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Abstract    

The ridesharing economy is experiencing rapid growth and innovation. Com-

panies such as Uber and Lyft are continuing to grow at a considerable pace while 

providing their platform as an organizing medium for ridesharing services, in-

creasing consumer utility as well as employing thousands in part-time positions. 

However, many challenges remain in the modeling of ridesharing services, many 

of which are not currently under wide consideration. In this paper, an agent-based 

model is developed to simulate a ridesharing service in the Washington D.C. met-

ropolitan region. The model is used to examine levels of utility gained for both 

riders (customers) and drivers (service providers) of a generic ridesharing service. 

A description of the Individual Agent Metro-Washington Area Ridesharing 

Model (IAMWARM) is provided, as well as a description of a typical simulation 

run. We investigate the financial gains of drivers for a 24-hour period under two 

scenarios and two spatial movement behaviors. The two spatial behaviors were 

random movement and Voronoi movement, which we describe. Both movement 

behaviors were tested under a stationary run conditions scenario and a variable 

run conditions scenario.  We find that Voronoi movement increased drivers’ util-

ity gained but that emergence of this system property was only viable under var-

iable scenario conditions. This result provides two important insights: The first is 

that driver movement decisions prior to passenger pickup can impact financial 

gain for the service and drivers, and consequently, rate of successful pickup for 

riders. The second is that this phenomenon is only evident under experimentation 

conditions where variability in passenger and driver arrival rates are adminis-

tered.  
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1. Introduction 
 

Ridesharing services such as Uber and Lyft have been experiencing explosive 

growth driven by rider demand and a number of other factors in industry [1]. One 

challenge for both ride-sharing service providers as well as for their driver con-

tractors is how to maximize driver acceptance of new customers while ensuring 

drivers gain maximum utility from rides given. In other words, how to maximize 

both financial gains for the service and its drivers while ensuring maximum ser-

vice-level quality for its customers. 

Perhaps as a reflection of the growth of the ridesharing industry and of the 

aforementioned challenges, empirical research in this area is also experiencing a 

surge, exemplified by a growing number of journal publications [1-18] that ex-

plore the multidimensional challenges and opportunities produced by the wide-

spread adoption of ridesharing services. 

This paper aims to investigate spatial behavioral conditions under which driv-

ers can gain increased financial returns (utility) on their invested time, while 

simultaneously ensuring that a maximum number of potential passengers reach 

their destination. The model produced utilizes an agent-based modeling (ABM) 

framework that has the potential to be extended, expanded, and tested under many 

variable conditions. And therefore, while it would be immediately salient that 

much can and should be tested with the model, we reserve future extensions and 

testing for future papers. 

 It is worthwhile to note that the agent simulation perspective is highly suitable 

for testing spatial behaviors; when utilizing agent simulations it is considered 

trivial to create many autonomous, heterogeneous agents following one or more 

behavioral rule-sets and to simulate behaviors for various initial conditions and 

parameters without the constraints of rigid assumptions. Additionally, as will be 

shown by the results of our experimentation, other modeling techniques may not 

fully capture the true temporal dynamics of a ridesharing service because of het-

erogeneity in agent decision-making, the spatial significance to end results, and 

the variable scenario conditions under which emergent properties could arise. In 

a subsequent section, we will show the relevance of the later. 

The model described in this paper focuses on simulating drivers and riders in 

the Washington, D.C. metro region and attempts to simulate the movement of 

drivers under two spatial movement conditions.  

Ultimately, the aim of this model is to gain insight into whether drivers, riders 

and ridesharing services benefit more or less from optimized decision-making 

during the drive-pickup-drop-off lifecycle familiar to ridesharing customers, 
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while the aim of this paper is to highlight testing of some specific conditions.1 In 

later iterations of the model, an increased variety of behaviors will be investi-

gated. 

1.1 Background 

There have been a number of studies in the last few years taking aim at under-

standing ride-sharing services and carpooling schemes – each of which takes a 

different investigative position on the challenges faced by resource pooling ser-

vices as a whole [1, 22], while some consider some facet of modeling behaviors 

[3] using agent-based approaches. The majority of papers reviewed were of mod-

eling carpooling decisions as an optimization problem [7, 11, 12] and finally, 

some approaches intended to make early-stage predictions about carpooling and 

ridesharing trends [6, 9] were pre-existent in the literature. 

What becomes very clear during a topical literature review over the last few 

years is that no real attempt had been made to provide for a comprehensive rides-

haring agent-based simulation that captures prevalent dynamics; though much of 

the research attempts to understand the effects of ridesharing in general.  

For example, Cho et. al. [3] provided a full description of a hypothetical agent-

based model for a carpooling application without offering an actual build of the 

model hypothesized. The authors focused on the systemic theoretical structure of 

the proposed model, the mathematics and optimization techniques that would be 

used and the general form of social network types that could be used between the 

driver agents of said model. The same group [4] later proposed another agent-

based model – this time only based on social network interactions without 

implementation. 

Significant advances in the area of heuristics and algorithm development that 

propose better route optimization techniques have also been made over the last 

few years and this is an area where high-value and productive work has been put 

forward. For example, Pelzer et. al. [12] developed a method which aims to best 

utilize “ridesharing potential while keeping detours below a specific limit” using 

a spatial partitioning method. 

IAMWARM aims to build a foundational baseline to test a small number of 

interesting spatial problems for which answers have not been provided as of yet 

and to use the model created as the basis for future improvements, extensions, 

expansions, and experiments. We begin that endeavor by discussing our primary 

and most central question: Can ridesharing utility for both riders, drivers, and 

service be increased through varying the information-shared among agents, 

                                                           
1 The author of this paper registered with one ridesharing service in order to 

gain insight into the natural behaviors of drivers and riders of the service. A total 

of 30 trips were carried out.  
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ultimately affecting spatial movement behaviors? And if so, under what condi-

tions could one note a difference in system-level properties? 

1.2 Information Asymmetry vs Information Symmetry 

Our path is to find the simplest method of testing ridesharing utility schemes 

spatially, so we begin by discussing the problem of increased information sharing 

briefly implied in the previous section. 

