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Abstract

Multi-output regression models must exploit depen-
dencies between outputs to maximise predictive perfor-
mance. The application of Gaussian processes (GPs)
to this setting typically yields models that are compu-
tationally demanding and have limited representational
power. We present the Gaussian Process Autoregressive
Regression (GPAR) model, a scalable multi-output GP
model that is able to capture nonlinear, possibly input-
varying, dependencies between outputs in a simple and
tractable way: the product rule is used to decompose
the joint distribution over the outputs into a set of con-
ditionals, each of which is modelled by a standard GP.
GPAR’s efficacy is demonstrated on a variety of syn-
thetic and real-world problems, outperforming existing
GP models and achieving state-of-the-art performance
on the tasks with existing benchmarks.

1 Introduction

The Gaussian process (GP) probabilistic modelling
framework provides a powerful and popular approach
to nonlinear single-output regression (Rasmussen &
Williams, 2006). The popularity of GP methods stems
from their modularity, tractability, and interpretability:
it is simple to construct rich, nonlinear models by com-
positional covariance function design, which can then
be evaluated in a principled way (e.g. via the marginal
likelihood), before being interpreted in terms of their
component parts. This leads to an attractive plug-
and-play approach to modelling and understanding
data, which is so robust that it can even be automated
∗Equal contributions.
†Research primarily conducted whilst at Invenia Labs,

Cambridge, UK.

(Duvenaud et al., 2013).

Most regression problems, however, do not comprise a
single output at each input location. Typically, mul-
tiple outputs are recorded at a single input location,
and it is key in such modelling tasks to capture the
dependencies between these outputs. For example, the
noise in the output space might be correlated, or, whilst
one output might depend on the inputs in a complex
(deterministic) way, it may depend quite simply on
other output variables. In both cases multi-output GP
models are required. There are a plethora of exist-
ing multi-output GP models that can capture linear
correlations between output variables if these correla-
tions are fixed across the input space (Goovaerts, 1997;
Wackernagel, 2003; Teh & Seeger, 2005; Bonilla et al.,
2008; Nguyen & Bonilla, 2014). However, one of the
main reasons for the popularity of the GP approach is
that a suite of different types of nonlinear input depen-
dencies can be modelled, and it is disappointing that
this flexibility is not extended to interactions between
the outputs. There are some approaches that do allow
limited modelling of nonlinear output dependencies
(Wilson et al., 2012; Bruinsma, 2016), but this flexi-
bility comes from sacrificing tractability with complex
and computationally demanding approximate inference
and learning schemes now required. This complexity
significantly slows down the modelling flow.

What is needed is a flexible and analytically tractable
modelling approach to multi-output regression that
supports plug-and-play modelling and model interpre-
tation. The Gaussian Process Autoregressive Regres-
sion (GPAR) model achieves these aims by taking an
approach to multi-output regression that is analogous
to that employed by the Neural Autoregressive Den-
sity Estimator (Larochelle & Murray, 2011) for density
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CO2 (C(t))

= h2(t, , )

Sea Ice (I(t))

h1(t, )
=

Temperature (T (t))

Figure 1: Cartoon motivating a factorisation for the
joint distribution p(I(t), T (t), C(t))

modelling. The product rule is used to decompose the
distribution of the outputs given the inputs into a set
of one-dimensional conditional distributions. Critically,
these distributions can be interpreted as a decoupled
set of single-output regression problems, and learning
and inference in GPAR therefore amount to a set of
standard GP regression tasks; that is to say, training is
closed-form and fast. GPAR converts the modelling of
output dependencies that are possibly nonlinear and
input-dependent into a set of standard GP covariance
function design problems.

In this paper, we motivate GPAR from a probabilistic
perspective. We show that GPAR can express certain
prior beliefs about the possibly complex dependencies
between inputs and outputs. We then illustrate that
GPAR can capture nonlinear relationships between
underlying latent processes as well as structured noise.
Finally, we apply GPAR to multi-output regression
and examine its perfomance as a Bayesian optimisation
objective model, achieving state-of-the-art results on
the tasks with existing benchmarks.

2 GPAR

Consider the problem of modelling the world’s average
CO2 level C(t), temperature T (t), and Arctic sea ice
extent I(t) as a function of time t. By the greenhouse
effect, one can imagine that T is some complicated
function h1 of t and C: T (t) = h1(t, C(t)). Similarly,
one might hypothesise that I can be modelled as some
function h2 of t, T , and C: I(t) = h2(t, T (t), C(t)).
These functional relationships are depicted in Figure 1
and motivate a natural factorisation of the model where
the conditionals model the postulated h1 and h2:

p(I(t), T (t), C(t))

= p(I(t) |T (t), C(t))︸ ︷︷ ︸
model for h2

p(T (t) |C(t))︸ ︷︷ ︸
model for h1

p(C(t)).︸ ︷︷ ︸
model for C

Expressed as such, this multi-output regression prob-
lem has been reduced to three single-output regression

(a)

f1 f2 f3

g1 g2 g3

y1 y2 y3

(b)

f1 f2 f3

g1(x) g2(x) g3(x)

y1(x) y2(x) y3(x)

x ∈ X

Figure 2: (a) The graphical model corresponding to
Full GPAR (FPGAR) and (b) the graphical model
corresponding to GPAR

problems: modelling h2, h1, and C. We propose to
solve each of these using GPs, enabling us to design
kernels that specify nonlinear dependencies between
outputs. Note that a variable like sea ice will depend
not just on the current temperature, but on the entire
history of temperatures; this leads to generalisations
where I(t) depends on T (t′) not just for t′ = t, but for
all t′ ≤ t. The modelling idea illustrated in this section,
which lies at the heart of GPAR, will be formalised in
the remainder of this section. Henceforth, we collect
the multiple outputs of a multi-output regression prob-
lem into a vector-valued function g, and the postulated
functions g, f , and C will be generalised to functions
fi.

