
MoNet: Moments Embedding Network

Mengran Gou1 Fei Xiong2 Octavia Camps1 Mario Sznaier1
1Electrical and Computer Engineering, Northeastern University, Boston, MA, US

2Information Sciences Institute, USC, CA, US
{mengran, camps, msznaier}@coe.neu.edu

feixiong@ads.isi.edu

Abstract

Bilinear pooling has been recently proposed as a feature
encoding layer, which can be used after the convolutional
layers of a deep network, to improve performance in mul-
tiple vision tasks. Instead of conventional global average
pooling or fully connected layer, bilinear pooling gathers
2nd order information in a translation invariant fashion.
However, a serious drawback of this family of pooling lay-
ers is their dimensionality explosion. Approximate pooling
methods with compact property have been explored towards
resolving this weakness. Additionally, recent results have
shown that significant performance gains can be achieved
by using matrix normalization to regularize unstable higher
order information. However, combining compact pooling
with matrix normalization has not been explored until now.

In this paper, we unify the bilinear pooling layer and
the global Gaussian embedding layer through the empir-
ical moment matrix. In addition, with a proposed novel
sub-matrix square-root layer, one can normalize the output
of the convolution layer directly and mitigate the dimen-
sionality problem with off-the-shelf compact pooling meth-
ods. Our experiments on three widely used fine-grained
classification datasets illustrate that our proposed archi-
tecture MoNet can achieve similar or better performance
than G2DeNet . When combined with compact pooling tech-
nique, it obtains comparable performance with the encoded
feature of 96% less dimensions.

1. Introduction
Embedding local representations of an image to form a

feature that is representative yet invariant to nuance noise
is a key step in many computer vision tasks. Before the
phenomenal success of deep convolutional neural networks
(CNN) [18], researchers tackled this problem with hand-
crafted consecutive independent steps. Remarkable works
include HOG [6], SIFT [24], covariance descriptor[30],
VLAD[14], Fisher vector [26] and bilinear pooling [3]. Al-

Table 1. Comparison of 2nd order statistic information based neu-
ral networks. Bilinear CNN (BCNN) only has 2nd order infor-
mation and does not use matrix normalization. Both improved
BCNN (iBCNN) and G2DeNet take advantage of matrix normal-
ization but suffer from large dimensionality because they use the
square-root of a large pooled matrix. Our proposed MoNet, with
the help of a novel sub-matrix square-root layer, can normalize the
local features directly and reduce the final representation dimen-
sion significantly by substituting the fully bilinear pooling with
compact pooling.

1st order Matrix Compact
moment normalization capacity

BCNN [22, 9]

iBCNN [21]

G2DeNet [33]

MoNet

though CNNs are trained from end to end, they can be also
viewed as two parts, where the convolutional layers are fea-
ture extraction steps and the later fully connected (FC) lay-
ers are an encoding step. Several works have been done
to explore substituting the FC layers with conventional em-
bedding methods in both two-stage fashion [4, 11] and end-
to-end trainable way [22, 13].

Bilinear CNN was first proposed by Lin et al. [22] to
pool the second order statistics information across the spa-
tial locations. Bilinear pooling has been proven to be suc-
cessful in many tasks, including fine-grained image classifi-
cation [16, 9], large-scale image recognition [20], segmen-
tation [13], visual question answering [8, 34], face recog-
nition [28] and artistic style reconstruction [10]. Wang et
al. [33] proposed to also include the 1st order information
by using a Gaussian embedding. It has been shown that
the normalization method is also critical to these CNNs
performance. Two normalization methods have been pro-
posed for the bilinear pooled matrix, M = 1

nXTX, where
X ∈ Rn×C represents the local features. On one hand,

1

ar
X

iv
:1

80
2.

07
30

3v
1

 [
cs

.C
V

]
 2

0
Fe

b
20

18

…

CNN
Sub-matrix
square-root

W⨉H⨉C W⨉H⨉(C+1)

Homogenous
mapping

W⨉H⨉(C+1)

(C+1)⨉(C+1)

…

D

… …sgnsqrt L2norm

sgnsqrt L2norm

classifier

k

classifier

kMatrix normalization

Element
normalization

OR

Figure 1. Architecture of the proposed moments-based network MoNet. With the proposed sub-matrix square-root layer, it is possible to
perform matrix normalization before bilinear pooling or further apply compact pooling to reduce the dimensionality dramatically without
undermining performance.

