages is <p, -upward
closed and hence a <p,-PTL. Conversely, for each w € ¥*, the upward closure of
w with respect to =<p, is clearly in LTTy.

Conjunctions. Let us illustrate the utility of conjunctions. Let S be a finite
collection of WQOs on ¥*. We call a language L C ¥* an S-PTL if it is a finite
Boolean combination of sets of the form 1w, where < belongs to S and w € ¥*.
Our framework also applies to S-PTLs for the following reason.

Observation 3.2. Let < be the conjunction of the WQOs in S. Then a language
is an S-PTL iff it is a <-PTL.

As an example, suppose we have subsets 1,...,%, C 3 and the functional
transductions 7;, ¢ € [1,n], such that m;: ¥* — X7 is the projection onto ¥,
meaning m;(a) = a for a € ¥; and m;(a) = € for a ¢ ;. If S consists of the
=<, for i € [1,n], then the S-PTL are precisely those languages that are Boolean
combinations of sets T 5w for w € ¥7U---UX}. Hence, we obtain a subclass of the
classical PTL. Of course, there are many other examples. One can, for example,
combine WQOs for logical fragments with WQOs defined by counting automata
and thus obtain logics that refer to positions as well as counter values, etc.

Computing downward closures. The first problem we will study is that of
computing downward closures. As in the case of the subword ordering, we will
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see that for all parameterized WQOs, every downward closed language is regular.
While mere regularity is often easy to see, it is not obvious how, given a language
L C ¥*, to compute a finite automaton for | L. We are insterested in when this
can be done algorithmically. If < is a WQO on words, we say that <-downward
closures are computable for a language class C if there is an algorithm that, given a
language L C ¥* from C, computes a finite automaton for | L. This is especially
interesting when C is a class of languages of infinite-state systems.

Until now, downward closure computation has focused mainly on the case where
=< is the subword ordering. In that case, there is a charaterization for when down-
ward closures are computable [31]. For a rational transduction T'C ¥* x T'* and a
language L C ¥*,let TL = {v € I'" | Ju € L: (u,v) € T'}. When we talk about lan-
guage classes, we always assume that there is a way of representing their languages
such as by automata or grammars. We call a language class C a full trio if it is
effectively closed under rational transductions, i.e. given a representation of L from
C, we can compute a representation of TL in C. The simultaneous unboundedness
problem (SUP) for C is the following decision problem.

Given: A language L C aj ---a;, from C.
Question: Does aj - --a;, € | L hold?

The aforementioned characterization now states that downward closures for the
subword ordering are computable for a full trio C if and only if the SUP is decid-
able. The SUP is decidable for many important and very powerful infinite-state
systems. It is known to be decidable for Petri net languages [10] 3T, [14] and matrix
languages [31]. Moreover, it was shown to be decidable for indexed languages [31],
which was generalized to higher-order pushdown automata [15] and then further to
higher-order recursion schemes [6].

An indication for why computing downward closures for parameterized WQOs
might be more difficult than for subwords is that the latter ordering is a rational
relation, i.e. {(u,v) € ¥* x £* | u < v} is rational. This fact was crucial for the
method in [31I]. However, one can easily construct parameterized WQOs for which
this is not the case.

PTL and separability. We also consider separability problems. We say that two
languages K C X* and L C X* are separated by a language R C ¥* if K C R and
LNR={. If two languages are separated by a regular language, we can regard this
regular language as a finite-state abstraction of the two languages. We therefore
want to decide when two given languages can be separated by a language from some
class of separators. More precisely, we say that for a language class C and a class
of separators S, separability by S is decidable if given language K and L from C, it
is decidable whether there is an R in S that separates K and L. In the case where
S is the class (subword) PTL, it is known when separability is decidable: In [I0],
it was shown that in a full trio, separability by PTL is decidable if and only if the
SUP is decidable (the “if” direction had been obtained in [9]).

Main result. We are now ready to state the first main result.

Theorem 3.3. For every full trio C, the following are equivalent:

(1) The SUP is decidable for C.
(2) For every parameterized WQO =<, <-downward closures are computable for

C.
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(3) For every parameterized WQO =, separability by <-PTL is decidable for C.

This generalizes the two aforementioned results on downward closures and PTL
separability. In addition, Theorem applies to all the examples of <X-PTL de-
scribed above.

Recall that for each regular language R, there is a labeling automaton A such
that R is < 4-upward closed and thus a < 4-PTL. Thus, for languages K and L,
the following are equivalent: (i) There ezists a labeling automaton A such that K
and L are separable by a <4-PTL and (ii) K and L are separable by a regular
language. Already for one-counter languages, separability by regular languages is
undecidable [8] (for context-free languages, this was shown in [29] [18]). However,
Theorem tells us that for each fixed A, separability by < 4-PTL is decidable.
We make a few applications explicit.

Corollary 3.4. Let C be a full trio with decidable SUP. For each d € N, separability
by BX1[<,mod,] is decidable for C.

A direct consequence from Theorem is that we can decide whether a regular
language is a <-PTL. Note that since a language L C X* is separable from its
complement X*\ L by some <-PTL if and only if L is an <-PTL itself, Theorem [3.3]
implies the following.

Corollary 3.5. Let <X be a parameterized WQO. Given a reqular language L, it is
decidable whether L is an <-PTL.

It was shown by Place et al. [25] that for context-free languages, separability by
LT Ty is decidable for each £ € N. Their algorithm uses semilinearity of context-free
languages and Presburger arithmetic. Here, we extend this result to all full trios
with a decidable SUP.

Corollary 3.6. Let C be a full trio with decidable SUP. For each k € N, separability
by LTTy is decidable for C.

Separability beyond PTLs. Our framework can also be applied to separators
that do not arise as PTLs for a particular WQO. This is because we can some-
times apply the developed ideal representations to separator classes that are infinite
unions of invidual classes of PTLs. For example, consider the fragment 53 [<, mod|
of first-order logic on words with modular predicates. In terms of expressible lan-
guages, it is the union over all fragments BX;[<,mody] with d € N. Using a
non-trivial algebraic proof, it was shown by Chaubard, Pin, and Straubing [5] that
it is decidable whether a regular language is definable in BX;[<, mod]|. Here, we
show the following generalization using a purely combinatorial proof.

Theorem 3.7. Given two regular languages, it is decidable whether they are sepa-
rable by BX1[<, mod].

Of course, this raises the question of whether separability by 8% [<, mod] reduces
to the SUP, as it is the case of separability by BX;[<, mod,] for fixed d. However,
this is not the case, as is shown here as well.

Theorem 3.8. Separability by BX1[<, mod] is undecidable for second-order push-
down languages.

Since the second-order pushdown languages constitute full trio [24, [I] and have
a decidable SUP [31], this means separability by BX1[<, mod] does not reduce to
the SUP.
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4. COMPUTING CLOSURES AND DECIDING SEPARABILITY

In this section, we present the algorithms used in Theorem B3l These algo-
rithms work with WQOs on words under the assumption that these enjoy certain
effectiveness properties. In section Bl we will then show that all parameterized
WQO indeed satisfy these properties. Our algorithms for computing downward
closures and deciding separability rely heavily on the concept of ideals, which have
recently attracted attention [21], 2] [13]. Observe that, in the case of the separabil-
ity problem, it is always easy to devise a semi-algorithm for the separability case:
We just enumerate separators—verifying them is possible because we have decidable
emptiness and intersection with regular sets. The difficult part is to show that
inseparability can be witnessed.

These witnesses are always ideals. Let (X, <) be a WQO. An <-ascending chain
is a sequence x1,x3,... with x; < x;41 for every i € N. A subset Y C X is called
(=-)directed if for any z,y € Y, thereisa z € Y with ¢ < z and y < z. An
(=-)ideal is a non-empty subset I C X that is <-downward closed and =-directed.
Equivalently, a non-empty subset I C X is an =<-ideal if I is <-downward closed
and for any two <-downward closed sets Y, Z C X with I CY UZ, we have [ C Y
or I C Z. It is well-known that every downward closed set can be written as a
finite union of ideals. For more information on ideals, see [211 [13].

As observed in [I3], an ideal can witness inseparability of two languages by
belonging to both of their adherences. For a set L C X, its adherence Adh<(L) is
defined as the set of those ideals I of X such that there exists a directed set D C L
with I = |4 D. Equivalently, I € Adh<(L) if and only if I C | (L N1T) 21} [13]. In
this work, we also use a slightly modified version of adherences in order to describe
ideals of conjunctions of WQOs. Let (=;)scs be a family of well-quasi-orderings on
a common set X. Moreover, let < denote the conjunction of (=;)ses. For L C X
Adhg(L) is the set of all families (I5)segs of ideals for which there exists a <-directed
set D C L such that Iy = |4 _D for each s € §.

Unboundedness reductions. We use counter automata (that are not necessarily
counting automata) to specify unboundedness properties. Let A be a counter
automaton with counter set C. Let N, = NU {w} and extend < to N,, by setting
n < w for all n € N. We define a function A: ¥* — N, by

A(w) = sup { inf (0

We say that a counter automaton A is unbounded on L C X* if for every k € N,
there is a w € L with A(w) > k. In other words, iff for every v € N, there is a
w € L such that A has a run on w arriving at some p > v.

The following can be shown using a straightforward reduction to the diagonal
problem [10 9], which in turn is known to reduce to the SUP [31].

A has a run on w arriving at p € NC}

Lemma 4.1. Let C be a full trio with decidable SUP. Then, given a counter au-
tomaton A and a language L from C, it is decidable whether A is unbounded on
L.