For our specific context, we define information-asymmetry as a lack of infor-

mation regarding the location of other drivers by other drivers. That is—drivers, 

in an information-asymmetric service, would not be given the locations of other 

drivers, or riders2, with exception of a single potential rider within their vision’s 

radius who has just requested a pick-up, and thus without that information and 

without clear route planning driven by spatial demographics, drivers would 

simply move about randomly hoping to ‘luck out’ and be near a potential cus-

tomer when they request a pickup. This is currently the method by which all rides-

haring services manage their respective platforms. Drivers of those services are 

not given location information of other drivers, and must move about based on 

randomness, their own past experiences and information gleaned from their social 

networks; and so ultimately, must make their spatial movement and positioning 

decisions based on either luck or experience gained from learning. We will omit 

learning behavior from this iteration of the model.  

Symmetry represents a condition such that driver agents have all the available 

information about other driver agents and rider agents. For this model however 

we bound true information symmetry to a localized version that limits driver 

agents’ knowledge to the nearest driver agent and only to the nearest rider agent. 

The comparison between information asymmetry and symmetry which will be 

established by the comparison between random movement and Voronoi 

movement will be applied such that agents have no vision for information 

asymmetry scenario runs (no knowledge of the position of any other driver) and 

have only local vision in the information symmetry variation of the model 

(knowledge of the nearest driver agent’s position). This modification is a direct 

result of the platform chosen for the development of the simulation and its ability 

to perform, and due to a lack of a clear theoretical or even observed cognitive 

standard to base spatial behaviors upon in this case. 

This model will investigate how drivers would benefit from having local in-

formation about peer drivers available in real time using a hypothesized spatial 

                                                           
2 We will later explain our terminology in detail, but for now we define a driver 

as an agent who is picking up a rider from one location on our model’s spatial 

grid to another. Once a rider is “picked up” we will refer to him as a passenger. 

In our model a passenger is no longer an agent but is a data point in the driver 

agent’s attributes list. 
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behavior and whether that additional information would maximize driver utility. 

And, though there are a number of differing spatial behaviors that can be consid-

ered, we will only test one behavior which we theorize would result from access 

to that information. We will extend this model in future iterations with more be-

haviors. 

 

 

Fig. 1. Shows an example of a Euclidean space with generator points and their corresponding 

Voronoi polygons. The polygons are “emerged” from the collective positions of the generator 

points such that all points in each area corresponding to a polygon are closer to the 

corresponding generator point than to any other point [20]. 

We call the assumed behavior resulting from information symmetry Voronoi 

behavior or Voronoi movement. We propose this behavior using the spatial con-

cept of a Voronoi polygon [19] as a base. A Voronoi polygon or diagram—as it 

is commonly known—is a partitioning of a spatial plane such that “all locations 

in the Voronoi polygon are closer to the generator point of that polygon than any 

other generator point…in Euclidian plane” [18]. In other words, it is the space 

such that maximum territory is created for each generator point without 

overlapping the area belonging to any other generator point. Figure 1. shows an 

illustration of generator points and their respective Voronoi polygons. 

Voronoi movement essentially amounts to driver agents receiving location in-

formation about the nearest driver agent and moving away from them so as to 

increase the potential of picking up a new customer and reducing local competi-

tion—a diverging topological behavior where each agent maximizes the distance 

and the territory between self and all other agents. This viewpoint is a corollary 

to the Voronoi polygon—from the view of the generator point (agent) not the 

adjacent spatial points in the polygon, hence we call this behavior Voronoi be-

havior. 

We compare Voronoi movement behavior with a random movement pattern 

where driver agents move randomly across our spatial grid until they are close 

enough to a rider agent to execute a pickup. The random movement behavior is a 
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reflection of driver agents having no knowledge of where other drivers and where 

customers might be. In this iteration of the model, we assume agents do not learn. 

In a high-fidelity model, it would likely be the case that drivers would learn 

about rider behaviors and adjust their own behaviors accordingly. However, as 

you will see in the results section, even with this simplification, our baseline 

model offers interesting conclusions nonetheless. Finally, rider (potential passen-

ger) agents do not move in this iteration of the model but enter the simulation at 

a spatially random location on the Washington, D.C. geographic lattice. Figure 2 

and 3 show the graphical representation of the model which was developed in 

NetLogo [20] and subsequent sections will discuss model design particulars.  

 

Fig. 2. This is the graphical representation of the model. Yellow agent types (person icons) are 

rider agents. Red (car icons) are driver agents. When a driver agent performs a pickup, their 

color turns from red to white to display that they are no longer available. 
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Fig. 3. This model was implemented in NetLogo 5.3 and utilized open access data from the 

Washington, D.C. government website. In this figure, we show the graphical user interface of 

the model. Inputs, such as the number of drivers and the number of potential riders active at any 

moment are complemented by outputs on the far right such as profitability, average cash on 

hand, and passenger pick-ups.  
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2. Model & Methods 
 

IAMWARM was implemented in NetLogo 5.3 and utilized the GIS extension 

native to the platform to import map and GIS data into the model. The model’s 

spatial configuration was based on a road network imported from the Washing-

ton, D.C. government Open Data Project website3, which included highly accu-

rate, editable shapefiles. The data included feature labels for roads and intersec-

tions. These features are used in the instantiation and location initialization of 

agents, and for certain critical agent behaviors to be discussed in later sections of 

this paper.  

At the current iteration of the model we chose not to include additional layers 

of geographic information for simplicity (only the road network was included), 

but in future iterations utilizing the Open Data project more broadly can be ad-

vantageous in increasing the efficacy of our model specifically by adding more 

spatial configuration data. Figure 4. provides a complete graphical summary of 

the model’s logic. 

The road network was imported to NetLogo and an internal spatially-equiva-

lent configuration was assigned (labeling). All roads were labeled internally by a 

variable to help identify spatial cells that contained a road, versus spatial cells 

that did not. This would later be an important step when designing the movement 

choices of agents in the simulation since all movement and agent entry will occur 

on road cells as one might expect. 

