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Abstract

The present paper concerns large covariance matrix estimation via composite minimization

under the assumption of low rank plus sparse structure. In this approach, the low rank

plus sparse decomposition of the covariance matrix is recovered by least squares minimiza-

tion under nuclear norm plus l1 norm penalization. This paper proposes a new estimator of

that family based on an additional least-squares re-optimization step aimed at un-shrinking

the eigenvalues of the low rank component estimated at the first step. We prove that such

un-shrinkage causes the final estimate to approach the target as closely as possible while re-

covering exactly the underlying low rank and sparse matrix varieties. In addition, consistency

is guaranteed until p log(p) ≫ n, where p is the dimension and n is the sample size, and recov-

ery is ensured if the latent eigenvalues scale to pα, α ∈ [0, 1]. The resulting estimator is called

UNALCE (UNshrunk ALgebraic Covariance Estimator) and is shown to outperform both

LOREC and POET estimators, especially for what concerns fitting properties and sparsity

pattern detection.



1 Introduction

Estimation of population covariance matrices from samples of multivariate data is of interest

in many high-dimensional inference problems - principal components analysis, classification

by discriminant analysis, inferring a graphical model structure, and others. Depending on

the different goal the interest is sometimes in inferring the eigenstructure of the covariance

matrix (as in PCA) and sometimes in estimating its inverse (as in discriminant analysis or

in graphical models). Examples of application areas where these problems arise include gene

arrays, fMRI, text retrieval, image classification, spectroscopy, climate studies, finance and

macro-economic analysis.

The theory of multivariate analysis for normal variables has been well worked out, (see, for

example, Anderson (1984)). However, it became soon apparent that exact expressions were

cumbersome, and that multivariate data were rarely Gaussian. The remedy was asymptotic

theory for large samples and fixed, relatively small, dimensions. However, in recent years,

datasets that do not fit into this framework have become very common, since nowadays the

data can be very high-dimensional and sample sizes can be very small relative to dimension.

The most traditional covariance estimator, the sample covariance matrix, is known to be

dramatically ill-conditioned in a large dimensional context, where the process dimension p

is larger than or close to the sample size n, even when the population covariance matrix is

well-conditioned. Two key properties of the matrix estimation process assume a particular

relevance in large dimensions: well conditioning (i.e. numerical stability) and identifiability.

Both properties are crucial for the theoretical recovery and the practical use of the estimate. A

bad conditioned estimate suffers from collinearity and causes its inverse, the precision matrix,

to dramatically amplify any error in the data. A large dimension may cause the impossibility

to identify the unknown covariance structure thus masking the interpretation of the results.

Regularization approaches to large covariance matrices estimation have therefore started

to be presented in the literature, both from theoretical and practical points of view. Some au-

thors propose shrinkage towards the identity matrix (Ledoit and Wolf, 2004), others consider

tapering the sample covariance matrix, that is, gradually shrinking the off-diagonal elements
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toward zero (Furrer and Bengtsson (2007), Cai et al. (2010)). At the same time, a common

approach is to encourage sparsity, either by a penalized likelihood approach (Friedman et al.,

2008) or by banding (Bickel and Levina, 2008b) or thresholding the sample covariance ma-

trix (Bickel and Levina (2008a), Rothman et al. (2009), Cai and Liu (2011)). A consistent

bandwidth selection method for all these approaches is described in Qiu and Chen (2015).

A different approach is based on the assumption of a low rank plus sparse structure for

the covariance matrix:

Σ̂ = L∗ + S ∗ +W = Σ ∗ +W , (1)

where Σ̂ is a generic covariance estimator, W is an error term, S ∗ is sparse having at most

s nonzero elements and L∗ is low rank with rank r < p and Σ∗ is a positive definite matrix.

The combination of regularization techniques and dimensionality reduction methods allows

to lower the condition number and the parameter space dimensionality simultaneously. In

Fan et al. (2013), a large covariance matrix estimator of this family, called POET (Principal

Orthogonal complEment Thresholding), is derived. POET combines Principal Component

Analysis for the recovery of the low rank component and a thresholding algorithm for the

recovery of the sparse component. The underlying model assumptions prescribe an approxi-

mate factor model with spiked eigenvalues for the data, thus allowing to reasonably use the

truncated PCA of the sample covariance matrix. Furthermore, at the same time, sparsity in

the sense of Bickel and Levina (2008a) is imposed to the residual matrix. The latent rank r

is chosen by the IC criteria of Bai and Ng (2002).

Indeed, rank selection represents a relevant issue: if p is large, setting a large rank would

cause the estimate to be non-positive definite, while setting a small rank would cause a too

relevant variance loss. In the discussion of Fan et al. (2013), Yu and Samworth point out

that the probability to underestimate the latent rank does not asymptotically vanish if the

eigenvalues are not really spiked at rate O(p). In addition, we note that POET systematically

overestimates the proportion of variance explained by the factors (given the true rank) because

the eigenvalues of Σn are more spiky than the true ones (as proved in Ledoit and Wolf (2004)).

POET consistency holds given that a number of assumptions is satisfied. The key as-
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sumption is the pervasiveness of latent factors, which causes the PCA of Σ̂n to asymptot-

ically identify the eigenvalues and the eigenvectors of Σ∗. The results of Fan et al. (2013)

provide the convergence rates of the relative norm of Σ̂ − Σ ∗ (defined as ||Σ̂ − Σ ∗||Σ =

p−1/2 ||Σ ∗− 1

2 Σ̂Σ ∗− 1

2 − Ip ||Fro), the maximum norm of Σ̂ − Σ ∗ and the spectral norm of

ŜT

r̂ − S ∗. Under more strict conditions, ŜT

r̂ and Σ̂POET,r̂ are proved to be non-singular with

probability approaching 1.

