
ar
X

iv
:1

80
2.

07
39

7v
1

 [
cs

.F
L

]
 2

1
Fe

b
20

18

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS

GEORG ZETZSCHE

Abstract. We introduce a flexible class of well-quasi-orderings (WQOs) on
words that generalizes the ordering of (not necessarily contiguous) subwords.
Each such WQO induces a class of piecewise testable languages (PTLs) as
Boolean combinations of upward closed sets. In this way, a range of regular
language classes arises as PTLs. Moreover, each of the WQOs guarantees reg-
ularity of all downward closed sets. We consider two problems. First, we study
which (perhaps non-regular) language classes permit a decision procedure to
decide whether two given languages are separable by a PTL with respect to a
given WQO. Second, we want to effectively compute downward closures with
respect to these WQOs. Our first main result that for each of the WQOs,
under mild assumptions, both problems reduce to the simultaneous unbound-
edness problem (SUP) and are thus solvable for many powerful system classes.
In the second main result, we apply the framework to show decidability of sep-

arability of regular languages by BΣ1[<,mod], a fragment of first-order logic
with modular predicates.

1. Introduction

In the verification of infinite-state systems, it is often useful to construct finite-
state abstractions. This is because finite-state systems are much more amenable to
analysis. For example, if a pertinent property of our system is reflected in a finite-
state abstraction, then we can work with the abstraction instead of the infinite-
state system itself. Another example is that the abstraction acts as a certificate for
correctness: A violation free overapproximation of the set of behaviors of a system
certifies absence of violations in the system itself. Here, we study two types of
such abstractions: downward closures, which are overapproximations of individual
languages and separators as certificates of disjointness.

Downward closures. A particularly appealing abstraction is the downward clo-
sure, the set of all (not necessarily contiguous) subwords of the members of a
language. What makes this abstraction interesting is that since the subword or-
dering is a well-quasi-ordering (WQO), the downward closure of any language is
regular [17, 16]. Recently, there has been progress on when the downward closure is
not only regular but can also be effectively computed. It is known that downward
closures are computable for context-free languages [7, 30], Petri net languages [14],
and stacked counter automata [32]. Moreover, recently, a general sufficient condi-
tion for computability was presented in [31]. Using the latter, downward closures
were then shown to be computable for higher-order pushdown automata [15] and
higher-order recursion schemes [6]. Hence, downward closures are computable for
very powerful models.

Supported by a fellowship of the Fondation Sciences Mathématiques de Paris.

1

http://arxiv.org/abs/1802.07397v1

2 GEORG ZETZSCHE

If we want to use downward closures to prove absence of violations, then using
the downward closure in this way has the disadvantage that it is not obvious how
to refine it, i.e. systematically construct a more precise overapproximation in case
the current one does not certify absence of violations. Therefore, we wish to find
abstractions that are refinable in a flexible way and still guarantee regularity and
computability.

Separability. Another type of finite-state abstractions is that of separators. Since
safety properties of multi-threaded programs can often be formulated as the dis-
jointness of two languages, one approach to this task is to use regular languages to
certify disjointness [2, 4, 22]. A separator of two languages K and L is a set S such
that K ⊆ S and L ∩ S = ∅. Therefore, especially in cases where disjointness of
languages is undecidable or hard, it would be useful to have a decision procedure for
the separability problem: Given two languages, it asks whether they are separable
by a language from a particular class of separators. In particular, if we want to
apply such algorithms to infinite-state systems, it would be desirable to find large
classes of separators (and systems) for which the separability problem is decidable.

It has long been known that separability of context-free languages are undecid-
able already for very simple classes of regular languages [29, 18] and this stifled hope
that separability would be decidable for any interesting classes of infinite-state sys-
tems and classes of separators. However, the subword ordering turned out again to
have excellent decidability properties: It was shown recently that for a wide range
of language classes, it is decidable whether two given languages are separable by a
piecewise testable language (PTL) [9]. A PTL is a finite Boolean combination of
upward closures (with respect to the subword ordering) of single words. In fact, in
turned out that (under mild closure assumptions) separability by PTL is decidable
if and only if downward closures are computable [10].

However, while this separability result applies to very expressive models of
infinite-state systems, it is still limited in terms of the separators: The small class
of PTL will not always suffice as disjointness certificates.

Contribution. This work makes two contributions, a conceptual one and a tech-
nical one. The conceptual contribution is the introduction of a fairly flexible class
of WQOs on words. These are refinable and provide generalizations of the sub-
word ordering. These orders are parameterized by transducers, counter automata
or other objects and can be chosen to reflect various properties of words. More-
over, the classes of corresponding PTLs are a surprisingly rich collection of classes
of regular languages.

Moreover, it is shown that all these orders have the same pleasant properties
in terms of downward closure computation and decidability of PTL-separability
as the subword ordering. More specifically, it is shown that (under mild assump-
tions), decidability of the abovementioned unboundedness problem again charac-
terizes (1) those language classes for which downward closures are computable
and (2) those classes where separability by PTL is decidable.

In addition, it turns out that this framework can also be used to obtain decidable
separability of regular languages by BΣ1[<,mod], a fragment of first-order logic with
modular predicates. This is technically relatively involved and generalizes the fact
that definability of regular languages in BΣ1[<,mod] is decidable [5].

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 3

2. Preliminaries

If Σ is an alphabet, Σ∗ denotes the set of words over Σ. The empty word is
denoted by ε ∈ Σ∗. A quasi-order is an ordering that is reflexive and transitive.
An ordering (X,�) is called a well-quasi-ordering (WQO) if for every sequence
x1, x2, . . . ∈ X , there are indices i < j with xi � xj . This is equivalent to requiring
that every sequence x1, x2, . . . ∈ X contains an infinite subsequence x′

1, x
′
2, . . . ∈ X

that is ascending, meaning x′
i � x′

j for i ≤ j. For a subset L ⊆ X , we define
↓�L = {x ∈ X | ∃y ∈ L : x � y} and ↑�L = {x ∈ X | ∃y ∈ L : y � x}. These are
called the downward closure and upward closure of L, respectively. A set L ⊆ X
is called downward closed (upward closed) if ↓�L = L (↑�L = L). A (defining)
property of well-quasi-orderings is that for every non-empty upward-closed set U ,
there are finitely many elements x1, . . . , xn ∈ U such that U = ↑�{x1, . . . , xn}.
See [20] for an introduction. An ordering (Σ∗,�) on words is called multiplicative
if u1 � v1 and u2 � v2 implies u1u2 � v1v2.

For words u, v ∈ Σ∗, we write u 4 v if u = u1 · · ·un and v = v0u1v1 · · ·unvn for
some u1, . . . , un, v0, . . . , vn ∈ Σ∗. This ordering is called the subword ordering and
it is well-known that this is a well-quasi-ordering [17].

A well-studied class of regular languages is that of the piecewise testable lan-
guages. Classically, a language L ⊆ Σ∗ is a piecewise testable language (PTL) [27]
if it is a finite Boolean combination of sets of the form ↑4w for w ∈ Σ∗. However,
this notion makes sense for any WQO (X,�) [13] and we call a set L ⊆ X piecewise
testable if it is a finite Boolean combination of sets ↑�x for x ∈ X .

A (finite-state) transducer is a finite automaton where every edge reads input
and produces output. For a transducer T and a language L, the language TL
consists of all words output by the transducer while reading a word from L. A
class of languages C is called a full trio if it is effectively closed under rational
transductions, i.e. if TL ∈ C for each L ∈ C and each rational transduction T .

3. Parameterized WQOs and main results

In this section, we introduce the parameterized WQOs on words, state the main
results of this work, and present some applications. We define the class of param-
eterized WQOs inductively using rules (Rules 1 to 3). The simplest example is
Higman’s subword ordering.

Rule 1. For each Σ, (Σ∗,4) is a parameterized WQO.

Orderings defined by transducers. To make things more interesting, we have
a type of WQOs that are defined by functions. Suppose X and Y are sets and we
have a function f : X → Y . A general way of constructing a WQO on X is to take
a WQO (Y,�) and set x �f x′ if and only if f(x) � f(x′). It is immediate from
the definition that then �f is a WQO on X . We apply this idea to transducers.

A finite-state transducer over Σ and Γ is a tuple T = (Q,Σ,Γ, E, I, F), where Q
is a finite set of states, E ⊆ Q× (Σ∪ {ε})× (Γ∪ {ε})×Q is its set of edges, I ⊆ Q
is the set of initial states, and F ⊆ Q is the set of final states. Transducers accept
sets of pairs of words. A run of T is a sequence

(q0, u1, v1, q1)(q1, u2, v2, q2) · · · (qn−1, un, vn, qn)

4 GEORG ZETZSCHE

of edges such that q0 ∈ I, qn ∈ F . The pair read by the run is (u1 · · ·un, v1 · · · vn).
Then, T realizes the relation

T (T) = {(u, v) ∈ Σ∗ × Γ∗ | (u, v) is read by a run of T }.

Relations of this form are called rational transductions. A transduction is functional
if for every u ∈ Σ∗, there is exactly one v ∈ Γ∗ with (u, v) ∈ T (T). In other words,
T (T) is a function T (T) : Σ∗ → Γ∗ and we can use it to define a WQO.

Rule 2. Let f : Σ∗ → Γ∗ be a functional transduction. If (Γ∗,�) is a parameterized
WQO, then so is (Σ∗,�f).

Conjunctions. Another way to build a WQO on a set is to combine two existing
WQOs. Suppose (X,�1) and (X,�2) are WQOs. Their conjunction is the ordering
(X,�) with x � x′ if and only if x �1 x′ and x �2 x′. Then (X,�) is a WQO via
the characterization using ascending subsequences.

Rule 3. If (Σ∗,�1) and (Σ∗,�2) are parameterized WQOs, then so is their con-
junction (Σ∗,�).

Examples. Using the three building blocks in Rules 1 to 3, we can construct a
wealth of WQOs on words. Let us mention a few examples, including the accom-
panying classes of PTL.

Labeling transductions. Our first class of examples concerns orderings whose
PTLs are fragments of first-order logic with additional predicates. A labeling trans-
duction is a functional transduction f : Σ∗ → (Σ × Λ)∗ for some alphabet Λ la-
bels such that for each w = a1 · · · an ∈ Σ∗, a1, . . . , an ∈ Σ, we have f(w) =
(a1, ℓ1) · · · (an, ℓn) for some ℓ1, . . . , ℓn ∈ Λ.

In this case, we can interpret 4f -PTLs logically. To each word w = a1 · · ·an,
a1, . . . , an ∈ Σ, we associate a finite relational structure Mw as follows. Its domain
is D = {1, . . . , n} and as predicates, it has the binary <, unary letter predicates
Pa for a ∈ Σ, and for each ℓ ∈ Λ, we have a unary predicate πℓ. While the
predicates < and Pa are interpreted as expected, we have to explain πℓ. If f(w) =
(a1, ℓ1) · · · (an, ℓn), then πℓ(i) expresses that ℓi = ℓ. Hence, the πℓ give access to
the labels produced by f . We denote the BΣ1-fragment (Boolean combinations of
Σ1-formulas) as BΣ1[<, f].

Suppose M1 and M2 are relational structures over the same signature. An
embedding of M1 in M2 is an injective mapping from the domain of M1 to the
domain of M2 such that each predicate holds for a tuple in M1 if and only the
predicate holds for the image of that tuple. This defines a quasi-ordering: We write
M1 →֒ M2 if M1 can be embedded into M2. Observe that for u, v ∈ Σ∗, we have
u 4f v if and only if Mu →֒ Mv.

It was shown in [13] that if the embedding order is a WQO on a set of structures,
then the BΣ1-fragment (i.e. Boolean combinations of Σ1 formulas) can express
precisely the PTL with respect to →֒. This implies that the languages definable in
BΣ1[<, f] are precisely the 4f -PTL.

To illustrate the utility of the fragments BΣ1[<, f], suppose we are given regular
languages Wi, Pi, Si, for i ∈ [1, n]. Suppose we have for each i ∈ [1, n] a 0-ary
predicate wi that expresses that our whole word belongs to Wi. For each i ∈ [1, n]
we also have unary predicates prei and sufi, which express that the prefix and

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 5

suffix, respectively, corresponding to the current position, belongs to Pi and Si,
respectively. Then the corresponding fragment

BΣ1[<, (wi)i∈[1,n], (prei)i∈[1,n], (sufi)i∈[1,n]]

can clearly be realized as BΣ1[<, f].
Of course, we can capture many other predicates by labeling transducers. For

example, it is easy to realize a predicates for “the distance to the closest position to
the left with an a is congruent k modulo d” (for some fixed d). Finally, let us observe
in passing that instead of enriching BΣ1[<], we could also construct fragments that
do not have access to letters: If f just produces labels (and no input letters), we
obtain a logic where, for example, we can only express whether “this position is
even and carries an a”.

Orderings defined by finite automata. Our second example slightly specializes
the first example. The reason we make it explicit is that we shall present explicit
ideal representations that will be applied to decide separability of regular languages
by BΣ1[<,mod]. The example still generalizes the subword order. While in the
latter, a smaller word is obtained by deleting arbitrary infixes, these orders use an
automaton to restrict the permitted deletion.

A finite automaton is a tuple A = (Q,Σ, E, I, F), where Q is a finite set of states,
Σ is the input alphabet, E ⊆ Q × Σ × Q is the set of edges, I ⊆ Q is the set of
initial states, and F ⊆ Q is the set of final states. The language L(A) is defined in
the usual way. Here, we use automata as a means to assign a labeling to an input
word. A labeling is defined by a run. A run of A on w = a1 · · ·an, a1, . . . , an ∈ Σ,
is a sequence

(q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ E∗

with q0 ∈ I and qn ∈ F . By Runs(A), denote the set of runs of A. Since we want
A to label every word from Σ∗, we call an automaton A a labeling automaton if
for each word w ∈ L(A), A has exactly one run on w. In this case, we write A(w)
for the run of A on w. Moreover, we define σA(w) = (p, q), where p and q are the
first and last state, respectively, visited during w’s run. Hence, such an automaton
defines a map A : Σ∗ → E∗.

Let u �A v if and only if v is obtained from u by “inserting loops of A”. In
other words, v can be written as v = u0v1u1 · · · vnun with u = u0 · · ·un such that
the run of A on v occupies the same state before reading vi and after reading vi.
Equivalently, we have u �A v if and only if σA(u) = σA(v) and A(u) 4 A(v). The
order �A is a parameterized WQO: The order � with u � v if and only if σA(u) =
σA(v) is parameterized because we can use a functional transduction f that maps u
to the length-1 word σA(u) in (Q×Q)∗. Moreover, with a functional transduction
g that maps a word w to its run A(w), the ordering �A is the conjunction of 4f

and 4g.

• If A consists of just one state and a loop for every a ∈ Σ, then �A is the
ordinary subword ordering.

• Suppose B is a complete deterministic automaton accepting a regular lan-
guage L ⊆ Σ∗. Then L is simultaneously upward closed and downward
closed with respect to �A, where A is obtained from B by making all
states final. In particular, every regular language can occur as an upward
closure and as a downward closure with respect to some �A.