The model contains two agent types: drivers and riders. Drivers can move 

across the model space, but only on cells that contain a road, while riders do not 

move, but can only be initialized on roads, specifically intersections. 

The movement of the driver agents was designed to be based on a direct line 

of sight—that is—although the drivers must always remain on roads, we assume 

that following actual traffic routes would not provide a negligible difference in 

destination arrival times. This is mainly due to the size of our spatial lattice which 

numbers in the several thousand. Moreover, for our research goals, it suffices that 

driver agents move in a direct path to their destinations once rider agents are 

picked up. In future iterations of the model, traffic and road direction movement 

could be taken into account to create a greater sense of realism. For now, driver 

agents move on roads in a direct fashion to their destinations. 

2.1 Agent Behaviors 

Before we discuss the specifics of agents used in our model we define the ter-

minology used in the model. We define driver agents as those agents who are 

intending to pick up a rider. A rider agent is an agent who has been instantiated 

and can be picked up by a driver. Once a driver agent picks up a rider agent, the 

                                                           
3 www.dcogc.org 
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rider agent becomes a passenger. Passengers are not agents and do not interact 

with their environment. In other words, riders who become passengers simply 

become an attribute of the driver agents, releasing with them certain data points 

which are then used by the driver agents post pick-up. This terminology will be 

used throughout the model description. 

 

 

Fig. 4.  A complete breakdown of the model’s process is presented in this figure. The area 

labeled inside the yellow box is where the majority of driver agent behavior takes place. The 

small orange box at the top of the diagram represents the model moving to the next time 

unit/time cycle. Note that the majority of rider agent interactions are included as part of the 

driver agent behaviors since much of the rider agent behaviors in the model is restricted to 

entering or leaving the simulation.  
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2.2 Driver Agents 

Driver agents are instantiated in the initial setup of the model according to a user 

input parameter and a random distribution set to uniform properties. Spatially, the 

driver agents are initialized at random road intersections of the geospatial model, 

and according to a randomization test score that allows for a greater randomized 

spatial distribution of agent objects. Driver agents are also instantiated throughout 

the model run according to the aforementioned user set parameter. Those agents 

are also instantiated at road intersections and their rates of arrival are also set 

according to a user set parameter. 

Driver agents move from one spatial cell to another by first checking whether 

a road exists in the cell ahead. If it does, then an agent may move to that cell. If 

no road exists in that cell then for the random movement behavior without an 

active passenger procedure, agents are instructed to rotate a random number of 

degrees between 0 and 360 and repeat the process. 

For driver agents who are carrying a passenger, the process is the same. How-

ever, the randomized degree value is set to be between -45 and +45 degrees if a 

road is not found directly in the heading of the driver agent. By doing so, we 

ensure that drivers are constantly moving in the direction of their destination, but 

are still able to overcome the majority of obstacles in their way, such as the lack 

of available roads to travel on.  This method does have grounds in reality in that 

drivers who may not necessarily know precisely how to optimize their routes, 

may in general, pick a random route that they know to be in the general direction 

of their destination. In future iterations of the model a more advanced pathfinding 

algorithm could be adopted such as the A* pathfinding algorithm, but for our 

purposes, we assume that the difference is negligible and it is trivial to show so 

through a model run.4 

Driver agents are assigned a number of attributes at instantiation and some are 

assigned as the model is run situationally. Attributes include energy level, cash-

on-hand, time driven, current driver destination (if carrying a passenger), riders 

who are nearby, current passenger id, time the current passenger has been on a 

trip, how many riders the driver has picked up, and how many passengers the 

driver has dropped off, as well as a Boolean passenger variable indicating if the 

driver agent is currently carrying a passenger. The attributes are more critical to 

the progress of the model at varying times through simulation runs, depending on 

the active phase of the drive-pickup-drop-off-drive cycle of the driver agents. 

Therefore, a deeper explanation of the attributes and their relevance is appropriate 

at this time. 

We assign a level of energy to every driver agent set to be a random number 

following a normal distribution between a 4 and 8-hour range translated into 

model time units (which is set to be at 1 minute per time unit) by estimation. The 

                                                           
4 For a video of a typical model run, please visit 

https://www.youtube.com/watch?v=apJEvDl4aqc 
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underlying assumption is that the majority of drivers will only be able to drive, 

regardless of their level of success, for a period determined by time availability 

and physical and/or mental fatigue. This is an appropriate assumption and the 

Gaussian shape of this distribution is not far-fetched. Time-driven is a variable 

that counts the amount of time driven by each driver and is used to display and 

calculate the model’s summary statistics. 

Cash-on-hand is the variable attribute that stores the accumulation of fares 

each driver agent has gained, as well as the variable in which cash is deducted 

(vehicle and transportation costs) for drivers who are not carrying active passen-

gers. In other words, it is the driver agents’ total utility and financial gain at any 

given time-period. 

Pick-up count and drop-off count are variables that store the total number of 

riders successfully picked up from their initialized location and successfully 

dropped off at their destination, respectively. The Boolean passenger variable 

shows whether the current driver is currently seeking a rider or already has a pas-

senger (as discussed earlier, riders that receive a pickup by a driver agent become 

‘passengers’—simply an attribute of the driver agent) and is used in a number of 

important model mechanics. Passenger-id is a variable that stores the id of the 

rider currently within the driver agent’s vehicle when she becomes a passenger. 

It is equivalent to the driver asking for the rider’s name prior to pick-up and is 

used in the verification process of the model to ensure that drivers are successfully 

picking up intended riders. 

Variables for nearby riders and nearby drivers were also implemented as at-

tributes of the driver agents. The first being the number, and id of any nearby 

riders waiting for pickup. This attribute is used to evaluate whether there are any 

riders nearby available for pickup. The second is whether there are any nearby 

driver agents, and is used in the Voronoi movement mechanism. The details of 

the Voronoi movement mechanism will be discussed in a subsequent section. 

2.3 Rider Agents 

Rider agents are instantiated at initialization of the model at random locations 

(intersections). Rider agents do not move but await their intended pick up in the 

same location. This is in line with expected behaviors of ridesharing service cus-

tomers. Rider agents are instantiated utilizing a user-set input and a random var-

iable to allow for some stochasticity in the model runs. Spatially, and in a similar 

fashion to driver agents, they are placed randomly across the available intersec-

tions of the model’s geographic configuration, and only on road cells.  