We are now ready to state the effectiveness assumptions on which our algo-
rithms rely. Let ¥ be an alphabet and (X*, <) be a WQO. We say that (X*, <) is
an effective WQO with an unboundedness reduction (EWUR) if the following are
satisfied:
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(a) For each w € ¥*, the set T w is effectively regular.
(b) The set of ideals of (¥*, <) is a recursively enumerable set of regular lan-
guages.
(c) Given an ideal I C ¥*, one can effectively construct a counter automaton
Aj such that for every L C ¥*, A; is unbounded on L if and only if I
belongs to Adh<(L).
It should be noted that in order to decide separability by <-PTL and compute
downward closures, it would have sufficed to require decidability of adherence mem-
bership in full trios with decidable SUP. The reason why we require the stronger
condition (c) is that in order to show that all parameterized WQOs satisfy these
conditions, we want the latter to be passed on to conjunctions and to WQOs =y.
The conditions imply that every upward closed language (hence every down-
ward closed language) is regular: If U is upward closed, then we can write U =
to{wi,...,w,} = Ui, T<{w;}, which is regular because each t_{w;} is regular.
Moreover, we may conclude that given a regular language R C ¥* it is decidable
whether R is an ideal: If R is an ideal, we find it in an enumeration; if it is not an
ideal, we find words that violate directedness or downward closedness.
According to the definition of EWUR, we can construct a counter automaton
A such that I € Adh(L) if and only if A is unbounded on L. Hence, Lemma [41]
implies the following.

Proposition 4.2. Let (¥*,=) be an EWUR and let C be a full trio with decidable
SUP. Then, given an ideal I C X* and L € C, it is decidable whether I € Adh<(L).

In section B, we develop ideal representations for all parameterized WQOs and
thus show that they are EWUR.

Let us now sketch how to show Theorem 3.3 assuming that every parameterized
WQO is an EWUR. The implication ‘2={II" holds because computing downward
closures clearly allows deciding the SUP. This was shown in [31I]. The implication
‘Bl follows from [I0], which presents a reduction of the SUP to separability
by PTL. Thus, it remains to prove that downward closures are computable and
PTL-separability is decidable for EWUR. We begin with the former. The following
was shown in [21].

Lemma 4.3. Let (X, =) be a WQO and I,...,1I, be ideals such that L C I; U
UL, and I; € I fori+#j. Then I; C |L if and only if I, € Adh(L).

We can now use an algorithm for downward closure computation from [I3], which
reduces the computation to adherence membership.

Proposition 4.4. Let C be a full trio with decidable SUP and let < be an EWUR.
Then =-downward closures of languages in C are computable.

We continue with the decidability of separability by <-PTL for EWUR <. We
employ the following characterization of separability in terms of adherences [I3] for
reducing the separability problem to adherence membership.

Proposition 4.5. Let (X, <) be a WQO. Then, K C X and L C X are separable
by a =-PTL iff Adh<(K) N Adh<(L) = 0.

We can now use the algorithm from [I3] for deciding separability of languages K
and L in our setting. By Proposition 4.5 we can use two semi-decision procedures.
On the one hand, we enumerate potential separators S and check whether K C S
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and L NS = . On the other hand, we enumerate <-ideals I and check if I belongs
to Adh<(K) N Adh<(L).

Proposition 4.6. Let C be a full trio with decidable SUP and =< be an EWUR.
Then separability by <-PTL is decidable for C.

5. IDEAL REPRESENTATIONS

In this section, we show that every parameterized WQO is an EWUR. The fact
that the subword ordering is an EWUR follows using arguments from [10, [3T].

Proposition 5.1. The subword ordering (X*,<) is an EWUR.

The next step is to show that if (I'*, <) is an EWUR and f: ¥* — I'™ is a
functional transduction, then (X*, <) is an EWUR. We begin with some general
observations about ideals of WQOs of the shape <¢, where f: X — Y is an arbi-
trary function and (Y, <) is a WQO. First, we describe ideals of (X, <) in terms
of ideals of (Y, <).

It is easy to see that every ideal of (X, <) is of the form form f~!(J) for some
ideal J of (Y, =<). However, a set f~!(.J) is not always an ideal of (X,=<y). For
example, suppose f: X* — N x N has f(w) = (Jw|,0) if |w| is even and f(w) =
(0,]w]) if |w| is odd. Then f~1(N x N) is not upward directed although N x N is
an ideal.

Lemma 5.2. I C X is an ideal of (X, <y) if and only if I = f~1(J) for some ideal
J of (Y, =) such that L f(f~*(J)) = J.

Note that Lemma tells us how to represent ideals of (X, <) when we have
a way of representing ideals of (Y =<). Hence, if the set of ideals of (I'*, <) is
recursively enumerable, then so is the set of ideals of (X£*,<y). We will also need
to transfer membership in adherences from (Y, <) to (X, <;).

Lemma 5.3. If J CY is an ideal of (Y, =) with Lf(f~*(J)) = J, then f~(J) €
Adh(L) if and only if J € Adh(f(L)).

Equipped with Lemmas and 0.3 it is now straightforward to show that
(2*,=<y) is an EWUR.

Proposition 5.4. If (I'*, <) is an EWUR and f: ¥* — T'* is a functional trans-
ducer, then (X*,=<y) is an EWUR.

It remains to be shown that being an EWUR is preserved by taking a conjunction.
Our first step is to characterize which sets are ideals of a conjunction. Once the
statement is found, the proof is relatively straightforward.

Proposition 5.5. Let S = (=s)ses be a finite family of WQOs over X and let
(X, =) be the congunction of S. Then I C X is an ideal of (X, =) iff it can be
written as I = (. q Is, where each I is an ideal of (X, =s) and (I;)ses belongs to
Adhg(I).

seS

The next step describes how to reduce the adherence membership problem for
conjunctions to the adherence membership problem for the participating orderings.
Again, proving the statement is straightforward.
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Proposition 5.6. Let S = (=s)ses be a finite family of WQOs over X and let
(X, X) be the conjunction of S. Suppose I is an =s-ideal for each s € S and
I = N,eg s and that (I)ses belongs to Adhg(I). Then I belongs to Adh<(L) iff
(Is)ses belongs to Adhg(L).

As expected, a product construction allows us to characterize the adherence
membership for conjunction.

Lemma 5.7. Suppose (X*,=<;) is an EWUR for i = 1,2. Given ideals I and Iy
for <1 and =<5, respectively, we can construct a counter automaton A such that for
every language L C ¥*, A is unbounded on L iff (I, I2) belongs to Adh<, <,(L).

The following is now a consequence of the previous steps.

Proposition 5.8. If <y and X2 are EWUR, then their conjunction is an EWUR
as well.

Orderings defined by labeling automata. The preceding results already show
that every parameterized WQO is an EWUR. However, since we will study separa-
bility by BY1[<, mod], it will be crucial to have an explicit, i.e. syntactic represen-
tation of ideals of a particular type of parameterized WQOs, namely those defined
by labeling automata. Here, we develop such a syntax.

Let A be a labeling automaton over X*, ug,...,u, € X*, and vy,...,v, € X*.
The word w = ugviug - - - vy uy, (more precisely: this particular decomposition) is a
loop pattern (for A) if the run of A on w loops at each v;, i € [1,n]. In other words,
A is in the same state before and after reading v;.

Theorem 5.9. Let A be a labeling automaton. The = s-ideals are precisely the sets
of the form | < ,ugviug - - - vpun, where ugviuy - - - v uy is a loop pattern for A.

By standards arguments about ideals, it is enough to show that those sets are
ideals and that every downward closed set is a finite union of such sets.

6. SEPARABILITY BY BX;[<, mod]

In this section, we prove Theorem B.7land Theorem[3.8 The latter will be shown
in section and the former is an immediate consequence of the following.

Proposition 6.1. Let Ay, A be finite automata with < m states. L(A1) and L(Asz)
are separable by BY1[<,mod] if and only if they are separable by BX:[<, modg],
where d = 2m3!.

Recall that BX1[<, mody] are the < q,-PTL, where M, is the labeling automa-
ton defined on pageldl From now on, we write <4 for <x,. Proposition 6.1l follows
from:

Proposition 6.2. Let A; be a finite automaton for i = 1,2 with < m states and
let d be a multiple of 2m3!. If

Adh, (L(A)) 1 Adh, (L(A2)) # 0,
then

Adh<, ,(L(A1)) N Adhx, ,(L(Ag)) # 0
for every ¢ > 1.
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The “if” direction of Proposition [6.1] is trivial and the “only if” follows from
Proposition[6.2t If L(A;) and L(A3) are separable by BX;[<, mod,] for some £ € N,
then this separator is also expressible in BY;[<, mody.4]. Moreover, together with
Proposition [£0] Proposition 6.2l tells us that separability by BX[<, mod,.q4] implies
separability by BX[<, mod].

The rest of this section outlines the proof of Proposition[G.Il Note that according
to Theorem [£.9] the ideals for <4 are the sets of the form I = ijduovful C VN U,
where v; € (X*)%. The ideal I belongs to Adh<,(L) if for each k € N, there is a
word w € L such that uovful . ~-v,’§un <4 wand w € I. We call such words w
witness words.

It is tempting to think that Proposition just requires a simple pumping
argument: Suppose the ideal | 5 uivius - - - vjup belongs to the adherence of some
language. Then, we pump the gaps in between embedded letters from the witness
word ugv{*uy - - v u,. These gaps, after all, always have length divisible by d.
For a d with sufficiently many divisors, we would be able to pump the gaps up
to a length divisible by £ - d so that we can embed ug(v})*uy - - - (v)*u, via <y.4.
However, in order to show that the <g.g-ideal I’ = |, uo(v{)*us--- (vf)*un is
contained in the <y.4-adherence, we also have to make sure that resulting witness
words are members of I'. This makes the proof challenging.

Part I: Small periods. Our proof of Proposition[6.2]lconsists of three parts. In the
first part, we show that if two regular languages share an ideal in their adherences,
then there exists one in which all loops (the words v;) are in a certain sense, highly
periodic. Let P(X) denote the power set of ¥ and let P(X)14 denote the set of
mappings : [1,d] — P(X). For each word w € ¥* and d € N, let r4(w) € P(X)14
be defined as follows. For ¢ € [1,d], we set

ka(w)(i) = {a € ¥ | a occurs in w at a position p with p =i mod d}.