Consider a vector-valued stochastic process g over an
input space X = RD, where elements g(x) take values
in YM , Y = R.1 Let gi denote the ith element of g:
elements gi(x) thus take values in Y. We emphasise
that g(x) refers to the particular YM -valued random
variable at x, and that g refers to the entire process:
the collection of all g(x). Let yi be gi plus independent
noise. Then, according to the product rule,

p(y,g) =

M∏
i=1

p(yi | gi)p(gi |g1:i−1,y1:i−1), (1)

where g1:i−1 denotes the vector-valued process consist-
ing of elements g1, . . . , gi−1. Recall that a Gaussian
process (GP) f over some index set T defines a pro-
cess where, for any t1, . . . , tN ∈ T , f(t1), . . . , f(tN ) are
jointly Gaussian distributed in a consistent manner.
Let YX denote the set of all functions X → Y. Then
Full GPAR (FGPAR) models each p(gi |g1:i−1,y1:i−1)
with a GP fi ∼ GP(0, kfi) over the input space
X × (YX )2(i−1):

gi(x) | fi,g1:i−1,y1:i−1 = fi(x,g1:i−1,y1:i−1).

1That is, g is a random variable whose realisations are
functions X → YM .
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Thus, in the most general case, the stochastic process
fi depends upon x as well as the entirety of each of the
preceding stochastic processes g1:i−1 and y1:i−1; for
example, gi might be a integral transform of an element
of g1:i−1 or y1:i−1. Figure 2a depicts the corresponding
graphical model in the case of three outputs.

The choice of kernels for f is crucial to FGPAR, as
they determine the types of relationships between in-
puts and outputs that can be learned. Furthermore,
as a consequence of assuming that the conditionals
p(gi |g1:i−1,y1:i−1) are Gaussian, different factorisa-
tions of the joint p(y,g) yield different FGPAR models;
hence, in specifying FGPAR, one must choose an or-
dering of the outputs y.

The described model will generally not be tractable.
Instead, consider the simplification where gi(x)
depends only on y1:i−1(x

′), only for x = x′:
fi(x,g1:i−1,y1:i−1) = fi(x,y1:i−1(x)). Note that this
simplification simplifies the input space over which fi
is defined. We refer to the resulting model as GPAR,
whose graphical model is depicted in Figure 2b.

For a certain type of data set, which we call closed-
downwards, the graphical model for GPAR expresses
conditional independence properties that make infer-
ence unusually easy: for closed-downwards data sets,
the posterior of yi is conditionally independent of ob-
servations of yj if j > i. Formally, let a data set
D = {yi(x) for some i and some x} be a random vari-
able representing our observations. Call D closed down-
wards if yj(x) ∈ D implies that yi(x) ∈ D for all i ≤ j.

Theorem 1. Let D be closed downwards, yj(x) ∈ D,
and i < j. Then yi ⊥ yj(x) | D.

The proof of Theorem 1 can be found in Appendix A.
Letting XD = {x : yi(x) ∈ D for some i} and
y1:i(XD) = {y1:i(x) : x ∈ XD}, we have by Theorem 1
that

p(y | D) =
M∏
i=1

p(yi |y1:i−1,D)

=

M∏
i=1

p(yi |y1:i−1,y1:i(XD)), (2)

where each posterior p(yi |y1:i−1,y1:i(XD)) is obtained
from simply conditioning fi on input–output pairs
{((x,y1:i−1(x)), yi(x)) : x ∈ XD}, taking into ac-
count the noise introduced by yi | gi. Hence, denoting
N = |y1(XD)|, computing p(yi |y1:i−1, y1:i(XD)) takes
O(N3 + N2(D + i)) time and requires O(N2) space,
meaning that computing p(y | D) takes O(N3DM +
N2(M +D)M) time and requires O(N2M) space. Fur-

thermore, it holds that

p(D) =
M∏
i=1

p(yi(XD) | y1:i−1(XD)), (3)

where the ith factor is simply the likelihood of input–
output pairs {((x,y1:i−1(x)), yi(x)) : x ∈ XD} un-
der fi, taking into account the noise introduced by
yi | gi. Therefore, p(yi(XD) | y1:i−1(XD)) depends on
and only on the hyperparameters of fi and yi | gi,
so optimising p(D) corresponds to optimising each
p(yi(XD) | y1:i−1(XD)) individually, meaning that learn-
ing in GPAR can be performed by learning each fi
individually. Note that for each yi(x) ∈ D, its location
(x,y1:i(x)) is in D, because D is closed downwards.

In summary, GPAR forms a multi-output model in
which noisy output yi(x) is generated from the preced-
ing noisy outputs y1:i−1(x) at that particular x, where
the relationships between inputs and outputs can be
specified through the kernels for f . Importantly, given
data that is closed downwards, inference and learning
in GPAR can be performed efficiently.