because M is Symmetric Positive Definite (SPD), Ionescu
et al. [13] proposed to apply matrix-logarithm to map the
SPD matrices from the Riemannian manifold to an Eu-
clidean space following log(M) = UM log(SM)UT

M with
M = UMSMUT

M . On the other hand, Wang et al. [33, 21]
proposed matrix-power to scale M non-linearly with Mp =
UMSp

MUT
M . In both works, matrix-power was shown to

have better performance and numerically stability than the
matrix-logarithm. In addition, Li et al. [20] provided theo-
retical support on the superior performance of matrix-power
normalization in solving a general large-scale image recog-
nition problem. Therefore, we propose to also integrate the
matrix-power normalization into our MoNet architecture.

A critical weakness of the above feature encoding is the
extremely high dimensionality of the encoded features. Due
to the tensor product1, the final feature dimension is C2

where C is the number of feature channels of the last con-
volution layer. Even for relatively low C = 512 as in VGG-
16 [29], the dimensionality of the final feature is already
more than 260K. This problem can be alleviated by us-
ing random projections [9], tensor sketching [9, 5], and the
low rank property [16]. However, because the matrix-power
normalization layer is applied on the pooled matrix M, it
is difficult to combine matrix normalization and compact
pooling to achieve better performance and reduce the final
feature dimensions at the same time.

In this paper, we re-write the formulation of G2DeNet
using the tensor product of homogeneous padded local fea-
tures to align it with the architecture of BCNN so that the
Gaussian embedding operation and the bilinear pooling are
decoupled. Instead of working on the bilinear pooled ma-
trix M, we derive the sub-matrix square-root layer to per-
form the matrix-power normalization directly on the (in-
)homogeneous local features. With the help of this novel

1We show that the Gaussian embedding can be written as a tensor prod-
uct in sec. 3.2.1

layer, we can take advantage of compact pooling to approx-
imate the tensor product but with much fewer dimensions.

The main contributions of this work are three-fold:

• We unify the G2DeNet and bilinear pooling CNN us-
ing the empirical moment matrix and decouple the
Gaussian embedding from the bilinear pooling.

• We propose a new sub-matrix square-root layer to di-
rectly normalize the features before bilinear pooling
layer, which makes it possible to reduce the dimen-
sionality of the representation using compact pooling.

• We derive the gradient of the proposed layer using
matrix back propagation so that the whole proposed
moments-based network “MoNet” architecture can be
optimized jointly.

2. Related work
Lasserre et al. [19] proposed to use the empirical mo-

ment matrix formed by explicit in-homogeneous polyno-
mial kernel basis for outlier detection. In [12], the empir-
ical moments matrix was applied as a feature embedding
method for the person re-identification problem and it was
shown that the Gaussian embedding [23] is a special case
when the moment matrix order equals to 1. However, both
of these works focus on a conventional pipeline and did not
bring it to modern CNN architectures.

Ionescu et al. [13] introduced the theory and practice
of matrix back-propagation for training CNNs, which en-
able structured matrix operations in deep neural networks
training. Both [21] and [33] used it to derive the back-
propagation of the matrix square-root and matrix logarithm
for a symmetric matrix. Li et al. [20] applied a general-
ized p-th order matrix power normalization instead of the
square-root. In our case, since we want to apply the ma-
trix normalization directly on a non-square local feature ma-

trix, we cannot plug-in the equation directly from previous
works.

Low dimension compact approximation of bilinear pool-
ing has been explored recently. Gao et al. [9] bridged the
bilinear pooling and a linear classifier with a second order
polynomial kernel and adopted the off-the-shelf kernel ap-
proximation methods Random Maclaurin [15] and Tensor
Sketch [27] to pool the local features in a compact way.
Cui [5] generalized this approach to higher order polynomi-
als with Tensor Sketch. By combining with bilinear SVM,
Kong et al. [16] proposed to impose a low-rank constrain to
reduce the number of parameters. However, none of these
approaches can be easily integrated with matrix normaliza-
tion because of the absence of a bilinear pooled matrix.

3. MoNet
The overview of the architecture of the proposed MoNet

network is shown in Fig. 1. In this section, we will detail
the design for each block.