6 GEORG ZETZSCHE

As for labeling transducers, we can consider logical fragments where �A is the
embedding order. Again, our signature consists of <, Pa for a ∈ Σ. Furthermore,
for each q ∈ Q, we have the 0-ary predicates ιq and τq and unary predicates λq

and ρq. Let (q0, a1, q1) · · · (qn−1, an, qn) be the run of A on w. Then λq(i) is true
iff qi−1 = q. Moreover, ρq(i) holds iff qi = q. Hence, λq and ρq give access to
the state occupied by A to the left and to the right of each position, respectively.
Accordingly, ιq and τq concern the first and the last state: ιq is satisfied iff q0 = q
and τq is true iff qn = q.

As an example, let Md be the automaton that consists of a single cycle of length
d so that on each input letter, Md moves one step forward in the cycle. This is
equivalent to having a predicate for each k ∈ [1, d] that express that the current
position is congruent k modulo d. Moreover, we have a predicate for each k ∈ [1, d]
to express that the length of the word is k modulo d. This is sometimes denoted
BΣ1[<,modd]. If these predicates are available for every d, the resulting class is
denoted BΣ1[<,mod] [5] and will be the subject of Theorem 3.7.

Multiplicative well-partial orders. Ehrenfeucht et al. [11] have shown that a
language is regular if and only if it is upward closed with respect to some multi-
plicative WQO. For the “only if” direction, they provide the syntactic congruence,
which, as a finite-index equivalence, is a WQO. Here, we exhibit a natural exam-
ple of a well-partial order for which a given regular language is upward closed.
Suppose M is a finite monoid and θ : Σ∗ → M is a morphism that recognizes
the language L ⊆ Σ∗, i.e. L = θ−1(θ(L)). Let f : Σ∗ → (M2 × Σ × M2)∗

be the functional transduction such that for w = a1 · · · an, a1, . . . , an ∈ Σ, we
have f(w) = (ℓ0, r0, a1, ℓ1, r1) · · · (ℓn−1, rn−1, an, ℓn, rn), where ℓi = θ(a1 · · ·ai) and
ri = θ(ai+1 · · · an). Then we have u 4f v if and only if v can be written as
v = u0v1u1 · · · vnun such that θ(u0 · · ·ui−1vi) = θ(u0 · · ·ui−1) and θ(viui · · ·un) =
θ(ui · · ·un) for i ∈ [1, n]. In this case, we write �θ for 4f .

Note that �θ is multiplicative and L is �θ-upward closed. Thus, the order �θ

is a natural example that shows: A language is regular if and only if it is upward
closed with respect to some multiplicative well-partial order.

Remark 3.1. Another source of WQOs on words is [3], where Bucher et al. have
studied a class of multiplicative orderings on words arising from rewriting systems.
They show that all WQOs considered there can be represented by finite monoids
equipped with a multiplicative quasi-order. Given such a monoid (M,≤) and a
morphism θ : Σ∗ → M , they set u ⊑θ v if and only if u = u1 · · ·un, u1, . . . , un ∈ Σ,
and v = v1 · · · vn such that θ(ui) ≤ θ(vi). However, they leave open for which
monoids (M,≤) the order ⊑θ is a WQO.

In the case that θ above is a morphism into a finite group (whose order is the
equality), the order �θ coincides with ⊑θ. However, while the orderings consid-
ered by Bucher et al. are always multiplicative, this is not always the case for
parameterized WQOs.

Orderings defined by counter automata. We can also use automata with
counters to produce parameterized WQOs. A counter automaton is a tuple A =
(Q,Σ, C,E, I, F), where Q is a finite set of states, Σ is the input alphabet, C is a
set of counters, E ⊆ Q × (A ∪ {ε}) × N

C × Q is the finite set of edges, I ⊆ Q is
the set of initial states, and F ⊆ Q is the set of final states. A configuration of A
is a tuple (q, w, µ), where q ∈ Q, w ∈ A∗, µ ∈ N

C . The step relation is defined

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 7

as follows. We have (q, w, µ) →A (q′, w′, µ′) iff there is an edge (q, v, ν, q′) ∈ E
such that w′ = wv and µ′ = µ + ν. A run (arriving at µ) on an input word w is
a sequence (q0, w0, µ0), . . . , (qn, wn, µn) such that (qi−1, wi−1, µi−1) →A (qi, wi, µi)
for i ∈ [1, n], q0 ∈ I, w0 = ε, µ0 = 0, qn ∈ F , and wn = w.

We use counter automata not primarily as accepting devices, but rather to define
maps and to specify unboundedness properties. We call A a counting automaton
if it has exactly one run for every word w ∈ Σ∗. In this case, it defines a function
A : Σ∗ → N

C : We have A(w) = µ iff A has a run on w arriving at µ.
This gives rise to an ordering: Let A be a counting automaton. Then, given

u, v ∈ Σ∗, let u �A v if and only if A(u) ≤ A(v). This is a parameterized WQO
for the following reason. For each c ∈ C, we can build a functional transduction
fc : Σ

∗ → {c}∗ that operates like A, but instead of incrementing c, it outputs a c.
Then, �A is the conjunction of all the WQOs 4fc for c ∈ C.

Let k ∈ N and Ck = {au, bu, cu | u ∈ Σ≤k}. We say that a word u occurs at
position ℓ in v if v = xuy with |x| = ℓ − 1. It is easy to construct a counting
automaton Pk with counter set Ck that satisfies Pk(w) = µ iff for each u ∈ Σ≤k,

• if u is a prefix of w, then µ(au) = 1, otherwise µ(au) = 0,
• if u is a suffix of w, then µ(bu) = 1, otherwise µ(bu) = 0,
• µ(cu) is the number of positions in w where u occurs.

Using this counting automaton, we can realize another class of regular languages.
Let k ∈ N. A k-locally threshold testable language is a finite Boolean combination
of sets of the form

• uΣ∗ for some u ∈ Σ≤k,
• Σ∗u for some u ∈ Σ≤k, or
• {w ∈ Σ∗ | u occurs at ≥ ℓ positions in w} for some u ∈ Σ≤k and ℓ ∈ N.

The class of k-locally threshold testable languages is denoted LTTk. Observe that
the �Pk

-PTL are precisely the k-locally threshold testable languages. Indeed, each
of the basic building blocks of k-locally threshold testable languages is �Pk

-upward
closed and hence a �Pk

-PTL. Conversely, for each w ∈ Σ∗, the upward closure of
w with respect to �Pk

is clearly in LTTk.

Conjunctions. Let us illustrate the utility of conjunctions. Let S be a finite
collection of WQOs on Σ∗. We call a language L ⊆ Σ∗ an S-PTL if it is a finite
Boolean combination of sets of the form ↑�w, where � belongs to S and w ∈ Σ∗.
Our framework also applies to S-PTLs for the following reason.

Observation 3.2. Let � be the conjunction of the WQOs in S. Then a language
is an S-PTL iff it is a �-PTL.

As an example, suppose we have subsets Σ1, . . . ,Σn ⊆ Σ and the functional
transductions πi, i ∈ [1, n], such that πi : Σ

∗ → Σ∗
i is the projection onto Σi,

meaning πi(a) = a for a ∈ Σi and πi(a) = ε for a /∈ Σi. If S consists of the
4πi

for i ∈ [1, n], then the S-PTL are precisely those languages that are Boolean
combinations of sets ↑4w for w ∈ Σ∗

1 ∪ · · · ∪Σ∗
i . Hence, we obtain a subclass of the

classical PTL. Of course, there are many other examples. One can, for example,
combine WQOs for logical fragments with WQOs defined by counting automata
and thus obtain logics that refer to positions as well as counter values, etc.

Computing downward closures. The first problem we will study is that of
computing downward closures. As in the case of the subword ordering, we will

8 GEORG ZETZSCHE

see that for all parameterized WQOs, every downward closed language is regular.
While mere regularity is often easy to see, it is not obvious how, given a language
L ⊆ Σ∗, to compute a finite automaton for ↓�L. We are insterested in when this
can be done algorithmically. If � is a WQO on words, we say that �-downward
closures are computable for a language class C if there is an algorithm that, given a
language L ⊆ Σ∗ from C, computes a finite automaton for ↓�L. This is especially
interesting when C is a class of languages of infinite-state systems.

Until now, downward closure computation has focused mainly on the case where
� is the subword ordering. In that case, there is a charaterization for when down-
ward closures are computable [31]. For a rational transduction T ⊆ Σ∗ × Γ∗ and a
language L ⊆ Σ∗, let TL = {v ∈ Γ∗ | ∃u ∈ L : (u, v) ∈ T }. When we talk about lan-
guage classes, we always assume that there is a way of representing their languages
such as by automata or grammars. We call a language class C a full trio if it is
effectively closed under rational transductions, i.e. given a representation of L from
C, we can compute a representation of TL in C. The simultaneous unboundedness
problem (SUP) for C is the following decision problem.

Given: A language L ⊆ a∗1 · · ·a
∗
n from C.

Question: Does a∗1 · · ·a
∗
n ⊆ ↓L hold?

The aforementioned characterization now states that downward closures for the
subword ordering are computable for a full trio C if and only if the SUP is decid-
able. The SUP is decidable for many important and very powerful infinite-state
systems. It is known to be decidable for Petri net languages [10, 31, 14] and matrix
languages [31]. Moreover, it was shown to be decidable for indexed languages [31],
which was generalized to higher-order pushdown automata [15] and then further to
higher-order recursion schemes [6].

An indication for why computing downward closures for parameterized WQOs
might be more difficult than for subwords is that the latter ordering is a rational
relation, i.e. {(u, v) ∈ Σ∗ × Σ∗ | u 4 v} is rational. This fact was crucial for the
method in [31]. However, one can easily construct parameterized WQOs for which
this is not the case.

PTL and separability. We also consider separability problems. We say that two
languages K ⊆ Σ∗ and L ⊆ Σ∗ are separated by a language R ⊆ Σ∗ if K ⊆ R and
L∩R = ∅. If two languages are separated by a regular language, we can regard this
regular language as a finite-state abstraction of the two languages. We therefore
want to decide when two given languages can be separated by a language from some
class of separators. More precisely, we say that for a language class C and a class
of separators S, separability by S is decidable if given language K and L from C, it
is decidable whether there is an R in S that separates K and L. In the case where
S is the class (subword) PTL, it is known when separability is decidable: In [10],
it was shown that in a full trio, separability by PTL is decidable if and only if the
SUP is decidable (the “if” direction had been obtained in [9]).

Main result. We are now ready to state the first main result.

Theorem 3.3. For every full trio C, the following are equivalent:

(1) The SUP is decidable for C.
(2) For every parameterized WQO �, �-downward closures are computable for

C.

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 9

(3) For every parameterized WQO �, separability by �-PTL is decidable for C.

This generalizes the two aforementioned results on downward closures and PTL
separability. In addition, Theorem 3.3 applies to all the examples of �-PTL de-
scribed above.

Recall that for each regular language R, there is a labeling automaton A such
that R is �A-upward closed and thus a �A-PTL. Thus, for languages K and L,
the following are equivalent: (i) There exists a labeling automaton A such that K
and L are separable by a �A-PTL and (ii) K and L are separable by a regular
language. Already for one-counter languages, separability by regular languages is
undecidable [8] (for context-free languages, this was shown in [29, 18]). However,
Theorem 3.3 tells us that for each fixed A, separability by �A-PTL is decidable.
We make a few applications explicit.

Corollary 3.4. Let C be a full trio with decidable SUP. For each d ∈ N, separability
by BΣ1[<,modd] is decidable for C.

A direct consequence from Theorem 3.3 is that we can decide whether a regular
language is a �-PTL. Note that since a language L ⊆ Σ∗ is separable from its
complement Σ∗ \L by some �-PTL if and only if L is an �-PTL itself, Theorem 3.3
implies the following.

Corollary 3.5. Let � be a parameterized WQO. Given a regular language L, it is
decidable whether L is an �-PTL.

It was shown by Place et al. [25] that for context-free languages, separability by
LTTk is decidable for each k ∈ N. Their algorithm uses semilinearity of context-free
languages and Presburger arithmetic. Here, we extend this result to all full trios
with a decidable SUP.

Corollary 3.6. Let C be a full trio with decidable SUP. For each k ∈ N, separability
by LTTk is decidable for C.

Separability beyond PTLs. Our framework can also be applied to separators
that do not arise as PTLs for a particular WQO. This is because we can some-
times apply the developed ideal representations to separator classes that are infinite
unions of invidual classes of PTLs. For example, consider the fragment BΣ1[<,mod]
of first-order logic on words with modular predicates. In terms of expressible lan-
guages, it is the union over all fragments BΣ1[<,modd] with d ∈ N. Using a
non-trivial algebraic proof, it was shown by Chaubard, Pin, and Straubing [5] that
it is decidable whether a regular language is definable in BΣ1[<,mod]. Here, we
show the following generalization using a purely combinatorial proof.

Theorem 3.7. Given two regular languages, it is decidable whether they are sepa-
rable by BΣ1[<,mod].

Of course, this raises the question of whether separability by BΣ1[<,mod] reduces
to the SUP, as it is the case of separability by BΣ1[<,modd] for fixed d. However,
this is not the case, as is shown here as well.

Theorem 3.8. Separability by BΣ1[<,mod] is undecidable for second-order push-
down languages.

Since the second-order pushdown languages constitute full trio [24, 1] and have
a decidable SUP [31], this means separability by BΣ1[<,mod] does not reduce to
the SUP.

10 GEORG ZETZSCHE

4. Computing closures and deciding separability

In this section, we present the algorithms used in Theorem 3.3. These algo-
rithms work with WQOs on words under the assumption that these enjoy certain
effectiveness properties. In section 5, we will then show that all parameterized
WQO indeed satisfy these properties. Our algorithms for computing downward
closures and deciding separability rely heavily on the concept of ideals, which have
recently attracted attention [21, 12, 13]. Observe that, in the case of the separabil-
ity problem, it is always easy to devise a semi-algorithm for the separability case:
We just enumerate separators–verifying them is possible because we have decidable
emptiness and intersection with regular sets. The difficult part is to show that
inseparability can be witnessed.

These witnesses are always ideals. Let (X,�) be a WQO. An �-ascending chain
is a sequence x1, x2, . . . with xi � xi+1 for every i ∈ N. A subset Y ⊆ X is called
(�-)directed if for any x, y ∈ Y , there is a z ∈ Y with x � z and y � z. An
(�-)ideal is a non-empty subset I ⊆ X that is �-downward closed and �-directed.
Equivalently, a non-empty subset I ⊆ X is an �-ideal if I is �-downward closed
and for any two �-downward closed sets Y, Z ⊆ X with I ⊆ Y ∪Z, we have I ⊆ Y
or I ⊆ Z. It is well-known that every downward closed set can be written as a
finite union of ideals. For more information on ideals, see [21, 13].

As observed in [13], an ideal can witness inseparability of two languages by
belonging to both of their adherences. For a set L ⊆ X , its adherence Adh�(L) is
defined as the set of those ideals I of X such that there exists a directed set D ⊆ L
with I = ↓�D. Equivalently, I ∈ Adh�(L) if and only if I ⊆ ↓�(L ∩ I) [21, 13]. In
this work, we also use a slightly modified version of adherences in order to describe
ideals of conjunctions of WQOs. Let (�s)s∈S be a family of well-quasi-orderings on
a common set X . Moreover, let � denote the conjunction of (�s)s∈S . For L ⊆ X ,
AdhS(L) is the set of all families (Is)s∈S of ideals for which there exists a �-directed
set D ⊆ L such that Is = ↓�s

D for each s ∈ S.

