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Abstract—We address the problem of massive random access
for an uncoordinated Gaussian multiple access channel (MAC).
The performance of T-fold irregular repetition slotted ALOHA
(IRSA) scheme for this channel is investigated. The main differ-
ence of this scheme in comparison to IRSA is as follows: any
collisions of order up to T can be resolved with some probability
of error introduced by Gaussian noise. First, we generalize the
density evolution method for T -fold IRSA and noisy channel
and find optimal degree distributions for different values of T .
Then we perform analysis and find minimal Eb/N0 for a fixed
length, rate and packet loss probability. The scheme is shown to
work closer to finite length random coding bound proposed by
Y. Polyanskiy, than existing solutions.

I. INTRODUCTION

Existing wireless networks are designed with the goal of

increasing a spectral efficiency in order to serve human users.

Next generation of wireless networks will face a new challenge

in the form of machine-type communication. Analysts predict

that the number of devices connected to the network will

exceed 50 millions by 2020. The main challenges are as

follows: (a) huge number (billions) of autonomous devices

connected to one access point, (b) low energy consumption,

(c) short data packets. This problem has attracted attention of

3GPP standardization committee under the name of mMTC

(massive machine-type communication).

Let us describe the system model. There are Ktot ≫ 1
users, of which only K are active in each time instant.

Communication proceeds in a frame-synchronized fashion

(this can be implemented with use of beacons). The length

of each frame is n. Each active user has k bits to transmit

during a frame. The main goal is to minimize the energy-per-

bit spent by each of the users. We are interested in grant-free

access (5G terminology), i.e. active users transmit their data,

without any resource requests.

This paper deals with construction of low-complexity ran-

dom coding schemes for the Gaussian multiple-access channel

(GMAC) with equal-power users, i.e.

y =

Ktot
∑

i=1

sixi + z, (1)

where xi ∈ R
n is a codeword transmitted by the i-th user, si

is an activity indicator for the i-th user, i.e. si = 1 if the i-th
user is active and si = 0 otherwise. z ∼ N (0, I) is an additive

white Gaussian noise (AWGN). Following [1] we assume all

the users to use the same message set [M ] , {1, . . . ,M} and

the same codebook C = {x(ω)}Mω=1 of size M . Let ωi denote

the message of the i-th user. To transmit the message ωi the

user will use a codeword xi = x(ωi). We require in addition

that ||x(ω)||22 ≤ nP , which means a natural power constraint.

Decoding is done up to permutation of messages. We only

require the decoder to output a set L(y) = (ω1, ω2, . . . , ωJ) ∈
[M ]J , J ≤ K . Thus in accordance to [1] we decouple the user

identification problem and the data transmission problem. The

probability of error (per user) is defined as follows

Pe = max
|(s1,s2,...,sKtot )|=K

1

K

Ktot
∑

i=1

si Pr(Wi 6∈ L(y)).

Let us emphasize the main differences from the classical

setting. Almost all well-known low-complexity coding so-

lutions for the traditional MAC channel (e.g. [2]) assume

coordination between the users. Due to the gigantic number

users we assume them to be symmetric, i.e. the users use the

same codes and equal powers.

We continue the line of work started in [1], [3], [4]. In

[1] the bounds on the performance of finite-length codes

for GMAC are presented. In [3] Ordentlich and Polyanskiy

describe the first low-complexity coding paradigm for GMAC.

The improvement (it terms of required Eb/N0) was given

in [4]. The overall scheme can be called T-fold irregular

repetition slotted ALOHA (IRSA, [5], [6]) scheme for GMAC.

The main difference of this scheme in comparison to IRSA is

as follows: any collisions of order up to T can be resolved

with some probability of error introduced by Gaussian noise.
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In this paper we investigate the potential capabilities of T -

fold IRSA. The authors of [4] suggested to split the error

probability into three terms: interference cancellation (IC)

error, preamble error and decoder error. Then a union bound

was applied. We were able to write joint density evolution

rules, which include all the terms. In what follows we show,

that this change allows us to better predict the error probability.