For an input image I, the output of the last convolution
layer after the ReLU X, consists of local features xi, across
spatial locations i = 1, 2, . . . , n. Then, we map them to ho-
mogeneous coordinates by padding with an extra dimension
with 1 and divide all elements by

√
n. After that, a proper

sub-matrix square-root normalization is applied. Finally, a
compact bilinear pooling layer pools all n features across
all spatial locations, followed by element-wise square-root
regularization and `2 normalization before the final fully-
connected layer.

3.1. Homogeneous mapping layer

Assume X ∈ Rn×C corresponding to n features with di-
mension C and n > C. The homogeneous mapping of X
is nothing but padding an extra dimension 1. For the sim-
plicity of the following layers, instead of applying the con-
ventional bilinear pooling layer as in [22], we also divide
the homogeneous feature by the square-root of the number
of samples. Therefore, we have the forward equation of the
homogeneous mapping layer as

X̃ =
1√
n

[1|X] ∈ Rn×(C+1) (1)

The tensor product of X̃ can be written as

M = X̃T X̃ = [
1 µ
µT 1

nXTX
] (2)

where µ = 1
n

∑n
1 X. Because of 1

nXXT = Σ+µµT , Eq. 2
is the Gaussian embedding method used in G2DeNet [33].
One can also show that the conventional bilinear pooling
layer is equal to the tensor product of the in-homogeneous
feature matrix.

3.2. Sub-matrix square-root layer

3.2.1 Forward propagation

Since both works [33, 21] showed with extensive exper-
iments that the matrix square-root normalization is better
than the matrix logarithm for performance and training sta-
bility, we also choose the matrix square-root normalization
of M:

M̃ = UMS
1
2

MUT
M (3)

where M = UMSMUT
M . Since we have

M = X̃T X̃ = VSTUTUSVT (4)

where X̃ = USVT . Given UTU = I and STS is a square
matrix, we can re-write Eq. 3 w.r.t. to X̃ as

M̃ = V(STS)
1
2 VT (5)

Since X̃ ∈ Rn×(C+1), n > C + 1 , we can decompose S as

S = AS̃,A = [I|0]T (6)

where S̃ ∈ R(C+1)×(C+1) is a square diagonal matrix.
Since we want the output of this layer Y to satisfy M̃ =
YTY, we can set Y = AS̃VT . Because for most mod-
ern CNNs, n cannot be much greater than C and the feature
after ReLU tends to be sparse, X̃ can easily go to rank de-
ficient. Therefore, we only use the non-zero singular values
and singular vectors. Then, the forward equation of the sub-
matrix square-root layer can be written as

Y = A:,1:eS̃
0.5
1:eV

T
:,1:e (7)

where e is the index of the smallest singular value greater
than ε 2.

3.2.2 Backward propagation

We will follow the matrix back propagation techniques pro-
posed by Ionescu et al. [13] to derive the equation of the
back propagation path for the sub-matrix square-root layer.

Let X̃ = USVT and U ∈ Rn×n. We can form U
using block decomposition as U = [U1|U2] with U1 ∈
Rn×(C+1) and U2 ∈ Rn×(n−C−1). The partial derivatives
between a given scalar loss L and X̃ are

∂L

∂X̃
=DVT + U(

∂L

∂S
−UTD)diagV

T +

2US(KT ◦
(

VT (
∂L

∂V
−VDTUS))

)

sym

VT

(8)

2We will omit the subscript in the following for a concise notation

where ◦ represents element-wise product, (Q)sym
.
=

1
2 (QT + Q) and

D =

(
∂L

∂U

)

1

S̃−1 −U2

(
∂L

∂U

)T

2

U1S̃
−1 (9)

Kij =

{
1

s2i−s2j
i 6= j

0 i = j
(10)

From Eq. 7, we can compute the variation of Y as

dY =
1

2
AS̃− 1

2 dS̃VT + AS̃
1
2 dVT (11)

Based on the chain rule, the total variation can be written as

∂L

∂Y
: dY =

1

2

∂L

∂Y
: AS̃− 1

2 dS̃VT +
∂L

∂Y
: AS̃

1
2 dVT

(12)
where : denotes the inner-product. After re-arrangement
with the rotation properties of inner-product, we re-write
the above equation as

∂L

∂Y
: dY =

1

2
S̃− 1

2 AT ∂L

∂Y
V : dS̃ + S̃

1
2 AT ∂L

∂Y
: dVT

(13)
Therefore, we have

∂L

∂S
= A

∂L

∂S̃
=

1

2
AS̃− 1

2 AT ∂L

∂Y
V (14)