Unboundedness reductions. We use counter automata (that are not necessarily
counting automata) to specify unboundedness properties. Let A be a counter
automaton with counter set C. Let Nω = N ∪ {ω} and extend ≤ to Nω by setting
n < ω for all n ∈ N. We define a function Ā : Σ∗ → Nω by

Ā(w) = sup

{

inf
c∈C

µ(c)

∣

∣

∣

∣

A has a run on w arriving at µ ∈ N
C

}

We say that a counter automaton A is unbounded on L ⊆ Σ∗ if for every k ∈ N,
there is a w ∈ L with Ā(w) ≥ k. In other words, iff for every ν ∈ N

C , there is a
w ∈ L such that A has a run on w arriving at some µ ≥ ν.

The following can be shown using a straightforward reduction to the diagonal
problem [10, 9], which in turn is known to reduce to the SUP [31].

Lemma 4.1. Let C be a full trio with decidable SUP. Then, given a counter au-
tomaton A and a language L from C, it is decidable whether A is unbounded on
L.

We are now ready to state the effectiveness assumptions on which our algo-
rithms rely. Let Σ be an alphabet and (Σ∗,�) be a WQO. We say that (Σ∗,�) is
an effective WQO with an unboundedness reduction (EWUR) if the following are
satisfied:

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 11

(a) For each w ∈ Σ∗, the set ↑�w is effectively regular.
(b) The set of ideals of (Σ∗,�) is a recursively enumerable set of regular lan-

guages.
(c) Given an ideal I ⊆ Σ∗, one can effectively construct a counter automaton

AI such that for every L ⊆ Σ∗, AI is unbounded on L if and only if I
belongs to Adh�(L).

It should be noted that in order to decide separability by �-PTL and compute
downward closures, it would have sufficed to require decidability of adherence mem-
bership in full trios with decidable SUP. The reason why we require the stronger
condition (c) is that in order to show that all parameterized WQOs satisfy these
conditions, we want the latter to be passed on to conjunctions and to WQOs �f .

The conditions imply that every upward closed language (hence every down-
ward closed language) is regular: If U is upward closed, then we can write U =
↑�{w1, . . . , wn} =

⋃n
i=1 ↑�{wi}, which is regular because each ↑�{wi} is regular.

Moreover, we may conclude that given a regular language R ⊆ Σ∗ it is decidable
whether R is an ideal: If R is an ideal, we find it in an enumeration; if it is not an
ideal, we find words that violate directedness or downward closedness.

According to the definition of EWUR, we can construct a counter automaton
A such that I ∈ Adh(L) if and only if A is unbounded on L. Hence, Lemma 4.1
implies the following.

Proposition 4.2. Let (Σ∗,�) be an EWUR and let C be a full trio with decidable
SUP. Then, given an ideal I ⊆ Σ∗ and L ∈ C, it is decidable whether I ∈ Adh�(L).

In section 5, we develop ideal representations for all parameterized WQOs and
thus show that they are EWUR.

Let us now sketch how to show Theorem 3.3 assuming that every parameterized
WQO is an EWUR. The implication “2⇒1” holds because computing downward
closures clearly allows deciding the SUP. This was shown in [31]. The implication
“3⇒1” follows from [10], which presents a reduction of the SUP to separability
by PTL. Thus, it remains to prove that downward closures are computable and
PTL-separability is decidable for EWUR. We begin with the former. The following
was shown in [21].

Lemma 4.3. Let (X,�) be a WQO and I1, . . . , In be ideals such that L ⊆ I1 ∪
· · · ∪ In and Ii 6⊆ Ij for i 6= j. Then Ii ⊆ ↓L if and only if Ii ∈ Adh(L).

We can now use an algorithm for downward closure computation from [13], which
reduces the computation to adherence membership.

Proposition 4.4. Let C be a full trio with decidable SUP and let � be an EWUR.
Then �-downward closures of languages in C are computable.

We continue with the decidability of separability by �-PTL for EWUR �. We
employ the following characterization of separability in terms of adherences [13] for
reducing the separability problem to adherence membership.

Proposition 4.5. Let (X,�) be a WQO. Then, K ⊆ X and L ⊆ X are separable
by a �-PTL iff Adh�(K) ∩ Adh�(L) = ∅.

We can now use the algorithm from [13] for deciding separability of languages K
and L in our setting. By Proposition 4.5, we can use two semi-decision procedures.
On the one hand, we enumerate potential separators S and check whether K ⊆ S

12 GEORG ZETZSCHE

and L∩S = ∅. On the other hand, we enumerate �-ideals I and check if I belongs
to Adh�(K) ∩ Adh�(L).

Proposition 4.6. Let C be a full trio with decidable SUP and � be an EWUR.
Then separability by �-PTL is decidable for C.

5. Ideal representations

In this section, we show that every parameterized WQO is an EWUR. The fact
that the subword ordering is an EWUR follows using arguments from [10, 31].

Proposition 5.1. The subword ordering (Σ∗,4) is an EWUR.

The next step is to show that if (Γ∗,�) is an EWUR and f : Σ∗ → Γ∗ is a
functional transduction, then (Σ∗,�f) is an EWUR. We begin with some general
observations about ideals of WQOs of the shape �f , where f : X → Y is an arbi-
trary function and (Y,�) is a WQO. First, we describe ideals of (X,�f) in terms
of ideals of (Y,�).

It is easy to see that every ideal of (X,�f) is of the form form f−1(J) for some
ideal J of (Y,�). However, a set f−1(J) is not always an ideal of (X,�f). For
example, suppose f : Σ∗ → N × N has f(w) = (|w|, 0) if |w| is even and f(w) =
(0, |w|) if |w| is odd. Then f−1(N × N) is not upward directed although N × N is
an ideal.

Lemma 5.2. I ⊆ X is an ideal of (X,≤f) if and only if I = f−1(J) for some ideal
J of (Y,�) such that ↓f(f−1(J)) = J .

Note that Lemma 5.2 tells us how to represent ideals of (X,�f) when we have
a way of representing ideals of (Y,�). Hence, if the set of ideals of (Γ∗,�) is
recursively enumerable, then so is the set of ideals of (Σ∗,�f). We will also need
to transfer membership in adherences from (Y,�) to (X,�f).

Lemma 5.3. If J ⊆ Y is an ideal of (Y,�) with ↓f(f−1(J)) = J , then f−1(J) ∈
Adh(L) if and only if J ∈ Adh(f(L)).

Equipped with Lemmas 5.2 and 5.3, it is now straightforward to show that
(Σ∗,�f) is an EWUR.

Proposition 5.4. If (Γ∗,�) is an EWUR and f : Σ∗ → Γ∗ is a functional trans-
ducer, then (Σ∗,�f) is an EWUR.

It remains to be shown that being an EWUR is preserved by taking a conjunction.
Our first step is to characterize which sets are ideals of a conjunction. Once the
statement is found, the proof is relatively straightforward.

Proposition 5.5. Let S = (�s)s∈S be a finite family of WQOs over X and let
(X,�) be the conjunction of S. Then I ⊆ X is an ideal of (X,�) iff it can be
written as I =

⋂

s∈S Is, where each Is is an ideal of (X,�s) and (Is)s∈S belongs to
AdhS(I).

The next step describes how to reduce the adherence membership problem for
conjunctions to the adherence membership problem for the participating orderings.
Again, proving the statement is straightforward.

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 13

Proposition 5.6. Let S = (�s)s∈S be a finite family of WQOs over X and let
(X,�) be the conjunction of S. Suppose Is is an �s-ideal for each s ∈ S and
I =

⋂

s∈S Is and that (Is)s∈S belongs to AdhS(I). Then I belongs to Adh�(L) iff
(Is)s∈S belongs to AdhS(L).

As expected, a product construction allows us to characterize the adherence
membership for conjunction.

Lemma 5.7. Suppose (Σ∗,�i) is an EWUR for i = 1, 2. Given ideals I1 and I2
for �1 and �2, respectively, we can construct a counter automaton A such that for
every language L ⊆ Σ∗, A is unbounded on L iff (I1, I2) belongs to Adh�1,�2

(L).

The following is now a consequence of the previous steps.

Proposition 5.8. If �1 and �2 are EWUR, then their conjunction is an EWUR
as well.

Orderings defined by labeling automata. The preceding results already show
that every parameterized WQO is an EWUR. However, since we will study separa-
bility by BΣ1[<,mod], it will be crucial to have an explicit, i.e. syntactic represen-
tation of ideals of a particular type of parameterized WQOs, namely those defined
by labeling automata. Here, we develop such a syntax.

Let A be a labeling automaton over Σ∗, u0, . . . , un ∈ Σ∗, and v1, . . . , vn ∈ Σ∗.
The word w = u0v1u1 · · · vnun (more precisely: this particular decomposition) is a
loop pattern (for A) if the run of A on w loops at each vi, i ∈ [1, n]. In other words,
A is in the same state before and after reading vi.

Theorem 5.9. Let A be a labeling automaton. The �A-ideals are precisely the sets
of the form ↓�A

u0v
∗
1u1 · · · v∗nun, where u0v

∗
1u1 · · · v∗nun is a loop pattern for A.

By standards arguments about ideals, it is enough to show that those sets are
ideals and that every downward closed set is a finite union of such sets.

6. Separability by BΣ1[<,mod]

In this section, we prove Theorem 3.7 and Theorem 3.8. The latter will be shown
in section 6.1 and the former is an immediate consequence of the following.

Proposition 6.1. Let A1,A2 be finite automata with ≤ m states. L(A1) and L(A2)
are separable by BΣ1[<,mod] if and only if they are separable by BΣ1[<,modd],
where d = 2m3!.

Recall that BΣ1[<,modd] are the �Md
-PTL, where Md is the labeling automa-

ton defined on page 6. From now on, we write �d for �Md
. Proposition 6.1 follows

from:

Proposition 6.2. Let Ai be a finite automaton for i = 1, 2 with ≤ m states and
let d be a multiple of 2m3!. If

Adh�d
(L(A1)) ∩ Adh�d

(L(A2)) 6= ∅,

then

Adh�ℓ·d
(L(A1)) ∩ Adh�ℓ·d

(L(A2)) 6= ∅

for every ℓ ≥ 1.

14 GEORG ZETZSCHE

The “if” direction of Proposition 6.1 is trivial and the “only if” follows from
Proposition 6.2: If L(A1) and L(A2) are separable by BΣ1[<,modℓ] for some ℓ ∈ N,
then this separator is also expressible in BΣ1[<,modℓ·d]. Moreover, together with
Proposition 4.5, Proposition 6.2 tells us that separability by BΣ1[<,modℓ·d] implies
separability by BΣ1[<,modd].

The rest of this section outlines the proof of Proposition 6.1. Note that according
to Theorem 5.9, the ideals for �d are the sets of the form I = ↓�d

u0v
∗
1u1 · · · v∗nun

where vi ∈ (Σ∗)d. The ideal I belongs to Adh�d
(L) if for each k ∈ N, there is a

word w ∈ L such that u0v
k
1u1 · · · vknun �d w and w ∈ I. We call such words w

witness words.
It is tempting to think that Proposition 6.2 just requires a simple pumping

argument: Suppose the ideal ↓�d
u1v

∗
1u1 · · · v

∗
nun belongs to the adherence of some

language. Then, we pump the gaps in between embedded letters from the witness
word u0v

ℓ·k
1 u1 · · · vℓ·kn un. These gaps, after all, always have length divisible by d.

For a d with sufficiently many divisors, we would be able to pump the gaps up
to a length divisible by ℓ · d so that we can embed u0(v

ℓ
1)

ku1 · · · (vℓn)
kun via �ℓ·d.

However, in order to show that the �ℓ·d-ideal I
′ = ↓�ℓ·d

u0(v
ℓ
1)

∗u1 · · · (vℓn)
∗un is

contained in the �ℓ·d-adherence, we also have to make sure that resulting witness
words are members of I ′. This makes the proof challenging.

Part I: Small periods. Our proof of Proposition 6.2 consists of three parts. In the
first part, we show that if two regular languages share an ideal in their adherences,
then there exists one in which all loops (the words vi) are in a certain sense, highly
periodic. Let P(Σ) denote the power set of Σ and let P(Σ)[1,d] denote the set of
mappings µ : [1, d] → P(Σ). For each word w ∈ Σ∗ and d ∈ N, let κd(w) ∈ P(Σ)[1,d]

be defined as follows. For i ∈ [1, d], we set

κd(w)(i) = {a ∈ Σ | a occurs in w at a position p with p ≡ i mod d}.

For each word w ∈ Σ∗, let ρ(w) be obtained from rotating w by one position to the
right. Hence, for v ∈ Σ∗ and a ∈ Σ we have ρ(va) = av, and ρ(ε) = ε. Let λ be the
inverse map of ρ, i.e. rotation to the left. For v ∈ Σ∗ and d ∈ N, let πd(v) ∈ [1, d]
be the smallest t ∈ [1, d] that divides d such that κd(v)(i + t) = κd(v)(i) for all
i ∈ [1, d − t]. Thus, t can be thought of as a period of κd(v). An automaton
A = (Q,Σ, E, I, F) is cyclic if I = F and |I| = 1. The first step towards ideals
with high periodicity is to achieve high periodicity in single-loop ideals in cyclic
automata:

Lemma 6.3. Let Ai be a cyclic automaton with ≤ m states for each i = 1, 2 and let
d be a multiple of m2!. If ↓�d

v∗ belongs to Adh�d
(L(Ai)) for i = 1, 2, then there is

a w ∈ (Σd)∗ such that (i) ↓�d
v∗ ⊆ ↓�d

w∗, (ii) ↓�d
w∗ also belongs to Adh�d

(L(Ai))

for i = 1, 2, and (iii) πd(w) ≤ m2.

The idea is to find in witness words a factor f such that left and right of f ,
we can pump factors of suitable length. By pumping both of these factors up by
multiplicities that sum up to a constant, we can essentially move f back and forth
and obtain a computation in which the occurrences of letters in f are spread over
all residue classes modulo some small number ≤ m2.
Associated patterns. In order to extend this to general ideals and automata, we
need more guarantees on how words u0v

k
1u1 · · · v

k
nun embed into witness words.

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 15

Let u0v1u1 · · · vnun be a loop pattern for Md and let L ⊆ Σ∗. We say that the
loop pattern is associated to L if for every k ≥ 0, there is a word ū0v̄1ū1 · · · v̄nūn ∈ L
such that vki �d v̄i ∈ ↓�d

v∗i for every i ∈ [1, n] and ui �d ūi ∈ ↓�d
v∗i uiv

∗
i+1 for

i ∈ [1, n− 1] and u0 �d ū0 ∈ ↓�d
u0v

∗
1 and un �d ūn ∈ ↓�d

v∗nun.
Of course, if the pattern u0v1u1 · · · vnun is associated to L, then the ideal

I = ↓�d
u0v

∗
1u1 · · · v∗nun belongs to Adh�d

(L). However, the converse is not true.
Consider, for example, the case d = 2 and the loop pattern ε · (aa) · ε · (abba) · ε,
where aa and abba are cycles and the constant parts are all empty. The resulting
ideal ↓�2

(aa)∗(abba)∗ belongs to Adh�2
((abba)∗), just because ↓�2

(aa)∗(abba)∗ =
↓�2

(abba)∗: Both sets contain precisely the words in {a, b}∗ of even length. Note
that the pattern ε · (aa) · ε · (abba) · ε is not associated to (abba)∗, because no word
in the latter contains (aa)2 as an infix, let alone arbitrarily high powers of aa.