We also note the following thing. In [4] in each slot preambles

were used to identify active users. So the packet consists of

preamble and data part. The authors used finite length random

coding bound [1] to estimate the probability of decoding

failure in the data part. We emphasize, that preambles are

not needed to characterize the potential capabilities (derive

achievability bounds) of T -fold IRSA scheme as we do not

need to identify users, that are active in a slot to use IC

algorithm.

Our contribution is as follows. Achievability bounds for T -

fold IRSA are derived. To achieve this goal we generalized the

density evolution method for T -fold IRSA and noisy channel

and find optimal degree distributions for different values of T .

Then we perform analysis and find minimal Eb/N0 for a fixed

length, rate and packet loss probability. The scheme is shown

to work closer to finite length random coding bound proposed

by Y. Polyanskiy, than existing solutions.

II. PRELIMINARIES

A. System model

The main features of the scheme are as follows:

• transmission is performed in a frame-synchronized fash-

ion. The length of a frame is n channel uses;

• the frame consists of M slots of size ñ = n/M channel

uses;

• the user chooses a message ω, then encodes it and obtains

a codeword x(ω) of length ñ;

• users repeat their codewords in multiple slots. The dis-

tribution of the repetition count is denoted by D[i]. This

distribution is the same for all the users;

• the number of repetitions r and the r slots in which to

send are chosen based on the message ω (see [4]): as

ω is distributed uniformly on [M ] the slots are chosen

uniformly at random (definitely without repetitions) from

M existing slots.

B. Interference cancellation decoder

Decoding algorithm is based on successive cancellation ap-

proach. The algorithm is iterative. The slot with the minimum

collision order is selected at every step. If the order of collision

is less or equal to T we resolve the collision. As a result some

messages (in collision) are decoded successfully, some of the

messages are decoded incorrectly. Then all successfully de-

coded messages are removed from other slots (if the message

was transmitted by user more than once), the slot itself is

marked as resolved and collision indices are updated for all

other slots. We note, that we can always find where the replicas

were transmitted as these positions are chosen based on the

data (so in contrast to [5] we do not need to store the pointers).

++++

users

slots

Fig. 1: Tanner graph representation

The algorithm stops when all the slots are either decoded or

empty (see Algorithm 1 for more details).

Algorithm 1 Interference cancellation decoder

1: while slot set not empty do

2: Remove empty slots

3: Select slot with the minimal collision order t
4: if t ≤ T then

5: Resolve the collision

6: Subtract decoded packets from all the slots

7: Update collision indices for all slots

8: end if

9: Remove decoded slot from slot set

10: end while

Remark 1: We note, that during the slot decoding the errors

may occur, i.e. some of the packets (codewords) may be

decoded incorrectly. In what follows we assume, that we can

always detect the error packets (the packets include control

information).

C. Tanner graph representation

The transmission and decoding processes can be described

with the use of a bipartite graph, which is called the Tanner

graph [7]. The vertex set of the graph consists of the set of

user nodes V = {v1, v2, . . . , vK} which correspond to the set

of users and the set of slot nodes C = {c1, c2, . . . , cM} which

correspond to signals received in slots. The user node vi and

the slot node cj are connected with an edge if and only if the

i-th users transmitted a packet in the j-th slot.

D. Degree distributions

Let L(x) =
∑

i Lix
i and λ(x) =

∑

i λix
i−1 denote the

user node degree distributions from node and edge degree

perspective, respectively. We recall (see e.g. [8]), that Li and

λi denote respectively the fractions of user nodes of degree i
and the fraction of edges incident to user nodes of degree i.
Also recall, that λ(x) = L′(x)/L′(1). In our case Li = D[i].
Analogously, let R(x) =

∑

i Rix
i and ρ(x) =

∑

i ρix
i−1

denote the slot node degree distributions from node and edge

degree perspective, respectively.

Let G = K/M . Let us consider the j-th slot. Each

user chooses this slot for transmission independently with

probability
L′(1)
M

= GL′(1)
K

. Thus, the slot node distribution

(from node perspective) is Bino
(

K, GL′(1)
K

)

. In the limit



K → ∞ this distribution becomes a Poisson distribution. In

what follows we use R(x) = ρ(x) = e−GL′(1)(1−x).