∂L

∂V
= (

∂L

∂VT
)T = (

∂L

∂Y
)TAS̃

1
2 (15)

Finally, substituting Eq. 14 and Eq. 15 into Eq. 8 and con-
sidering ∂L

∂U = 0, we have

∂L

∂X̃
=U

(
1

2
AS̃− 1

2 AT ∂L

∂Y
V+

2S

[
KT ◦

(
VT

(
∂L

∂Y

)T

AS̃
1
2

)]

sym


VT

(16)

3.3. Compact pooling

Following the work in [9, 8], we adopt the Tensor Sketch
(TS) method to approximate bilinear pooling, followed by a
linear classifier because it has better performance and needs
less computational time and space. Building up on count
sketch and FFT, one can generate a tensor sketch function
s.t. 〈TS1(x), TS2(y)〉 ≈ 〈x, y〉2.

The back-propagation of a TS layer is given by in [9].
As shown in Tab. 2, with the techniques mentioned

above, the proposed MoNet is capable to solve the prob-
lem with much less computation and memory complexity
than the other BCNN based algorithms.

Algorithm 1 Tensor Sketch approximation pooling
Require: x, projected dimension D

1: Generate randomly picked but fixed two pair hash func-
tions ht ∈ RD and st ∈ RD where t = 1, 2 and
ht(i), st(i) are uniformly drawn from {1, 2, · · · , D}
and {−1,+1}, respectively

2: Define count sketch function Ψ(x, ht, st) =
[ψ1(x), ψ2(x), · · · , ψD(x)]T where ψj(x) =∑

i:ht(i)=j st(i)xi
3: Define TS(x) = FFT−1(FFT (Ψ(x, h1, s1) ◦

(Ψ(x, h2, s2))))) where ◦ denotes element-wise mul-
tiply

Figure 2. Sample images from the fine-grained classification
datasets. From left to right, each column corresponds to CUB,
Aircraft and Cars, respectively.

4. Experiments
Aligned with other bilinear CNN based papers, we also

evaluate the proposed MoNet with three widely used fine-
grained classification datasets. The experimental setups
and the algorithm implementation are described in detail in
Sec. 4.1.2. Then, in Sec. 4.1.1, the experiment results on
fine-grained classification are presented and analyzed.

4.1. Experimental setup

We evaluated MoNet on three widely used fine-grained
classification datasets. Different from general objection
recognition tasks, fine-grained classification usually tries to
distinguish objects at the sub-category level, such as differ-
ent makes of cars or different species of a bird. The main
challenge of this task is the relatively large inter-class and
relatively small intra-class variations.

In all experiments, the 13 convolutional layers of VGG-
16 [29] are used as the local feature extractor, and their out-
puts are used as local appearance representations. These 13
convolution layers are trained with ImageNet [7] and fine
tuned in our experiments with three fine-grained classifica-

Table 2. Dimension, computation and memory information for different network architectures we compared in this paper. H,W and C
represent the height, width and number of feature channels for the output of the final convolution layer, respectively. k and D denote
the number of classes and projected dimensions for Tensor Sketch, respectively. Numbers inside brackets indicate the typical value when
the corresponding network was evaluated with VGG-16 model [29] on a classification task with 1,000 classes. In this case, H = W =
13, C = 512, k = 1000, D = 10000 and all data was stored with single precision.

BCNN [22] iBCNN [21] iBCNN TS G2DeNet [33] MoNet MoNet TS
Dimension C2 [262K] C2 [262K] D [10K] (C+1)2 [263K] (C+1)2 [263k] D [10k]

Parameter Memory 0 0 2C 0 0 2C
Computation O(HWC2) O(HWC2) O(HW (C +D logD)) O(HWC2) O(HWC2) O(HW (C +D logD))

Classifier Memory kC2 [1000MB] kC2 [1000MB] kD [40MB] k(C + 1)2 [1004MB] k(C + 1)2 [1004MB] kD [40MB]

Table 3. Basic statistics of the datasets used for evaluation
Datasets # training # testing # classes

CUB [32] 5,994 5,794 200
Aircraft [25] 6,667 3,333 100

Cars [17] 8,144 8,041 196

tion datasets.

4.1.1 Datasets

Caltech-UCSD birds (CUB) [32] contains 200 species,
mostly north-American, of birds. Being consistent with
other works, we also use the 2011 extension with doubled
number samples.