However, we will see that every ideal admits a representation by a loop pat-
tern so that membership in the adherence implies association of the loop pat-
tern. A loop pattern u0v1u1 · · · vnun for Md is irreducible if removing any loop
would induce a strictly smaller ideal. This means, for each i ∈ [1, n], the loop
pattern u0(v1)u1 · · · (vi−1)ui−1ui · · · (vn)un induces a strictly smaller ideal than
u0v1u1 · · · vnun. Note that every ideal is induced by some irreducible loop pat-
tern: Just pick one with a minimal number of loops.

Lemma 6.4. Let u0v1u1 · · · vnun be an irreducible loop pattern for Md. Then
↓�d

u0v
∗
1u1 · · · v

∗
nun belongs to Adh�d

(L) if and only if u0v1u1 · · · vnun is associated
to L.

Lemma 6.4 is obtained by first proving that if the loop pattern is irreducible,
then for each k ∈ N, any embedding of u0v

x1

1 u1 · · · vxn
n un into u0v

y1

1 u1 · · · vyn
n un for

sufficiently large xi forces at least k copies of each vi to be embedded into vyi

i .
Using Lemma 6.4, we can complete the first proof part:

Lemma 6.5. Let Ai be a finite automaton with ≤ m states for each i = 1, 2
and let d be a multiple of m2!. If Adh�d

(L(A1)) ∩ Adh�d
(L(A2)) 6= ∅, then there

is a loop pattern u0v1u1 · · · vnun for Md such that ↓�d
u0v

∗
1u1 · · · v∗nun belongs to

Adh�d
(L(Ai)) for i = 1, 2 and πd(vi) ≤ m2.

Part II: Restricting witness words. In the second part, we place further re-
strictions on the structure of ideals that witness inseparability. In return, we
get stronger guarantees on the shape of witness words. Using Lemma 6.5, prov-
ing Proposition 6.2 would not be difficult if we could guarantee witness words of
the shape u0v̄1u1 · · · v̄nun with v̄i ∈ ↓�d

v∗i for a pattern u0v1u1 · · · vnun. This is
not the case for irreducible loop patterns: Consider the ideal I = ↓�2

a(abba)∗.
The loop pattern a(abba) (with the loop abba) is clearly irreducible. Also, I
is a member of Adh�2

(b{a, b}∗): For k ∈ N, the word b(abba)k+1 ∈ L satisfies
a(abba)k �2 b(abba)k+1 �2 a(abba)k+2, which proves I ⊆ ↓�2

(L ∩ I). Here, the

witness words b(abba)k+1 do not have the above shape. However, with an extended
syntax for patterns and an adapted irreducibility notion, we can guarantee almost
that shape.

An extended loop pattern (for Md) is an expression of the form u0v
[r1]
1 u1 · · · v

[rn]
n un

such that u0v1u1 · · · vnun is a loop pattern for Md (i.e. vi ∈ (Σd)∗ for i ∈ [1, n]) and
r1, . . . , rn ∈ [0, d−1]. The ideal generated by the pattern is ↓�d

u0v
∗
1w1u1 · · · v∗nwnun,

where wi is the length-ri prefix of vi for i ∈ [1, n]. Slightly abusing notation, we

16 GEORG ZETZSCHE

use ↓�d
u0v

[r1]
1 u1 · · · v

[rn]
n un to denote the generated ideal. When we use such an

expression with ri > d, this stands for u1v
[s1]
1 u1 · · · v

[sn]
n un, where si ∈ [0, d− 1] and

si ≡ ri (mod d).

Consider an extended loop pattern u0v
[r1]
1 u1 · · · v

[rn]
n un for Md and let wi be

the length-ri prefix of vi for i ∈ [1, n]. The pattern is said to be associated to a
language L if for every k ∈ N, there is a word ū0v̄1ū1 · · · v̄nūn ∈ L so that for every

i ∈ [1, n], we have vki wi �d v̄i and v̄i ∈ ↓�d
v
[ri]
i . Moreover, ū0 = u0, ūn = un, and

for each i ∈ [1, n − 1]: (i) if ui is not empty, then ūi = ui and (ii) if ui is empty,
then ūi ∈ ↓�d

λri(vi)
∗v∗i+1. As in Lemma 6.4, we have a notion of irreducible loop

patterns, and we show that each ideal is represented by such a pattern and then
obtain:

Lemma 6.6. The ideal generated by an irreducible extended loop pattern p for Md

belongs to Adh�d
(L) if and only if p is associated to L.

We can indeed not guarantee ūi = ui if ui = ε but have to allow for the case
ūi ∈ ↓�d

λri(vi)
∗v∗i+1: The extended loop pattern (ab)[0](cd)[0] is irreducible and its

ideal I = ↓�2
(ab)∗(cd)∗ belongs to Adh�2

((ab)∗ad(cd)∗), but in the witness words

(ab)kad(cd)k ∈ I, we always have a factor ad ∈ ↓�2
(ab)∗(cd)∗.

Part III: Pumping up. The final part of the proof of Proposition 6.2 is to con-
struct �ℓ·d-ideals using pumping. Here, the strong guarantees of associated ex-
tended loop patterns allow us to focus on two types of factors in which we must
pump: factors v̄i and factors ūi for empty ui. One can show that repeating subfac-
tors thereof whose length is divisible by a particular πd(vi) will not lead out of the
�ℓ·d-ideal. Moreover, since we established in the first part that each period πd(vi)
is small (≤ m2), we can always find a factor f of length divisible by πd(vi) that is
pumpable.

6.1. Undecidability. In this section, we prove Theorem 3.8. Second-order push-
down languages are those accepted by second-order pushdown automata [24] or,
equivalently, indexed grammars [1].

In order to prove that separability of second-order pushdown languages by the
fragment BΣ1[<,mod] is undecidable, we do not need a detailed definition of second-
order pushdown automata. All we need is that their languages form a full trio [1]
and that we can construct automata for two particular types of languages. Let us
describe these languages. For a word w ∈ {1, 2}∗, let ν(w) be the number obtained
by interpreting the word as a reverse 2-adic representation. Thus, for w ∈ {1, 2}∗,
let ν(ε) = 0, ν(1w) = 2·ν(w)+1, and ν(2w) = 2·ν(w)+2. Note that ν : {1, 2}∗ → N

is a bijection. In the full version of [31], it was shown1 that given two morphisms
α, β : Σ∗ → {1, 2}∗, one can construct in polynomial time an indexed grammar
generating {aν(α(w))bν(β(w)) | w ∈ Σ+}. Applying a simple transduction yields the
language

Lα,β = {aν(α(w))cbν(β(w)) | w ∈ Σ+}

and hence an indexed grammar for Lα,β. Furthermore, the context-free language
E = {ancbn | n ∈ N} is also a second-order pushdown language. We apply a
technique introduced by Hunt [18] and simplified by Czerwiński and Lasota [8].

1To be precise, this was shown for the unreversed 2-adic representation, but the reversed case
follows by just reversing the images of the morphisms.

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 17

The idea is to show that every decidable problem can be reduced in polynomial
time to our problem:

Proposition 6.7. For each decidable D ⊆ Γ∗, there is a polynomial-time algorithm
that, given u ∈ Γ∗, computes morphisms α, β such that Lα,β is inseparable from E
by BΣ1[<,mod] if and only if u ∈ D.

Thus, decidability of separability by BΣ1[<,mod] would violate the time hierar-
chy theorem (see, e.g. [28, Thm 9.10]). In the proof of Proposition 6.7, we apply the
classical reduction from the halting problem to the PCP. Applied to a terminating
TM, this yields morphisms α, β, with a bound on the maximal common prefix of
α(w) and β(w) for w ∈ Σ∗. This implies that in case the input machine does not
accept, Lα,β and E are separable by BΣ1[<,mod].

Future work. The author is confident that the procedure for separability by
BΣ1[<,mod] easily extends to separability by other (albeit less natural) fragments
of first-order logic (FO) with numerical predicates. For example, one could add
unary predicates ι and τ , where ι(x) (τ(x)) expresses that x is the first (last) posi-
tion. This connects to results of Place and Zeitoun [26], who developed methods for
transferring decidable separability by a fragment of FO to the fragment enriched by
the successor relation +1. If these methods could be applied here, this would imply
decidable separability by BΣ1[<,mod, ι, τ,+1], which is expressively equivalent to
the logic BΣ1[<, reg]. Here, reg denotes regular predicates of arbitrary arity [5, 23].

Acknowledgements. The author is very grateful to Wojciech Czerwiński, Sylvain
Schmitz, and Marc Zeitoun for discussions that yielded important insights.

References

[1] Alfred V Aho. Indexed grammars—an extension of context-free grammars. Journal of the

ACM, 15(4):647–671, 1968.
[2] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the static anal-

ysis of concurrent programs with procedures. Int. J. Found. Comput. S., 14(04):551–582,
2003.

[3] Walter Bucher, Andrzej Ehrenfeucht, and David Haussler. On total regulators generated by
derivation relations. Theoretical Computer Science, 40:131–148, 1985.

[4] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-passing
c programs with recursive calls. In TACAS 2006, pages 334–349, Berlin Heidelberg, 2006.
Springer-Verlag.

[5] L. Chaubard, J. Pin, and H. Straubing. First order formulas with modular predicates. In
LICS 2006, pages 211–220, 2006.

[6] Lorenzo Clemente, Pawe l Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In LICS 2016, pages 96–105, New York, NY,
USA, 2016. ACM.

[7] Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178–
186, 1991.

[8] Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata. In
LICS 2017, pages 1–12, 2017.

[9] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on de-
cidable separability by piecewise testable languages. In FCT 2015, pages 173–185, Berlin
Heidelberg, 2015. Springer-Verlag.

[10] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche.

A characterization for decidable separability by piecewise testable languages, 2017. To appear
in Discrete Mathematics & Theoretical Computer Science.

[11] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free languages.
Theor. Comput. Sci., 27(3):311–332, 1983.

18 GEORG ZETZSCHE

[12] Alain Finkel and Jean Goubault-Larrecq. Forward Analysis for WSTS, Part I: Completions.
In STACS 2009, volume 3, pages 433–444, 2009.

[13] Jean Goubault-Larrecq and Sylvain Schmitz. Deciding Piecewise Testable Separability for
Regular Tree Languages. In ICALP 2016, 2016.

[14] Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net
languages. In ICALP 2010, 2010.

[15] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward
closures of higher-order pushdown automata. In POPL 2016, pages 151–163, New York, NY,
USA, 2016. ACM.

[16] Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combina-

torial Theory, 6(1):94–98, 1969.
[17] Graham Higman. Ordering by divisibility in abstract algebras. P. Lond. Math. Soc., 2:326–

336, 1952.
[18] Harry B Hunt III. On the decidability of grammar problems. Journal of the ACM, 29(2):429–

447, 1982.
[19] P. Jullien. Contribution à létude des types d’ordres dispersés. PhD thesis, Université de Mar-

seille, 1969.
[20] Joseph B Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J.

Comb. Theory A, 13(3):297–305, 1972.

[21] J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In LICS

2015, pages 56–67, 2015.
[22] Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-theoretic

abstraction refinement. In FASE 2012, volume 7212 of Lecture Notes in Computer Science,
pages 362–376. Springer-Verlag, 2012.

[23] Alexis Maciel, Pierre Péladeau, and Denis Thérien. Programs over semigroups of dot-depth
one. Theor. Comput. Sci., 245(1):135–148, 2000.

[24] A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12(1):38–
42, 1976.

[25] Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating Regular Languages by
Locally Testable and Locally Threshold Testable Languages. In FSTTCS 2013, volume 24,
pages 363–375, 2013.

[26] Thomas Place and Marc Zeitoun. Separation and the Successor Relation. In STACS 2015,
volume 30, pages 662–675, 2015.

[27] Imre Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference on Automata

Theory and Formal Languages, pages 214–222, Berlin Heidelberg, 1975. Springer-Verlag.
[28] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2013.
[29] Thomas G Szymanski and John H Williams. Noncanonical extensions of bottom-up parsing

techniques. SIAM Journal on Computing, 5(2):231–250, 1976.
[30] Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete

Mathematics, 21(3):237–252, 1978.
[31] Georg Zetzsche. An approach to computing downward closures. In ICALP 2015, 2015. Full

version: http://arxiv.org/abs/1503.01068 .
[32] Georg Zetzsche. Computing downward closures for stacked counter automata. In STACS

2015, volume 30, pages 743–756, 2015.

Appendix A. Proof of Observation 3.2

Suppose S consists of the WQOs �i for i ∈ [1, n]. Every �-PTL is an S-PTL,
because the set ↑�{w} can be written as

⋂

i∈[1,n] ↑�i
{w}. On the other hand,

every S-PTL is a Boolean combination of sets of the form ↑�i
w with w ∈ Σ∗.

Clearly, ↑�i
w is upward closed also with respect to � and can thus be written as

↑�{w1, . . . , wm} for some w1, . . . , wm ∈ Σ∗, which is a �-PTL.

Appendix B. Proof of Lemma 4.1

Proof. Let A = (Q,Σ, C,E, q0, F). We regard C as an alphabet. Consider the
transducer T = (Q,Σ, C,E′, q0, F), where E′ is obtained by adding, for each edge

http://arxiv.org/abs/1503.01068

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 19

(q, x, µ, q′) ∈ E, an edge (q, x, u, q′), where u ∈ C∗ is a word with |u|c = µ(c) for
each c ∈ C. Then by definition, A is unbounded on L if and only if for each n ∈ N,
there is a w ∈ TL with |w|c ≥ n for each c ∈ C. The latter is an instance of
the diagonal problem [9, 10], which, given a language K ⊆ Σ∗, asks whether for
every n ∈ N, there is a w ∈ K with |w|a ≥ n for all a ∈ Σ. As mentioned in [31],
for full trios, decidability of the SUP implies decidability of the diagonal problem,
because the former implies computability of downward closures (with respect to
the subword ordering). �

Appendix C. Proof of Lemma 4.3

Proof. Clearly, Ii ∈ Adh(L) implies Ii ⊆ ↓L. Conversely, suppose I1 ⊆ ↓L and I1 /∈
Adh(L). Then there is an x ∈ I1 with x /∈ ↓(L∩ I1), which means x ∈ I2 ∪ · · · ∪ In.
We claim that then I1 ⊆ I2 ∪ · · · ∪ In. Let y ∈ I1. There is a z ∈ I1 with x � z
and y � z. Since x � z, we have z /∈ ↓(L ∩ I1) and hence z ∈ L2 ∪ · · · ∪ Ln, which
implies y ∈ L2 ∪ · · · ∪ Ln. This means I1 ⊆ I2 ∪ · · · ∪ In and since I1, . . . , In are
ideals, we have I1 ⊆ Ij for some j ∈ [2, n], contrary to our assumption. �

Appendix D. Proof of Proposition 4.4

Proof. Given L in C, we enumerate �-downward closed languages. Since every
downward closed set is a finite union of ideals, we enumerate finite unions I1∪· · ·∪In
of �-ideals I1, . . . , In, which is possible because the set of ideals is a recursively
enumerable set of regular languages. Clearly, we only need to enumerate unions
where for any i, j ∈ [1, n] with i 6= j, we have Ii 6⊆ Ij .