For each word w € ¥*, let p(w) be obtained from rotating w by one position to the
right. Hence, for v € £* and a € ¥ we have p(va) = av, and p(e) = e. Let A be the
inverse map of p, i.e. rotation to the left. For v € ¥* and d € N, let m4(v) € [1,d]
be the smallest ¢t € [1,d] that divides d such that kq(v)(i +t) = kq(v)(3) for all
i € [1,d —t]. Thus, ¢t can be thought of as a period of k4(v). An automaton
A= (Q,2,E,I,F) is cyclic if I = F and |I| = 1. The first step towards ideals
with high periodicity is to achieve high periodicity in single-loop ideals in cyclic
automata:

Lemma 6.3. Let A; be a cyclic automaton with < m states for each i = 1,2 and let
d be a multiple of m?!. If | v* belongs to Adh<,(L(A;)) for i = 1,2, then there is
aw € ()" such that (i) |5, v* C L5, w*, (ii) L5, w* also belongs to Adh<, (L(A;))
fori=1,2, and (iii) 7a(w) < m?.

The idea is to find in witness words a factor f such that left and right of f,
we can pump factors of suitable length. By pumping both of these factors up by
multiplicities that sum up to a constant, we can essentially move f back and forth
and obtain a computation in which the occurrences of letters in f are spread over
all residue classes modulo some small number < m?.

Associated patterns. In order to extend this to general ideals and automata, we

need more guarantees on how words uovfu; - - - v¥u,, embed into witness words.
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Let ugviuy - - - vpu, be a loop pattern for My and let L C ¥*. We say that the
loop pattern is associated to L if for every k > 0, there is a word %0141 - - - Vptln, € L
such that vf <4 v; € lg,vf for every i € [1,n] and w; <4 u; € |5, vjuvy,, for
i€ [l,n—1]and up Zq g € {<,uovy and u, Xq Uy € |5,V Un,.

Of course, if the pattern ugviui---v,u, is associated to L, then the ideal
I = |- uoviuy---v;u, belongs to Adh<,(L). However, the converse is not true.
Consider, for example, the case d = 2 and the loop pattern ¢ - (aa) - € - (abba) - €,
where aa and abba are cycles and the constant parts are all empty. The resulting
ideal |, (aa)*(abba)* belongs to Adh<,((abba)*), just because |, (aa)*(abba)* =
1<, (abba)*: Both sets contain precisely the words in {a,b}* of even length. Note
that the pattern e - (aa) - € - (abba) - € is not associated to (abba)*, because no word
in the latter contains (aa)? as an infix, let alone arbitrarily high powers of aa.

However, we will see that every ideal admits a representation by a loop pat-
tern so that membership in the adherence implies association of the loop pat-
tern. A loop pattern ugviui - - - vpuy, for My is irreducible if removing any loop
would induce a strictly smaller ideal. This means, for each ¢ € [1,n], the loop
pattern wug(vy)ug - -+ (Vi—1)ui—1u; - - - (Up)uy, induces a strictly smaller ideal than
UgULUL * + - UplUy. Note that every ideal is induced by some irreducible loop pat-
tern: Just pick one with a minimal number of loops.

Lemma 6.4. Let ugviug - --vpuy, be an irreducible loop pattern for Mg. Then
Ljduovful v uy belongs to Adh<, (L) if and only if ugviug - - - vpuy, is associated

to L.

Lemma is obtained by first proving that if the loop pattern is irreducible,
then for each k € N, any embedding of uov{'uy - - - vE"u,, into ugv{* uy - - - v¥"u,, for
sufficiently large x; forces at least k copies of each v; to be embedded into v}".

Using Lemma [6.4], we can complete the first proof part:

Lemma 6.5. Let A; be a finite automaton with < m states for each i = 1,2
and let d be a multiple of m?!. If Adh<,(L(A1)) N Adh<,(L(A2)) # 0, then there
is a loop pattern ugviuy - - vpuy for My such that ijduovful < vy, belongs to

Adh<, (L(A;)) fori=1,2 and mq(v;) < m?.

Part II: Restricting witness words. In the second part, we place further re-
strictions on the structure of ideals that witness inseparability. In return, we
get stronger guarantees on the shape of witness words. Using Lemma [6.5] prov-
ing Proposition would not be difficult if we could guarantee witness words of
the shape ugviuy - - - vpu, with v; € ijdv;* for a pattern ugviuy - - - vpuy,. This is
not the case for irreducible loop patterns: Consider the ideal I = |-, a(abba)*.
The loop pattern a(abba) (with the loop abba) is clearly irreducible. Also, T
is a member of Adhx,(b{a,b}*): For k € N, the word b(abba)**! € L satisfies
a(abba)® =5 b(abba)F 1 =<5 a(abba)®*2, which proves I C | (LN I). Here, the
witness words b(abba)**! do not have the above shape. However, with an extended
syntax for patterns and an adapted irreducibility notion, we can guarantee almost
that shape.

An extended loop pattern (for M) is an expression of the form uovyl]ul e vg"]un
such that ugviuy - - - v, Uy, is a loop pattern for M (ie. v; € (£9)* for i € [1,n]) and
T1,. ..,y € [0,d—1]. Theideal generated by the pattern is | 5 ugviwiuy - - - vy wptn,
where w; is the length-r; prefix of v; for ¢ € [1,n]. Slightly abusing notation, we
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use $<du0v£”]u1 - ~v£f”}un to denote the generated ideal. When we use such an

expression with r; > d, this stands for ulvgsl]

s; =r; (mod d).
Consider an extended loop pattern uovyl]ul - -vg"}un for My and let w; be
the length-r; prefix of v; for i € [1,n]. The pattern is said to be associated to a

language L if for every k € N, there is a word @gv147 - - - UnUn € L so that for every
T‘i]

TRE ~v7[f"]un, where s; € [0,d— 1] and

1 € [1,n], we have vfwl- =<4 U; and v; € L<dv£ . Moreover, ug = ug, U, = Uy, and
for each i € [1,n —1]: (i) if w; is not empty, then @; = u; and (ii) if u; is empty,
then u; € |, A" (v;)*vj, ;. As in Lemma[6.4] we have a notion of irreducible loop
patterns, and we show that each ideal is represented by such a pattern and then
obtain:

Lemma 6.6. The ideal generated by an irreducible extended loop pattern p for My
belongs to Adh<, (L) if and only if p is associated to L.

We can indeed not guarantee u; = wu; if u; = € but have to allow for the case
u; € L4, A" (v;)* v} ;: The extended loop pattern (ab) Ol (¢d)l% is irreducible and its
ideal I = |-, (ab)*(cd)* belongs to Adh<,((ab)*ad(cd)*), but in the witness words
(ab)kad(cd)¥ € I, we always have a factor ad € |-, (ab)*(cd)*.

Part ITII: Pumping up. The final part of the proof of Proposition is to con-
struct <y.g-ideals using pumping. Here, the strong guarantees of associated ex-
tended loop patterns allow us to focus on two types of factors in which we must
pump: factors v; and factors @, for empty u;. One can show that repeating subfac-
tors thereof whose length is divisible by a particular m4(v;) will not lead out of the
=¢.q-ideal. Moreover, since we established in the first part that each period 74(v;)
is small (< m?), we can always find a factor f of length divisible by 74(v;) that is
pumpable.

6.1. Undecidability. In this section, we prove Theorem 3.8 Second-order push-
down languages are those accepted by second-order pushdown automata [24] or,
equivalently, indexed grammars [I].

In order to prove that separability of second-order pushdown languages by the
fragment B3 [<, mod] is undecidable, we do not need a detailed definition of second-
order pushdown automata. All we need is that their languages form a full trio [1]
and that we can construct automata for two particular types of languages. Let us
describe these languages. For a word w € {1,2}*, let v(w) be the number obtained
by interpreting the word as a reverse 2-adic representation. Thus, for w € {1,2}*,
let v(e) = 0, v(lw) = 2-v(w)+1, and v(2w) = 2-v(w)+2. Note that v: {1,2}* - N
is a bijection. In the full version of [31], it was shownl that given two morphisms
a,B: ¥* — {1,2}*, one can construct in polynomial time an indexed grammar
generating {a”(*(W)pr(B(w)) | 4y € £+}. Applying a simple transduction yields the
language

Log= {au(a(w))cbV(ﬂ(W)) |we Xt}
and hence an indexed grammar for L, g. Furthermore, the context-free language
E = {a"cb™ | n € N} is also a second-order pushdown language. We apply a
technique introduced by Hunt [I8] and simplified by Czerwiniski and Lasota [g].

1To be precise, this was shown for the unreversed 2-adic representation, but the reversed case
follows by just reversing the images of the morphisms.
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The idea is to show that every decidable problem can be reduced in polynomial
time to our problem:

Proposition 6.7. For each decidable D C I'*, there is a polynomial-time algorithm
that, given u € I'*, computes morphisms «, 3 such that L, g is inseparable from E

by BX1[<, mod] if and only if u € D.

Thus, decidability of separability by BX1[<, mod] would violate the time hierar-
chy theorem (see, e.g. [28, Thm 9.10]). In the proof of Proposition[6.7] we apply the
classical reduction from the halting problem to the PCP. Applied to a terminating
TM, this yields morphisms «, 3, with a bound on the maximal common prefix of
a(w) and B(w) for w € ¥*. This implies that in case the input machine does not
accept, Lo g and E are separable by BX;[<, mod].

Future work. The author is confident that the procedure for separability by
B31[<, mod] easily extends to separability by other (albeit less natural) fragments
of first-order logic (FO) with numerical predicates. For example, one could add
unary predicates ¢ and 7, where ¢(z) (7(z)) expresses that x is the first (last) posi-
tion. This connects to results of Place and Zeitoun [26], who developed methods for
transferring decidable separability by a fragment of FO to the fragment enriched by
the successor relation +1. If these methods could be applied here, this would imply
decidable separability by BX;[<, mod, ¢, 7, +1], which is expressively equivalent to
the logic BY[<, reg]. Here, reg denotes regular predicates of arbitrary arity [5l 23].