FGVC-Aircraft Benchmark (Aircraft) [25] is a bench-
mark fine-grained classification dataset with different air-
crafts with various models and manufacturers.

Stanford cars (Cars) [17] contains images of different
classes of cars at the level of make, model and year.

We use the provided train/test splits for all three datasets.
Detailed information is given in Tab. 3 and Fig. 2 shows
sample images.

4.1.2 Different pooling methods

Bilinear pooling (BCNN): The VGG-16 based BCNN [22]
is utilized as the baseline pooling method, which applies
the tensor product on the output of the conv5 3 layer with
ReLU activation. The dimension of the final representation
is 512×512 ≈ 262K and the number of the linear classifier
parameters is k × 262K, where k is the number of classes.
To be fair, the latest results from the authors’ project page
[1] are compared.

Improved bilinear pooling (iBCNN): In order to com-
pare the iBCNN [21] with compact pooling technique, it
is re-implemented with the sub-matrix square-root layer
followed by the bilinear pooling layer. As explained in
Sec.3.2.1 it is equivalent to the originally proposed bilin-
ear pooling and matrix normalization layers [21]. Note that,
the originally proposed iBCNN is without compact pooling
and has the same dimensionality as BCNN. The classifi-
cation performance from both the paper [21] and our re-
implementation are reported.

Global Gaussian distribution embedding (G2DeNet):
Instead of fully bilinear pooling, G2DeNet pools the lo-
cal features with a global Gaussian distribution embedding
method, followed by a matrix square-root normalization.
Since it includes the first order moment information, the di-
mension of the final feature is slightly greater than BCNN
and iBCNN. The experiment results with “w/o BBox” con-
figuration [33] are compared in this paper.

Proposed moment embedding net (MoNet): We im-
plemented the proposed MoNet algorithm with structure as
shown in Fig. 1 and fine-tuned the whole network in an end-
to-end fashion. When using bilinear pooling, the feature di-
mensionality, computation and memory complexity are the
same as G2DeNet.

Tensor Sketch compact pooling (TS): When building
the network with compact pooling, the TS layer [9] is ap-
plied after the sub-matrix square-root layer. The projection
dimension D is selected empirically for both iBCNN and
MoNet.

4.1.3 Implementation details

Since the large enough number of samples is important to
estimate stable and meaningful statistic moment informa-
tion. The input images are resized to 448 × 448 in all the
experiments, which produces a 28 × 28 × 512 local fea-
ture matrix after conv5 3 for each image. Following com-
mon practice [33, 5], we first resize the image with a fixed
aspect-ratio, such as the shorter edge reaches to 448 and
then utilized a center crop to resize the image to 448× 448.
During training, random horizontal flipping was applied as
data augmentation. Different from [21] with VGG-M, no
augmentation is applied during testing.

To avoid rank deficiency, the singular value threshold σ
was set to 10−5 for both forward and backward propagation,
which results in 10−10 for the singular value threshold of
the tensor product matrix. The projected dimension in Ten-
sor Sketch was fixed to 104, which satisfies C < D � C2.

As suggested by [21, 33], all pooling methods were
followed by an element-wise sign kept squre-root y =
sign(y)

√
y and `2 normalization y = y/||y||. For the sake

of a smooth training, the element-wise square-root [33] is
also applied on local appearence features.

Table 4. Experiment results on fine-grained classification. Bilinear and TS represent fully bilinear pooling and Tensor Sketch compact
pooling respectively. The best performance in each column is marked in red.

CUB Airplane Car
Bilinear TS Bilinear TS Bilinear TS

BCNN [22, 9] 84.0 84.0 86.9 87.2 90.6 90.2
iBCNN [21] 85.8 - 88.5 - 92.0 -

iBCNN re-implementation 86.0 85.7 86.7 86.7 90.5 90.3
G2DeNet [33] 87.1 - 89.0 - 92.5 -

MoNet 86.4 85.7 89.3 88.1 91.8 90.8
Other higher KP [5] - 86.2 - 86.9 - 92.6

order methods HOHC [2] 85.3 88.3 91.7
State-of-the-art MA-CNN [35] 86.5 89.9 92.8

The weights of the VGG-16 convolutional layers are
pretrained on ImageNet classification dataset. We first
warm-started by fine-tuning the last linear classifier for 300
epochs. Then, we fine-tuned the whole network end-to-end
with the learning rate as 0.001 and batch size as 16. The
momentum was set to 0.9 and the weight decay was set to
0.0005. Most experiments converge to local optimum after
50 epochs.