At the same time, a number of non-asymptotic methods has been presented. In Chandrasekaran et al.

(2011) the exact recovery of the covariance matrix in the noiseless context is first proved. The

result is achieved minimizing a specific convex non-smooth objective, which is the sum of

the nuclear norm of the low rank component and the l1 norm of the sparse component. In

Chandrasekaran et al. (2012), which is an extension of Chandrasekaran et al. (2011), the ex-

act recovery of the inverse covariance matrix by the same numerical problem in the noisy

graphical model setting is provided. The authors prove that, in the worst case, the number

of necessary samples in order to ensure consistency is n = O
(

p3

r2

)

(where r is the rank), even

if the required condition for the positive definiteness of the estimate is p ≤ 2n.

An approximate solution to the recovery and identifiability of the covariance matrix in

the noisy context is described in Agarwal et al. (2012). Even there, the condition p ≤ n

is unavoidable, for standard results on large deviations and non-asymptotic random matrix

theory. An exact solution to the same problem, based on the results in Chandrasekaran et al.

(2012), is then shown in Luo (2011b). The resulting estimator is called LOREC (LOw Rank

and sparsE Covariance estimator) and is proved to be both algebraically and parametrically

consistent in the sense of Chandrasekaran et al. (2012).

In fact, in Chandrasekaran et al. (2012) algebraic consistency is defined as follows

Definition 1.1 A pair of symmetric matrices (S ,L) with S ,L ∈ R
p×p is an algebraically

consistent estimate of the low rank plus sparse model (1) for the covariance matrix Σ ∗ if the

following conditions hold:

1. The sign pattern of S is the same of S ∗: sign(Sij ) = sign((S ∗)i ,j ), ∀i, j. Here we assume

that sign(0) = 0.
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2. The rank of L is the same as the rank of L∗.

3. Matrices L+ S, S and L are such that: L+ S ≻ 0 , S ≻ 0 , L � 0 .

Parametric consistency holds if the estimates of (S ,L) are close to (S ∗,L∗) in some norm with

high probability. In Chandrasekaran et al. (2012) such norm is gγ = max
(

||Ŝ−S∗||∞
γ , ||L̂− L∗||2

)

.

LOREC shows several advantages respect to POET. The most important is that the

estimates are both algebraically and parametrically consistent, while POET provides only

parametric consistency. In spite of that, LOREC suffers from some drawbacks, especially

concerning fitting properties. What is more, the strict condition p ≤ n is required, while

POET allows for p log(p) ≫ n.

For these reasons, we propose a new estimator, UNALCE (UNshrunk ALgebraic Co-

variance Estimator), based on the unshrinkage of the estimated eigenvalues of the low rank

component, which allows to improve the fitting properties of LOREC systematically. We

assume that the non-zero eigenvalues of L∗ and Σ∗ are proportional to pα, α ∈ [0, 1] (the so

called generalized spikiness context), and we drop the LOREC sparsity assumption on Σ∗. We

prove that under POET conditions, our estimator allows for p log(p) ≫ n, and that under the

generalized spikiness context it allows for pα log(p) ≫ n. We derive absolute bounds for the

low rank, the sparse component, and the overall estimate, as well as the conditions for posi-

tive definiteness and invertibility. In this way we provide a unique framework for covariance

estimation via composite minimization under the low rank plus sparse assumption.

The remainder of the paper is organized as follows. In Section 2 we first define ALCE

(ALgebraic Covariance Estimator) with the necessary assumptions for algebraic and para-

metric consistency, and then define UNALCE, proving that the unshrinkage of thresholded

eigenvalues of the low rank component is the key to improve fitting properties as much as

possible given a finite sample, preserving algebraic consistency. In Section 3 we propose a

new model selection criterion specifically tailored to our model setting. In Section 4 we de-

scribe and comment some simulation studies, showing that our estimator outperforms POET

in different situations. In Section 5 we provide a real Euro Area banking data example which

clarifies the effectiveness of our approach. Finally, in Section 6 we draw the conclusions and
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discuss the most relevant findings.

2 Numerical estimation and spiked eigenvalues:

the ALCE approach

2.1 The data

Let us suppose the population covariance matrix of our data is the sum of a low rank and a

sparse component. A p-dimensional random vector x is said to have a low rank plus sparse

structure if its covariance matrix Σ ∗ satisfies the following relationship:

Σ ∗ = L∗ + S ∗, (2)

where:

1. L∗ is a positive semidefinite symmetric p× p matrix with at most rank r ≪ p;

2. S ∗ is a positive definite p × p sparse matrix with at most s ≪ p(p − 1)/2 nonzero

elements.

According to the spectral theorem, we can write L∗ = ULDU ′
L = BB ′, where B = ULD

1/2 ,

UL is a p × r orthogonal matrix, D is a r × r diagonal matrix, with djj > 0, ∀j = 1, . . . , r.

Suppose that the p× 1 random vector x is generated according to the following model:

x = Bf + ǫ, (3)

with

f = Nr(0 , Ir ); (4)

ǫ = Np(0 ,S
∗), (5)

where f is a r×1 random vector, and ǫ is p×1 random vector. x is assumed to be a zero mean

random vector, without loss of generality. Given a sample xi, i = 1, . . . , n Σn = 1
n

∑n
i=1 xix

′
i
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is the p× p sample covariance matrix.