Rider agents are instantiated throughout the model’s runs but at a rate per time 

unit user fixed parameter, unlike driver agents who typically remain in the 

model’s space until they decide to leave (randomly) or because they have ex-

hausted their energy variable and are replaced stochastically up to a maximum 

user set parameter. In other words, while the number of driver agents is set by a 
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maximum capacity global (exogenous) variable, the number of rider agents is set 

to be a rate of arrival following a probability distribution. For simplicity, we chose 

the arrival rate probability distribution to be normal, though in subsequent itera-

tions of the model testing of other probability distribution types, such an expo-

nential arrival function, would be necessary. 

Rider agents possess two attributes for this iteration of the model. The first is 

the rider destination, which is a randomly assigned destination converted to the 

spatial coordinate equivalent. This destination is assigned at the moment of in-

stantiation of the rider agents. The second is the wait time variable which is a 

count of how long a rider has been waiting for pickup and which is used to com-

pare to a user-set input to determine whether the rider agent should look for ‘al-

ternative’ transportation methods (like metro or bus service). A user designated 

input allows for varying the waiting time of rider agents. For typical model runs 

we assigned this variable to 20 minutes. Once a rider agent reaches their maxi-

mum waiting time assigned they leave the simulation. This is a proxy behavior 

for the rider agent attempting to find alternative modes of transportation to their 

destination. 

2.4 Model Mechanics 

The model relies on user inputs for the number of drivers (capacity), the num-

ber of riders arriving per given time unit, the maximum waiting time for rider 

agents, whether or not to use random movement while attempting to find a rider 

or whether to maximize distance from any other drivers in the area of assigned 

vision (Voronoi movement). Based on these inputs and the parameters of the 

model a typical model run behaves as follows. 

Rider and driver agents are instantiated on a highly accurate road map of 

Washington, D.C. at random intersections in accordance with the input parame-

ters assigned by the model user. Once the model is run, rider agents are spawned 

while others, according to the user input, will leave the simulation. The same is 

applied to driver agents.  

Driver agents move according to one of the predetermined movement methods 

(random movement or Voronoi movement based on which version of the simula-

tion is run) until they are within a user-set proximity setting of a rider agent (for 

our model the vision was set to 3 cells). During this time, driver agents lose en-

ergy at a rate of 0.75 per time unit and lose cash at a rate of $0.1 per time unit.5 

 Once a driver agent is within a designated (by modeler) vicinity of the rider 

agent, a pick-up occurs, and the rider is converted to a passenger. A transfer of 

                                                           
5 We assigned these cash variables based on a rough estimate of distance trav-

elled versus fare/ride gained from observations and experiences with a rideshar-

ing service. 
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the destination of the rider occurs from rider agent to the driver agent at this time. 

Once a driver agent has successfully executed a pickup, the agent can no longer 

make any additional pickups, and it is at this point that the driver agent begins to 

accumulate ‘cash’, set at a rate of $2.00 + 0.60/time unit. Calibration of the model 

was conducted to reach a dollar amount that could be probable through qualitative 

observations of distance and time of real-world trips versus the model’s spatial 

geometry. The key was to set the fare rate to include a fixed amount and a variable 

amount so as to reflect actual ridesharing services. 

Driver agents then proceed in a direct path to the coordinates of the transferred 

destination while earning ‘cash’ and losing ‘energy’. Once they reach their prox-

imate destination, a drop-off is executed, their passenger-carry variable is reduced 

from 1 to 0, and a successful trip is recorded as being now completed. All relevant 

attribute and model-level variables are updated with this new information. The 

driver then continues to move searching for new riders and repeats the drive-

pickup-drop-off process. 

Rider agents who are not picked up within their waiting time-period limit find 

alternative transportation and leave the simulation, while driver agents who are 

not carrying a passenger could “give up” and leave the simulation. The latter 

could also run out of energy and leave the simulation due to fatigue. Typical runs 

are for a 24-hour period, but a model user can run the model indefinitely if they 

desire. 

2.5 Model Inputs and Parameters 

We implemented 7 inputs in our model that can be assigned and varied by the 

user. Table 1. summarizes those inputs and contains their descriptions. The most 

important of which are the maximum capacity for driver agents (drivers-count) 

and the rate of entry of new rider agents into the model (riders-per-time-unit). 

Other inputs are also critical but were not tested in a significant way—though 

adjusted for calibration and realism. Those are the Voronoi vision setting which 

controls how far driver agents can see other driver agents, the local-regional scale 

which amounts to an adjustment for the speed of movement of the driver agents, 

and a binary-switch which turns on or off the possibility for both driver and rider 

agents leaving the simulation randomly. 

In Table 2, we describe the parameters and distributions used in various parts 

of the model. As mentioned in an earlier section we used a normal distribution of 

varying means and standard deviations as the basis for a number of statistical tests 

and parameter values so as not to add any additional unverified assumptions or 

complexity to the model. Hence, we rely on the Central Limit Theorem heavily. 

However, in future iterations of this model specific testing and data collection of 

the distributions’ parameters must be undertaken and compared to real data from 

a ridesharing service. 
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Table 1.  Inputs of the model with typical value assignments. 

Type Input Description Typical 

Value(s) 

Driver 

Agents 

Driver Agent Number Assigns a maximum number of drivers to be ac-

tive at any given time unit 

50-150 

 

Normal Random Move-

ment (Choice) 

Sets the movement behavior of drivers to be of 

a random nature while they await a rider pickup 

N/A 

 

Voronoi Movement 

(Choice) 

Sets the movement behavior of driver agents to 

follow a Voronoi-distance maximizing method 

N/A 

 

Voronoi Vision If Voronoi Movement is chosen, sets the Voro-

noi movement vision distance 

3 

 

Local-Regional Scale Sets the vision and movement range for driver 

agents. This amounts to a speed setting and is 

used to calibrate the model. 