Acknowledgements. The author is very grateful to Wojciech Czerwinski, Sylvain
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APPENDIX A. PROOF OF OBSERVATION

Suppose S consists of the WQOs =, for i € [1,n]. Every <-PTL is an S-PTL,

because the set T<{w} can be written as (V,c; ,; T<,{w}. On the other hand,
every S-PTL is a Boolean combination of sets of the form t- w with w € ¥*.
Clearly, T4, w is upward closed also with respect to < and can thus be written as

T<

{wy,...,wy} for some wy,...,w,, € 3* which is a <-PTL.

APPENDIX B. PROOF OF LEMMA 1]

Proof. Let A = (Q,%X,C,E,qo, F). We regard C as an alphabet. Consider the
transducer T = (Q, %, C, E’, qo, F'), where E’ is obtained by adding, for each edge
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(¢,z,1,q¢") € E, an edge (¢, x,u,q’), where u € C* is a word with |u|. = u(c) for
each ¢ € C. Then by definition, A is unbounded on L if and only if for each n € N,
there is a w € TL with |w|. > n for each ¢ € C. The latter is an instance of
the diagonal problem [9, [10], which, given a language K C X*, asks whether for
every n € N, there is a w € K with |w|, > n for all a € ¥. As mentioned in [31],
for full trios, decidability of the SUP implies decidability of the diagonal problem,
because the former implies computability of downward closures (with respect to
the subword ordering). O

APPENDIX C. PROOF OF LEMMA [4.3]

Proof. Clearly, I, € Adh(L) implies I; C | L. Conversely, suppose Iy C | L and I ¢
Adh(L). Then there is an « € I} with « ¢ | (LN 1), which means ¢ € [,U---U L,.
We claim that then I; C Ib U---UI,. Let y € I1. Thereis a z € I with z <X z
and y < z. Since z < z, we have z ¢ [ (LN I;) and hence z € Ly U--- U L, which
implies y € Lo U---U L,. This means Iy C Io U---U I, and since I1,...,I, are
ideals, we have Iy C I; for some j € [2,n], contrary to our assumption. (]

APPENDIX D. PROOF OF PROPOSITION [4.4]

Proof. Given L in C, we enumerate =<-downward closed languages. Since every
downward closed set is a finite union of ideals, we enumerate finite unions I; U- - -UI,
of <-ideals I1,...,I,, which is possible because the set of ideals is a recursively
enumerable set of regular languages. Clearly, we only need to enumerate unions
where for any 4, j € [1,n] with ¢ # j, we have I; € I;.

It remains to check whether | oL = I; U---UI,. Note that | _L C I U---UlI, if
and only if L, C I; U- - -UI,,, so that we can check whether LN(X*\ (I,U---UI,)) = 0.
The latter is decidable because the decidability of the SUP implies the decidability
of the emptiness problem and C is effectively closed under intersection with regular
languages.

The other inclusion is more interesting. Suppose we have already established
<L C 1U---Ul,. Then, according to Lemma [£3] we have I; C | L if and only if
I € Adh<(L). We can therefore apply Proposition [L.2] to check whether the latter
holds. (]

APPENDIX E. PROOF OF PROPOSITION

Proof. Suppose we are given languages K and L. We decide separability by com-
bining two semi-algorithms. One enumerates <-PTL and for each such language
R, decides whether K C R and LN R = (. If such an R is found, the languages are
reported separable. The other semi-algorithm enumerates ideals I of (X*, <) and
then, via Proposition -2 decides whether I € Adh<(K) and I € Adh<(L). If such
an ideal I is found, the languages are reported inseparable. The correctness and
termination of this algorithm is guaranteed by Proposition (I

APPENDIX F. PROOF OF PROPOSITION [5.1]

Proof. Of course, for every w € X*, T w is effectively regular. Moreover, it
is well-known that the ideals of (¥*,<) are exactly the languages of the form
{ag,e}T5{a1,e}---T:{an, e}, whereag,...,a, € EandT'y,..., T, C X [19]. Lastly,
it I = {ag,e}Ti{a1,e} - -T{an,e}, we build A; as follows. For each i € [1,n],
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choose a word w; € I'} that contains each letter of I'; exactly once. Then, it is easy
to construct Az so that Aj(w) > k if and only if w € I and agw?a; - - - wka, < w.
Then clearly A; is unbounded on L if and only if we have I C | (L N1). The latter

is equivalent to I € Adhg(L). O

APPENDIX G. PROOF OF LEMMA

Proof. If I C X is an ideal, then the set J := | f(I) is downward closed by definition
and upward directed because I is. Hence, .J is an ideal. Moreover, I = f~1(J),
because I C f~1(J) is immediate and f~*(J) C I holds because I is downward
closed. This also implies | f(f~1(J)) = Lf(I) = J.

Conversely, suppose I = f~1(J) for an ideal J C Y with | f(f~*(J)) = J. First,
I = f=1(J) is downward closed because J is. Moreover, we have | f(I) = J, which
means given x,y € I, we can find a common upper bound z € J for f(x) € J and
f(y) € J and then a 2z’ € f(I) with z < 2. Then 2z’ = f(w) for some w € I and
hence x <y w and y <y w. Thus I is upward directed. O

APPENDIX H. PROOF OF LEMMA [£.3]

Proof. Suppose f~1(J) € Adh(L), equivalently, f~1(J) C L (LN f~1(J)). We show
that J C L(f(L)NJ). For y € J, we can find 3 € f(f~1(J)) with y < ¢/. Say
y' = f(2') with 2/ € f~1(J). Thus, there is 2’ € LN f~(J) with 2’ <y 2”. Since
y =y = f(@) <X f(a") € f(L)NJ, we have shown J C | (f(L)NJ).

Conversely, suppose J € Adh(f(L)), hence J C [(f(L) N J). This means, for
z € f~1(J), we can find 2’ € L with f(z) < f(2) and f(z2') € J. Thus, f~1(J) C
LN f71(J)) and hence f~'(J) € Adh(L). O

APPENDIX I. PROOF OF PROPOSITION [5.4]

Proof. First, for every w € ¥*, we have T4 w = ST (< f(w)), which is effectively
regular because 1. f(w) is.

Second, Lemma tells us that the ideals of (X*, <¢) are precisely the sets of
the form f~!(I) where I C T'* is an ideal of (I'*, <) and for which |- f(f~(1)) = I.
Therefore, the set of ideals of (X*, <) is recursively enumerable: Enumerate the
ideals I of (I'*, <) and check whether |- f(f~(I)) = I. The latter is possible
because f(f~1(I)) C T'* is effectively regular (regular languages are closed un-
der rational transductions) and because for the EWUR (I'*, <), we can effectively
compute a finite automaton for the downward closure | f(f~1(I)): The regular
languages constitute a full trio with decidable SUP. Thus, we can compare the
regular languages |~ f(f~*(I)) and I.

Third, given an ideal J C X* (represented as a finite automaton), we can find
an ideal I C T'* with J = f~!(I). Since (T'*, <) is an EWUR, we can compute a
counter automaton A; such that A; is unbounded on a language L C T'* if and
only if I € Adh<(L). According to Lemma [5.3] we know that J € Adh<,(K) if
and only if I € Adh<(f(K)), which in turn is equivalent to .A; being unbounded
on f(K). We can thus construct A; as a product of A; and the transducer for f
so that Aj(w) = A;(f(w)) for every w € £*. Clearly, A, is unbounded on K if
and only if A; is unbounded on f(K). O
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APPENDIX J. PROOF OF PROPOSITION

Proof. Let I C X be an ideal of (X, <). Then I is directed with respect to <y for
each s € S. Hence, Iy = | I is an ideal for each s € S. We claim that [ = msES
Clearly, I C |5 I = I, hence I C (,cgIs. On the other hand, if x € [ g I
then for each s € S, there is a x5 € I with z <; 5. Since [ is directed, we ﬁnd
ay € I with z; < y for each s € S. Hence, in particular x <5 y. This implies
x X y and thus « € I. This proves I = ﬂseSI Finally, as a <-directed set, I
itself witnesses that (I5)ses belongs to Adhg(I).

Conversely, suppose I = [,cgls and that (Is)ses belongs to Adhg(I). The
latter means that there is a <-directed set D C I such that for each s € S, we have
I; = |5 D. We claim that [ = | D. If x € I, then for each s € S, there is an
zs €D w1th x <, Ts. Since S is finite and D is <- directed, we find a y € D with
zs Xy for all s € S. Then for each s € S, we have x <5 s <5 y and thus =z < y.
Hence, I C |2 D. On the other hand, if z <X y for y € D, then clearly z =<, y for

each s € S and thus z € (), g I, = 1. O

APPENDIX K. PROOF OF PROPOSITION

Proof. Let D C I be a =-directed set with I, = | D for every s € S. Suppose
I € Adh<(L). Then there is a <-directed set D’ C L with I = |, D’. We claim
that I, = |4 D'. For x € I, there is a y € D with z =<, y. Since y € I, there
is a z € D' with y < z. In particular, we have <, z € D’. This proves “C”.
On the other hand, we know D" C I C I, which implies | D" C I, since I, is
< s-downard closed. a

Conversely, suppose that (I)ses belongs to Adhg(I) with a directed set D" C
LN 1T such that I, = |4 D'. We claim that I = | D’. Of course, we have the
inclusion “2” because D’ C I, so assume z € I. Since I, = |4 D" and I =(,cg I,
for each s € S, there is a ys € D’ with x <, ys. The =-directedness of D’ ylelds
ay € D' with y, < y for every s € S. Then in particular z < y and hence
xz e lD. O

APPENDIX L. PROOF OF LEMMA [5.7]

Proof. Let A; = (Q;,%,Ci, Ei,qb, F;) be a counter automaton that characterizes
adherence membership of I; with respect to <; for ¢ = 1,2. We construct a prod-
uct automaton A so that A has states Q1 X @2, counters C7 U Cs, and satisfies
(46,43,¢,0) 4 (¢, ¢% w,p) if and only if (¢f,e,0) = (¢, c;) fori = 1,2.
Moreover, A has final states F} x F5.