It remains to check whether ↓�L = I1 ∪· · · ∪ In. Note that ↓�L ⊆ I1 ∪· · · ∪ In if
and only if L ⊆ I1∪· · ·∪In, so that we can check whether L∩(Σ∗\(I1∪· · ·∪In)) = ∅.
The latter is decidable because the decidability of the SUP implies the decidability
of the emptiness problem and C is effectively closed under intersection with regular
languages.

The other inclusion is more interesting. Suppose we have already established
↓�L ⊆ I1∪· · ·∪In. Then, according to Lemma 4.3, we have Ii ⊆ ↓�L if and only if
Ii ∈ Adh�(L). We can therefore apply Proposition 4.2 to check whether the latter
holds. �

Appendix E. Proof of Proposition 4.6

Proof. Suppose we are given languages K and L. We decide separability by com-
bining two semi-algorithms. One enumerates �-PTL and for each such language
R, decides whether K ⊆ R and L∩R = ∅. If such an R is found, the languages are
reported separable. The other semi-algorithm enumerates ideals I of (Σ∗,�) and
then, via Proposition 4.2, decides whether I ∈ Adh�(K) and I ∈ Adh�(L). If such
an ideal I is found, the languages are reported inseparable. The correctness and
termination of this algorithm is guaranteed by Proposition 4.5. �

Appendix F. Proof of Proposition 5.1

Proof. Of course, for every w ∈ Σ∗, ↑4w is effectively regular. Moreover, it
is well-known that the ideals of (Σ∗,4) are exactly the languages of the form
{a0, ε}Γ∗

1{a1, ε} · · ·Γ
∗
n{an, ε}, where a0, . . . , an ∈ Σ and Γ1, . . . ,Γn ⊆ Σ [19]. Lastly,

if I = {a0, ε}Γ
∗
1{a1, ε} · · ·Γ

∗
n{an, ε}, we build AI as follows. For each i ∈ [1, n],

20 GEORG ZETZSCHE

choose a word wi ∈ Γ∗
i that contains each letter of Γi exactly once. Then, it is easy

to construct AI so that ĀI(w) ≥ k if and only if w ∈ I and a0w
k
1a1 · · ·w

k
nan 4 w.

Then clearly AI is unbounded on L if and only if we have I ⊆ ↓4(L∩I). The latter
is equivalent to I ∈ Adh4(L). �

Appendix G. Proof of Lemma 5.2

Proof. If I ⊆ X is an ideal, then the set J := ↓f(I) is downward closed by definition
and upward directed because I is. Hence, J is an ideal. Moreover, I = f−1(J),
because I ⊆ f−1(J) is immediate and f−1(J) ⊆ I holds because I is downward
closed. This also implies ↓f(f−1(J)) = ↓f(I) = J .

Conversely, suppose I = f−1(J) for an ideal J ⊆ Y with ↓f(f−1(J)) = J . First,
I = f−1(J) is downward closed because J is. Moreover, we have ↓f(I) = J , which
means given x, y ∈ I, we can find a common upper bound z ∈ J for f(x) ∈ J and
f(y) ∈ J and then a z′ ∈ f(I) with z � z′. Then z′ = f(w) for some w ∈ I and
hence x �f w and y �f w. Thus I is upward directed. �

Appendix H. Proof of Lemma 5.3

Proof. Suppose f−1(J) ∈ Adh(L), equivalently, f−1(J) ⊆ ↓(L∩ f−1(J)). We show
that J ⊆ ↓(f(L) ∩ J). For y ∈ J , we can find y′ ∈ f(f−1(J)) with y � y′. Say
y′ = f(x′) with x′ ∈ f−1(J). Thus, there is x′′ ∈ L ∩ f−1(J) with x′ �f x′′. Since
y � y′ = f(x′) � f(x′′) ∈ f(L) ∩ J , we have shown J ⊆ ↓(f(L) ∩ J).

Conversely, suppose J ∈ Adh(f(L)), hence J ⊆ ↓(f(L) ∩ J). This means, for
x ∈ f−1(J), we can find x′ ∈ L with f(x) � f(x′) and f(x′) ∈ J . Thus, f−1(J) ⊆
↓(L ∩ f−1(J)) and hence f−1(J) ∈ Adh(L). �

Appendix I. Proof of Proposition 5.4

Proof. First, for every w ∈ Σ∗, we have ↑�f
w = f−1(↑�f(w)), which is effectively

regular because ↑�f(w) is.
Second, Lemma 5.2 tells us that the ideals of (Σ∗,�f) are precisely the sets of

the form f−1(I) where I ⊆ Γ∗ is an ideal of (Γ∗,�) and for which ↓�f(f
−1(I)) = I.

Therefore, the set of ideals of (Σ∗,�f) is recursively enumerable: Enumerate the
ideals I of (Γ∗,�) and check whether ↓�f(f

−1(I)) = I. The latter is possible

because f(f−1(I)) ⊆ Γ∗ is effectively regular (regular languages are closed un-
der rational transductions) and because for the EWUR (Γ∗,�), we can effectively
compute a finite automaton for the downward closure ↓�f(f

−1(I)): The regular
languages constitute a full trio with decidable SUP. Thus, we can compare the
regular languages ↓�f(f

−1(I)) and I.
Third, given an ideal J ⊆ Σ∗ (represented as a finite automaton), we can find

an ideal I ⊆ Γ∗ with J = f−1(I). Since (Γ∗,�) is an EWUR, we can compute a
counter automaton AI such that AI is unbounded on a language L ⊆ Γ∗ if and
only if I ∈ Adh�(L). According to Lemma 5.3, we know that J ∈ Adh�f

(K) if
and only if I ∈ Adh�(f(K)), which in turn is equivalent to AI being unbounded
on f(K). We can thus construct AJ as a product of AI and the transducer for f
so that AJ (w) = AI(f(w)) for every w ∈ Σ∗. Clearly, AJ is unbounded on K if
and only if AI is unbounded on f(K). �

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 21

Appendix J. Proof of Proposition 5.5

Proof. Let I ⊆ X be an ideal of (X,�). Then I is directed with respect to �s for
each s ∈ S. Hence, Is = ↓�s

I is an ideal for each s ∈ S. We claim that I =
⋂

s∈S Is.
Clearly, I ⊆ ↓�s

I = Is, hence I ⊆
⋂

s∈S Is. On the other hand, if x ∈
⋂

s∈S Is,
then for each s ∈ S, there is a xs ∈ I with x �s xs. Since I is directed, we find
a y ∈ I with xs � y for each s ∈ S. Hence, in particular x �s y. This implies
x � y and thus x ∈ I. This proves I =

⋂

s∈S Is. Finally, as a �-directed set, I
itself witnesses that (Is)s∈S belongs to AdhS(I).

Conversely, suppose I =
⋂

s∈S Is and that (Is)s∈S belongs to AdhS(I). The
latter means that there is a �-directed set D ⊆ I such that for each s ∈ S, we have
Is = ↓�s

D. We claim that I = ↓�D. If x ∈ I, then for each s ∈ S, there is an
xs ∈ D with x �s xs. Since S is finite and D is �-directed, we find a y ∈ D with
xs � y for all s ∈ S. Then for each s ∈ S, we have x �s xs �s y and thus x � y.
Hence, I ⊆ ↓�D. On the other hand, if x � y for y ∈ D, then clearly x �s y for
each s ∈ S and thus x ∈

⋂

s∈S Is = I. �

Appendix K. Proof of Proposition 5.6

Proof. Let D ⊆ I be a �-directed set with Is = ↓�s
D for every s ∈ S. Suppose

I ∈ Adh�(L). Then there is a �-directed set D′ ⊆ L with I = ↓�D
′. We claim

that Is = ↓�s
D′. For x ∈ Is, there is a y ∈ D with x �s y. Since y ∈ I, there

is a z ∈ D′ with y � z. In particular, we have x �s z ∈ D′. This proves “⊆”.
On the other hand, we know D′ ⊆ I ⊆ Is, which implies ↓�s

D′ ⊆ Is, since Is is
�s-downard closed.

Conversely, suppose that (Is)s∈S belongs to AdhS(I) with a directed set D′ ⊆
L ∩ I such that Is = ↓�s

D′. We claim that I = ↓�D
′. Of course, we have the

inclusion “⊇” because D′ ⊆ I, so assume x ∈ I. Since Is = ↓�s
D′ and I =

⋂

s∈S Is,
for each s ∈ S, there is a ys ∈ D′ with x �s ys. The �-directedness of D′ yields
a y ∈ D′ with ys � y for every s ∈ S. Then in particular x � y and hence
x ∈ ↓�D

′. �

Appendix L. Proof of Lemma 5.7

Proof. Let Ai = (Qi,Σ, Ci, Ei, q
i
0, Fi) be a counter automaton that characterizes

adherence membership of Ii with respect to �i for i = 1, 2. We construct a prod-
uct automaton A so that A has states Q1 × Q2, counters C1 ∪ C2, and satisfies

(q10 , q
2
0 , ε, 0)

∗
−→A (q1, q2, w, µ) if and only if (qi0, ε, 0)

∗
−→ (qi, w, µ|Ci

) for i = 1, 2.
Moreover, A has final states F1 × F2.

We claim thatA is unbounded on L if and only if (I1, I2) belongs to Adh�1,�2
(L).

We will use the fact that when a counter automaton B is unbounded on K∪L, then
it is unbounded on K or on L. Suppose A is unbounded on L. By construction,
unboundedness of A implies unboundedness of A1 and of A2. Therefore, A must
be unbounded on L ∩ I1: Otherwise, A, and thus A1, would be unbounded on
L \ I1, which is impossible by definition of A1. By the same argument, A must be
unbounded on L∩I1∩I2. Then, A is also unbounded on some sequence w1, w2, . . . ∈
L∩ I1 ∩ I2 and since � is a WQO, we may assume that this sequence is a �-chain.
Therefore, the �-directed set D = {wi | i ≥ 1} satisfies D ⊆ I1 ∩ I2 and Ii ⊆ ↓�i

D
for i = 1, 2. This proves (I1, I2) ∈ Adh�1,�2

(L).

22 GEORG ZETZSCHE

Conversely, suppose (I1, I2) ∈ Adh�1,�2
(L). Then there is a �-directed set

D ⊆ L with Ii = ↓�i
D. This implies that A1 and A2 are unbounded on D. Hence,

there are sequences u1, u2, . . . ∈ D and v1, v2, . . . ∈ D such that A1 is unbounded on
u1, u2, . . . and A2 is unbounded on v1, v2, Thus, we have I1 ⊆ ↓�1

{ui | i ≥ 1}
and I2 ⊆ ↓�2

{vi | i ≥ 1}. Since D is �-directed, we can successively find elements
w1, w2, . . . ∈ D such that ui � wi and vi � wi and wi � wi+1. Then we have Ii ⊆
↓�i

{wk | k ≥ 1} for i = 1, 2 and since D ⊆ I1 ∩ I2, we have ↓�i
{wk | k ≥ 1} = Ii.

Hence, A1 and A2 are both unbounded on w1, w2, We can therefore pick
a subsequence w′

1, w
′
2, . . . such that Ā1(w

′
k) ≥ k for k ≥ 1. As an infinite subse-

quence of w1, w2, . . ., this sequence will still satisfy ↓�2
{w′

k | k ≥ 1} = I2 and in
particular, A2 is unbounded on w′

1, w
′
2, We can therefore find another subse-

quence w′′
1 , w

′′
2 , . . . such that Āi(w

′′
k) ≥ k for every k ≥ 1 and i ∈ {1, 2}. Thus, A is

unbounded on w′′
1 , w

′′
2 , . . . and hence on L. �

Appendix M. Proof of Proposition 5.8

Proof. Let � be the conjunction of �1 and �2. First, for w ∈ Σ∗, we have ↑�w =
↑�1

w ∩ ↑�2
w, so that ↑�w inherits effective regularity from ↑�1

w and ↑�1
w.

According to Proposition 5.5, we can represent an ideal I of � by a pair (I1, I2)
such that Ii is an ideal for �i, I = I1 ∩ I2, and (I1, I2) ∈ Adh�1,�2

(I). Hence, in
order to show that the set of ideals of � is a recursively enumerable set of regular
languages, we need to show that it is decidable whether (I1, I2) ∈ Adh�1,�2

(I). To
this end, we use Lemma 5.7 to construct a counter automaton A that is unbounded
on L if and only if (I1, I2) ∈ Adh�1,�2

(L). Since I = I1 ∩ I2 is effectively regular,
we can decide whether A is unbounded on I using Lemma 4.1. �

Appendix N. Proof of Theorem 5.9

Note that every unambiguous automaton A defines an order �A on L(A) in
the same way labeling automata define an order on Σ∗. We will now also use �A

to denote this order. We say that an unambiguous automaton B is a subautoma-
ton of A if B is obtained from A by deleting some edges. The following can be
shown, roughly speaking, by decomposing B into strongly connected components
and dividing L(B) according to which path through the resulting graph a word
takes.

Lemma N.1. For a subautomaton B of an unambiguous automaton A, L(B) is a
finite union of sets of the form

↓�A
u0v

∗
1u1 · · · v

∗
nun,

where u0v1u1 · · · vnun is a loop pattern for A.

Proof. We decompose B into its directed acyclic graph G of strongly connected
components and notice that this graph has only finitely many paths. Moreover, for
each strongly connected component C and and states p and q in C, there are only
finitely many simple paths from p to q. Every run through C from p to q can be
reduced to one of these simple paths by deleting loops. Therefore, we can divide
the set L(B) according to which paths in G they a word follows and to which simple
paths in each component it reduces. This yields a decomposition of L(B) as a finite
union of sets of the form u0L1u1 · · ·Lnun such that there are states q0, . . . , qn so
that

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 23

• q0 is initial and qn is final,
• for i ∈ [0, n], either (qi, ui, qi+1) is an edge in B, or ui = ε and qi+1 = qi,
• for i ∈ [1, n], Li is the set of words read on a cycle from qi to qi.

For each i ∈ [1, n], consider the strongly connected component of B that contains
qi and let Ei be the set of edges of B in this component.

There exists a word vi ∈ Li whose run from qi to qi (note that there is at most
one such run because A is a labeling automaton) uses every edge from Ei at least
once: For each e ∈ Ei, take a run from qi to qi that uses e. Then take vi to be the
word read on the concatenation of all these runs.

We claim that u0L1u1 · · ·Lnun = ↓�A
u0v

∗
1u1 · · · v∗nun. Since u0L1u1 · · ·Lnun is

clearly downward closed with respect to �A and contains u0v
∗
1u1 · · · v∗nun, the in-

clusion “⊇” holds. Conversely, suppose wi ∈ Li for i ∈ [1, n]. Consider a particular
i ∈ [1, n] and let r = e1 · · · ek ∈ E∗ be the run of B when reading wi from qi to qi.
Each ej occurs in the run s ∈ E∗ of vi, so that the run sk of vki contains e1 · · · ek as
a subsequence and we can write sk = t0e1t1 · · · ektk for some t0, . . . , tk ∈ E∗. Since
ei ends in the state where ei+1 starts and r and sk are both cycles from qi to qi,

every run ti is a cycle. This implies that u0w1u1 · · ·wnun �A u0v
|w1|
1 u1 · · · v

|wn|
n un.