It is easy to observe that x follows a low rank plus sparse structure:

E(xx′) = E((Bf + ǫ)(Bf + ǫ)′) =

= E(B ′f ′fB) + E (Bfǫ′) +E(ǫB ′f ′) +E(ǫǫ′) = (6)

= BB ′ + S ∗ = Σ ∗

under the usual assumption f ⊥ ǫ, i.e. cov(f , ǫ) = E(fǫ′) = E(ǫf ′) = 0 (r × p null matrix). If

we assume a normal distribution for f and ǫ, we know that the matrix W := Σn − (BB′+S ∗)

is distributed as a re-centered Wishart noise. In any case, the normality assumption is not

essential in the finite sample context.

2.2 LOREC approach

The approach of Luo (2011b) is based on numerical analysis, exploiting the theory of non-

smooth convex optimization provided by Rockafellar (2015) and Clarke (1990). Under model

(1), this method allows at the same time to consistently estimate the covariance matrix Σ ∗

and to catch the sparsity pattern of S ∗ and the spikiness pattern of the eigenvalues of L∗

simultaneously.

The estimation problem is stated as

min
L,S

1

2
||(L+ S )− Σn ||2Fro + λrank(L) + ρ||S ||0 , (7)

where ||S ||0 is the number of nonzero elements. This is a combinatorial problem, which is

known to be NP-hard, since both rank(L) and ||S ||0 are not convex. A very well known

convex relaxation of problem (7) is

min
L,S

1

2
||(L+ S )−Σn ||2Fro + λ||L||∗ + ρ||S ||1 , (8)

where λ and ρ are non-negative threshold parameters, ||S ||1 =
∑n

i=1

∑n
j=1 |sij | is the l1
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norm of S , ||L||∗ =
∑r

i=1 |di | =
∑r

i=1 di = ||diag(D)||1 is the nuclear norm of L∗, where D

is the diagonal matrix of the eigenvalues of L. Basic references are Tibshirani (1996) for the

former and Fazel et al. (2001) for the latter.

From an algebraic point of view, (8) is an algebraic matrix variety recovery problem. In

the noisy covariance matrix setting described in equation (1), matrices L∗ and S ∗ are assumed

to come from the following sets of matrices:

B(r) = {L ∈ R
p×p | L = UDU ′,U ∈ R

p×rorthogonal,D ∈ R
r×rdiagonal} (9)

A(s) = {S ∈ R
p×p | |support(S )| ≤ s}. (10)

B(r) is the variety of matrices with at most rank r. A(s) is the variety of (entrywise) sparse

matrices with at most s nonzero elements, where support(S ) is the orthogonal complement

of ker(S ).

In Chandrasekaran et al. (2011) the notion of rank-sparsity incoherence is developed,

which is defined as the uncertainty principle between the sparsity pattern of a matrix and

its row/column space. Denoting by T (L) and Ω(S ) the tangent spaces to B(r) and A(s)

respectively, the following rank-sparsity incoherence measures between Ω(S ∗) and T (L∗) are

defined:

ξ(T (L∗)) = max
N∈T (L∗),||N ||2≤1

||N ||∞, (11)

µ(Ω(S ∗)) = max
N∈Ω(S∗),||N ||∞≤1

||N ||2 . (12)

In order to identify T (L∗) and Ω(S ∗), we need that quantities ξ(T (L∗)) and µ(Ω(S ∗)) to be

small as possible, because the smaller they are, the better is the decomposition. The product

µ(Ω(S ∗))ξ(T (L∗)) is the rank-sparsity incoherence measure and bounding it controls both for

identification and recovery.

The reference matrix class for the covariance matrix in Luo (2011b) is

Σ ∗(ǫ0 ) = {M ∈ R
p×p : 0 < ǫ0 ≤ Λi(M ) ≤ ǫ−1

0 , ∀i = 1 , . . . , p} (13)
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which is the class of positive definite matrices having uniformly bounded eigenvalues (Λi (M ), i =

1 , . . . , p, are the eigenvalues of M). In the context so far described, Luo proves that L and S

can be identified and recovered with bounded error, and the rank of L as well as the sparsity

pattern of S are exactly recovered (see (Luo, 2011b) for the details).

The key model-based results for deriving consistency bounds are a lemma by Bickel and Levina

(2008a) for the sample loss in infinity (element-wise) norm:

||Σn − Σ∗||∞ ≤ O

(

√

log p

n

)

, (14)

and a lemma by Davidson and Szarek (2001) for the sample loss in spectral norm:

||Σn − Σ∗||2 ≤ O

(
√

p

n

)

, (15)

where Σn = Σ̂n−1 is the p × p unbiased sample covariance matrix. We note that if the input

is Σ̂n−1, the condition p ≤ n is unavoidable.

From a theoretical point of view, LOREC approach presents some deficiencies and incon-

gruities. Differently from POET approach, where the sparsity assumption is imposed to the

sparse component S∗, LOREC approach imposes it directly to the covariance matrix Σ∗. As

a consequence, the assumption Σ∗ ∈ Σ∗(ǫ0) (see (13)) is necessary and causes, jointly with

the identifiability assumptions, uncertainty on the underlying structure of Σ∗.