We claim that A is unbounded on L if and only if (I1, I) belongs to Adh<, <, (L).
We will use the fact that when a counter automaton B is unbounded on K UL, then
it is unbounded on K or on L. Suppose A is unbounded on L. By construction,
unboundedness of A implies unboundedness of A; and of A;. Therefore, A must
be unbounded on L N I;: Otherwise, A, and thus A;, would be unbounded on
L\ I, which is impossible by definition of A;. By the same argument, A must be
unbounded on LNI;NI5. Then, A is also unbounded on some sequence w1, wo, . .. €
LNI; NI and since < is a WQO, we may assume that this sequence is a <-chain.
Therefore, the <-directed set D = {w; | i > 1} satisfies D C [y NI and I; C |5 D
for i = 1,2. This proves (I, I2) € Adh<, <,(L). -
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Conversely, suppose (I1,I2) € Adhx, <,(L). Then there is a =<-directed set
D C L with I; = |4, D. This implies that A; and Ay are unbounded on D. Hence,
there are sequencegul, g, ... € D and vy, vs,... € D such that A; is unbounded on
uy,ug, ... and Ay is unbounded on vy, vy, . ... Thus, we have Iy C |5 {u; [i> 1}
and I C |-, {v; | ¢ > 1}. Since D is =<-directed, we can successively find elements
w1, Ws, ... € D such that u; < w; and v; < w; and w; < w;4+1. Then we have I; C
lo{wr | k> 1} for i = 1,2 and since D C I1 N I3, we have |5 {wy | k> 1} = I;.

" Hence, A; and Ay are both unbounded on w,ws,.... We can therefore pick
a subsequence w}, w}, ... such that A;(w},) > k for k > 1. As an infinite subse-
quence of wy,wa, ..., this sequence will still satisfy |-, {wj, | k¥ > 1} = I and in
particular, Ay is unbounded on w},w),.... We can therefore find another subse-
quence w, wy, ... such that A;(w) > k for every k > 1 and i € {1,2}. Thus, A is
unbounded on w{,w}, ... and hence on L. O

APPENDIX M. PROOF OF PROPOSITION 5.8

Proof. Let = be the conjunction of <; and <. First, for w € ¥*, we have Tow =
T<,wNT<,w, so that T5w inherits effective regularity from 14 w and lewf
According to Proposition 5.5 we can represent an ideal I of < by a pair (I1, I2)
such that I; is an ideal for <;, I = I; N Iz, and (I1, ) € Adhx, <,(I). Hence, in
order to show that the set of ideals of < is a recursively enumerable set of regular
languages, we need to show that it is decidable whether (I, I2) € Adh<, <,(I). To
this end, we use Lemma[5.7] to construct a counter automaton A that is unbounded
on L if and only if (I1,1I2) € Adh<, <,(L). Since I = I} N I is effectively regular,
we can decide whether A is unbounded on I using Lemma [£.1] ([l

APPENDIX N. PROOF OF THEOREM

Note that every unambiguous automaton A defines an order <4 on L(A) in
the same way labeling automata define an order on ¥*. We will now also use < 4
to denote this order. We say that an unambiguous automaton B is a subautoma-
ton of A if B is obtained from A by deleting some edges. The following can be
shown, roughly speaking, by decomposing B into strongly connected components
and dividing L(B) according to which path through the resulting graph a word
takes.

Lemma N.1. For a subautomaton B of an unambiguous automaton A, L(B) is a
finite union of sets of the form

* *
¢jAuovlu1 C Uy Uy
where ugv1U1 « + - Vply 18 6 loop pattern for A.

Proof. We decompose B into its directed acyclic graph G of strongly connected
components and notice that this graph has only finitely many paths. Moreover, for
each strongly connected component C' and and states p and ¢ in C, there are only
finitely many simple paths from p to ¢q. Every run through C from p to ¢ can be
reduced to one of these simple paths by deleting loops. Therefore, we can divide
the set L(B) according to which paths in G they a word follows and to which simple
paths in each component it reduces. This yields a decomposition of L(B) as a finite
union of sets of the form wgLiu; --- Lyu, such that there are states qo, ..., ¢, so
that
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® (o is initial and ¢, is final,

e for i € [0,n], either (g;, u;, gi+1) is an edge in B, or u; = € and ¢;+1 = ¢,

e for i € [1,n], L; is the set of words read on a cycle from g; to g;.
For each i € [1,n], consider the strongly connected component of B that contains
q; and let E; be the set of edges of B in this component.

There exists a word v; € L; whose run from ¢; to ¢; (note that there is at most
one such run because A is a labeling automaton) uses every edge from E; at least
once: For each e € F;, take a run from ¢; to ¢; that uses e. Then take v; to be the
word read on the concatenation of all these runs.

We claim that uwgLquq - - Lyu, = ijAuov{ul v Up. Since ugLqug - - Lpuy, is
clearly downward closed with respect to <4 and contains ugviu; - - - v} uy, the in-
clusion “2” holds. Conversely, suppose w; € L; for i € [1,n]. Consider a particular
i €[1,n] and let r = ey --- e, € E* be the run of B when reading w; from ¢; to g;.
Each e; occurs in the run s € E* of v;, so that the run sk of Uf contains e; - - - e as
a subsequence and we can write sk = toeits - - - exty, for some to, ..., 1, € E*. Since
e; ends in the state where e;4; starts and r and s* are both cycles from ¢; to ¢,
every run t; is a cycle. This implies that ugwiuy - - - wruy <4 u0v|1w1|u1 - -vllw"‘un.
This proves the inclusion “C”. O

We shall prove that the ideals of (X*,<4) are precisely those sets of the form
< woviug - - vpuy,. The first step in proving that is to show that every downward
closed language is a finite union of such sets. Here, we will use the fact that ideals
of the subword ordering are precisely the languages {ao, e} {a1,¢} - T {an, ¢},
where ag,...,a, € ¥ and T'y,..., T, C 3 [19].

Proposition N.2. Let A be a labeling automaton and L C3*. The set |5, L is a
finite union of sets of the form

* *
¢5Auovlu1 S U Uy
where ugviuy -+ - - Uy 18 a loop pattern for A.

Proof. Let A = (Q,%,E,I,F). For each p,q € @, we define K, , = {w € L |
oa(w) = (p,q)}. Then we have

‘l’jAL = U ‘LjAKl’xq'
P,q€EQ
Therefore, it suffices to consider the case that there are fixed p,q € @ such that
for every u,v € L, we have o 4(u) = (p,q). Note that then u <4 v if and only if
A(u) < A(v) for u,v € L. Let Runsy 4(.A) denote the set of all runs of A that start
in p and end in q. Let m: E* — ¥* be the projection onto labels of edges. Observe
that |- L = 7((J.A(L))NRuns, 4(A)). (Here, J.A(L) denotes the downward closure
with respect to the subword ordering.)

The language J.A(L) is a finite union of sets of the form egEfe; - - - Efe,, where
E; C F and ¢; € EU{e}. Hence, we would like to prove the proposition for sets
of the form m(egEjes - E}en, N Runsy, 4(A)). However, these are not necessarily
downward closed. Therefore, we prove that

* *
< m(eoETer -+ Eyen N Runs, o(A))
can be written as a finite union of sets |5  ugviuy - - v uy.

The set egEfes - - - EenMNRuns,, ¢(A) is a finite union of sets of the form egSie; - - - Spen
such that there are states qq, ..., ¢n+1 so that
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e for i € [0,n], either e; = € and ¢;11 = ¢;, or ¢; is an edge from ¢; to ¢;+1,
e for i € [1,n], S; C Ef is the set of runs of A from ¢; to ¢;1+1 that only use
edges in E;.

Therefore, it suffices to show that |5, m(epS1e; - - - Speyn) can be written as a finite
union as desired. Let A; be the unambiguous automaton obtained from A by
making ¢; the only initial state and ¢;; the only final state. Moreover, let B;
be obtained from A; be removing all edges outside of F;. Then, we have have
7w(S;) = L(B;). According to Lemma [NI| S; = L(B;) is a finite union of sets
of the form iin UoVTUL - - - ViU, where ugviug - - - vguy is a loop pattern for A;.
Therefore, our set ¢5A7r(605161 .-+ Spen) is a finite union of sets of the form

(1) by (mleo)(a, Tmler) -+ (b T)elen))

where I; = w;ov] jui - vfy uik, for i € [1,n]. The definition of <4 implies
immediately that eq. () equals

b (m(eo) (w007 yurs -+ -0 ur k) w(en) - (Un00 ytn1 -~ 0h g Uk, ) T(€n))-

Moreover,
w(eo)u170v171u171 .- ~v17k1u11k17r(61) S Up OV 1 Un,1 vnyknun,knﬂ'(en)

is clearly a loop pattern for A (where the v; ; play the role of the v;). O
We are now ready to prove Theorem
Proof of Theorem[5.d. Let us show that the language

* *
I'=]_ uoviuy---vuy

is in fact an =<4-ideal. It is clearly < 4-downward closed. Consider the word
Wi = uov’ful - -v,’iun for each k € N. Then we have wg <4 wy <4 ---, so that the
set D = {wy, | k € N} is < 4-directed. Moreover, I = |, D, which proves that [ is
the < 4-downward closure of a < 4-directed set and hence an < 4-ideal.

It remains to be shown that every ideal is of the above form. Let I be an ideal of
= 4. In Proposition [N.2] we have seen that every downward closed is a finite union
of sets of the above form. In particular, we can write I = I U- - -U I}, where each I
is of the above form. However, since [ is an ideal and the I; are downward closed,

this implies that for some i € [1,n], we have I C I; and thus I = I. O

APPENDIX O. PROOFS FOR SECTION
Lemma O.1. Suppose v € (S%)*. Then |4 ,v* = {w € (S9)* | ka(w) C ka(v)}.

Proof. Let u € |5, v*, say w =g v¥. Then clearly w € (X%)*. Moreover, if a € ¥
occurs at a position p in w with p = ¢ (mod d), then a occurs at some position
p+ dN in v. Hence, kq(w) C kq(v).