0.5 

Rider Agents Riders Active Per Time 

Unit 

Sets the rate by which new riders enter the sim-

ulation and await pickup 

20-75 

Environment Scenario (Choice) Sets the model into a run type where an expected 

rate of arrival for riders and an expected maxi-

mum capacity for drivers is set at different hours 

of the day. 

Saturday 

 

Table 2.  Parameters used in model mechanics. 

Parameter Type Value Description 

Driver Agent Placement Test X > 0.5 Normal (1,1) Tests whether a random number from a nor-

mal distribution with a mean of 1 and standard 

deviation of 1 is greater than 0.5. If so, place-

ment of a driver agent succeeds at a given in-

tersection. 

Rider Agent Placement Test X > 0.5 Normal (1,1) Tests whether a random number from a nor-

mal distribution with a mean of 1 and standard 

deviation of 1 is greater than 0.5. If so, place-

ment of a rider agent succeeds at a given inter-

section. 

Driver Agent Energy Attribute Normal(360,120) Sets the energy of a driver agent at instantia-

tion as a number drawn from a random distri-

bution with a mean of 360 and a standard de-

viation of 120 (minutes) 

Kill Count Variable |(Normal (0,1)| Sets the number of driver and rider agents who 

will leave the simulation, randomly without 

depleting their energy (driver agents) or reach-

ing maximum wait time (rider agents) to be the 

absolute value of a random number drawn 

from a normal distribution with mean 0 and 

standard deviation of 1. 
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2.6 Model Outputs 

A number of outputs were included in the model to assist in the verification 

process, to understand model mechanics and to derive results from model runs. 

Table 3. lists those outputs and their descriptions. Our focus was to understand 

driver agent utility given some set of inputs, parameters, and pre-conditions. 

There are many forms of driver agent utility to consider, each of which would 

require a focus on a different set of output measures. For this iteration of the 

model, we chose to focus our attention on total driver agent utility in the form of 

total profit from each model run. We include no outputs to measure ridesharing 

service utility or rider/passenger utility in our final analysis and conclusions, 

however, a number of outputs aimed towards the measurement of rider agents, 

passengers, and ridesharing service utility are designed into our model and are 

displayed to the user. We hope to expand on our analysis of system utility by 

considering rider, passenger and service utility in future iterations of the model.  

Table 3. Model outputs and measures   

Output Description 

Number of driver agents active The number of driver agents active in the model 

Number of rider agents active The number of rider agents active in the model 

Total riders giving up The total riders giving up based on randomly set pa-

rameters 

Average number of riders picked 

up per time unit 

The average number of riders picked up per time is cal-

culated for each time unit and displayed 

Total number of rider agents 

picked up 

This is the total number of rider agents converted to 

passengers 

Total number of successful drop-

offs 

Total number of successful drop-offs, which tends to 

be lower than the number of pickups as some driver 

agents don't reach their destinations 

Number of idle driver agents Number of driver agents without an active passenger 

Number of working driver agents Number of driver agents with an active passenger 

Average cash on hand The total amount of cash held by all driver agents (ac-

tive) 

Number of agents who left (ran-

domly) 

Number of agents who left the simulation due to ran-

dom tests 

Number of passengers in active 

trips 

Number of passengers carried by driver agents 

Average wait time Rider agent average wait time 

Average energy level Driver agent average energy level 

Total cash with active driver agents Total cash for all active driver agents at any given time 

unit 

Average fare per ride Average fare per ride at any given time unit 

Total profit generated Total profit generated by all activity of the model 
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2.7 Scenarios 

Much of the model can be run in a stationary mode—that is—it can be run in a 

form of equilibrium where driver agents and rider agents arrive at predetermined 

rates resulting in a constantly changing but variably fixed dynamic. This is inter-

esting for general runs, verification of model mechanics and quality, as well as to 

gain a general understanding of the ridesharing process. It is trivial to hypothesize 

that in any transportation system the rates by which riders and drivers arrive, in-

teract, and exit are variable but also subservient to the city (the spatial lattice) in 

which the ridesharing service operates. This would include seasonal variables 

such as the time of year, month, day, and time of day. Additionally, rider and 

driver rates and activity are also affected by current events, traffic, roadworks, 

weather patterns and other exogenous factors. Therefore, though running the 

model in situ yields important insights, it is important to run experimentation in 

some variable scenario for comparative reasons and for a closer approximation of 

real-world dynamics simply because the variance itself could yield insight. 

Therefore, based on anecdotal evidence gained from the author’s registering 

with a ridesharing service and gaining first-hand experience in typical driver de-

cisions made, we develop a scenario which is not entirely hypothetical in order to 

test the model’s effectiveness under varying conditions. In future iterations of this 

model, we intend to develop scenarios grounded in real data collected and to de-

velop a number of them to test different scenarios under different conditions with-

out such heavy reliance on qualitative observations. 

For this model iteration, we conducted a test of one scenario—the “Saturday” 

scenario which varies only arrival rates of both driver and rider agents according 

to what might be expected on a typical weekend day—Saturday. Table 4. provides 

a summary of the scenario and reasoning, where appropriate, for selection of sce-

nario inputs and parameters. As you will see from the table, we varied the arrival 

rates and expected capacities of rider agents and driver agents respectively. For 

example, on ‘Saturday’ we would expect high customer demand for the hour be-

fore ‘lunch’ as many city dwellers may be engaging in social activities in the 

subsequent hour and so they intend to arrive before ‘lunch-hour’. In this time-

period (11 AM) and in this specific scenario, we expect that in anticipation of 

higher customer demand the number of driver agents may also increase, and so 

we increase the maximum capacity of the driver agents. 
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Table 4. This is a variable model scenario used in testing the model under realistic condi-

tions drawn from anecdotal observations.  