In fact, assuming uniformly bounded eigenvalues may conflict with the main necessary

identifiability condition: the transversality between Ω and T . Since the eigenvalue structures

of Σ∗ and S∗ are somehow linked, allowing class (13) for Σ∗ may cause S∗ to be not enough

sparse, and simultaneously the row/column space of L∗ to have high values of incoherence,

because we have no spiked eigenvalues. This may result in possible non-identifiability issues.

2.3 ALCE estimator

Let us suppose that the eigenvalues of L∗ are spiked in the sense of Proposition 1 in Fan et al.

(2013), and that all propositions and assumptions of POET approach hold in our finite sample
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context.

In other words, we suppose that

λ1,...,r(Σ
∗) ≫ δp,

λr+1,...,p(Σ
∗) ≪ δp,

δ 6= 0, that is, the eigenvalues of p−1B′B are bounded away from 0 and ∞.

Suppose that p = o(n2) and that all the other assumptions of Theorem 2 in Fan et al.

(2013) hold. In particular, suppose that the following bound can be proved

||Σn − Σ∗|| = O

(

p√
n

)

(16)

which is equivalent to state that

P

(

||Σn − Σ∗|| ≥ C1
p√
n

)

≤ 1− C2e
−C3p2 , (17)

where C1, C2, C3 are positive constants.

In addition, suppose that all the conditions for proving LOREC consistency hold. We

only drop assumption (13), which is possibly dangerous for model identifiability as explained

in Section 2.2. As a consequence, we can simply write, using the standard norm property

||.||∞ ≤ ||.||2 (Chandrasekaran et al., 2012),

P

(

||Σn − Σ∗||∞ ≥ C1ξ(T )
p

ξ(T )
√
n

)

≤ 1−C2e
−C3p2 . (18)

Replacing bound (15) by bound (16) in the proof of Theorem 1 of Luo (2011b) and recalling

that the consistency norm in Chandrasekaran et al. (2012) is

gγ = max

(

||Ŝ − S∗||∞
γ

, ||L̂− L∗||2
)

, (19)
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we can conclude, exploiting the results therein described, that

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

p√
n
. (20)

In this way it is possible to generalize the numerical approach based on (8) to the POET

pervasiveness context. It is straightforward that the success of this approach depends on

the coherence between the assumptions of spiked eigen-structure of Fan et al. (2013) and the

identifiability assumptions for the recovery of underlying matrix varieties.

In order to relax the strong assumption of pervasiveness of latent factors, we define the

generalized pervasiveness context for α ∈ (0, 1] as follows (Fan et al. (2013), Yu and Samworth,

p. 656):

Definition 2.1 The eigenvalues of Σ∗ follow a α-generalized spikiness structure if and only

if all the eigenvalues of the r× r matrix p−αB′B are bounded away from 0 and ∞ as p → ∞.

If α = 1, we fall back to the POET setting.

Since this approach is non-asymptotic in nature, we need to study the behaviour of the

model-based quantity P (||Σn − Σ∗||), which is the only probabilistic component. Exploiting

the property |||.||∞ ≤ ||.||2, P (||Σn−Σ∗||∞) is bounded as a consequence. Therefore, our aim

is to generalize (17) showing that

P

(

||Σn − Σ∗|| > C1
pα√
n

)

≤ 1− C2e
−C3p2α , (21)

α ∈ (0, 1].

In order to do that, Proposition 1 and 2 of Fan et al. (2013) need to be modified as follows

to fit into the generalized spikiness context.

Proposition 2.1 All the eigenvalues of the r × r matrix B′B are bounded away from 0 for

all large pα, α ∈ (0, 1). Under the assumptions cov(ft) = Ir and B′B diagonal we have:

|λj − ||b̃j ||2| ≤ ||S∗||, j ≤ r

|λj | ≤ ||S∗||, j > r.
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In addition, for j ≤ r, lim infp→∞ ||b̃j ||2/(pα) > 0.

Proposition 2.2 Under the assumptions of Proposition 1, if ||b̃j ||rj=1 are distinct, then ||uj−

b̃j/||b̃j |||| = O(p−α||S∗||).

The resulting theorem is now reported.

Theorem 2.1 Let Ω = Ω(S ∗) and T = T (L∗). Suppose that all the assumptions of Theorem

2 in Fan et al. (2013) hold, given that Propositions 1 and 2 of Fan et al. (2013) are replaced

by Propositions (2.1) and (2.2) respectively, mp = op(p
α) and r = O(log pα), α ∈ (0, 1).

Suppose µ(Ω(S ∗))ξ(T (L∗)) ≤ 1
54

,

λ =

(

1

ξ(T )

pα√
n

)

,

with at most pα log (p) ≫ n and ρ = γλ, where γ ∈ [9ξ(T ), 1/(6µ(Ω))]. In addition, sup-

pose that the minimum singular value of L∗ (λr(L
∗)) is greater than C2

λ
ξ2(T )

and the smaller

absolute value of the nonzero entries of S ∗, Smax,off , is greater than C3
λ

µ(Ω) . Then, with prob-

ability greater than 1 − C4p
−C5, the pair (L̂, Ŝ ) minimizing (8) recovers the rank of L∗ and

the sparsity pattern of S ∗ exactly:

rank(L̂) = rank(L∗) and sign(Ŝ ) = sign(S ∗).

Moreover, with probability greater than 1−C4p
−C5 , the matrix losses for each component are

bounded as follows:

||L̂− L∗||2 ≤ Cλ, ||Ŝ − S ∗||∞ ≤ Cρ.