III. DENSITY EVOLUTION

Following [1] we want to minimize the required energy-per-

bit Eb/N0. For this purpose we suggest a density evolution

method, which helps us to choose the system parameters.

Similar to [5], [6] we consider the ensemble of Tanner

graphs G(K;M ; cλ(x); ρ(x)) corresponding to the multiple-

access scheme with K users, M slots, and the degree dis-

tributions λ(x) and ρ(x). We are interested in the decoding

performance averaged over the ensemble G(K;M ;λ(x); ρ(x))
in the limit as K ,M → ∞.

The major difference of our approach in comparison to [5],

[6] is that we

• consider co-called T -fold IRSA, i.e. collisions of order up

to T can be resolved in slot node with some probability

of error introduced by Gaussian noise;

• take into account a noisy channel (AWGN channel to be

precise);

• take into account finite length effect as the slots have

small length;

• take into account a transmit energy. Assume we use a

strategy with L(x) = x2. In this case we spent 2 times

more energy while transmitting in comparison to L(x) =
x strategy;

Let us fix the slot length ñ, the number of information bits

k to be sent by each user, the maximal number of iterations

ℓ, the average transmit power P (linear scale) and L(x). Then

the average energy per information bit can be calculated as

follows
Eb

N0
=

ñPL′(1)

2k
,

we note, that L′(1) is actually the average number of trans-

missions.

Let us introduce a notation. By Pe(ñ, k, P, t) we denote

the error probability per user, calculated with use of random

coding bound [1]. Now let us write the density evolution

rules. By xl and yl we denote the probability that an outgoing

message from the user node and slot node, respectively, are

erased during the l-th iteration. We start with initial condition

x0 = 1, which means, that the user messages are erased at the

beginning and we observe only the noisy signal sums in slots.

yl+1 = 1−
rmax
∑

r=1

ρr

[

min(r,T )−1
∑

t=1

(1− Pe(ñ, k, P, t))

(

r − 1

t

)

× xt
l(1− xl)

r−1−t
]

xl = λ(yl), 1 ≤ l < ℓ.

xℓ = L(yℓ).

Remark 2: We note, that

lim
ℓ→∞

xℓ > 0.
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Fig. 2: Density evolution rules
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Fig. 3: Minimum Eb/N0 required to achieve less than 5%

error rate as a user count function

because of finite length effects in the slot. So in what follows

we do not consider infinite number of iterations and fix ℓ.
Proof:

Consider the l-th iteration. Let us consider the slot node

of degree r. We want to calculate the erasure probability of

the outgoing message yl+1 based on incoming messages (with

erasure probabilities xl). The probability can be calculated as

follows

1−

min(r,T )−1
∑

t=1

(1− Pe(ñ, k, P, t))

(

r − 1

t

)

xt
l(1− xl)

r−1−t.

Each term in the sum corresponds to a probability of

collision of order t. We are interested only in collisions of

order t ≤ T . The probability of correct outgoing message

decoding is given by 1−Pe(ñ, k, P, t). We only need to apply

the sum rule of total probability to obtain the needed result.

Recall, that ρr is the probability, that the outgoing edge is

connected to a slot node of degree r.

The rule in user node coincides with the rules from [5], [6].

IV. NUMERICAL RESULTS

We choose the same system parameters as in [1], [3], [4]