This proves the inclusion “⊆”. �

We shall prove that the ideals of (Σ∗,�A) are precisely those sets of the form
↓�A

u0v
∗
1u1 · · · v∗nun. The first step in proving that is to show that every downward

closed language is a finite union of such sets. Here, we will use the fact that ideals
of the subword ordering are precisely the languages {a0, ε}Γ∗

1{a1, ε} · · ·Γ
∗
n{an, ε},

where a0, . . . , an ∈ Σ and Γ1, . . . ,Γn ⊆ Σ [19].

Proposition N.2. Let A be a labeling automaton and L ⊆ Σ∗. The set ↓�A
L is a

finite union of sets of the form

↓�A
u0v

∗
1u1 · · · v

∗
nun,

where u0v1u1 · · · vnun is a loop pattern for A.

Proof. Let A = (Q,Σ, E, I, F). For each p, q ∈ Q, we define Kp,q = {w ∈ L |
σA(w) = (p, q)}. Then we have

↓�A
L =

⋃

p,q∈Q

↓�A
Kp,q.

Therefore, it suffices to consider the case that there are fixed p, q ∈ Q such that
for every u, v ∈ L, we have σA(u) = (p, q). Note that then u �A v if and only if
A(u) 4 A(v) for u, v ∈ L. Let Runsp,q(A) denote the set of all runs of A that start
in p and end in q. Let π : E∗ → Σ∗ be the projection onto labels of edges. Observe
that ↓�A

L = π((↓A(L))∩Runsp,q(A)). (Here, ↓A(L) denotes the downward closure
with respect to the subword ordering.)

The language ↓A(L) is a finite union of sets of the form e0E
∗
1e1 · · ·E

∗
nen, where

Ei ⊆ E and ei ∈ E ∪ {ε}. Hence, we would like to prove the proposition for sets
of the form π(e0E

∗
1e1 · · ·E

∗
nen ∩ Runsp,q(A)). However, these are not necessarily

downward closed. Therefore, we prove that

↓�A
π(e0E

∗
1e1 · · ·E

∗
nen ∩ Runsp,q(A))

can be written as a finite union of sets ↓�A
u0v

∗
1u1 · · · v∗nun.

The set e0E
∗
1e1 · · ·E

∗
nen∩Runsp,q(A) is a finite union of sets of the form e0S1e1 · · ·Snen

such that there are states q0, . . . , qn+1 so that

24 GEORG ZETZSCHE

• for i ∈ [0, n], either ei = ε and qi+1 = qi, or ei is an edge from qi to qi+1,
• for i ∈ [1, n], Si ⊆ E∗

i is the set of runs of A from qi to qi+1 that only use
edges in Ei.

Therefore, it suffices to show that ↓�A
π(e0S1e1 · · ·Snen) can be written as a finite

union as desired. Let Ai be the unambiguous automaton obtained from A by
making qi the only initial state and qi+1 the only final state. Moreover, let Bi

be obtained from Ai be removing all edges outside of Ei. Then, we have have
π(Si) = L(Bi). According to Lemma N.1, Si = L(Bi) is a finite union of sets
of the form ↓�Ai

u0v
∗
1u1 · · · v∗kuk, where u0v1u1 · · · vkuk is a loop pattern for Ai.

Therefore, our set ↓�A
π(e0S1e1 · · ·Snen) is a finite union of sets of the form

↓�A

(

π(e0)(↓A1
I1)π(e1) · · · (↓�An

In)π(en)
)

,(1)

where Ii = ui,0v
∗
i,1ui,1 · · · v∗i,ki

ui,ki
for i ∈ [1, n]. The definition of �A implies

immediately that eq. (1) equals

↓�A

(

π(e0)
(

u1,0v
∗
1,1u1,1 · · · v

∗
1,k1

u1,k1

)

π(e1) · · ·
(

un,0v
∗
n,1un,1 · · · v

∗
n,kn

un,kn

)

π(en)
)

.

Moreover,

π(e0)u1,0v1,1u1,1 · · · v1,k1
u1,k1

π(e1) · · ·un,0vn,1un,1 · · · vn,kn
un,kn

π(en)

is clearly a loop pattern for A (where the vi,j play the role of the vi). �

We are now ready to prove Theorem 5.9.

Proof of Theorem 5.9. Let us show that the language

I = ↓�A
u0v

∗
1u1 · · · v

∗
nun

is in fact an �A-ideal. It is clearly �A-downward closed. Consider the word
wk = u0v

k
1u1 · · · vknun for each k ∈ N. Then we have w0 �A w1 �A · · · , so that the

set D = {wk | k ∈ N} is �A-directed. Moreover, I = ↓�A
D, which proves that I is

the �A-downward closure of a �A-directed set and hence an �A-ideal.
It remains to be shown that every ideal is of the above form. Let I be an ideal of

�A. In Proposition N.2 we have seen that every downward closed is a finite union
of sets of the above form. In particular, we can write I = I1∪· · ·∪Ik, where each Ik
is of the above form. However, since I is an ideal and the Ii are downward closed,
this implies that for some i ∈ [1, n], we have I ⊆ Ii and thus I = Ii. �

Appendix O. Proofs for section 6

Lemma O.1. Suppose v ∈ (Σd)∗. Then ↓�d
v∗ = {w ∈ (Σd)∗ | κd(w) ⊆ κd(v)}.

Proof. Let u ∈ ↓�d
v∗, say w �d vk. Then clearly w ∈ (Σd)∗. Moreover, if a ∈ Σ

occurs at a position p in w with p ≡ i (mod d), then a occurs at some position
p+ dN in v. Hence, κd(w) ⊆ κd(v).

Suppose w ∈ (Σd)∗ and κd(w) ⊆ κd(v). Write w = a1 · · · an, a1, . . . , an ∈ Σ.
Since ai ∈ κd(w)(i) ⊆ κd(v)(i), each ai occurs at some position p in v with p ≡ i
(mod d). Hence, we can write v = xiaiyi with |xi| ≡ i − 1 (mod d) and therefore
|yi| ≡ |v| − |xi| − 1 ≡ d − i (mod d). In particular, |yixi+1| ≡ (d − i) + i = d.
Moreover, |x1| ≡ 0 mod d and yn ≡ d− n ≡ 0 (mod d). Therefore,

w = a1 · · · an �d x1a1y1x2a2y2x3 · · · yn−1xnanyn = vn

where u expresses that u ∈ (Σd)∗. Thus w ∈ ↓�d
v∗. �

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 25

Lemma O.2. Suppose v, w ∈ (Σd)∗. Then ↓�d
v∗ ⊆ ↓�d

w∗ if and only if κd(v) ⊆
κd(w).

Proof. If ↓�d
v∗ ⊆ ↓�d

w∗, then in particular v ∈ ↓�d
w∗ and thus κd(v) ⊆ κd(w) by

Lemma O.1.
Suppose κd(v) ⊆ κd(w). Since v ∈ (Σd)∗, we have κd(v

n) = κd(v) for any n ∈ N

and hence vn ∈ ↓�d
w∗ by Lemma O.1. This implies ↓�d

v∗ ⊆ ↓�d
w∗. �

Lemma O.3. If κd(xyz) ⊆ κd(v) and πd(v) divides |y|, then κd(xyyz) ⊆ κd(v).

Proof. Let i ∈ [1, d]. We will show that κd(xyyz)(i) ⊆ κd(v)(i). Hence, let a ∈
κd(xyyz)(i). Then there is a position p ∈ [1, |xyyz|] with p ≡ i (mod d) such that
the p-th position of xyyz reads a.

If p ∈ [1, |xy|], we are done, so assume p ∈ [|xy|+ 1, |xyyz|]. Then, a also occurs
at position q = p−|y| in xyz. This means, if j ≡ q (mod d), then a ∈ κd(xyz)(j) ⊆
κd(v)(j). Observe that i ≡ p (mod d) implies i ≡ p (mod πd(v)) and thus i ≡ p =
q + |y| ≡ q ≡ j (mod πd(v)). Therefore, we have a ∈ κd(v)(j) = κd(i). �

Lemma O.4. Suppose πd(v) divides |y| and |y| divides d. If xyz ∈ ↓�d
v[r], then

for every ℓ ∈ N, xy1+ℓ·d/|y|z ∈ ↓�d
v[r].

Proof. Let w = xy1+ℓ·d/|y|z. Since d divides |xyz|, it also divides |w| = |xyz|+ (ℓ ·
d/|y|) · |y|. According to Lemma O.6, we have κd(xyz) ⊆ κd(v). An (ℓ · d/|y|)-fold
application of Lemma O.3 tells us that κd(xy

1+ℓ·d/|y|z) ⊆ κd(v). Now, Lemma O.6
states that xy1+ℓ·d/|y|z ∈ ↓�d

v∗. �

Proof of Lemma 6.3. Write v = v1 · · · vn, v1, . . . , vn ∈ Σ. Since ↓�d
v∗ belongs to

Adh�d
(L(Ai)) for i = 1, 2, we have v ∈ ↓�d

(L(Ai)∩↓�d
v∗) for i = 1, 2. This means

there are words v(i) = u
(i)
0 v1u

(i)
1 · · · vnu

(i)
n ∈ L(Ai) ∩ ↓�d

v∗ such that u
(i)
j ∈ (Σd)∗

for j ∈ [1, n] and i = 1, 2. Note that since v(i) ∈ ↓�d
v∗ and v �d v(i), we have

↓�d
(v(i))∗ = ↓�d

v∗ and thus κd(v
(i)) = κd(v) according to Lemma O.2.

In the run ofAi for u
(i)
0 v1u

(i)
1 · · · vnu

(i)
n , let q

(i)
j be the state occupied after reading

u
(i)
j , for j ∈ [0, n] and i = 1, 2. Since m2! divides d, which in turn divides n, we

have n+ 1 > m2! ≥ m2. Therefore, there are j, k ∈ [0, n], j < k, with (q
(1)
j , q

(2)
j) =

(q
(1)
k , q

(2)
k). Moreover, they can be chosen so that t := k − j < m2. Since m2!

divides d, we know that t < m2 divides d and may define r = d/t. Let xi =

u
(i)
0 v1u

(i)
1 · · · vju

(i)
j , yi = vj+1u

(i)
j+1 · · · vku

(i)
k , zi = vk+1u

(i)
k+1 · · · vnu

(i)
n . Then, by the

choice of j, k, we have (xiy
∗
i zi)

∗ ⊆ L(Ai). In particular, the word

wi =

r−1
∏

ℓ=0

xiyiy
ℓ
izixiyiy

r−ℓ
i zi

belongs to L(Ai). Moreover, since |yi| = t +
∑k

ℓ=j+1 |u
(i)
ℓ | ≡ t mod d, we can

conclude

|wi| = r · (2 · |xiyizi|+ r · |yi|) ≡ r · (2 · |v(i)|+ d) ≡ 0 mod d,

which implies wi ∈ (Σd)∗. We claim that

κd(wi) =

r−1
⋃

ℓ=0

κd(ρ
ℓt(v(i))).

26 GEORG ZETZSCHE

We begin with the inclusion “⊇”. Note that for each ℓ ∈ [0, r− 1] and i ∈ {1, 2},

• the word xi occurs in wi at a position p with p ≡ |xiyizi|+ ℓt (mod d) and
hence p ≡ ℓt (mod d),

• the word yi occurs in wi at a position p with p ≡ |xi|+ ℓt (mod d),
• the word zi occurs in wi at a position p with p ≡ |xiyi|+ ℓt (mod d).

Hence, for each position p in v(i) and each ℓ ∈ [0, r−1], there is a position p′ ≡ p+ℓt
(mod d) with κd(v

(i))(p) ⊆ κd(wi)(p
′). This prove the inclusion “⊇”.

On the other hand, every factor xi, yi, and zi that occurs in the definition of wi

at a position p ∈ [1, |wi|] also occurs in v(i) at a position p′ ∈ [1, n] with p′ ≡ p− ℓt
(mod d) for some ℓ ∈ [0, r − 1]. Therefore, we also have the inclusion “⊆”.

The identity κd(wi) =
⋃r−1

ℓ=0 κd(ρ
ℓ·t(v(i))) clearly implies that πd(wi) ≤ t and

also ↓�d
(v(i))∗ ⊆ ↓�d

w∗
i , which in turn yields ↓�d

v∗ ⊆ ↓�d
w∗

i . Moreover, since
(xiy

∗
i zi)

∗ ⊆ L(Ai), we have w∗
i ⊆ L(Ai) and in particular ↓�d

w∗
i ⊆ ↓�d

L(Ai).
This clearly implies that ↓�d

w∗
i belongs to Adh�d

(L(Ai)) for i = 1, 2. Hence, if we
can show ↓�d

w∗
1 = ↓�d

w∗
2 , the proof is complete. We use ρ also as a rotation map

on P(Σ)[1,d]: For µ ∈ P(Σ)[1,d] and i ∈ [1, d], let ρ(µ)(i) = µ(i′), where i′ ∈ [1, d] is
chosen so that i′ ≡ i− 1 mod d. Observe that since κd(v

(i)) = κd(v) for i ∈ {1, 2},
we have

κd(wi) =

r−1
⋃

ℓ=0

κd(ρ
ℓt(v(i))) =

r−1
⋃

ℓ=0

ρℓt(κd(v
(i))) =

r−1
⋃

ℓ=0

ρℓt(κd(v)),

and thus κd(w1) = κd(w2), which, according to Lemma O.2, implies ↓�d
w∗

1 =
↓�d

w∗
2 . �

O.1. Proof of Lemma 6.4. Suppose x, y ∈ Σ∗, x = x1 · · ·xr, y = y1 · · · ys,
x1, . . . , xr, y1, . . . , yr ∈ Σ. A strictly monotone map α : {1, . . . , r} → {1, . . . , s} is
a d-embedding of x in y if r ≡ s (mod d), xi = yα(i) for i ∈ [1, r], and for each
i ∈ [1, r], we have α(i) ≡ i (mod d). Clearly, we have x �d y if and only if there
is a d-embedding of x in y. Now let u0v1u1 · · · vnun be a loop pattern for Md and
x = u0v

x1

1 u1 · · · vxn
n un and y = u0v

y1

1 u1 · · · vyn
n un. Then a d-embedding of x in y is

called k-normal if for each i ∈ [1, n], α maps at least k-many factors vi in x to vyi

i .
Clearly, if k ≤ xi ≤ yi for all i ∈ [1, n], then there exists a normal d-embedding of
x in y. However, not every d-embedding has to be k-normal.

Lemma O.5. Let u0v1u1 · · · vnun be an irreducible loop pattern for Md. For each
k ∈ N, there is a constant ℓ ∈ N such that if α is a d-embedding of u0v

x1

1 u1 · · · vxn
n un

in u0v
y1

1 u1 · · · vyn
n un and xi ≥ ℓ for i ∈ [1, n], then α is k-normal.

Proof. Let us call a d-embedding (k, i)-normal if it maps at least k-many factors
vi in x into the factor vyi

i in y. To simplify notation, we will always write x and y
for the words x = u0v

x1

1 u1 · · · vxn
n un and y = u0v

y1

1 u1 · · · vyn
n un.