The proof is reported in the Appendix. It is straightforward that the success of this approach

depends on the coherence between the relaxed spikiness assumption and the identifiability

conditions of the low rank plus sparse problem. In particular, if we increase α (ceteris paribus),

both λr(L
∗) and Smax,off must be larger to ensure identifiability. The same happens if p
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increases, because, according to Chandrasekaran et al. (2011), both ξ(T (L∗)) and µ(Ω(S ∗))

depend inversely on p. On the contrary, to ensure consistency, if r increases L∗ can have less

spiked eigenvalues, while if s increases Smax ,off can be larger. This occurs because, according to

Chandrasekaran et al. (2011), ξ(T (L∗)) and µ(Ω(S ∗)) depend directly on r and s respectively.

If all these assumptions are valid, we can write

λ =

(

1

ξ(T )

pα√
n

)

. (22)

In this relaxed setting, the probabilistic bound is finite until pα log (p) ≫ n, because the bound

(21) holds until pα = o(n2). In this way we overcome the problem of the restrictive condition

p ≤ n. We call the resulting covariance estimator ALCE (ALgebraic Covariance Estimator):

Σ̂ALCE = L̂ALCE + ŜALCE .

From Theorem 2.1, we can derive with probability larger than 1 − C1p
−C2 the following

bounds for Σ̂ALCE:

||Σ̂ALCE − Σ ∗||2 ≤ C (s ′ξ(T ) + 1 )λ = φ, (23)

||Σ̂ALCE − Σ ∗||Fro ≤ C (
√

ps ′ξ(T ) +
√
r)λ, (24)

which hold if and only if λmin(Σ
∗) > φ. Here r is the true latent rank of L∗, while s′ is defined

as the maximum number of non-zero elements per column. The same bounds hold for the

inverse covariance estimate Σ̂−1
ALCE with the same probability:

||Σ̂−1
ALCE − Σ ∗−1 ||2 ≤ C (s ′ξ(T ) + 1 )λ = φ (25)

||Σ̂−1
ALCE − Σ ∗−1 ||Fro ≤ C (

√

ps ′ξ(T ) +
√
r)λ (26)

given that λmin(Σ
∗) ≥ 2φ.

Within the same framework, we can complete our analysis with the bounds for Ŝ . From
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||Ŝ − S ∗|| ≤ s ′||Ŝ − S ∗||∞, we obtain

||Ŝ − S ∗||2 ≤ Cs ′ξ(T )λ = φS . (27)

From ||Ŝ − S ∗||Fro ≤
√
ps ′||Ŝ − S ∗||∞, we obtain

||Ŝ − S ∗||Fro ≤ C
√

ps ′ξ(T )λ. (28)

Ŝ is positive definite if and only if λmin(S
∗) > φS . Ŝ

−1 has the same bound of Ŝ if and only

if φ−1
S ≥ 2λmin(S

∗)−1 .

We note that if α decreases to 0, we obtain p = O(1) = o(n). Therefore, in absence of

a spikiness structure (because r = log(p0) = log(1) = 0), the convergence rate of the sample

covariance matrix simply becomes O(
√

1
n). It is easy to note that imposing p = o(n) the

bound (15) assumes the same shape. Therefore, we can affirm that (21) holds for α ∈ [0, 1].

In this way ALCE approach encompasses both the POET case and the classic case (small and

fixed data dimension).

To sum up, by ALCE estimator we offer the chance to recover consistently a relaxed spiked

eigen-structure, thus overcoming the condition p ≤ n, even using the sample covariance matrix

as estimation input. In this approach, the recovery quality directly depends on the spikiness

of latent eigenvalues, because the larger α, the further are identifiability and invertibility

conditions from being satisfied, as well as the worse is the error bound. In addition, the ratio

p
n directly impacts on the error bound. We emphasize that our bounds are in absolute norms,

and reflect the underlying degree of spikiness.

However, we remark that ALCE approach works if and only if the identifiability and

consistency assumptions of the low rank plus sparse variety identification problem are satisfied.

In particular, the more spiky the low rank component is, the sparsest must be the sparse

component, in order to ensure a degree of transversality sufficiently low.

Finally, we remark that the proposed theory is able to address the large dimensional

context, where p > n. Sparse factor model assumptions together with the numerical approach
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are the keys to provide recovery in such settings. This result is obtained by a combined use

of random matrix theory and the probabilistic convergence theory of the sample covariance

matrix under the sparse factor model assumption.

2.4 UNALCE estimator: a re-optimized ALCE solution

Let us define ∆L = L̂ALCE − L∗,∆S = ŜALCE − S ∗,∆Σ = Σ̂ALCE − Σ ∗. A key aspect of

Theorem 2.1 is that the two losses in L∗ and S ∗ are bounded separately. This fact results in

a negative effect on the overall performance of Σ̂ALCE , represented by the loss ||∆Σ ||2, since

||∆Σ ||2 is simply derived as a function of ||∆L||2 and ||∆S ||2 according to the triangle inequality

||∆Σ ||2 ≤ ||∆L||2 + ||∆S ||2. Therefore, the need rises to correct for this drawback, re-shaping

Σ̂ALCE, as ALCE approach is somehow sub-optimal for the whole covariance matrix.

We approach this problem by a finite-sample analysis, which could be referred to as a

re-optimization least squares method. We refer to the usual objective function (8) with

||S ||1 = ||S ||1 ,off =
∑p−1

i=1

∑p
j=i+1 |sij |, i.e. the l1 norm of S excluding the diagonal entries,

consistently with POET approach.