Hour Driver Capacity Rider Rate of En-

try 

Reasoning/Explanation 

5AM 10 5 Early Morning - Airport Traffic - Mostly Quiet 

8AM 20 10 

 

11AM 50 20 Drivers starting their day for the Saturday 

Brunch/Lunch 

12PM 5 10 Lunch Time - low activity 

1.30PM 45 25 Post-Lunch Rush 

2.30PM 50 15 Post-Lunch Rush 

3.30PM 25 10 Stationary Activity 

5.30PM 40 5 Evening Drivers Beginning Their Shifts 

6.30PM 45 5 Evening Drivers Beginning Their Shifts 

7.30PM 60 30 Night Activity Period - Riders are going out to so-

cial events 

8.30PM 80 40 Night Activity Period - Riders are going out to so-

cial events 

9.30PM 100 40 Night Activity Period - Riders are going out to so-

cial events 

10.30PM 90 10 Low Rider Activity - Riders are at their destina-

tions. Drivers still on the road expecting a rush of 

new riders. 

11.30PM 80 10 Some drivers give up, exit the simulation 

12.30AM 75 30 More drivers give up. Riders beginning to end their 

work shifts. 

2AM 65 30 More drivers give up. Riders beginning to end their 

work shifts. 

4AM 35 10 End of night traffic. End of 24 our cycle. 

 

 
2.8 Testing, Verification, and Validation 

 

To test whether spatial movement behaviors can affect driver financial gain, we 

aimed to compare Voronoi movement prior to agent-pickup with random move-

ment prior to agent-pickup. In other words, having drivers access information 
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about other local drivers and having chosen to ‘spread out’ maximizing their per-

sonal territory and likelihood of rider pickup, when compared with random move-

ment, regardless of where other driver agents may be. This collection of tests 

translates to: 

1. Comparing Voronoi movement with random movement under stationary con-

ditions (constant capacity and arrival times through entire run) 

2. Comparing Voronoi movement with random movement under variable condi-

tions, namely a ‘Saturday’ scenario (varying arrival rates and capacity for rider 

agents’ entry and driver agent entry). 

 

Therefore, to test our model we conducted 4 standard runs: A scenario-based set 

of runs with a comparison of random movement and Voronoi movement, and a 

stationary standard run with Voronoi movement and random movement. We also 

conducted a number of verification and validation tests to ensure that the model 

is run correctly as well as that it is running as intended. We summarize those 

efforts in Table 5. 
Table 5. Verification and Validation Methods  

Goal Method Result 

Verify that road network imported cor-

rectly 

Display and check spatial cell attributes Success 

Verify that agents instantiate on roads, 

specifically intersections. 

Compared spatial coordinates of agents with cell 

coordinates of intended intersection 

Success 

Verify that agents instantiate with the 

correct attribute values 

Displayed agent attributes at random Success 

Verify that the movement of agents is 

as intended 

Visual observation and numerous model runs Success 

Verify that the model mechanics for 

rider entry functions as intended 

Raised and lowered the rider entry value and 

monitored expected increases or decreases in out-

puts 

Success 

Verify that the rider capacity functions 

as intended 

Raised and lowered the rider entry value and 

monitored expected increases or decreases in out-

puts 

Success 

Validate Pickup Mechanics Verified through the transfer of rider id and desti-

nation 

Success 

Validate Drop-off Mechanics Observed attribute changes for increases in drop-

off values 

Success 

Validate agent attribute changes 

through model runs 

Through many runs and observations Success 
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3. Results 
3.1 A Typical Run 

We present typical model results for the 4 possible variations of our test runs. 

Figure 5-7 and table 6-7 show plots and summary results of our model run. Figure 

5-7 contain the total and accumulated financial gain of all agents with total profit 

on the y-axis and time units on the x-axis. This measure includes the financial 

gain made by agents who have left the simulation due to fatigue or for any other 

reason.  

We see no real and substantial difference in terms of total profit (financial 

gain) between either of our stationary conditions model runs for random move-

ment and Voronoi movement (yellow and grey). That is—whether drivers chose 

to ‘spread out’ or move about randomly in the hopes of picking up more custom-

ers did not affect, on average, their financial gain. In fact, the difference was com-

fortably within 2 standard deviations for both Voronoi and random movement 

runs. 

Remarkably, for the variable scenario runs a stark difference emerged between 

the two spatial movement types, unexpectedly.  Divergence in the profitability 

between random movement choices and Voronoi movement choices for driver 

agents was clear, and exhibited in both the total profit made by driver agents in a 

24-hour run (Figure. 6-7) and in the summary statistics of the model run as a 

whole (Table. 7).  

Specifically, we can comfortably note that Voronoi movement for driver 

agents provides greater utility (financial gains) for drivers when varying rates are 

executed on the agents’ arrival rates i.e. when a scenario is utilized. Where for 

stationary model runs neither movement method prior to rider pickup provided 

any visible change in driver agent utility. Consequently, our observations and 

analysis of the model run took a focus on the variable scenario runs, and more 

precisely on the moments of divergence of the variable scenario random move-

ment run when compared to the Voronoi movement variable scenario model run.  

Table 6. Summary statistics for stationary run for both random and Voronoi movement  

Stationary Random Stationary Voronoi 

    

Mean $     6,284.02 Mean $  6,483.38 

Standard Error $           94.35 

Standard 

Error $        88.71 

Median $     6,161.00 Median $  6,400.90 

Standard Deviation $     3,580.49 

Standard 

Deviation $  3,366.40 

Maximum $   12,426.55 Maximum $12,059.45 
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Fig. 5. This figure shows the total profit made by all driver agents over a 24-hour period—a 

single run of the model for both random driver movement (gray) and Voronoi driver movement 

(yellow). The figure shows that while there are stochastic gains made at different times in the 

model run by both random and Voronoi movement behavior, there are no clear advantages in 

utilizing either behavior type when the arrival conditions of drivers and riders are stationary.  

Table 7.  Summary statistics for variable properties run for random and Voronoi move-

ment 

Variable (Saturday) Random 

 

Variable (Saturday) Voronoi 

 

    

Mean  $   2,845.05  Mean  $      3,931.65  

Standard Error  $         68.96  Standard Error  $            87.31  

Median  $   1,828.90  Median  $      3,332.50  

Standard Deviation  $   2,617.00  

Standard Devia-

tion  $      3,313.05  

Maximum  $   8,195.65  Maximum  $   10,565.45  
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More importantly than the observation that Voronoi movement outperformed 

random movement only in variable run conditions, is whether we can deduce pre-

cisely where the divergence between the two behaviors began to take shape under 

variable entry conditions.  