Suppose the contrary. Then there is a k ∈ N such that for every ℓ ∈ N, there
are x1, . . . , xn ∈ N and y1, . . . , yn ∈ N with xi ≥ ℓ for i ∈ [1, n] such that there is
a d-embedding of x in y that is not (k, j)-normal for some j ∈ [1, n]. Among the j
for which this occurs, one has to occur infinitely often. Hence, there is a k ∈ N and
a j ∈ [1, n] such that for every ℓ ∈ N, there are x1, . . . , xn ∈ N and y1, . . . , yn ∈ N

with xi ≥ ℓ for i ∈ [1, n] such that there is a d-embedding of x in y that is not
(k, j)-normal.

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 27

If a d-embedding is not (k, j)-normal, then all but at most (k − 1) + 2 fac-
tors vj must be mapped either to the factor u0v

y1

1 u1 · · · v
yj−1

j−1 uj−1 or to the factor

uj+1v
yj+2

j+2 uj+2 · · · vyn
n un: At most k− 1 factors are mapped to v

yj

j and at most two

further factors are partially mapped to v
yj

j . Therefore, we have at least one of the
following cases:

(1) for each ℓ ∈ N, there are x1, . . . , xn and y1, . . . , yn with xi ≥ k for i ∈ [1, n]
such that there is a d-embedding of x in y that maps at least ℓ factors vj
to u0v

y1

1 u1 · · · v
yj−1

j−1 uj−1.

(2) for each ℓ ∈ N, there are x1, . . . , xn and y1, . . . , yn with xi ≥ k for i ∈ [1, n]
such that there is a d-embedding of x in y that maps at least ℓ factors vj
to uj+1v

yj+2

j+2 uj+2 · · · vyn
n un.

Let us consider the first case (the second can be treated the same way). We claim
that this implies

↓�d
u0v

∗
1u1 · · · v

∗
nun = ↓�d

u0v
∗
1u1 · · · v

∗
j−1uj−1uj · · · v

∗
nun.(2)

The inclusion “⊇” clearly holds. For the other direction, consider u0v
z1
1 u1 · · · vznn un.

Then there are x1, . . . , xn, y1, . . . , yn ∈ N such that xi ≥ zi and there exists a d-
embedding of x into y that maps at least zj factors vj into u0v

y1

1 u1 · · · v
yj−1

j−1 uj−1.
This means we have

u0v
z1
1 u1 · · · v

zj−1

j−1 uj−1v
zj
j �d u0v

y1

1 u1 · · · v
yj−1

j−1 uj−1

and hence

u0v
z1
1 u1 · · · v

zn
n un �d u0v

y1

1 u1 · · · v
yj−1

j−1 uj−1ujv
zj+1

j+1 · · · vznn un.

since clearly ujv
zj+1

j+1 · · · vznn un �d ujv
zj+1

j+1 · · · vznn un and �d is multiplicative. This

implies the inclusion “⊆” of eq. (2). Finally, note that eq. (2) contradicts the
assumed irreducibility. �

Proof of Lemma 6.4. Clearly, if a loop pattern is associated with a language, then
its induced ideal belongs to the adherence of the language. Conversely, suppose the
ideal I = ↓�d

u0v
∗
1u1 · · · v∗nun belongs to Adh�d

(L). Let k ∈ N and x1, . . . , xn ≥ k
and let ℓ ∈ N be the constant provided by Lemma O.5. Without loss of generality,
we may assume that ℓ ≥ k.

Since I belongs to Adh�d
(L), there is a word w ∈ L such that u0v

ℓ
1u1 · · · v

ℓ
nun �d

w �d u0v
y1

1 u1 · · · vyn
n un for some y1, . . . , yn ∈ N. This means in particular that

there is a d-embedding α of u0v
ℓ
1u1 · · · vℓnun into w and a d-embedding β of w into

u0v
y1

1 u1 · · · vyn
n un. By composing these two d-embeddings, we obtain a d-embedding

γ of u0v
ℓ
1u1 · · · vℓnun into the word u0v

y1

1 u1 · · · vyn
n un. By the choice of ℓ, γ has to be

k-normal. This means that γ maps at least k copies of vi to vyi

i for each i ∈ [1, n].
We can therefore decompose w = ū0v̄1ū1 · · · v̄nūn so that these k copies of vi that
γ maps to vyi

i are mapped by α to v̄i and |v̄i| is divisible by d.
Since β maps v̄i to vyi

i , we have v̄i ∈ ↓�d
v∗i . This also implies that β maps ū0 to

u0v
y1

1 , and β maps ūi to vyi

i uiv
yi+1

i+1 , and β maps ūn to vyn
n un. Moreover, α maps

ui to ūi for each i ∈ [0, n]. In other words, we have vki �d v̄i ∈ ↓�d
v∗i for every

i ∈ [1, n] and ui �d ūi ∈ ↓�d
v∗i uiv

∗
i+1 for i ∈ [1, n− 1] and u0 �d ū0 ∈ ↓�d

u0v
∗
1 and

un �d ūn ∈ ↓�d
v∗nun. Thus, I is associated to L. �

28 GEORG ZETZSCHE

O.2. Proof of Lemma 6.5.

Proof. Suppose I belongs to Adh�d
(L(Ai)) for i = 1, 2. Let u0v1u1 · · · vnun be an

irreducible loop pattern for Md such that I = ↓�d
u0v

∗
1u1 · · · v∗nun. According to

Lemma 6.4, the loop pattern u0v1u1 · · · vnun is associated to L(Ai) for i = 1, 2.
In particular, there is a word ūi,0v̄i,1ūi,1 · · · v̄i,nūi,n ∈ L(Ai) such that vmj �d

v̄i,j ∈ ↓�d
v∗j for j ∈ [1, n] and i = 1, 2 and uj �d ūi,j ∈ ↓�d

v∗j ujv
∗
j+1 for j ∈ [1, n−1]

and u0 �d ūi,0 ∈ ↓�d
u0v

∗
1 and un �d ūi,n ∈ ↓�d

v∗nun.
We can therefore write v̄i,j = ti,j,1 · · · ti,j,m with vj �d ti,j,ℓ ∈ ↓�d

v∗j . Consider
the run of Ai on the word

ūi,0v̄i,1ūi,1 · · · v̄i,nūi,n.

Since Ai has ≤ m states, for each j ∈ [1, n], this run must occupy the same
before and after reading some infix ti,j,ℓ · · · ti,j,k. Let qi,j be this state and let
v̄i,j = xi,jyi,jzi,j be the decomposition so that yi,j = ti,j,ℓ · · · ti,j,k. Then we have
vj �d yi,j ∈ ↓�d

v∗j and also xi,j , zi,j ∈ ↓�d
v∗j . The former implies that ↓�d

y∗i,j =
↓�d

v∗j .
Let Ai,j be the automaton obtained from Ai by making qi,j the only initial and

final state. Then Ai,j is cyclic and we have y∗i,j ⊆ L(Ai,j). In particular, the ideal

↓�d
v∗j = ↓�d

y∗i,j belongs to Adh�d
(L(Ai,j)). Now Lemma 6.3 yields a wj ∈ (Σd)∗

such that

• ↓�d
v∗j ⊆ ↓�d

w∗
j ,

• ↓�d
w∗

j belongs to Adh�d
(L(Ai,j)),

• πd(wj) ≤ m2.

We claim that u0w1u1 · · ·wnun is a loop pattern as desired in the lemma. It remains
to show that ↓�d

u0w
∗
1u1 · · ·w∗

nun belongs to Adh�d
(L(Ai)) for i = 1, 2.

Let k ∈ N. Since ↓�d
w∗

j belongs to Adh�d
(L(Ai,j)) for i ∈ {1, 2} and j ∈ [1, n],

there is a word w′
i,j ∈ L(Ai) such that wk

j �d w′
i,j ∈ ↓�d

w∗
j . Define

t = ūi,0xi,1w
′
i,1zi,1ūi,1 · · ·xi,nw

′
i,nzi,nūi,n.

Then we have u0w̄
k
1u1 · · · w̄k

nun �d t ∈ L(Ai). Moreover, since xi,j , zi,j ∈ ↓�d
v∗j ⊆

↓�d
w̄∗

j and by the choice of the ūi,j, the word t is contained in ↓�d
u0w̄

∗
1u1 · · · w̄∗

nun.

This proves that ↓�d
u0w̄

∗
1u1 · · · w̄∗

nun belongs to Adh�d
(L(Ai)) for i = 1, 2 and

hence completes the lemma. �

O.3. Proof of Lemma 6.6.

Lemma O.6. Suppose v ∈ (Σd)∗. Then every r ∈ [0, d− 1]:

↓�d
v[r] = {u ∈ Σ∗ | |u| ≡ r mod d, κd(u) ⊆ κd(v)}.

Proof. Let w be the length-r prefix of v. Let u ∈ ↓�d
v[r], say u �d vkw. Then

clearly |u| ≡ r mod d. Moreover, if a ∈ Σ occurs at a position p in u with p ≡ i
(mod d), then a occurs at some position p+ dN in v. Hence, κd(u) ⊆ κd(v).

Suppose u ∈ Σ∗ with |u| ≡ r mod d and κd(u) ⊆ κd(v). Write u = a1 · · ·an,
a1, . . . , an ∈ Σ. Since ai ∈ κd(u)(i) ⊆ κd(v)(i), each ai occurs at some position p
in v with p ≡ i mod d. Hence, we can write v = xiaiyi with |xi| ≡ i− 1 mod d and
therefore |yi| ≡ |v| − |xi| − 1 ≡ d− i mod d. In particular, |yixi+1| ≡ (d− i) + i =
d mod d. Moreover, |x1| ≡ 0 mod d and |ynw| ≡ d− n+ r ≡ 0 mod d. Therefore,

u = a1 · · · an �d x1a1y1x2a2y2x3 · · · yn−1xnanynw = vnw

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 29

where z expresses that z ∈ (Σd)∗. Thus u ∈ ↓�d
v[r]. �

Consider an extended loop pattern u0v
[r1]
1 u1 · · · v

[rn]
n un and let wi be the length-r

prefix of vi for i ∈ [1, n]. We say that this extended loop pattern is irreducible if

(1) the corresponding loop pattern u0(v1)w1u1 · · · (vn)wnun is irreducible and
(2) for each i ∈ [0, n − 1], ui is either empty or the last letter of ui is not

contained in κd(vi+1)(d) and
(3) for each i ∈ [1, n], ui is either empty or the first letter of ui is not contained

in κd(vi)(ri + 1).

Lemma O.7. Let x0y
[s1]
1 · · · y

[sℓ]
ℓ xℓ be an extended loop pattern for Md for which

πd(yi) ≤ m for every i ∈ [1, ℓ]. Then there is an irreducible extended loop pattern

u0v
[r1]
1 u1 · · · v

[rn]
n un for Md generating the same ideal where also πd(vi) ≤ m for

every i ∈ [1, n].

Proof. We define the length of an extended loop pattern u0v
[r1]
1 u1 · · · v

[rn]
n un to be

|u0|+ · · · |un|+ n · d. In other words, each loop vi contributes d to the length.

Let I be the ideal ↓�d
x0y

[s1]
1 x1 · · · y

[sℓ]
ℓ xℓ. Furthermore, let u0v

[r1]
1 u1 · · · v

[rn]
n un

be an extended loop pattern of minimal length N among all extended loop patterns
that generate I and for which πd(vi) ≤ m for every i ∈ [1, n]. Let wi be the length-ri
prefix of vi for i ∈ [1, n].

By minimality, the loop pattern u0(v1)w1u1 · · · (vn)wnun has to be irreducible:
Otherwise, there would be a loop vi such that

I = ↓�d
u0v

∗
1w1u1 · · · v

∗
i−1wi−1ui−1wiui · · · v

∗
nwnun

and hence the extended loop pattern

u0v
[ri]
1 u1 · · · v

[ri−1]
i−1 ui−1wiui · · · v

[rn]
n un

would generate I and have length N − d+ ri < N .
Now consider some non-empty ui and suppose its first letter is contained in

κd(vi)(ri + 1). In other words, ui = aūi with a ∈ κd(vi)(ri + 1). Then we could

replace v
[ri]
i ui by v

[ri+1]
i ūi. The resulting extended loop pattern clearly generates

the same ideal. Moreover, the requirement for periods would still be met. Finally,
this extended loop pattern would have length N−1, in contradiction to minimality.

Now consider some non-empty ui and suppose its last letter is contained in
κd(vi+1)(d). In other words, ui = ūia with a ∈ κd(vi+1)(d). Then we could replace

the term uiv
[ri+1]
i+1 by ūiλ(vi+1)

[ri+1+1]. It is easy to see that this would result in
an extended loop pattern that generates the same ideal. Moreover, we would have
πd(λ(vi+1)) = πd(vi+1) ≤ m. Finally, this extended loop pattern would have length
N − 1, contradicting minimality. �

Proof of Lemma 6.6. Clearly, if the ideal generated by p is associated to L, then it
belongs to Adh�d

(L).

Conversely, let p = u0v
[r1]
1 u1 · · · v

[rn]
n un be an extended loop pattern for Md and

suppose its generated ideal I belongs to Adh�d
(L). Let wi be the length-ri prefix

of vi for i ∈ [1, n]. Since the loop pattern u0(v1)w1u1 · · · (vn)wnun (the loop parts
are in brackets) is irreducible, it is associated to L according to Lemma 6.4.

Thus, for given k ∈ N, we find a word

(3) w = ũ0ṽ1ũ1 · · · ṽnũn ∈ L

30 GEORG ZETZSCHE

such that vk+1
i �d ṽi ∈ ↓�d

v∗i for every i ∈ [1, n] and wiui �d ũi ∈ ↓�d
v∗iwiuiv

∗
i+1

for i ∈ [1, n− 1] and u0 �d ũ0 ∈ ↓�d
u0v

∗
1 and wnun �d ũn ∈ ↓�d

v∗nwnun.
In the first step, we modify the decomposition eq. (3) of w by moving, for each

i ∈ [1, n], the last d − ri letters of ṽi to its right neighbor ũi. Let the resulting
decomposition be

w = û0v̂1û1 · · · v̂nûn.

Since vk+1
i �d ṽi ∈ ↓�d

v∗i and wiui �d ũi ∈ ↓�d
v∗i wiuiv

∗
i+1, we now have

(1) vki wi �d v̂i ∈ ↓�d
v
[ri]
i for each i ∈ [1, n],

(2) ui �d ûi ∈ ↓�d
λri(vi)

∗uiv
∗
i+1 for i ∈ [1, n− 1],

(3) u0 �d û0 ∈ ↓�d
u0v

∗
1 , and

(4) un �d ûn ∈ ↓�d
λri(vn)

∗un.

We claim that for each i ∈ [0, n], there are words xi, yi so that

(1) for each i ∈ [1, n − 1] for which ui is non-empty, ûi = xiuiyi with xi ∈
↓�d

λri(vi)
∗, yi ∈ ↓�d

v∗i+1,
(2) û0 = u0y0 and y0 ∈ ↓�d

v∗1 ,
(3) ûn = xnun and x0 ∈ ↓�d

λri(vn)
∗.

Note that is establishes the lemma: We can then again modify the decomposition
as follows. We move y0 from û0 to v̂1 and we move xn from ûn to v̂n. Moreover,
for each non-empty ui, we move xi from ûi to v̂i and we move yi from ûi to
v̂i+1. Each ûi where ui is empty is left unchanged. The resulting decomposition
w = ū0v̄1ū1 · · · v̄nūn is then as desired.