Suppose that B̂(r̂) and Â(ŝ) are the varieties ensuring the algebraic consistency of (8).

One might look for the solution (say (L̂New, ŜNew)) of the problem

min
L∈B̂(r̂),S∈Â(ŝ)

TL(L,S ) = ||(Σn − (L+ S )||2Fro , (29)

where TL(L,S ) stands for Total Loss. The sample covariance matrix follows the model

Σn = L∗ + S ∗ + W , where we might assume W ∼ Wishart(0p×p, n − 1), given a sam-

ple of p−dimensional data vectors xi, i = 1, . . . , n. Our problem essentially is: which pair

L ∈ B̂(r̂ ),S ∈ Â(ŝ) satisfying algebraic consistency shows the best approximation properties

of Σn?

We prove the following original result.

Theorem 2.2 Suppose that L̂ALCE and ŜALCE are the ALCE solutions, with

Σ̂ALCE = L̂ALCE + ŜALCE.
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Suppose that B̂(r), and Â(s) are the recovered matrix varieties, and that L̂ = Û D̂Û ′ is

the eigenvalue decomposition of L̂ALCE. Define ŜNew and Σ̂New such that their off-diagonal

elements are the same as ŜALCE and Σ̂ALCE respectively. Then, the minimum

min
L∈B̂(r̂),S∈Â(ŝ)

‖Σn − (L+ S )‖2Fro

is achieved if and only if

L̂new = Û (D̂ + λIr)Û
′ and if diag(ŜNew) = diag(Σ̂ALCE)− diag(L̂new)

where λ is the threshold parameter in (8). We call the resulting overall estimate Σ̂new =

L̂new + Ŝnew UNALCE (UNshrunk ALgebraic Covariance Estimator).

Theorem (2.2) essentially states that the sample total loss (29) is minimized if we un-shrink

the eigenvalues of L̂ALCE (re-adding the threshold λ). The re-shaped ALCE low rank solution

L̂UNALCE belongs to the same low rank matrix variety as L̂ALCE (the eigenvectors do not

change). Assuming the invariance of the off-diagonal elements of ŜALCE and of the diagonal

elements of Σ̂ , the reshaped sparse ALCE solution minimizing (29) has a new diagonal, which

is simply the difference between the diagonal of the original Σ̂ALCE and the diagonal of the

newly computed L̂UNALCE. The resulting ŜUNALCE belongs to the same sparse matrix variety

as SALCE , because the sparsity pattern is exactly the same.

Four consequences of Theorem (2.2) are reported in Corollary 2.1.

Corollary 2.1 The gains in terms of spectral loss for L̂UNALCE, ŜUNALCE in comparison to

L̂ALCE, ŜALCE respectively are all strictly positive and bounded by λ:

0 < ||L̂ALCE − L∗||2 − ||L̂UNALCE − L∗||2 ≤ λ, (30)

0 < ||ŜALCE − S ∗||2 − ||ŜUNALCE − S ∗||2 ≤ λ. (31)

15



The gains in terms of Frobenius norm are all strictly positive and bounded as follows:

0 < ||L̂ALCE − L∗||Fro − ||L̂UNALCE − L∗||Fro ≤
√
2rλ, (32)

0 < ||ŜALCE − S ∗||Fro − ||ŜUNALCE − S ∗||Fro ≤
√
rλ. (33)

Two further relevant consequences of Theorem (2.2) are reported in Corollary 2.2.

Corollary 2.2 The gain in terms of spectral sample total loss for Σ̂UNALCE respect to Σ̂ALCE

is strictly positive and bounded by λ:

0 < ||Σn − Σ̂ALCE ||2 − ||Σn − Σ̂UNALCE ||2 ≤ λ. (34)

The gain in terms of Frobenius sample total loss for Σ̂UNALCE respect to Σ̂ALCE is strictly

positive and bounded by
√
rλ:

0 < ||Σn − Σ̂ALCE ||Fro − ||Σn − Σ̂UNALCE ||Fro ≤
√
rλ. (35)

The proofs of Corollaries 2.1 and 2.2 are reported in Appendix A.

The rationale of the two Corollaries is the following. We accept to pay the price of a

non-optimal solution in terms of nuclear norm (we allow to increment ||L̂||∗ by rλ) but we

have a best fitting performance for the whole covariance matrix, decrementing the squared

Frobenius loss of Σ̂ by a quantity bounded by rλ2. The l1 norm of S excluding the diagonal,

||Ŝ ||off , is unvaried, while the norm ||S ||1 (included the diagonal) is decreased by a quantity

bounded by
√
rλ.

The following result describes the losses for Σ̂UNALCE from the target Σ ∗ respect to

Σ̂ALCE.

Theorem 2.3 The gains in terms of spectral loss and Frobenius loss for Σ̂UNALCE respect
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to Σ̂ALCE are strictly positive and bounded as follows:

0 < ||Σ̂ALCE − Σ ∗||2 − ||Σ̂UNALCE − Σ ∗|||2 ≤ λ, (36)

0 < ||Σ̂ALCE − Σ ∗||Fro − ||Σ̂UNALCE − Σ ∗|||Fro ≤
√
rλ. (37)

We argue that the gain is strictly positive and bounded by λ for the spectral loss, by
√
rλ

for the Frobenius loss. The following Corollary extends our framework to the performance of

(Σ̂UNALCE)
−1.