The first instance of divergence in a typical run occurs at around 1 PM (marked 

on Figure 7) into the model run which we hypothesize as being representative of 

“lunchtime” activity and model as being a constant driver agent capacity of 5 

drivers and an arrival rate of new riders of 10. Both rates are a reduction from the 

11 AM hour which had a maximum capacity of 50 driver agents and 20 respec-

tively. At 1.30 PM the capacity for new driver entry increased to 45 and the rate 

of arrival of rider agents also increases to 25 (Table. 8).  Figure 7 has both the 

random movement and Voronoi movement drawn with separate y-axis on the 

same time-scale (x-axis) so as to allow us a better visual comparison of both run-

types, and we can see that at this lunch-time hour a slight divergence of perfor-

mance begins to emerge, allowing drivers who are using Voronoi movement to 

make placement decisions that outperform those that move randomly. 

Table 8.  This table shows the relevant arrival rates for drivers (left) and riders(right) for the 

first point of divergence in the variable conditions model run. 

 

11AM 50 20 Drivers starting their day for the Saturday 

Brunch/Lunch 

12PM 5 10 Lunch Time - low activity 

1.30PM 45 25 Post-Lunch Rush 

 

The most salient divergence between the performance of the two behaviors we 

tested occurred at around the 3.30 PM time-period. Figure 7 shows the stark dif-

ference in performance and thus in utility-gain between the two behaviors. Our 

scenario at this time-period calls for the decrease of both driver capacity and rider 

entry from the 2.30 PM period (from 50, 15 to 25, 10, for driver and rider agents 

respectively). Table 9 summarizes the relevant part of the scenario run. 

Table 9. This table shows the relevant arrival rates for drivers and riders (left, right) for the 

second point of divergence in performance of the variable conditions model run.  

 

2.30PM 50 15 Post-Lunch Rush 

3.30PM 25 10 Stationary Activity 

5.30PM 40 5 Evening Drivers Beginning Their Shifts 
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Thus, we saw a divergence in performance for a case when both driver and 

rider entry were increasing simultaneously, and for a case where they were de-

creasing simultaneously as well, which dispels any notion that divergence in per-

formance would solely be due to a decreasing rate of one arrival rate while an-

other was increasing. We will propose candidate theories in the discussion section 

of this paper. 

The objective of our “lunchtime” change in both driver and rider agent demand 

and supply was to create drastic changes similar to that what would be expected 

in a major metropolitan area during this time period. What is critical to note is 

that this performance difference—this emergent pattern—is only seen under var-

iable run conditions, and not stationary run conditions.  Consequently, during a 

statistical analysis for our model’s stationary run, we find that the mean, median 

and maximum financial gain (by all agents) during a 24-hour period was not sig-

nificantly different between driver agents employing a Voronoi movement versus 

random movement behavior. Wherein the variable (“Saturday”) scenario run, the 

median, mean, and maximum were contrasted, with Voronoi movement outper-

forming random movement decisions on the aggregate; though the majority of 

the performance improvements came from the time-periods where Voronoi 

movement allowed a greater rate of customer pick-ups (1 PM and 3.30 PM). It 

was not immediately apparent that Voronoi movement outperformed random 

movement for every time-period of the variable run scenario. 
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Fig. 6. This figure shows the total profit made by all agents over time. Not the divergence be-

tween Voronoi movement (Orange), and the random movement (Blue) under variable condi-

tions. Voronoi movement outperforms random movement. 

 

 
Fig. 7. This figure utilizes 2 axes, one for the variable conditions scenario run (Saturday) Voro-

noi movement (Left axis) and another for the random movement (right axis). This makes for 

easier visual comparison and yields insight into precisely which point in time the divergence 

between the two behaviors would typically occur. In this particular run it is clear that Voronoi 

movement begins to outperform random movement at 630 minutes.   
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4. Discussion 
 

Clearly, the model shows that driver agent positioning prior to rider agent 

pickup influences the financial utility gained by driver agents (consequently this 

also means that riders receive more consistent pickups with shorter wait-times).  

But this emergent phenomenon is not recognizable unless a realistic variable ar-

rival rate scenario is utilized. I argue that this is true because of the spreading 

nature of Voronoi movement. In highly volatile rider-supply and driver-demand 

areas of our variable scenario runs, spreading-out behavior ensures that drivers 

are more evenly distributed, and by being so they are better positioned to “catch” 

riders in a moment of higher demand. Where, if driver agents choose to continue 

moving and placing themselves randomly in moments of drastic change to supply 

and demand, their catching behavior is set to be limited and thus are unable to 

maximize their financial gain and adapt to their surroundings. This is the case for 

when both rates of entry for drivers and riders are increasing and decreasing sim-

ultaneously, thus it should be noted that opposite signs for the first derivative of 

the profit variable are not a requirement for this phenomenon to occur. 

The details of when this occurred are also important. In the “Saturday” scenar-

ios, Voronoi movement did not outperform random movement in all variance 

combinations. For example, Table 10 shows a portion of the variable scenario at 

the 10.30 PM time-period. Note the decrease in driver capacity throughout the 

listed time-periods from 90 to 75, while rider arrival rates remained constant and 

then increased to 30 per time unit. Figure 7 shows that in this time-period there 

was no divergence in performance between Voronoi and random movement, even 

though elements of both the rise and fall seen in the scenario portions (where 

visible drastic change was present) was also embedded in this particular sequence 

of agent arrivals. 

Table 10. A portion of the “Saturday” scenario that contains elements of the scenario portions 

where performance divergence was seen, yet, no divergence emerged for this sequence.  

10.30PM 90 10 Low Rider Activity - Riders are at their destina-

tions. Drivers still on the road expecting a rush of 

new riders. 

11.30PM 80 10 Some drivers give up, exit the simulation 

12.30AM 75 30 More drivers give up. Riders beginning to end their 

work shifts. 