Finally, note that Theorem 1 only depends on
the graphical model depicted in Figure 2b. This
means that one can implement the conditionals in
Equation (1) with any models—not just GPs—that
satisfy p(gi(x) |g1:i−1,y1:i−1) = p(gi(x) |y1:i−1(x)),
and training and inference still decouples; in other
words, training and inference of Equation (1) is
tractable and decouples if p(gi(x) |g1:i−1,y1:i−1) =
p(gi(x) |y1:i−1(x)) and training and inference of each
p(gi |y1:i−1) is tractable.

2.1 Equivalent Models

To get insight into the class of models that FGPAR
defines, we study two equivalent models. For functions
A,B : X × (YX )M → YM , define composition ◦ as
follows: (A ◦B)(x,y) = A(x,B( · ,y)). Note that ◦ is
well-defined and associative. For a function u : X →
YM , denote A ◦u : X → YM , A ◦u = A( · ,u); that is,
A transforms a function u into another function A ◦u,
which is why we denote A with a capital letter. Again,
note that (A ◦ B) ◦ u = A ◦ (B ◦ u). Furthermore,
denote A ◦ · · · ◦A︸ ︷︷ ︸

n times

= An.

Lemma 1 (Nonlinear Equivalent Model). Let A be
an M -dimensional vector-valued process over X ×
(YX )M , each Ai drawn from GP(0, kAi

) independently,
and let u be an M -dimensional vector-valued pro-
cess over X , each ui drawn from GP(0, kui

) indepen-
dently. Furthermore, let Ai(x,y) : X × (YX )M →
Y depend only on (x,y1:i−1), meaning that kAi =

3



kAi
(x,y1:i−1,x

′,y′1:i−1), and let A1 = 0. Denote
T f = u+A◦ f , and denote N consecutive applications
of T by TN . Then

g |A,u = TM−1 u ⇐⇒
gi |g1:i−1 ∼ GP(0, kui + kAi( · ,g1:i−1, · ,g1:i−1)).

Lemma 2 (Linear Equivalent Model). Suppose that
A was instead generated from

A(x,y) | Â =

∫
Â(x− z)y(z) dz,

where Â is an (M ×M)-matrix-valued process over
X , each Âi,j drawn from GP(0, kÂi,j

) independently if
i > j and Âi,j = 0 otherwise. Then

g |A,u =

(
M−1∑
i=0

Ai

)
◦ u ⇐⇒

gi |g1:i−1 ∼ GP(0, kui + kAi( · ,g1:i−1, · ,g1:i−1)),
(4)

where

kAi
(x,g1:i−1,x

′,g′1:i−1)

=

i−1∑
j=1

∫
kÂi,j

(x− z,x′ − z′)gj(z)g
′
j(z
′) dzdz′.

The proofs of Lemmas 1 and 2 can be found in Ap-
pendix B. Note that the right-hand sides of the equiva-
lences in Lemmas 1 and 2 are equivalent to FPGAR
with

kfi(x,g1:i−1,y1:i−1,x
′,g′1:i−1,y

′
1:i−1)

= kui
(x,x′) + kAi

(x,g1:i−1,x
′,g′1:i−1).

As mentioned before, the kernels for f determine the
types of relationships between inputs and outputs that
can be learned. Lemmas 1 and 2 make this explicit:
Lemma 1 shows that FGPAR can recover a model where
M latent GPs u are repeatedly composed with another
latent GP A, where A has a particular dependency
structure, and Lemma 2 shows that FGPAR can recover
a model whereM latent GPs u are linearly transformed,
where the linear transform T =

∑M−1
i=0 Ai is lower

triangular and may vary with the input.

In Lemma 2, note that it is not restrictive that T is
lower triangular: Suppose that T were dense. Then,
letting g |T,u = T◦u, g |T is jointly Gaussian. Hence
gi |g1:i−1,T is a GP whose mean linearly depends upon
g1:i−1 via T, meaning that gi |g1:i−1 is of the form of
Equation (4) where kui may be more complicated. If,

however, Â(z) = δ(z)B for some random (M ×M)-
matrix B, each Bi,j drawn from N (0, σ2

Bi,j
) if i > j and

Bi,j = 0 otherwise, then it is restrictive that T is lower
triangular: In this case, g(x) |B,u =

∑M−1
i=0 Biu(x).

If T =
∑M−1

i=0 Bi were dense, then, letting g |T,u =
Tu, g can be represented with Lemma 2 if and only
if g |T’s covariance can be diagonalised by a constant,
invertible, lower-triangular matrix. This condition does
not hold in general, as Lemma 3 from Appendix C
roves.

2.2 Kernel Design

Now that we have gained some insight into the class
of models that FGPAR defines, we can use this insight
to narrow down the choice of kernels for f in GPAR.
Define two specialisations of GPAR:

kfi(x,y1:i−1(x),x
′,y1:i−1(x

′))

= ki(x,x
′) +

i−1∑
j=1

ki,j(x,x
′)yj(x)yj(x

′),

(GPAR-L)

kfi(x,y1:i−1(x),x
′,y1:i−1(x

′))

= ki,x(x,x
′) + ki,y(y1:i−1(x),y1:i−1(x

′)),
(GPAR-NL)

where ki, ki,j , ki,x, and ki,y can be any kernels. Based
on Lemmas 1 and 2, we conclude that GPAR-L mod-
els instantaneous, input-varying, linear correlations
between outputs, whereas GPAR-NL models instanta-
neous, input-constant, nonlinear correlations between
outputs.