Corollary 2.3 The gains in terms of spectral loss and Frobenius loss for Σ̂−1
UNALCE respect

to Σ̂−1
ALCE are strictly positive and bounded as follows:

0 < ||Σ̂−1
ALCE − Σ ∗−1 ||2 − ||(Σ̂−1

UNALCE − Σ ∗−1 ||2 ≤ λ. (38)

0 < ||Σ̂−1
ALCE −Σ ∗−1 ||2Fro − ||Σ̂−1

UNALCE − Σ ∗−1 ||2Fro ≤ rλ2 . (39)

The proof of Theorem 2.3 and Corollary 2.3 are reported in Appendix A.

The outlined results allow us to improve the estimation performance given the finite sam-

ple. However, the non-asymptotic bounds for L̂UNALCE, ŜUNALCE and Σ̂UNALCE are exactly

the ones of L̂ALCE , ŜALCE and Σ̂ALCE . UNALCE improves systematically the fitting perfor-

mance of ALCE, inheriting all its algebraic and parametric consistency properties.

In order to conclude, we remark that the un-shrinkage of the estimated eigenvalues of L̂

makes the necessary condition for positive definiteness and invertibility of Ŝ and Σ̂ milder.

In fact, in empirical analysis, one can consider that parameters φ = C(s′ξ(T ) + 1)λ and

φS = Cs′ξ(T )λ can be decreased by a quantity bounded by λ (s′ is the maximum number of

non zero elements per column).

3 A new model selection criterion: MC

In empirical applications, the selection of thresholds λ and ρ in equation (8) requires a model

selection criterion consistent with the described estimation method. The motivation rises from
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the consistency norm gγ used in Luo (2011b) (see (19)). Our aim is to detect the optimal

threshold pair (λ, ρ) in respect to the spikiness/sparsity trade-off. In order to exploit (19)

with model selection purposes, we need to make the two terms comparable, i.e., the need of

rescaling both arguments of gγ rises.

Considered that ||Ŝ ||∞
γ contains a maximum norm, we can re-scale it to the trace of Ŝ ,

which is estimated by (1 − θ̂)trace(Σn ) (θ̂ is the estimated proportion of latent variance).

Similarly, in order to compare the magnitude of the two quantities, we multiply ||L̂||2 by r,

since ||L̂||∗ ≤ r||L̂||2, and then divide it by the trace of L̂, estimated by θ̂trace(Σn). Our

maximum criterion MC can be therefore defined as follows:

MC = max

{

r̂||L̂||2
θ̂trace(Σn)

,
||Ŝ ||∞

γ(1− θ̂)trace(Σn )

}

, (40)

where γ = ρ
λ is the ratio between the sparsity and the spikiness threshold.

MC criterion is by definition mainly intended to catch the proportion of variance explained

by the factors. For this reason, it tends to choose quite sparse solutions with a small number

of non zeros and a small proportion of residual covariance, unless the non-zero entries of S

are prominent, as Theorem 2.1 prescribes. The MC method performs considerably better

than the usual cross-validation using H-fold Frobenius loss (used in Luo (2011b)). In fact,

minimizing a loss based on sample approximation like the Frobenius one causes the parameter

θ̂ to be shrunk too much. The threshold setting which shows a minimum for MC criterion

(given that the estimate Σ̂ is positive definite) is the best in terms of composite penalty,

taking into account the latent low rank and sparse structure simultaneously.

4 A simulation study

4.1 Simulation settings

In order to compare the performance of UNALCE, LOREC and POET, we take into consider-

ation three simulated low rank plus sparse settings reported in Table 1. From now, for easiness

of notation, we denote L∗,S ∗,Σ ∗ by L,S ,Σ respectively. The key simulation parameters are:
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Table 1: Simulated settings
p n r τ θ c s ρcorr

Setting 1 100 1000 4 1 0.7 2 118 0.0045
Setting 2 150 150 5 1 0.8 2 378 0.0033
Setting 3 200 100 6 1 0.8 2 631 0.0036

• the dimension p, the sample size n;

• the rank r and the condition number c of the low rank component L;

• the trace of L, τθp, where τ is a magnitude parameter and θ is the percentage of variance

explained by L;

• the (half) number non-zeros s in the sparse component S ;

• the percentage of (absolute) residual covariance ρcorr .

Setting 1 has p
n = 0.1, while Setting 2 has p

n = 1 and Setting 3 p
n = 2.

Lots of quantities are computed in order to describe comparatively the performance of the

three methods on the same data. The computation algorithm (a singular value thresholding

plus soft thresholding one) is described in Luo (2011a), and is applied to the generated unbi-

ased sample covariance matrix Σn . We call the low rank estimate L̂, the sparse estimate Ŝ ,

and the covariance matrix estimate Σ̂ = Ŝ + L̂.

The error norms used are:

1. Loss = ||Ŝ − S ||Fro + ||L̂− L||Fro ,

2. Total Loss = ||Σ̂ − Σ ||Fro ,

3. Sample Total Loss = ||Σ̂ − Σn ||Fro.

The estimated proportion of total variance θ̂ and the residual covariance proportion ρ̂corr are

computed. The performance of Ŝ is assessed by the following measures. Let us denote by nz

the number of nonzeros in Ŝ (recall that s is the number of nonzeros in S ), by fp the false

non-zeros, by fn the false zeros, by fpos the false positive and by fneg the false negative

elements. We define:
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1. the estimated proportion of non-zeros percnz = nz/numvar, where numvar = p(p−1)/2

is the number of off-diagonal elements,

2. the error measure: err = fp+fn
numvar

3. errplus = fpos+fneg
s , which is the same as err but computed for non-zeros only, distin-

guishing between positive and negative in the usual way.