Suppose w € (£9)* and kg(w) C kg(v). Write w = a1 ---ap, a1,...,a, € 2.
Since a; € kq(w)(i) C kq(v)(i), each a; occurs at some position p in v with p = ¢
(mod d). Hence, we can write v = x;a;y; with |z;| =47 — 1 (mod d) and therefore
lysl| = |v| = |x;] =1 = d — i (mod d). In particular, |y;zit1]| = (d — i) +i = d.
Moreover, |z1] =0 mod d and y, =d —n =0 (mod d). Therefore,

- — n
W=ay- Ay 34 T1A1Y1T202Y2T3 * " * Yn—1Tn0nlYn = VU

where T expresses that u € (29)*. Thus w € |5 v*. O
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Lemma O.2. Suppose v,w € (X%)*. Then I, v Clg,w* if and only if ka(v) C

Ka(w).

Proof. If |4 v* C |-, w*, then in particular v € |4 w* and thus x4(v) C ka(w) by
Lemma [O]

Suppose kq(v) C ka(w). Since v € (B9)*, we have r4(v") = Kq(v) for any n € N
and hence v" € |5, w* by Lemma[0O.Jl This implies | v* C |5 w*. O

Lemma O.3. If kq(zyz) C kq(v) and mq(v) divides |y|, then kq(zyyz) C kq(v).

Proof. Let i € [1,d]. We will show that kq(xyyz)(i) C kq(v)(i). Hence, let a €
kd(zyyz)(i). Then there is a position p € [1, |xyyz|] with p =i (mod d) such that
the p-th position of zyyz reads a.

If p € [1, |zy|], we are done, so assume p € [|zy| + 1, |xyyz|]. Then, a also occurs
at position ¢ = p— |y| in zyz. This means, if j = ¢ (mod d), then a € kq(zyz)(j) C
ka(v)(j). Observe that ¢ = p (mod d) implies i = p (mod mq(v)) and thus i =p =
¢+ ly| =q=j (mod myq(v)). Therefore, we have a € kq(v)(j) = Kali). O

Lemma 0.4. Suppose mq(v) divides |y| and |y| divides d. If xyz € Ljdvm, then
for every £ € N, zy!tt-d/lvly ¢ ijdvm.

Proof. Let w = xy*¢4/1l2. Since d divides |zyz|, it also divides |w| = |zyz| + (£ -
d/|y|) - ly|- According to Lemma [0.6] we have rq(zyz) C kq(v). An (€-d/|y|)-fold
application of Lemma [0.3 tells us that rg(xy* ¢4/ 2) C kg(v). Now, Lemma [0.6]
states that ay' 04/ vz e | v*. O

Proof of Lemmal6.3 Write v = v1 -+ vy, v1,...,v, € ¥. Since |, v* belongs to
Adh<, (L(A;)) fori = 1,2, we have v € |- (L(A;)N]<,v*) for i = 1,2. This means
there are words v(¥) = uéi)vlugi) vl € L(A;) N ]<,v* such that ug-i) € (2h)*
for j € [1,n] and i = 1,2. Note that since v() € lg,v* and v =4 v we have
¢jd(v(i))* = |4,v* and thus ka(v®) = kq(v) according to Lemma [0.2]

In the run of A; for uéi)vl ugi) e vnu%), let qj(-i) be the state occupied after reading
u§i), for j € [0,n] and i = 1,2. Since m?! divides d, which in turn divides n, we

have n + 1 > m?2! > m?2. Therefore, there are j,k € [0,n], j < k, with (q(l),qﬁz)) =

J
1 2
(@, ¢?). 2 2!

Moreover, they can be chosen so that t := k — j < m?*. Since m*!
divides d, we know that t < m? divides d and may define r = d/t. Let x; =
ugi) gi) . (@) (@) (@) (@) (@)

ViU U Y = vj+1uji+1 CURUY Zi = Uk1Up gt Unln Then, by the
choice of j, k, we have (z;y}z;)* C L(A;). In particular, the word

7 )
r—1
w; = H ziyiyt gyl 2
(=0
belongs to L(A;). Moreover, since |y;| = t + E;f:jﬂ |u$)|
conclude

= t mod d, we can

wi| =7+ (2 [eszi] + 7 i) = - (2 0]+ d) = 0 mod d,
which implies w; € (39)*. We claim that

r—1

ka(wi) = |J wa(p" (@0)).

£=0
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We begin with the inclusion “2”. Note that for each £ € [0, — 1] and ¢ € {1, 2},

e the word x; occurs in w; at a position p with p = |z;y;2;| + ¢t (mod d) and
hence p = £t (mod d),

e the word y; occurs in w; at a position p with p = |z;| + ¢t (mod d),

e the word z; occurs in w; at a position p with p = |z;y;| + ¢t (mod d).

Hence, for each position p in v(*) and each £ € [0, 7 —1], there is a position p’ = p+ £t
(mod d) with kq(v®)(p) C ka(w;)(p'). This prove the inclusion “D”.

On the other hand, every factor z;, y;, and z; that occurs in the definition of w;
at a position p € [1, |w;|] also occurs in v at a position p’ € [1,n] with p’ = p — £t
(mod d) for some ¢ € [0, — 1]. T herefore, we also have the inclusion “C”.

The identity kq(w;) = Ue o Ka(ptt(v®)) clearly implies that mg(w;) < ¢ and
also ¢jd(v(i))* C J<,w;, which in turn yields | v* C | w;. Moreover, since
(wiyizi)* € L(A;), we have wi C L(A;) and in particular |- w; C |5, L(A;).
This clearly implies that |- w; belongs to Adh<,(L(A;)) for i = 1,2. Hence, if we
can show |5 w} = |5 w3, the proof is complete. We use p also as a rotation map
on P(2)L4: For pp e P(X)M4 and i € [1,d], let p(p)(i) = p(i'), where i’ € [1,d] is
chosen so that i’ =i — 1 mod d. Observe that since rq(v(") = kq(v) for i € {1,2},
we have

r—1
kq(w;) = U Ka(p U P (ra(v™)) U P (Ka(v
=0

and thus kgq(w1) = ra(wz), which, according to Lemma [0.2] implies |5 wj =
I, w3, d

0O.1. Proof of Lemma Suppose z,y € X", © = x1-Zp, Y = Y1 Ys,
Xlyeeoy TryYly-- -, Yr € . A strictly monotone map a: {1,...,r} — {1,...,s} is
a d-embedding of x in y if r = s (mod d), x; = ya() for i € [1,7], and for each

€ [1,7], we have a(i) =4 (mod d). Clearly, we have x <4 y if and only if there
is a d-embedding of z in y. Now let ugviuy - - - v, u,, be a loop pattern for My and
T = ugvituy - ViU, and y = uov%lul -+ v¥uy. Then a d-embedding of x in y is
called k-normal if for each ¢ € [1,n], & maps at least k-many factors v; in z to v},
Clearly, if k < x; <y, for all ¢ € [1,n], then there exists a normal d-embedding of

z in y. However, not every d-embedding has to be k-normal.

Lemma O.5. Let ugviuy - - - vpy be an irreducible loop pattern for My. For each
k € N, there is a constant £ € N such that if o is a d-embedding of upvi*uy - - - vEruy,
in ugvy uy - - v¥uy, and x; > 0 for i € [1,n], then « is k-normal.

Proof. Let us call a d-embedding (k,i)-normal if it maps at least k-many factors
v; in x into the factor v?* in y. To simplify notation, we will always write x and y
for the words & = uovi'uy - - - vE"u, and y = uov%lul ¥y,

Suppose the contrary. Then there is a £ € N such that for every ¢ € N, there
are x1,...,2, € Nand y1,...,y, € N with ; > ¢ for ¢ € [1,n] such that there is
a d-embedding of z in y that is not (k, j)-normal for some j € [1,n]. Among the j
for which this occurs, one has to occur infinitely often. Hence, there is a kK € N and
a j € [1,n] such that for every ¢ € N, there are x1,...,2, € Nand y1,...,y, € N
with @; > £ for ¢ € [1,n] such that there is a d-embedding of z in y that is not
(k, j)-normal.
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If a d-embedding is not (k,j)-normal, then all but at most (kK — 1) 4+ 2 fac-
tors v; must be mapped either to the factor ugvy us - - ~v]yi’11 uj—1 or to the factor
uj+1v;-’f':22 Ujpo - - V¥ un: At most k — 1 factors are mapped to v;-” and at most two
further factors are partially mapped to vgj . Therefore, we have at least one of the

following cases:

(1) for each £ € N, there are z1,...,z, and y1,...,y, with z; > k for i € [1, n]
such that there is a d-embedding of = in y that maps at least ¢ factors v;
to upvytuy - - v;/flluj,l.

(2) for each £ € N, there are z1,...,z, and y1,...,y, with z; > k for i € [1, n]
such that there is a d-embedding of = in y that maps at least ¢ factors v;

Yji+2
10 U1V Ujga - VY U

Let us consider the first case (the second can be treated the same way). We claim
that this implies

(2) b<,WovTUL - Uy = L5 UoUTUL VU1 U U U

The inclusion “D” clearly holds. For the other direction, consider wovi*us - - - V2" wy,.
Then there are z1,...,Zn,y1,...,yn € N such that x; > z; and there exists a d-
embedding of z into y that maps at least z; factors v; into ugv} u; - - ~v]yi’11 Uj1.
This means we have

21 Zj—1,, 2j Yi, . Yi-1,
UQUT UL Vg U1V =d Uy U1 vl uj—1

and hence

- 2,
UV UL U U R uovglul"'”?illujfluj” o

41 n Un-

since clearly w;v ' -+ viru, <a wviy' - viru, and <4 is multiplicative. This
implies the inclusion “C” of eq. (2)). Finally, note that eq. () contradicts the
assumed irreducibility. O

Proof of Lemma[6.4] Clearly, if a loop pattern is associated with a language, then
its induced ideal belongs to the adherence of the language. Conversely, suppose the
ideal I = |- ugvius ---v,un, belongs to Adh<,(L). Let k € N and zy,...,2, > k
and let £ € N be the constant provided by Lemma Without loss of generality,
we may assume that £ > k.