Furthermore, one might believe that gi(x) depends
on g1:i−1(x) instead of y1:i−1(x); in other words, we
might believe the outputs to have latent dependen-
cies. Were one to change Figure 2b accordingly, then,
unfortunately, there are no longer the conditional in-
dependence properties that make inference efficient.
One possible mitigating solution is to employ an input
transformation that estimates g1:i−1(x) from y1:i−1(x):

kfi(x,y1:i−1(x),x
′,y′1:i−1(x

′))

= k̂fi(x,E[g1:i−1(x) |y1:i−1(x)],

x′,E[g′1:i−1(x′) |y′1:i−1(x′)]); (5)

that is, fi is now a function of the posterior mean of the
preceding processes, as opposed to their observed values.
Let D-GPAR-∗ denote models that use this approach.
Note that the conditional expectation employed here
could discard useful information and thereby diminish
performance. Also, note that model parameters of ear-
lier outputs are now hyperparameters of later outputs,
which couples the outputs during learning.
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3 Related Work

Multi-output GP models are usually constructed
by letting the ith output, gi, be a linear trans-
form of a number of latent GPs, {ui}i: gi(x) =∑

k

∫
Ai,k(z,x)uk(z) dz. If Ai,k(z,x) = Ai,kδ(z − x)

where δ is the Dirac delta function, then f(x) depends
on u(z) only for z = x; examples of such models are
(Goovaerts, 1997; Stein, 1999; Wackernagel, 2003; Teh
& Seeger, 2005; Bonilla et al., 2008; Nguyen & Bonilla,
2014). Other models let Ai,k(z,x) = Ai,k(z)δ(z − x),
such as (Wilson et al., 2012), meaning that the linear
dependence of f(x) on u(x) varies with x. Further-
more, (Álvarez et al., 2009; Álvarez & Lawrence, 2009,
2011) treat Ai,k(z,x) parametrically, whilst (Bruinsma,
2016) does so nonparametrically. Lemma 2 shows that
(F)GPAR can recover similar models, where the mixing
matrix A is lower triangular instead.

Orthogonal to the above work is that presented by Wil-
son et al. (2016), which induces correlations between
outputs by additionally applying a nonlinear transform
to the input domain. A similar idea is employed in
Deep Gaussian Processes (Damianou, 2014), where mul-
tiple GPs are composed to obtain an expressive model.
(F)GPAR can be considered a Deep GP, where the com-
posed latent GPs form the outputs of the model, and
Lemma 1 shows that (F)GPAR can recover a Deep GP
with a particular composition structure. Furthermore,
the Gaussian Process Network (Friedman & Nachman,
2000) is similar to GPAR, but it was developed for
identifying causal dependencies between variables in
a probabilistic graphical models context, rather than
multi-output regression. The work in (Yuan, 2011)
also discusses a model similar to GPAR, but specifies
a different generative procedure for the outputs.

Finally, the multi-fidelity modelling literature is closely
related. Whereas in the multi-output regression task we
are interested in predicting all output dimensions, the
multi-fidelity task is concerned with predicting a high-
fidelity function, while incorporating information from
observations from various levels of fidelity. The idea
of iteratively conditioning on lower fidelity models in
the construction of higher fidelity ones has been a well-
used strategy (Kennedy & O’Hagan, 2000; Le Gratiet
& Garnier, 2014). The model presented by (Perdikaris
et al., 2017) is nearly identical to GPAR applied in the
multi-fidelity framework, but applications outside this
setting have not been considered.

4 Synthetic Data Experiments

GPAR is well-suited for problems where there is a
strong functional relationship between output dimen-

sions, and for problems where observation noise is cor-
related between output dimensions. In this section
we demonstrate GPAR’s ability to model both. We
parametrise GPAR’s kernel using a rational quadratic
(RQ) kernel (Rasmussen & Williams, 2006) for the
first output dimension and a sum of two RQ kernels
k1(x, x

′) + k2((x, y), (x
′, y′)) for the second and third

dimensions, where y consists of the previous output
dimensions. GPAR is constructed using the natural
ordering of outputs.

4.1 Learning Functional Structure

Consider three outputs y1, y2, and y3 depending non-
linearly on each other as follows:

y1(x) = − sin(10π(x+ 1))(2x+ 1)− x4 + ε1,

y2(x) = cos2(y1(x)) + sin(3x) + ε2,

y3(x) = y2(x)y
2
1(x) + 3x+ ε3,

where ε1, ε2, ε3 i.i.d.∼ N (0, 1). With a large enough train-
ing set, GPAR and independent GPs perform similarly
with these data: enough data is present to learn the
complicated functional structure on x directly without
leveraging the shared structure between the functions.
With fewer data points—Figure 3 shows plots of inde-
pendent GPs (IGP) and GPAR fit to approximately 40
data points from y1, y2 and y3—observe that GPAR
is able to learn y2’s dependence on y1, and y3’s de-
pendence on y1 and y2, resulting in better predictive
performance compared to independent GPs.

IG
P

0.0 0.5 1.0
x

0

1

2

y 2

0.0 0.5 1.0
x

2

4

y 3

Observed

Truth

Prediction

G
PA

R

0.0 0.5 1.0
x

1

2

y 2

0.0 0.5 1.0
x

2

4

y 3

Observed

Truth

Prediction

Figure 3: Learning functional structure across output
dimensions

4.2 Learning Noise Structure

Consider three schemes in which two outputs are
observed under various noise correlations: y1(x) =
f1(x) + ε1 and

(1) y2(x) = f2(x) + sin2(2πx)ε1 + cos2(2πx)ε2;

5



(2) y2(x) = f2(x) + sin(πε1) + ε2; and

(3) y2(x) = f2(x) + sin(πx)ε1 + ε2;

where ε1, ε2 i.i.d.∼ N (0, 1), and f1 and f2 are complicated,
nonlinear functions:

f1(x) = − sin(10π(x+ 1))/(2x+ 1)− x4,

f2(x) =
1

5
e2x (θ1 cos(θ2πx) + θ3 cos(θ4πx)) +

√
2x.