First, note that if some ui is empty (whether i ∈ [1, n − 1] or i ∈ {0, n}), then
we need not construct any xi and yi. We show how to construct xi and yi for
i ∈ [1, n− 1] where ui is non-empty. The proof for y0 and xn is then analogous.

Recall that ui �d ûi ∈ ↓�d
λri(vi)

∗uiv
∗
i+1. This means there is some ℓ so that

ûi �d λri(vi)
ℓuiv

ℓ
i+1. Consider the d-embedding α of ui into ûi and the d-embedding

β of ûi into λri(vi)
ℓuiv

ℓ
i+1. The composition γ of α and β is a d-embedding of ui

into λri(vi)
ℓuiv

ℓ
i+1.

We now use the fact that our extended loop pattern is irreducible. The d-
embedding γ cannot send the left-most letter of ui to a position in λri(vi)

ℓuiv
ℓ
i+1

left of ui, because that would mean that this letter is contained in κd(vi)(ri + 1).
Moreover, γ cannot send the right-most letter of ui to a position in λri(vi)

ℓuiv
ℓ
i+1 to

the right of ui, because that would mean that this letter is contained in κd(vi+1)(d).
This implies that γ sends ui exactly to the factor ui of λri(vi)

ℓuiv
ℓ
i+1. Thus, ûi

has a factor ui that is sent by β to ui of λri(vi)
ℓuiv

ℓ
i+1. Let ûi = xiuiyi be the

corresponding decomposition. Then β has to map xi into λri(vi)
ℓ and yi into vℓi+1.

In particular, we have xi ∈ ↓�d
λri(vi)

∗ and yi ∈ ↓�d
v∗i+1. This completes the proof

of the claim and hence the lemma. �

O.4. Proof of Proposition 6.2.

Lemma O.8. Let A be an automaton with ≤ m states and let d be a multiple of
m3!. Moreover, let πd(v) ≤ m2 and let u ∈ ↓�d

v[r] be accepted by A such that

|u| ≥ m ·πd(v). Then there is a u′ ∈ ↓�ℓ·d
(vℓ)[r

′] in L(A) such that r′ = r+(ℓ−1)d
and |u′| = |u|+ (ℓ− 1)d.

Proof. Since |u| ≥ m · πd(v), u begins with at least |u|/πd(v) ≥ m factors of length
πd(v). Consider the run of A on u. Since A has at mostm states, we can decompose

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 31

u = fgh such that g is a contiguous block of k ≤ m factors of length πd(v) and g is
read on a cycle. Since |g| = k · πd(v) ≤ m3, |g| divides d. Let u′ = fg1+(ℓ−1)d/|g|h.
Then according to Lemma O.4, we have u′ ∈ ↓�d

v[r]. Therefore, κd(u
′) ⊆ κd(v).

This implies
κℓ·d(u

′) ⊆ κℓ·d(v) ⊆ κℓ·d(v
ℓ).

Moreover, note that |u′| = |u|+ (ℓ − 1)d ≡ r + (ℓ − 1)d = r′ (mod ℓ · d) and thus

u′ ∈ ↓�d
(vℓ)[r

′]. �

Lemma O.9. Let A be an automaton with ≤ m states and let d be a multiple of
m3!. Moreover, let v ∈ (Σd)∗ with πd(v) ≤ m2. If u ∈ L(A) with w �d u ∈ ↓�d

v[r],

then there is a u′ ∈ L(A) with w �ℓ·d u′ ∈ ↓�ℓ·d
(vℓ)[r]

Proof. Since w �d u, we can write u = u0w1u1 · · ·wnun, where w = w1 · · ·wn and
w1, . . . , wn ∈ Σ, and ui ∈ (Σd)∗. Since u ∈ ↓�d

v[r], we have κd(u) ⊆ κd(v) and

hence ui ∈ ↓�d
λi(v)∗ for i ∈ [0, n].

For each i ∈ [0, n], we construct u′
i as follows. Consider the run of A on u and

suppose it reads ui from state pi to state qi.

• If ui is empty, then u′
i = ui. Note that then of course u′

i ∈ ↓�ℓ·d
λi(vℓ)∗.

• If ui is non-empty, then we split ui in |ui|/d factors of length d and apply
to each factor Lemma O.8. This yields a word a word u′

i such that u′
i ∈

↓�ℓ·d
(λi(v)ℓ)∗ and so that u′

i can be read from state pi to qi. Moreover,

we have |u′
i| is a multiple of ℓ · d. Since λi(v)ℓ = λi(vℓ), we have u′

i ∈
↓�ℓ·d

λi(vℓ)∗.

Therefore, the word u′ = u′
0w1u

′
1 · · ·wnu

′
n is accepted by A, belongs to ↓�ℓ·d

(vℓ)[r]

and satisfies w �ℓ·d u′. �

Lemma O.10. Let A be an automaton with ≤ m states and and let d be a multiple
of 2m3!. Moreover, let vi ∈ (Σd)∗ with πd(vi) ≤ m2 for i = 1, 2. If u ∈ L(A) with
u ∈ ↓�d

v∗1v
∗
2 , then there is a u′ ∈ L(A) with u′ ∈ ↓�ℓ·d

(vℓ1)
∗(vℓ2)

∗

Proof. Let K = ↓�d
v∗1v

∗
2 . Observe that K consists precisely of the words of the

form u = x1 · · ·xpsty1 · · · yq, where for some r ∈ [0, d− 1],

• xi ∈ ↓�d
v∗1 and xi ∈ Σd for i ∈ [1, p],

• s ∈ ↓�d
v
[r]
1 and |s| = r,

• t ∈ ↓�d
λr(v2)

[d−r], and |t| = d− r, and

• yi ∈ ↓�d
v∗2 and yi ∈ Σd for i ∈ [1, q].

On the one hand, all such words belong to ↓�d
v∗1v

∗
2 : The parts s and t arise when

dropping length-d blocks on the border between v∗1 and v∗2 . On the other hand,
by induction on the number of deleted length-d blocks, it follows that any word in
↓�d

v∗1v
∗
2 is of that shape.

Since |s|+ |t| = d, we have either |s| ≥ d/2 or |t| ≥ d/2. We treat the case that
|s| ≥ d/2, the other case is analogous.

We apply Lemma O.8 to each factor x1, . . . , xp, s, y1, . . . , yq. Note that this
is possible because each of these words has length either exactly d or ≥ d/2
and we have ≥ d/2 ≥ m3! ≥ m3 ≥ m · πd(vi) for i = 1, 2. This yields words
x′
1, . . . , x

′
p, s

′, y′1, . . . , y
′
q such that

• x′
i ∈ ↓�ℓ·d

(vℓ1)
[0] for i ∈ [1, p],

• s′ ∈ ↓�ℓ·d
(vℓ1)

[r′], where r′ = r + (ℓ− 1)d,

32 GEORG ZETZSCHE

• y′i ∈ ↓�ℓ·d
(vℓ2)

[0] for i ∈ [1, q],
• A accepts u′ = x′

1 · · ·x
′
ps

′ty′1 · · · y
′
q.

Recall that t ∈ ↓�d
λr(v2)

[d−r]. This means κd(t) ⊆ κd(λ
r(v2)) and hence

κd(t) ⊆ κd(λ
r(v2)

ℓ) = κd(λ
r(vℓ2))

(recall that λr(w)ℓ = λr(wℓ) for every word w). Therefore, we also have

(4) κℓ·d(t) ⊆ κℓ·d(λ
r(vℓ2)).

Note that since πℓ·d(v
ℓ
2) = πd(v2) divides d, we can rotate the word vℓ2 by a multiple

of d without changing its image under κℓ·d(·). Hence

κℓ·d(λ
r(vℓ2)) = κℓ·d(λ

r+(ℓ−1)d(vℓ2))

Together with eq. (4), we may conclude that t belongs to ↓�ℓ·d
(λr+(ℓ−1)d(vℓ2))

[d−r]

according to Lemma O.6. Therefore, the above characterization of K, adapted to
↓�ℓ·d

(vℓ1)
∗(vℓ2)

∗, is satisfied for the word u′ and hence u′ ∈ ↓�ℓ·d
(vℓ1)

∗(vℓ2)
∗. �

Lemma O.11. Let A be a finite automaton with ≤ m states and let d be a multiple

of 2m3!. If u0v
[r1]
1 u1 · · · v

[rn]
n un is an irreducible extended loop pattern with πd(vi) ≤

m2 such that its ideal belongs to Adh�d
(L(A)), then for each ℓ ∈ N, the ideal

(5) ↓�ℓ·d
u0(v

ℓ
1)

[r1]u1 · · · (v
ℓ
n)

[rn]un

belongs to Adh�ℓ·d
(L(A)).

Proof. Since u0v
[r1]
1 u1 · · · v

[rn]
n un is irreducible and its ideal belongs to Adh�d

(L(A)),
we know from Lemma 6.6 that the extended loop pattern is associated to L(A).

Let I be the ideal in eq. (5). Let wi be the length-ri prefix of vi for every
i ∈ [1, n].

In order to show that I belongs to Adh�ℓ·d
(L(A)), we have to exhibit for each

k ∈ N a word w ∈ L(A) so that u0(v
ℓ
1)

kw1u1 · · · (vℓn)
kwnun �ℓ·d w and w ∈ I.

Let k ∈ N. Because of association, there is a word w̄ = ū0v̄1ū1 · · · v̄nūn ∈ L(A)

such that for every i ∈ [1, n], we have vk·ℓi wi �d v̄i and v̄i ∈ ↓�d
v
[ri]
i . Moreover,

ū0 = u0, ūn = un, and for each i ∈ [1, n− 1]:

• If ui is not empty, then ūi = ui.
• If ui is empty, then ūi ∈ ↓�d

λri(vi)
∗v∗i+1.

Consider the run of A on w̄. Using Lemma O.9, we can choose v̄′i such that
vk·ℓi wi �ℓ·d v̄′i and v̄′i ∈ ↓�ℓ·ℓ

(vℓi)
[ri] and so that it has a run parallel to v̄i in

A. Now consider ūi for i ∈ [0, n].

• If ūi = ui, then choose ū′
i = ūi = ui.

• If ūi 6= ui, then ui is empty and ūi ∈ ↓�d
λri(vi)

∗v∗i+1. Then we use
Lemma O.10 to choose ū′

i such that ū′
i has a run parallel to ūi in A and

ū′
i ∈ ↓�ℓ·d

(λri(vℓi))
∗(vℓi+1)

∗.

Now the resulting word w′ = ū′
0v̄

′
1ū

′
1 · · · v̄

′
nū

′
n is accepted by the automaton A.

This shows that the extended loop pattern u0(v
ℓ
1)

[r1]u1 · · · (vℓn)
[rn]un is associated

to L(A) and hence the ideal I belongs to Adh�ℓ·d
(L(A)). �

Proof of Proposition 6.2. Suppose there is an ideal in the adherence Adh�d
(L(Ai))

for i = 1, 2. By Lemma 6.5, there is a loop pattern u0v1u1 · · · vnun for Md such
that the ideal I = ↓�d

u0v
∗
1u1 · · · v

∗
nun belongs to Adh�d

(L(Ai)) for i = 1, 2 and

PTL-SEPARABILITY AND CLOSURES FOR WQOS ON WORDS 33

πd(vi) ≤ m2 for every i ∈ [1, n]. Using Lemma O.7, we can construct an irreducible
extended loop pattern

ū0v̄
[r1]
1 ū1 · · · v̄

[rn]
n ūn

that induces I and satisfies πd(v̄i) ≤ m2 for i ∈ [1, n]. Now Lemma O.11 tells us
that the ideal

↓�ℓ·d
ū0(v̄

ℓ
1)

[r1]ū1 · · · (v̄
ℓ
n)

[rn]ūn

belongs to Adh�ℓ·d
(L(Ai)) for i = 1, 2. �

O.5. Proof of Proposition 6.7.

Proof of Proposition 6.7. Recall that the Post Correspondence Problem asks, given
two morphisms α, β : Σ∗ → {1, 2}∗, whether there is a word w ∈ Σ+ such that
α(w) = β(w). The standard undecidability proof [28] constructs, given a Turing
machine M , morphisms α, β such that for w ∈ Σ∗, any common prefix of α(w)
and β(w) encodes a prefix of a computation history of M . For our decidable set
D, there exists a fixed terminating Turing machine, so we can proceed as follows.
Given a word u ∈ D, we can apply this construction to compute in polynomial time
morphisms α, β : Σ∗ → {1, 2}∗ such that

(i) u ∈ D iff there is a w ∈ Σ+ with α(w) = β(w) and
(ii) there exists k ∈ N so that for every w ∈ Σ∗, the words α(w) and β(w) have

no common prefix longer than k.

We claim that u ∈ D if and only if Lα,β and E are separable by BΣ1[<,mod].
Clearly, if u ∈ D, then the languages Lα,β and E intersect and cannot be separable.
Suppose u /∈ D. Then (ii) implies that Lα,β is included in

Sk = {arcbs | r 6≡ s mod 2k+1}

∪ {arcbs | min(r, s) < 2k+1 − 1, r 6= s}

because x, y ∈ {1, 2}∗, |x|, |y| > k, have a common prefix of length > k iff ν(x) ≡
ν(y) mod 2k+1. Moreover, for x ∈ {1, 2}∗, we have |x| ≤ k iff ν(x) < 2k+1 − 1.
Since Sk is clearly definable in BΣ1[<,mod] and disjoint from E, this shows that
Lα,β and E are separable by BΣ1[<,mod]. �

IRIF (Uniersité Paris-Diderot, CNRS), France, zetzsche@irif.fr

	1. Introduction
	Downward closures
	Separability
	Contribution

	2. Preliminaries
	3. Parameterized WQOs and main results
	Orderings defined by transducers
	Conjunctions
	Examples
	Labeling transductions
	Orderings defined by finite automata
	Multiplicative well-partial orders
	Orderings defined by counter automata
	Conjunctions
	Computing downward closures
	PTL and separability
	Main result
	Separability beyond PTLs

	4. Computing closures and deciding separability
	Unboundedness reductions

	5. Ideal representations
	Orderings defined by labeling automata

	6. Separability by []
	Part I: Small periods
	Part II: Restricting witness words
	Part III: Pumping up
	6.1. Undecidability
	Future work
	Acknowledgements

	References
	Appendix A. Proof of boolean-conjunctions
	Appendix B. Proof of unboundedness:decidable
	Appendix C. Proof of inclusion-vs-adh
	Appendix D. Proof of dc:computable
	Appendix E. Proof of separability:decidable
	Appendix F. Proof of ideals:ewur:subword
	Appendix G. Proof of functions:ideals
	Appendix H. Proof of functions:adherences
	Appendix I. Proof of ewur:transducers
	Appendix J. Proof of conjunction-ideals
	Appendix K. Proof of conjunction-adherence
	Appendix L. Proof of ewur:product
	Appendix M. Proof of ewur:conjunction
	Appendix N. Proof of ideals:labeling
	Appendix O. Proofs for sepmod
	O.1. Proof of reg:association
	O.2. Proof of reg:smallperiod
	O.3. Proof of reg:association-ext
	O.4. Proof of pump-adherence
	O.5. Proof of undecidability:reduction