Since I belongs to Adh<, (L), there is a word w € L such that ugvius - - - v4u, <4
w =g uovzl“ul -+~ v¥ry, for some yi,...,y, € N. This means in particular that
there is a d-embedding « of ugvtus - - v5u, into w and a d-embedding 8 of w into
uovytuy - - v¥"u,. By composing these two d-embeddings, we obtain a d-embedding
~ of uovful e vflun into the word ugv{ us - - - v¥"u,. By the choice of ¢, v has to be
k-normal. This means that v maps at least k copies of v; to v!* for each i € [1,n].
We can therefore decompose w = ugv1uUy - - - Up Uy, SO that these k copies of v; that
v maps to v/ are mapped by « to v; and |v;] is divisible by d.

Since 3 maps v; to v}*, we have v; € 1<, vf. This also implies that 3 maps g to
uovy", and 8 maps 4; to v} uivzﬁfll, and 8 maps @, to v¥u,. Moreover, & maps
u; to @; for each i € [0,n). In other words, we have v¥ <, v; € 1<, vf for every
i€ [1,n] and u; =4 U; € |5, v;uvf, fori € [1,n —1] and ug =4 Uo = 1<, uovy and
Uy g Up € Ljdv;un. Thus, I is associated to L. [l
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0.2. Proof of Lemma [6.5]

Proof. Suppose I belongs to Adh<,(L(A;)) for ¢ = 1,2. Let upviuy - - - vpty be an
irreducible loop pattern for M, such that I = ¢jdu0v’fu1 - vruy. According to
Lemma [6.4] the loop pattern ugviug - - - vpuy, is associated to L(A;) for i =1, 2.

In particular, there is a word @; 0U; 1%i1 - Uinlisn € L(A;) such that vt =24
vij € Lz, forj € [I,n]and i = 1,2 and u; =4 w; ; € |5, viuvi,, forj € [1,n—1]
and up 24 Uio € <, uov] and u, Xq Uipn € L5, 05 Un.

We can therefore write v; j = ¢ 5,1+ ti,j,m With v; <q t; ;¢ € |5 vj. Consider
the run of A; on the word

Us,004,1U4,1 * * * Uy n Ui -
Since A; has < m states, for each j € [1,n], this run must occupy the same
before and after reading some infix ¢; ;¢---%; ;. Let g;; be this state and let
Vij = T4,j¥i,;%,; be the decomposition so that y; ; = %; j¢---t; k. Then we have
vj =d ¥ij € 4<,vj and also z; j,2;; € |5, vj. The former implies that | y;;, =
‘l’jdv;'

Let A; ; be the automaton obtained from A; by making g; ; the only initial and
final state. Then A; ; is cyclic and we have y; ; C L(A; ;). In particular, the ideal
b<,vF = 1<, i, belongs to Adh<,(L(A; ;). Now Lemma (.3 yields a w; € (£4)*
such that

* J’jdv; < ¢5azw;f’

e |-, wi belongs to Adh<,(L(A;;)),

o my(wj) < m?.
We claim that uowyuy - - - wpuy, is a loop pattern as desired in the lemma. It remains
to show that |4 uowju; - - - wy,u, belongs to Adh<,(L(A;)) for i =1,2.

Let k € N. Since |, w} belongs to Adh<,(L(A; ;)) for i € {1,2} and j € [1,n],
there is a word w] ; € L(A;) such that w¥ <4 w} ; € |5 w}. Define

— / — / —
t= Ui, 0L4,1W; 124,141~ LinW; pZinWUin-

Then we have ugwfu; - - whu, <4t € L(A;). Moreover, since z; j, z; j € 2,05 €

¢jd7ﬂ;‘ and by the choice of the u; ;, the word ¢ is contained in ¢jdu0u’ﬁu1 . w;un_
This proves that |- uowius ---w,u, belongs to Adh<,(L(A;)) for i = 1,2 and
hence completes the lemma. ([

0.3. Proof of Lemma [6.6
Lemma 0.6. Suppose v € (X4)*. Then every r € [0,d — 1]:
ijdvm ={ueX||ul=rmodd, rke(u)C rq(v)}.

Proof. Let w be the length-r prefix of v. Let u € ijdvm, say u =<4 v*w. Then
clearly |u| = r mod d. Moreover, if a € ¥ occurs at a position p in u with p = ¢
(mod d), then a occurs at some position p 4+ dN in v. Hence, kq4(u) C £q(v).
Suppose u € ¥* with |u] = r mod d and k4(u) C kg(v). Write u = a1 -+ ap,
ai,...,an, € X. Since a; € kq(u)(i) C kq(v)(4), each a; occurs at some position p
in v with p = ¢ mod d. Hence, we can write v = z;a,;y; with |z;| =i — 1 mod d and
therefore |y;| = |v| — |x;| — 1 = d — i mod d. In particular, |y;x;11| = (d—1i)+i=
d mod d. Moreover, |z1] = 0 mod d and |y, w| = d — n+ r = 0 mod d. Therefore,

= —_— n
U=0a1- 0y g TI01Y1T202Y2T3 * * * Yn_1Tn0nYnW = U W
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where Z expresses that z € (£4)*. Thus u € | vl O

Consider an extended loop pattern uovghlul e vg"]un and let w; be the length-r

prefix of v; for i € [1,n]. We say that this extended loop pattern is irreducible if
(1) the corresponding loop pattern ug(vy)wiuy - - - (v )wpuy, is irreducible and
(2) for each i € [0,n — 1], u; is either empty or the last letter of w; is not
contained in kq(v;41)(d) and
(3) for each i € [1,n], u; is either empty or the first letter of u; is not contained
in kq(v;)(r; + 1).

Lemma O.7. Let xoygsl] e yg x¢ be an extended loop pattern for My for which

wa(yi) < m for every i € [1,¢]. Then there is an irreducible extended loop pattern

uovyl]ul . --U,[f"]un for My generating the same ideal where also w4(v;) < m for

every i € [1,n].

se]

Proof. We define the length of an extended loop pattern uovgh]ul X vkﬂ"]un to be

|uo| + - - |un| + n - d. In other words, each loop v; contributes d to the length.

Let I be the ideal ijdxoygsllxl e ygsda:g. Furthermore, let uovyllul ol
be an extended loop pattern of minimal length N among all extended loop patterns
that generate I and for which mq(v;) < m for every i € [1,n]. Let w; be the length-r;
prefix of v; for i € [1,n].

By minimality, the loop pattern ug(vy)wiug - - (v, )wpu, has to be irreducible:
Otherwise, there would be a loop v; such that

* * *
1= ijduovl WIUT * VWi 1 Ui— 1 W5+ = Vo W, U,

and hence the extended loop pattern
[ri]

Ti—
Uy g - -’Ul[jl i qwiug - ol

would generate I and have length N —d+r; < N.

Now consider some non-empty u; and suppose its first letter is contained in
ka(v;)(r; + 1). In other words, u; = ati; with a € kq(v;)(r; + 1). Then we could
replace vl[”]ui by vZ[”H]ﬂi. The resulting extended loop pattern clearly generates
the same ideal. Moreover, the requirement for periods would still be met. Finally,
this extended loop pattern would have length N — 1, in contradiction to minimality.

Now consider some non-empty u; and suppose its last letter is contained in
kd(vit1)(d). In other words, u; = @;a with a € k4(vi+1)(d). Then we could replace
the term uivl[::fl] by @iA(viq) M+ T Tt is easy to see that this would result in
an extended loop pattern that generates the same ideal. Moreover, we would have
Ta(A(vit1)) = mq(vit1) < m. Finally, this extended loop pattern would have length
N — 1, contradicting minimality. ]

Proof of Lemmal6.8l Clearly, if the ideal generated by p is associated to L, then it
belongs to Adh<, (L).

Conversely, let p = uovgn]ul R UK"]un be an extended loop pattern for My and
suppose its generated ideal I belongs to Adh<,(L). Let w; be the length-r; prefix
of v; for i € [1,n]. Since the loop pattern ug(vy)wiug - - - (v )wpuy, (the loop parts
are in brackets) is irreducible, it is associated to L according to Lemma [6.4]

Thus, for given k € N, we find a word

(3) W = UgU1U7 - * Uplly € L
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such that vf“ =a U € L, vf for every i € [1,n] and wiju; =g U; € <, viwiuv
fori e [1,n— 1] and ug <4 g € L2, uovt and wyuy =g Uy € L, U5 Wnln.
In the first step, we modify the decomposition eq. [@B]) of w by moving, for each
€ [1,n], the last d — r; letters of ¥; to its right neighbor @;. Let the resulting
decomposition be
w = ’&0’?)1’&1 s ’ﬁn’ﬁ,n
Since vf“ =4 0; € ¢<dv;“ and w;u; <q U; € L<dv;*wiuivf+l, we now have

(1) vFw; =4 0; € ijdvz[”] for each i € [1,n],
(2) wi Zat; € Lo, A7 (vi) uvfy ) fori € [1,n —1],
(3) wo =a tio € <, uovy, and
(4) wp 2a Un € L5, A" (V5) Unp.
We claim that for each ¢ € [0, n], there are words z;, y; so that
(1) for each i € [1,n — 1] for which w; is non-empty, 4; = x;u;y; with z; €
b AT ()%, s € L<, vl

(2) o = uoyo and yo € <, v,

(3) tn = xnu, and xo € L5, A" (vn)*.
Note that is establishes the lemma: We can then again modify the decomposition
as follows. We move yy from 4 to 097 and we move x,, from 4, to 0,. Moreover,
for each non-empty u;, we move z; from 4; to v; and we move y; from 4; to
Uiy+1. Bach 4; where u; is empty is left unchanged. The resulting decomposition
w = UgU1U7 - * * Uplly, 1S then as desired.

First, note that if some u; is empty (whether ¢ € [1,n — 1] or i € {0,n}), then
we need not construct any z; and y;. We show how to construct z; and y; for
i € [1,n — 1] where u; is non-empty. The proof for yy and z,, is then analogous.

Recall that u; =g 4; € {5, A" (v;)*u;vy, ;. This means there is some £ so that
Gy =g A" (v;) b +1- Consider the d-embedding « of u; into i; and the d-embedding
3 of 4; into A" (vi)éuivlﬁl. The composition v of o and 8 is a d-embedding of u;
into A" (v;) uivf, 4.