 

Thus, we must then conclude that sudden increase and decrease in rider de-

mand in conjunction with a steady or a slightly decreasing capacity (supply) pro-

vides a sudden spatial vacuum in the model’s geographic configuration which is 

best enclosed by agents who are actively trying to move away from each other – 
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a Voronoi movement pattern. But, that this pattern—that allows drivers to cover 

more space and ‘catch’ more riders—occurs only where there is enough drivers 

on the spatial geography such that there are actual additional riders who will be 

picked up by this movement. In other words, if decreasing or increasing variations 

in both agents’ entry are occurring, Voronoi movement will provide drivers with 

an advantage over random movement, given that there are enough free drivers 

(without a passenger) and enough riders (without a driver) ready for pickup; an 

opportunity for maximizing utility must exist.  After all, an increase in the spatial 

spread of driver agents allows for an increased probability of executing a pickup 

of a rider agent, but only when there are riders to be picked up.  

The key to reproducing this pattern is that it must be part of a sudden and/or 

variable change scenario for arrival rates. We hypothesize that a stationary run 

will not emerge this phenomenon because, with unchanging arrival rates, incre-

mental improvements will not allow for a critical mass of spatial imbalance in the 

location of riders and drivers. 

There is a connected phenomenon observed in supply chain management the-

ory that can be associated with this system property—what is known as the bull-

whip effect. The phenomenon is widely understood as that of being a powerful 

reaction at the far end of a long supply chain which is often created from a small 

change in the point of origin of the chain. If the change is more sudden the effect 

is more compounded. In this case, the effect can be seen in the time-delayed spa-

tial response of one agent group to another, not in a supply chain. 

This behavior can be described as emergent. The pattern of maximizing utility 

through the prior, strategic positioning of driver agents is somewhat unexpected 

since all entry and exit of agents and their locations on the geography of the model 

are random. One might surmise (incorrectly, as we have shown) that if the random 

placement of rider agents and random placement of driver agents forms the core 

of the topological interactions of agents in this model, that through intuition alone 

there would be no clear gain in Voronoi movement behavior over random move-

ment behavior. But as we have shown that while this is true for constant arrival 

rates, there is a difference in variable run conditions. 

 This emergent behavior does not seem to occur in the stationary runs of the 

model because at a constantly random and stable rate of entry for both agent types 

there is never a sudden vacuum to be capitalized upon. 

This result provides researchers in this area with several important lessons: If 

one seeks to test movement behaviors of a ridesharing or an autonomous vehicle 

system, it should be tested under highly variable conditions in order to observe 

true emergent behavior. Stationary testing of spatial models would seem to be 

misleading and ineffective in this regard. Moreover, I propose that the testing of 

agent-agent interaction on any topological space for which there exists an entry 

or arrival dynamic would be subservient to the conclusions presented herein; 

though additional testing remains to conclude so irrefutably. 

It’s also paramount to realize that typical system dynamics modeling (differ-

ential equations) would most likely fail in producing the phenomenon as we have 
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observed it, assuming a closed form equation for the mechanics of the model can 

be found, to begin with. Thus, we consider the experiment an added piece of im-

portant evidence for the utilization of agent-based techniques in autonomous ve-

hicle and ridesharing service modeling and simulation (theoretically the differ-

ence between autonomous vehicle and ridesharing service modeling is negligible 

from the modeler’s perspective.)  
 
5. Summary & Future Work 

 

In this paper, we described the development of an agent-based model for rides-

haring services in the Washington, D.C. area. The model simulates riders and 

drivers through simple interactions on an accurate data-driven geospatial config-

uration. This model forms the basis for a number of experiments and model ex-

tensions that could yield greater insights into the ridesharing economy as it de-

velops, expands, and evolves. 

Our conclusions showed the importance of running experiments utilizing agent-

based modeling runs not only in the form of stationary runs but in the form of 

variable scenario runs designed to create unpredictable effects that can—and in 

our case did—yield greater insights which otherwise would not have been ob-

served. 

Specifically, we found the emergence of a pattern where prior positioning of 

driver agents had a significant effect on pickup rates, and thus on the financial 

gain (utility) of drivers. We also found that this pattern emerged from a simple 

spreading-out behavior, which we called Voronoi movement and that this move-

ment pattern outperformed random movement patterns even with randomly dis-

tributed arrival rates for both agent types. However, this emergent phenomenon 

was not observable unless a variable scenario was utilized in the experimentation 

process.  

Consequently, we showed that driver to driver agent interactions, which form 

a symmetrical information environment can provide increased utility for drivers, 

and consequently for the ridesharing service and riders as well in some cases.  

Current operating procedures of the leading ridesharing services do not allow 

drivers to gain access to location information of other drivers, and thus do not 

allow for movement behaviors that are dependent on that additional information. 

The symmetrizing of information can yield greater utility for all sides of this 

equation, including service, rider, and driver. Perhaps ridesharing services believe 

that giving less information to drivers would allow them more centralized control 

which they can use to better optimize the ridesharing experience, but evidence 

that this is true is not without question if we consider the natural fluctuations in 

drivers’ and customers’ supply and demand. The question posed by us here is 

whether more information may allow drivers to create adaptive and cooperative 
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strategies to maximize their financial gain and by consequence, all other parties. 

We showed that this may be the case for one simple behavior and we demon-

strated the conditions under which future spatial behavioral testing should be im-

plemented if we are to be confident in the outputs of our simulations. 

There are many pathways that this model can take—going forward. Primarily, 

the most interesting extension would be to add more spatially complex behaviors 

in agent-to-agent interactions and then to observe the results. It is not trivial that 

we test expected utility for an information symmetry scenario with only one 

movement-type behavior. More spatial movement patterns grounded in expected 

behaviors should be tested to quantify the difference in a service that allows more 

drivers to have more information and one that does not. There are improvements 

to be made in the spatial configuration of the model itself as well. For example, 

the inclusion of spatial demographics to enrich probability distribution calcula-

tions, adding road direction and traffic patterns, as well as utilizing more detailed 

geographic datasets would all make significant improvements to the model’s ef-

ficacy and predictive power. 
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