All three schemes have i.i.d. homoscedastic Gaussian
noise in y1, making y1 easy to learn for GPAR. How-
ever, the noise in y2 depends on that in y1 and can
be heteroscadastic. The task for GPAR is to learn
this complicated noise structure. Figure 4 shows the
noise produced by the schemes (representing truth)
and the noise sampled from GPAR’s posterior, and
Figure 5 shows y2 samples produced by the schemes
(representing truth) and y2 samples from GPAR’s pos-
terior. Colours in Figure 5 correspond to the magnitude
of corresponding noise sample (i.e. at the same x) in
y1; hence, colours visualise the correlation between the
noises in y1 and y2. For a particular x, if the colour
pattern is preserved, then the model has successfully
captured how the noise in y1(x) correlates to that in
y2(x).

T
ru
th

G
PA

R

Figure 4: Correlation between the sample residues
(deviation from the mean) for y1 and y2. Left, centre
and, right plots correspond to schemes (1), (2) and (3)
respectively. Samples are coloured according to input
value x; that is, all samples for a particular x have the
same colour.

Figures 4 and 5 show that GPAR is able to learn
various noise structures. Considering Figure 5, the left
plots show that GPAR can roughly learn a structure
where the correlation between the noise in y1 and in
y2 depends on x; the middle plots show that GPAR
can learn noise in y2 that correlates to that in y1 in
a complicated manner; and the right plots show that
GPAR can learn heteroscedastic noise.

GPAR is able to model complicated noise structure by
letting the kernel of y2 also depend on y1. By letting
the component in the kernel of y2 that models the

T
ru
th

G
PA

R

Figure 5: Visualisation of y2 samples. Left, centre
and, right plots correspond to schemes (1), (2) and (3)
respectively.

complicated noise structure be additive, we can addi-
tively decompose GPAR’s predictions into a part that
models just the noise, and a part that models just the
underlying function. Figure 6 visualises this decompo-
sition for predictions on data generated by y1 = f1+ ε1
and y2 = f2 + ε2 where ε1 and ε2 are jointly Gaussian
and correlated. The decomposition provides insight in
GPAR’s predictions: one component models the func-
tion uncertainty while the other models the uncertainty
introduced by correlated noise. Furthermore, the dif-
ferent parts of the prediction could be used in more
complicated scenarios to estimate particular quantities
of interest.

Figure 6: Decomposition of GPAR’s predictions. Pos-
terior samples of y2 (left), the additive parts of those
samples that correspond to f2 (middle), and the ad-
ditive parts of those samples that correspond to the
noise (y2 − f2; right).

5 Real-World Data Experiments

In this section we evaluate GPAR’s performance and
compare to other models on three standard data sets
commonly used to evaluate multi-output models. We
also consider a recently-introduced data set in the field
of Bayesian optimisation, which is a downstream appli-
cation area that could benefit from GPAR.

Table 1 lists the models against which we compare
GPAR. We always compare against IGP and CK, ICM,
SLFM, and CGP, and compare against CMOGP and
GPRN if results for the considered task are available.
Since CK and ICM are much simplified versions of
SLFM (Álvarez et al., 2010; Goovaerts, 1997) and CGP
is an approximation to SLFM, we sometimes omit

6



Acronym Model

IGP Independent GPs
CK Cokriging (Goovaerts, 1997; Stein, 1999;

Wackernagel, 2003)
ICM Intrinstic Coregionalisation Model

(Goovaerts, 1997; Stein, 1999; Wack-
ernagel, 2003)

SLFM Semiparametric Latent Factor Model (Teh
& Seeger, 2005)

CGP Collaborative Multi-Output GPs (Nguyen
& Bonilla, 2014)

CMOGP Convolved Multi-output GP Model (Álvarez
& Lawrence, 2011; Álvarez et al., 2010)

GPRN GP Regression Network (Wilson et al., 2012)
[D-]GPAR-
[L-][N]L

[Denoising] GPAR with [linear and]
[non]linear output dependencies (Equa-
tions (5), (GPAR-L) and (GPAR-NL))

Table 1: List of models against which GPAR is com-
pared

results for CK, ICM, and CGP.

5.1 Electroencephalograms

The electroencephalogram (EEG) data set2 consists of
256 voltage measurements from 7 electrodes placed on
a subject’s scalp whilst the subject is shown a certain
image; (Zhang et al., 1995) describes the data collection
process in detail. In particular, we use frontal electrodes
FZ and F1–F6 from the first trial on control subject
337. The task is to predict the last 100 samples for
electrodes FZ, F1, and F2, given that the first 156
samples of FZ, F1, and F2 and the whole signals of
F3–F6 are observed. Performance is measured with
the standardised mean squared error (SMSE), mean
log loss (MLL) (Rasmussen & Williams, 2006), and
training time (TT); the models were trained on a late-
2013 MacBook Pro.

Model SMSE MLL TT

IGP 1.75 2.60 2 sec
SLFM 1.06 4.00 11min
GPAR-NL 0.26 1.63 5 sec

Table 2: Experimental results for the EEG data set
for IGP, the SLFM with four latent dimensions, and
GPAR.