We now use the fact that our extended loop pattern is irreducible. The d-
embedding v cannot send the left-most letter of u; to a position in A" (vi)luivfﬂ
left of u;, because that would mean that this letter is contained in kq(v;)(r; + 1).
Moreover, v cannot send the right-most letter of u; to a position in A" (Ui)éuivf 11 to
the right of u;, because that would mean that this letter is contained in kq(v;y1)(d).
This implies that v sends u; exactly to the factor u; of \"i (vi)euivfﬂ. Thus, 4,
has a factor u; that is sent by S to u; of A\™ (vi)euivfﬂ. Let 4; = z;usy; be the
corresponding decomposition. Then 3 has to map x; into A" (v;)* and y; into vf 11
In particular, we have x; € |5 A" (v;)* and y; € J<,v¥, ;. This completes the proof
of the claim and hence the lemma. (Il

0.4. Proof of Proposition

Lemma O.8. Let A be an automaton with < m states and let d be a multiple of
m3!.  Moreover, let mq(v) < m? and let u € ¢<dvm be accepted by A such that
|u| > m-mg(v). Then there is a v’ € ijl'd(vé)“/] in L(A) such that ' =r+({—1)d
and |u'| = |u] + (£ — 1)d.

Proof. Since |u| > m - m4(v), u begins with at least |u|/mq(v) > m factors of length
ma(v). Consider the run of A on u. Since A has at most m states, we can decompose
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u = fgh such that g is a contiguous block of k < m factors of length 74(v) and g is
read on a cycle. Since |g| = k - m4(v) < m?, |g| divides d. Let v’ = fg't(¢=1d/lglp,
Then according to Lemma [0.4] we have u’ € J,jdv[’”]. Therefore, kq(u') C Kkq(v).
This implies

w.d(u’) - Iig.d(’l}) - Kg.d(vg).
Moreover, note that |u/| = |u|+ ({ —1)d=r+ ({ —1)d =7’ (mod £ - d) and thus
(S Ljd(vl)[r,]. O

Lemma 0.9. Let A be an automaton with < m states and let d be a multiple of
m31. Moreover, let v € (54)* with 74(v) < m?. If u € L(A) with w <qu € | v,
then there is a u' € L(A) withw <pqu’ € |5, (5l

Proof. Since w =<4 u, we can write u = ugwiuy - - - Wy Uy,, where w = wy - - - wy, and
wy, ..., w, € X, and u; € (¥9)*. Since u € J,<dvm, we have kq(u) C kq(v) and
hence u; € |5 A" (v)* for i € [0,7]. -

For each ¢ € [0,n], we construct u} as follows. Consider the run of A on u and
suppose it reads u; from state p; to state g;.

e If u; is empty, then u] = u;. Note that then of course u} € |, N (vf)*.

o If u; is non-empty, then we split u; in |u;|/d factors of length d and apply
to each factor Lemma This yields a word a word u such that ] €
l<,, (A (v)")* and so that u} can be read from state p; to ¢;. Moreover,
we have |uf| is a multiple of £-d. Since A (v)’ = A\ (v’), we have v/ €
ijl.d/\i(ve)*-

Therefore, the word «’ = ugwiu} - - - wyul, is accepted by A, belongs to le.d(vl)m
and satisfies w <p.q u'.

Lemma 0.10. Let A be an automaton with < m states and and let d be a multiple
of 2m3\. Moreover, let v; € (X9)* with ma(v;) < m? fori=1,2. Ifu € L(A) with
u € |5, vivs, then there is a w' € L(A) with v’ € |5, (v})*(v5)*

Proof. Let K = |- vivi. Observe that K consists precisely of the words of the
form u = 1 - - xpStY1 - - - yYq, Where for some r € [0,d — 1],
o z; € | vi and z; € X7 for i € [1,p],
e s€ ijdvy] and |s| =,
o te€ ¢jd)\’”(v2)[d’r], and |t| =d —r, and
e y; € ls,vsand y; € B¢ for i € [1,q].
On the one hand, all such words belong to | < viv3: The parts s and ¢ arise when
dropping length-d blocks on the border between v} and v;. On the other hand,
by induction on the number of deleted length-d blocks, it follows that any word in
1<, viv3 is of that shape.
Since |s| 4 [t| = d, we have either |s| > d/2 or [t| > d/2. We treat the case that
|s| > d/2, the other case is analogous.
We apply Lemma to each factor z1,...,2p,S,91,...,Y4. Note that this
is possible because each of these words has length either exactly d or > d/2
and we have > d/2 > m3! > m3 > m - my(v;) for i = 1,2. This yields words

Ty, .., 1,, 8 Y, .,y such that
d .I; € ‘l’j[.d(vf)[O] for ¢ € [lap]a

e s’ € J,j[.d(vf)[r/], where ' =7+ (£ — 1)d,
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oy €lg, ,(5)0 forie[1,q,
o Aaccepts u' =z} - xp8"ty; -y

Recall that ¢t € ijd)\’”(vg)[d’ﬂ. This means r4(t) C kq(A"(v2)) and hence
Ka(t) C Ka(X"(v2)") = Ka(X" (v3))

(recall that A" (w)* = A" (w*) for every word w). Therefore, we also have

(4) kea(t) C rea(N"(v3)).

Note that since 7¢.q(v4) = m4(ve) divides d, we can rotate the word v§ by a multiple
of d without changing its image under k¢.4(-). Hence

Kea(N(v5)) = kpa(AHEDI ()

Together with eq. (), we may conclude that ¢ belongs to | -, (A HE=Dd (f)yld=r]
according to Lemma [0.6l Therefore, the above characterization of K, adapted to
b=, (01)*(v8)*, is satisfied for the word v’ and hence v’ € |, (v{)*(v§)*. O

Lemma O.11. Let A be a finite automaton with < m states and let d be a multiple

of 2m3!. If uovyllul e U,[f"]un is an irreducible extended loop pattern with wq(v;) <
m? such that its ideal belongs to Adh<,(L(A)), then for each £ € N, the ideal

(5) ijg.dUO(Uf)[Tl]Ul e (vﬁ)[rn]un

belongs to Adh<, ,(L(A)).

Proof. Since uovyllul -+ ol is irreducible and its ideal belongs to Adh<,(L(A)),
we know from Lemma that the extended loop pattern is associated to L(.A).

Let I be the ideal in eq. (B). Let w; be the length-r; prefix of v; for every
i€[l,n].

In order to show that I belongs to Adhx, ,(L(A)), we have to exhibit for each
k € N a word w € L(A) so that ug(v)*wiuyg - - - (v wpun <.q w and w € T

Let k € N. Because of association, there is a word @ = Ug01@y - - - Up iy, € L(A)
such that for every i € [1,n], we have vF*w; <4 v; and v; € ¢<dvl[”]
Uy = Uug, Un = Up, and for each i € [1,n — 1]: N

. Moreover,

e If u; is not empty, then u; = u;.
e If u; is empty, then @; € | A" (v;)* v}, ;.
Consider the run of A on w. Using Lemma [0.9] we can choose ¥ such that
Flw; <p.q v and ¥, € ijl_l(vf)[’”i] and so that it has a run parallel to ; in
A. Now consider @; for ¢ € [0,n].

v

o If @; = uy, then choose @} = 4; = u;.

o If u; # w;, then u; is empty and u; € |5, A" (v;)*v}, ;. Then we use
Lemma to choose @, such that @, has a run parallel to 4, in A and
wy € Lg, (A7 (0])* (vig)"-

Now the resulting word w’ = uyvia@ - - - v),u,, is accepted by the automaton A.

This shows that the extended loop pattern wug(v$)"luy - - - (v8)""lu, is associated

to L(A) and hence the ideal I belongs to Adh<, ,(L(.A)). O

Proof of Proposition[6.2 Suppose there is an ideal in the adherence Adh<,(L(A;))
for i = 1,2. By Lemma [6.5] there is a loop pattern ugvius -« - vpuy, for My such
that the ideal I = |- ugviuy---vjuy, belongs to Adh<,(L(A;)) for i = 1,2 and
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7q(v;) < m? for every i € [1,n]. Using Lemma[O.7] we can construct an irreducible
extended loop pattern
aovi™ay - - olla,
that induces I and satisfies 74(v;) < m? for i € [1,n]. Now Lemma [O.1T] tells us
that the ideal
ijg_daO@{)[rl]ﬂl .. (’Dfl)[r"]@n
belongs to Adhx, ,(L(A;)) for i =1,2. O

0.5. Proof of Proposition

Proof of Proposition[6.7 Recall that the Post Correspondence Problem asks, given
two morphisms a, 8: 3* — {1,2}*, whether there is a word w € X7 such that
a(w) = B(w). The standard undecidability proof [28] constructs, given a Turing
machine M, morphisms a, 8 such that for w € ¥*, any common prefix of a(w)
and B(w) encodes a prefix of a computation history of M. For our decidable set
D, there exists a fixed terminating Turing machine, so we can proceed as follows.
Given a word u € D, we can apply this construction to compute in polynomial time
morphisms «, 3: ¥* — {1,2}* such that
(i) w € D iff there is a w € X7 with a(w) = f(w) and
(ii) there exists k € N so that for every w € £*, the words a(w) and S(w) have
no common prefix longer than k.
We claim that w € D if and only if L, g and E are separable by BX;[<, mod].
Clearly, if u € D, then the languages L, s and E intersect and cannot be separable.
Suppose u ¢ D. Then (ii) implies that Ly g is included in
Sy = {a"ch® | r # s mod 281}

U{a"ch® | min(r,s) < 281 —1,r #£ s}

because z,y € {1,2}*, |z|,|y| > k, have a common prefix of length > k iff v(x) =
v(y) mod 2+, Moreover, for x € {1,2}*, we have |z| < k iff v(z) < 28! — 1.
Since Sy is clearly definable in BY;[<, mod] and disjoint from E, this shows that
L, and E are separable by B3;[<, mod]. O
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