for honest comparison.
Parameter Description

n = 3× 104 Frame length

k = 100 Number of information bits

Pe = 0.05 Maximum error probability allowed



K DE for T = 2, 100 iterations M Eb/N0, dB

25 1.0000x 79 1.63

50 0.4447x + 0.5553x2 61 3.09

100 0.1261x + 0.8739x2 66 3.89

150 0.1155x + 0.8845x2 97 4.64

200 0.1226x + 0.8774x2 128 5.46

250 0.1252x + 0.8748x2 159 6.32

300 0.1591x + 0.6886x2 + 0.1524x3 181 7.19

350 0.1776x + 0.5895x2 + 0.2329x3 205 8.03

400 0.1860x + 0.5429x2 + 0.2711x3 232 8.88

450 0.2005x + 0.4861x2 + 0.3135x3 258 9.73

500 0.2048x + 0.4620x2 + 0.3333x3 286 10.60

550 0.2140x + 0.4269x2 + 0.3590x3 312 11.48

600
0.2218x + 0.3982x2 + 0.3776x3

339 12.37
+0.0015x4 + 0.0005x5

+0.000x6 + 0.0001x7

K DE for T = 4, 100 iterations M Eb/N0, dB

25 1.0000x 25 0.53
50 1.0000x 41 1.09

100 0.6260x + 0.3740x2 47 2.84

150 0.3190x + 0.6810x2 43 3.41

200 0.3228x + 0.6772x2 57 4.04

250 0.3279x + 0.6721x2 71 4.75

300 0.3259x + 0.6741x2 85 5.49

350 0.3333x + 0.6667x2 99 6.24

400 0.3298x + 0.6702x2 113 7.03

450 0.3349x + 0.6651x2 127 7.82

500 0.3381x + 0.6619x2 140 8.63

550 0.3386x + 0.6436x2 + 0.0177x3 153 9.46

600 0.3445x + 0.6077x2 + 0.0477x3 166 10.30

K DE for T = 1, 100 iterations M Eb/N0, dB

25 0.0920x + 0.9080x2 68 3.71

50 1.0000x2 106 4.45

100 1.0000x2 195 5.79

150 0.0009x + 0.4560x2 + 0.5431x3 203 6.77

200 0.1138x + 0.0931x2 + 0.7930x3 251 7.66

250 0.1371x + 0.0146x2 + 0.8482x3 309 8.54

300 0.1450x + 0.8550x3 368 9.43

350 0.1466x + 0.8534x3 427 10.35

400 0.1531x + 0.7928x3 + 0.0540x4 482 11.28

450 0.1610x + 0.7137x3 + 0.1253x4 535 12.21

500 0.1647x + 0.6666x3 + 0.1687x4 590 13.16

600
0.1700x + 0.6125x3

700 15.07
+0.1955x4 + 0.0219x5

A. Optimization procedure

The goal is to find the optimal slot count M and a

polynomial L(x) in order to minimize the Eb/N0 under the

maximum error probability allowed.

The optimization procedure is conducted separately for

every user count and consists of two sub-procedures. The first

one is a constrained local minimum search with respect to L
coefficients and the number of slots used in the system. The

constraints are formed by

• Li ≥ 0 ∀i = 1, . . . , Lmax,

• L(1) = 1

The error probability is minimized under fixed Eb/N0 at this

step. As soon as constrained local minimum search procedures

can search the local minimum only, one need to run multiple

optimization procedures starting from different random initial

points within constraints.

The second sub-procedure is to find a minimum Eb/N0 that

satisfies maximum allowed error probability Pe. We expect the

error probability at the optimal configuration to be a monotonic

function of Eb/N0 and use a binary search.

The numerical experiment results show that L(x) behaves

smoothly when varying the number of users. This means that

a global minimum is found at every optimization point. Note,

that the error probability has multiple local minimums, because

the slot count changes sharply at several points.

B. Simulation results

Interference cancellation algorithm was tested via Gaussian

MAC Monte Carlo simulations. The result of a single run is a

set of slots and the number of simultaneous transmissions (or

collision index) for each slot. Each user selects the number of

transmissions in accordance to L(x) and then selects particular

non-coinciding slots from uniform distribution during each

run. The same Eb/N0 is assumed for all slots.

The decoding is done in accordance to Algorithm 1. The

only thing we need to explain is how we resolve the collisions.

Error probability is set to 1 if the number of simultaneous

transmissions within some slot exceeds the threshold (T ∈
{1, 2, 4}). If the order of collision is less or equal to T ,

then the error probability is calculated independently for each

transmitted message in a slot in accordance to finite length

random coding bound from [1].
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