The proposed MoNet is implemented with MatConvNet
[31] and Matlab 2017a. Because of the numerical instability
of SVDs, as suggested by Ionescu et al. [13], the sub-matrix
square-root layer is implemented on CPU with double pre-
cision. The whole network is fine-tuned on a Ubuntu PC
with 64GB RAM and Nvidia GTX 1080 Ti.

4.1.4 Experimental results

As shown in Tab. 4, the classification accuracy of each net-
work are presented in a row. Bilinear and TS denote fully
bilinear pooling and tensor sketch compact pooling respec-
tively.

Comparison with different architectures: Based
on [21], matrix normalization consistently improves the
performance by 1-2% on all three datasets. Our re-
implementation achieves slightly better classification accu-
racy (0.2%) on CUB dataset but performs worse on Air-
plane and Car datasets. We believe it is caused by the dif-
ferent approaches used to deal with rank deficiency. In our
implementation, the singular value is hard thresholded as
shown in Eq. 7, while iBCNN [21] deal with the rank de-
ficiency by adding 1 to all the singular values, which is a
relatively very small number comparing to the maximum
singular value (106). By adding the 1st order moment infor-
mation, G2DeNet outperforms iBCNN by around 1%, on all
three datasets. By re-writing the Gaussian embedding with
tensor product of homogeneous padded local features, our
proposed MoNet can obtain similar or slightly better classi-
fication accuracy when comparing with G2DeNet. Specif-
ically, the classification accuracy of MoNet is 0.3% higher
on Airplane dataset, but 0.7% lower on both CUB and Car

datasets.

Comparison with fully bilinear pooling and compact
pooling: As shown in [9], compact pooling can achieve
similar performance compared to BCNN, but with only
4% of the dimensionality. We also see a similar trend on
re-implemented iBCNN network. The classification accu-
racy difference between the re-implemented iBCNN with
its compact pooling version is less than 0.3% on all three
datasets. However, the performance gaps are relatively
greater when we compare the different pooling schemes
on MoNet. Bilinear pooling improve the classification ac-
curacy by 0.7%, 1.2% and 1% than compact pooling on
CUB, Airplane and Car datasets, respectively. However,
with compact pooling, the dimensionality of the final rep-
resentation is 96% smaller. Although the final fully bilin-
ear pooled representation dimensions of iBCNN and MoNet
are roughly the same, MoNet utilizes more different order
moments, which requires more count sketch projections to
approximate it. Thus when fixing D = 10, 000 for both
iBCNN and MoNet, the performance of MoNet with com-
pact pooling is degraded.

Comparison with other methods: [5] and [2] are two
other recent works that also take into account higher order
statistic information. Cui et al. [5] applied Tensor Sketch
repetitively to approximate up to 4th order explicit polyno-
mial kernel space in a compact way. They obtained better
results for CUB and Car datasets compared against other
compact pooling results, but notably worse (1.2%) on the
Airplane dataset. It may result from two factors. First, di-
rectly utilizing higher order moments without proper nor-
malization leads to numerically instabilities. Second, ap-
proximating higher order moments with limited number of
samples is essentially an ill-posed problem. Cai et al. [2]
only utilize higher order self-product terms but not the in-
teraction terms, which leads to worse performance in all
three datasets. Finally, the state-of-the-art MA-CNN [35]
achieves slightly better results on Airplane and Car datasets.

5. Conclusion
Bilinear pooling, as a recently proposed 2nd order mo-

ment pooling method, has been shown success in several vi-
sion tasks. G2DeNet extends it by adding 1st order moment
information and matrix normalization. One key limitation
of these approaches is the high dimension of the final rep-
resentation. To resolve this, compact pooling methods have
been proposed to approximate the bilinear pooling. How-
ever, the Gaussian embedding formation entangles the bi-
linear pooling and makes the compact pooling utilization
non-trivial. In this paper, we reformulated the Gaussian
embedding using the empirical moment matrix and decou-
pled the bilinear pooling step out. With the help of a novel
sub-matrix square-root layer, our proposed network MoNet
can take advantages among different order moments, ma-
trix normalization as well as the compact pooling. Ex-
periments on three widely used fine-grained classification
datasets demonstrate that MoNet can achieve similar or bet-
ter performance when comparing with G2DeNet and retain
comparable results with only a 4% dimension number by
compact pooling.