Figure 7 visualises predictions for electrode F2, and Ta-
2The EEG data set can be downloaded at https://

archive.ics.uci.edu/ml/datasets/eeg+database.

ble 2 quantifies the results. We observe that GPAR-NL
outperforms independent in terms of SMSE and MLL;
note that independent GPs completely fail to provide
an informative prediction. Furthermore, independent
GPs were trained in two seconds, and GPAR-NL took
only a three more seconds; in comparison, training
SLFM took 11 minutes.

5.2 Metal Concentration Measurements in
the Swiss Jura

The Jura data set comprises metal concentration mea-
surements collected from the topsoil in a 14.5 km2 re-
gion of the Swiss Jura.3 We follow the experimental
protocol in (Goovaerts, 1997) also followed in (Álvarez
& Lawrence, 2011): The training data comprises 259
data points distributed spatially with three output
variables—nickel, zinc, and cadmium—and 100 addi-
tional data points for which only two of the three
outputs—nickel and zinc—are observed. The task is
to predict cadmium at the locations of those 100 addi-
tional data. Performance is evaluated with the mean
absolute error (MAE).

Model IGP CK† ICM SLFM CMOGP†

MAE 0.5739 0.51 0.4601 0.4606 0.4552
MAE∗ 0.5753 0.4114 0.4145

Model GPRN† GPAR-NL D-GPAR-NL

MAE 0.4525 0.4324 0.4114
MAE∗ 0.4040 0.4168 0.3996

Table 3: Results for the Jura data set for IGP, cok-
riging (CK) and ICM with two latent dimensions, the
SLFM with two latent dimensions, CMOGP, GPRN,
and GPAR. ∗ These results are obtained by first
log-transforming the data, then performing prediction,
and finally transforming the predictions back to the
original domain. † These numbers are taken from
(Wilson, 2014).

Similarity between the colour patterns in Figure 8 in-
dicates that concentrations of the three minerals are
positively correlated. The comparatively poor perfor-
mance of independent GPs in Table 3 highlights the
importance of exploiting this relationship. Further-
more, Table 3 shows that D-GPAR-NL significantly
outperforms the other models, achieving a new state-
of-the-art result.

3The data can be downloaded at https:
//sites.google.com/site/goovaertspierre/
pierregoovaertswebsite/download/.
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Figure 7: Predictions for electrode F2 from the EEG data set
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Figure 8: The Jura data set and GPAR’s prediction for it. Colours represent rescaled concentration levels;
different scales are used for each metal. Circles (◦) correspond to training points, and pluses ( ) correspond to
test points; the points’s inner fill colours represent the true concentration level at those locations. Finally, the
background colours represent GPAR’s prediction.

5.3 Exchange Rates of International
Currencies and Precious Metals

The exchange rates data set consists of the daily ex-
change rate w.r.t. USD of the top ten international
currencies (CAD, EUR, JPY, GBP, CHF, AUD, HKD,
NZD, KRW, and MXN) and three precious metals
(gold, silver, and platinum) in the year 2007.4 The
task is to predict CAD on days 50–100, JPY on days
100–150, and AUD on days 150–200, given that CAD
is observed on days 1–49 and 101–251, JPY on days
1–49 and 151–251, and AUD on days 1–49 and 201–251;
and that all other currencies are observed throughout
the whole year. This comprises the same test set as
in (Nguyen & Bonilla, 2014), against which we com-
pare performance, but a smaller training set. (Nguyen
& Bonilla, 2014) additionally observes JPY on days
50–99 and AUD on days 50–149; accordingly, the task
we present here is a slightly harder one than that in
(Nguyen & Bonilla, 2014), but their results can be com-
pared. Performance is measured with the standardised
mean squared error (SMSE) (Rasmussen & Williams,
2006).

Figure 9 visualises GPAR’s prediction for data set, and
Table 4 quantifies the result. We observe that GPAR

4The exchange rates data set can be downloaded at
http://fx.sauder.ubc.ca.

Model IGP∗ CMOGP∗ CGP∗ GPAR-L-NL

SMSE 0.5996 0.2427 0.2125 0.0519

Table 4: Experimental results for the exchange rates
data set for IGP, CMOGP, CGP, and GPAR. ∗ These
numbers are taken from (Nguyen & Bonilla, 2014).

significantly outperforms all other models, which shows
visually by comparing with the plots in (Nguyen &
Bonilla, 2014). Note that GPAR outperforms all other
models despite being presented a harder task.

5.4 Objective Surface Modelling for Bayesian
Optimisation

We finally consider the problem of modelling the ob-
jective surface of the validation error of a multi-layer
perceptron (MLP) on the MNIST data, trained using
categorical cross-entropy, and set as a function of six
hyperparameters: the number of hidden layers, the
number of neurons per hidden layer, the dropout rate,
the learning rate to use with the ADAM optimizer, the
L1 weight penalty, and the L2 weight penalty. This
experiment was implemented using code made available
by Hernández-Lobato (2016). An improved model for
the objective surface could translate directly into im-
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Figure 9: Visualisation of the exchange rates data set and GPAR’s prediction for it

proved performance in Bayesian Optimisation (Snoek
et al., 2012), as a better model of the objective surface
will result in a more informed search of the hyperpa-
rameter space.