References
[1] Bilinear CNNs project. http://vis-www.cs.umass.

edu/bcnn/. Accessed: 2017-11-14. 5
[2] S. Cai, W. Zuo, and L. Zhang. Higher-order integration of

hierarchical convolutional activations for fine-grained visual
categorization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 511–520,
2017. 6

[3] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. Computer
Vision–ECCV 2012, pages 430–443, 2012. 1

[4] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3828–3836, 2015. 1

[5] Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie.
Kernel pooling for convolutional neural networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2017. 2, 3, 5,
6

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893. IEEE, 2005. 1

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009. 4

[8] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,
and M. Rohrbach. Multimodal compact bilinear pooling
for visual question answering and visual grounding. arXiv
preprint arXiv:1606.01847, 2016. 1, 4

[9] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact
bilinear pooling. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 317–326,
2016. 1, 2, 3, 4, 5, 6

[10] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576, 2015. 1

[11] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale
orderless pooling of deep convolutional activation features.
In European conference on computer vision, pages 392–407.
Springer, 2014. 1

[12] M. Gou, O. Camps, M. Sznaier, et al. mom: Mean of mo-
ments feature for person re-identification. 2

[13] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix back-
propagation for deep networks with structured layers. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2965–2973, 2015. 1, 2, 3, 6

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-
ing local descriptors into a compact image representation.
In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 3304–3311. IEEE, 2010. 1

[15] P. Kar and H. Karnick. Random feature maps for dot product
kernels. In International conference on artificial intelligence
and statistics, pages 583–591, 2012. 3

[16] S. Kong and C. Fowlkes. Low-rank bilinear pooling for fine-
grained classification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 1, 2, 3

[17] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-
resentations for fine-grained categorization. In Proceedings
of the IEEE International Conference on Computer Vision
Workshops, pages 554–561, 2013. 5

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012. 1

[19] J.-B. Lasserre and E. Pauwels. Sorting out typicality with the
inverse moment matrix sos polynomial. In Neural Informa-
tion Processing Systems (NIPS 2016), 2016. 2

[20] P. Li, J. Xie, Q. Wang, and W. Zuo. Is second-order informa-
tion helpful for large-scale visual recognition? In The IEEE
International Conference on Computer Vision (ICCV), Oct
2017. 1, 2

[21] T.-Y. Lin and S. Maji. Improved bilinear pooling with cnns.
In BMVC, 2017. 1, 2, 3, 5, 6

[22] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn mod-
els for fine-grained visual recognition. In The IEEE Inter-
national Conference on Computer Vision (ICCV), December
2015. 1, 3, 5, 6

[23] M. Lovrić, M. Min-Oo, and E. A. Ruh. Multivariate normal
distributions parametrized as a riemannian symmetric space.
Journal of Multivariate Analysis, 74(1):36–48, 2000. 2

[24] D. G. Lowe. Object recognition from local scale-invariant
features. In Computer vision, 1999. The proceedings of the
seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999. 1

[25] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi.
Fine-grained visual classification of aircraft. Technical re-
port, 2013. 5

[26] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. Computer
Vision–ECCV 2010, pages 143–156, 2010. 1

[27] N. Pham and R. Pagh. Fast and scalable polynomial kernels
via explicit feature maps. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247. ACM, 2013. 3

[28] A. RoyChowdhury, T.-Y. Lin, S. Maji, and E. Learned-
Miller. Face identification with bilinear cnns. arXiv preprint
arXiv: 1506.01342, 2015. 1

[29] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 2, 4, 5

[30] O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via
classification on riemannian manifolds. IEEE transactions
on pattern analysis and machine intelligence, 30(10):1713–
1727, 2008. 1

[31] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural
networks for matlab. In Proceeding of the ACM Int. Conf. on
Multimedia, 2015. 6

[32] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011. 5

[33] Q. Wang, P. Li, and L. Zhang. G2denet: Global gaussian
distribution embedding network and its application to visual
recognition. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 1, 2, 3, 5, 6

[34] Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized bi-
linear pooling with co-attention learning for visual question
answering. arXiv preprint arXiv:1708.01471, 2017. 1

[35] H. Zheng, J. Fu, T. Mei, and J. Luo. Learning multi-attention
convolutional neural network for fine-grained image recog-
nition. In Int. Conf. on Computer Vision, 2017. 6