To generate a data set we sample 291 sets of hyperpa-
rameters randomly from a rectilinear grid and train the
MLP for 21 epochs under each set of hyperparameters,
recording the validation performance after 1, 5, 11, 16
and 21 epochs. We construct a training set of 175 of
these hyperparameter settings and, crucially, discard
roughly 30% of the validation performance results at 5
epochs at random, and again discard roughly 30% of
those results at 11 epochs, and so forth. The resulting
data set has 175 labels after 1 epoch, 124 after 5, 88
after 11, 64 after 15 and 44 after 21, simulating the
partial completion of the majority of runs. Crucially, a
Bayesian Optimisation system typically exploits only
completed training runs to inform the objective surface,
whereas GPAR can also exploit partially complete runs.
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Figure 10: Results for the machine learning data set
for a GP, the SLFM with two latent dimensions, and
GPAR.

The results presented in Figure 10 show the SMSE
in predicting validation performance at each epoch
using GPAR, the SLFM, and independent GPs on the
test set, averaged over 10 seeds for the pseudo-random
number generator used to select which outputs from the
training set to discard. GPs trained independently to
predict performance after a particular number of epochs

perform worse than the SLFM and GPAR, which both
have learned to exploit the extra information available
to them. In turn, GPAR performs noticeably better
than the SLFM.

6 Conclusion and Future Work

This paper introduced GPAR: a flexible, tractable, and
interpretable approach to multi-output GP regression.
GPAR can model nonlinear relationships between out-
puts, capture correlations in the noise, and scale to a
large number of output dimensions. In effect, GPAR
transforms problems high-dimensional data modelling
problems into set of single-output modelling problems,
which are the bread and butter of the GP approach.
GPAR was rigorously tested on a variety of synthetic
and real-world problems, consistently outperforming
existing GP models for multi-output regression. In-
sights into the structure of the data can be gained by
decomposing GPAR’s posterior over kernel components
which could be developed into a useful tool in auto-
matic structure discovery in data (Lloyd et al., 2014).
In this light, we believe particularly exciting future
applications of GPAR are modelling of environmental
phenomena and improving the data-efficiency of exist-
ing Bayesian Optimisation tools (Snoek et al., 2012),
through providing an improved model of the objective
surface. GPAR is trivially compatible with the wide
array of GP approximation techniques designed to scale
inference to a large number of observations (Titsias,
2009; Hensman et al., 2013; Saatçi, 2012; Cunningham
et al., 2008). Another area for future work are ex-
tensions to arbitrarily-structured missing output data.
This would remove the constraints currently imposed
on the ordering of the outputs when some observations
are missing. Leveraging inference schemes for Deep
GPs could provide a promising starting point here.
In the other direction, GPAR could be harnessed to
provide initialisations for Deep GP inference schemes.
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A Conditional Independence in
Figure 2b

Before considering Figure 2b, we review some basic
notions concerning graphical models.

Let a path be a sequence of nodes v1, . . . , vn from some
directed graph G where, for each vi, G either contains
an edge from vi to vi+1, or an edge from vi+1 to vi. If
G contains an edge from a to b, then write a → b to
mean the two-node path in which node b follows node
a. Similarly, if G contains an edge from b to a, then
write a ← b to mean the two-node path in which b
follows a. Write a
 b to mean either a→ b or b← a.

Definition 1 (Active Path (Definition 3.6 from (Koller
& Friedman, 2009))). Let P = v1 
 · · · 
 vn be a
path in a graphical model. Let Z be a subset of the
variables from the graphical model. Then, call P active
given Z if

• for every v-structure vi−1 → vi ← vi+1 in P , vi or
a descendant of vi is in Z; and

• no other node in P is in Z.

Definition 2 (d-Separation (Definition 3.7 from
(Koller & Friedman, 2009))). Let X, Y , and Z be
three sets of nodes from a graphical model. Then, call
X and Y d-separated given Z if no path between any
x ∈ X and y ∈ Y is active given Z.

Theorem 2 (d-Separation Implies Conditional In-
dependence (Theorem 3.3 from (Koller & Friedman,
2009))). Let X, Y , and Z be three sets of nodes from
a graphical model. If X and Y are d-separated given
Z, then X ⊥ Y |Z.

Consider Figure 11. Define the layers of a node in our
graphical model to be

layer(fi) = layer(gi(x)) = layer(yi(x)) = i.

Proof of Lemma 1. Since Ai(x,y) depends only on
(x,y1:i−1), any sample from g |A,u satisfies gi =
ui+Ai◦g, by Proposition 1, so gi = ui+Ai◦(g1:i−1,0),
where (g1:i−1,0) represents the concatenation of g1:i−1
and M − i+ 1 zeros. The equivalence now follows.

Proof. Let P be a path between any yi(x′) ∈ yi and
yj(x):

P = v1︸︷︷︸
yi(x′)


 v2 
 · · ·
 vn−1 
 vn︸︷︷︸
yj(x)

.

P defines a sequences of layers L =
layer(v1), . . . , layer(vn). Let k be the maximum

of this sequence. Since layer(vn) = j, it holds that
k ≥ j > i; in other words, at some point, P transitions
from a layer strictly lower than k to layer k: there
must exist an m < k and x̂ such that

· · · → ym(x̂)→ gk(x̂) 
 · · · (6)

is part of P.
If yk(x̂) ∈ D, then, since D is closed downwards,
ym(x̂) ∈ D, meaning that P is inactive; note that
Equation (6) shows that ym(x̂) is not in a v-structure.

If, on the other hand, yk(x̂) /∈ D, then, since D is
closed downwards, neither gk(x̂) nor a descendant of
gk(x̂) is in D. If yk(x̂) would follow gk(x̂) in P, then,
looking at Figure 11, any node following yk(x̂) would
be in a layer strictly higher than k, which would be a
contradiction: k is chosen to be the highest layer in
P . Therefore, yk(x̂) cannot follow gk(x̂) in P , meaning
that, again looking at Figure 11, gk(x̂) must be in a v-
structure. Hence, P is inactive, because we previously
concluded that neither gk(x̂) nor a descendant of gk(x̂)
is in D.

B Proofs of Lemmas 1 and 2

For functions A,B : X × (YX )M → YM , define compo-
sition ◦ as follows: (A◦B)(x,y) = A(x,B( · ,y)). Note
that ◦ is well-defined and associative. For a function
u : X → YM , denote A◦u : X → YM , A◦u = A( · ,u).
Again, note that (A◦B)◦u = A◦(B◦u). Furthermore,
denote

A ◦ · · · ◦A︸ ︷︷ ︸
n times

= An.

Consider a function A : X × (YX )M → YM such that
Ai(x,y) : X ×(YX )M → Y depends only on (x,y1:i−1),
where A1 = 0. Further let u,g : X → YM , denote
T f = u+A◦ f , and denote N consecutive applications
of T by TN .

To proof Lemmas 1 and 2, we first show that TM−1 u
is the unique solution of a functional equation which is
much easier to analyse.

Proposition 1. The unique solution of g = u+A ◦ g
is g = TM−1 u.

Proof of Proposition 1. First, we show that g = u +
A ◦ g has a solution, and that this solution is unique.
Because Ai(x,y) depends only on (x,y1:i−1), it holds
that

gi = ui +Ai ◦ g = ui +Ai ◦ (g1:i−1,0),
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Figure 11: A more general representation of the graphical model corresponding to GPAR

where (g1:i−1,0) represents the concatenation of g1:i−1
and M − i + 1 zeros. Thus, gi can uniquely be con-
structed from ui, Ai, and g1:i−1; therefore, g1 exists
and is unique, so g2 exists and is unique: by induction
we find that g exists and is unique.

Second, we show that g = TM−1 u satisfies g = u +
A ◦ g = Tg. To show this, we show that (Tn u)i =
(Tn−1 u)i for i = 1, . . . , n, for all n. To begin with, we
show the base case, n = 1:

(Tu)1 = u1 +A1 ◦ u = u1 = (T0 u)1,

since A1 = 0. Finally, suppose that the claim holds for
a particular n. We show that the claim then holds for
n+ 1: Let i ≤ n+ 1. Then

(Tn+1 u)i = ui +Ai ◦ Tn u

= ui +Ai ◦ ((Tn u)1:i−1, (T
n u)i:M )

= ui +Ai ◦ ((Tn−1 u)1:i−1, (T
n u)i:M )

(By assumption)
∗
= ui +Ai ◦ ((Tn−1 u)1:i−1, (T

n−1 u)i:M )

= ui +Ai ◦ Tn−1 u

= (Tn u)i,

where ∗ holds because Ai(x,y) depends only on
(x,y1:i−1).

In the linear case, TM−1 u turns out to greatly simplify.

Proposition 2. If A(x,y) is linear in y, then
TM−1 u = (

∑M−1
i=0 Ai) ◦ u.

Proof of Proposition 2. If A(x,y) is linear in y, then

one verifies that ◦ distributes over addition. Therefore,

TM−1 u = u+A ◦ TM−2 u

= u+A ◦ u+A2 ◦ TM−3 u

...

= u+A ◦ u+ · · ·+AM−1 ◦ u.

We can now use Propositions 1 and 2 to prove Lemmas 1
and 2.

Proof of Lemma 1. Since Ai(x,y) depends only on
(x,y1:i−1), it holds by Proposition 1 that any sam-
ple from g |A,u satisfies gi = ui + Ai ◦ g, , so
gi = ui +Ai ◦ (g1:i−1,0), where (g1:i−1,0) represents
the concatenation of g1:i−1 and M − i+ 1 zeros. The
equivalence now follows.

Proof of Lemma 2. First, one verifies that Ai(x,y)
still depends only on (x,y1:i−1), and that Ai(x,y) is
linear in y. The result then follows from Lemma 1
and Proposition 2, where the expression for kAi

follows
from straightfoward calculation.

C Lemma 3

Call functions k1, . . . , kM : X → R linearly independent
if (

∀x :

M∑
i=1

ciki(x) = 0

)
=⇒ c1 = . . . = cM = 0.

Lemma 3. Let k1, . . . , kM : X → R be linearly in-
dependent and arrange them in a diagonal matrix
K = diag(k1, . . . , kn). Let A be an invertible M ×M
matrix such that its columns cannot be permuted into a
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triangular matrix. Then there does not exist an invert-
ible triangular matrix T such that T−1BK(x)BTT−T

is diagonal for all x.

Proof. Suppose, on the contrary, that suchT does exist.
Then two different rows ap and aq of A = T−1B share
nonzero elements in some columns C; otherwise, A
would have exactly one nonzero entry in every column—
A is invertible—so A would be the product of a per-
mutation matrix and a diagonal matrix, meaning that
B = TA’s columns could be permuted into a triangu-
lar matrix. Now, by T−1BK(x)BTT−T = AK(x)AT

being diagonal for all x ∈ X , ∑i ap,iaq,iki(x) = 0 for
all x. Therefore, by linear independence of k1, . . . , kN ,
it holds that ap,iaq,i = 0 for all i. But ap,iaq,i 6= 0 for
any i ∈ C, which is a contradiction.
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