4. the overall error rate errtot using the number of false zeros, false positive, and false

negative elements: errtot = fpos+fneg+fn
numvar .

The correct classification rates of (true) non-zeros and zero elements (denoted respectively

by sens and spec) are derived, as well as the correct classification rates of positive and negative

elements separately considered (denoted respectively by senspos and specpos).

4.2 Simulation results

We start analyzing the performance of Σ̂UNALCE in comparison to the one of Σ̂LOREC on

our reference setting (Setting 1). In Figure 1 and 2 we report the differences between the

Sample Total Losses and the Total Losses of LOREC and UNALCE for a grid of 20×20 = 400

threshold pairs. We note that the gain is positive everywhere, with the exception of the

threshold pairs which do not return the exact rank (because they do not satisfy the range of

Theorem 2.1). This pattern is more remarkable for Sample Total Loss than for Total Loss.

For both losses and each λ, we note that, as explained, the gain across ρ never overcomes its

maximum
√
rλ (plotted for each λ).

In Figure 3 we report the plot of the estimated proportion of latent variance θ across

thresholds for Σ̂UNALCE (in black the true θ = 0.7). In Figure 4 the same plot is reported

for Σ̂LOREC . The shape is exactly the same as for Σ̂UNALCE , the only difference is that

all patterns are negatively shifted. In particular, θ̂ gets closer to θ for Σ̂UNALCE respect to

Σ̂LOREC in correspondence to all threshold combinations.

The most relevant results for Setting 1 are reported in Tables 2, 3 and 4. Table 2 shows

that UNALCE outperforms POET concerning all losses, and shows the superior performance
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Figure 1: Sample Total Loss difference - Σ̂LOREC and Σ̂UNALCE - Setting 1

of UNALCE concerning the proportion of latent variance, of residual covariance, of detected

non-zeros. Table 3 enlightens the capability to catch the sparsity pattern of UNALCE. In

particular, UNALCE shows a lower classification error rate err and total error rate errtot as

well as a better correct classification rate of positive and negative elements. Table 4 gives

information on the conditioning and eigen-structure properties of UNALCE and POET. We

note that for p
n = 0.1 POET detects slightly better the vector of eigenvalues of Σ, while it gets

much further than UNALCE from the true eigenvalues of L and S. Similarly, POET detects

slightly better the maximum eigenvalue of Σ and L, while it completely misses the spectral

norm of S. We note that Σ̂UNALCE has a slightly larger condition number than POET. The

same stands for Ŝ. About cond(L̂), instead, we note that POET goes slightly closer than

UNALCE to the true one.

Concerning Setting 2, simulations show that UNALCE is still better for all losses. POET

in this case goes closer to the true number of non-zeros. However, both the proportion of

latent variance and of residual covariance are recovered much better by UNALCE. The first

fact depends on the natural upper bias of sample eigenvalues (see Ledoit and Wolf (2004) for

that). The second depends on the non-algebraic recovery of POET. As for Setting 1, both
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Table 2: Setting 1: all losses
Setting 1 UNALCE POET Target

Sample TL 0.7631 2.7323
Total Loss 6.6899 7.0287

Loss 7.2170 8.9130
r̂ 4 4 4
nz 99 432 118

percnz 0.0200 0.0870 0.0230

θ̂ 0.6973 0.7314 0.7000
ρ̂corr 0.0025 0.0004 0.0045

Table 3: Setting 1: sparsity pattern
Setting 1 UNALCE POET

senspos 0.5094 0.0640
specpos 0.7231 0
spec 0.995 0.9389
err 0.0135 0.0238

errplus 0.0085 0
errtot 0.0137 0.0238

Table 4: Setting 1: eigen-structure properties
Setting 1 UNALCE POET Target

cond(Σ̂) 6.42E+04 3.50E+04 9.49E+07

cond(Ŝ) 2.75E+04 3.26E+03 2.26E+07

cond(L̂) 1.2904 1.3083 2

||eig(Σ̂)− eig(Σ)|| 5.5113 5.4882

||eig(Ŝ)− eig(S)|| 0.1681 6.3552

||eig(L̂)− eig(L)|| 5.4970 8.0727

||Σ̂||2 21.0400 21.2107 24.4886

||L̂||2 20.0038 21.1821 23.3333

||Ŝ||2 3.6894 0.1340 3.7756
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Figure 2: Total Loss difference - Σ̂LOREC and Σ̂UNALCE - Setting 1

measures err and errtot are better for UNALCE.

We also note that all hierarchies concerning conditioning properties are the same as in

Table 4. We note that the unshrinkage procedure causes cond(L̂) to be larger than necessary,

and this is more evident as p
n increases. All patterns about the error of estimated eigenvalues

are the same, except that here UNALCE goes closer to the true eigenvalues of Σ than POET.

On the contrary, the pattern of estimated maximum eigenvalues changes considerably: UN-

ALCE is prevailing. This depends on the natural bias of sample eigenvalues, such that if

the true eigenvalues are more spiked (since p
n increases) the spectral norms are overestimated

by POET procedure. At the same time, we observe an improvement in the capability of

POET to catch the spectral norm of S respect to Setting 1, which depends on the increased

consistency of Setting 2 with the assumptions of POET.

Concerning Setting 3, we have no changes respect to the patterns previously described

about all losses. The same holds for θ̂, ρ̂corr, nz, even if the performance of the sparsity pattern

detection is in general quite worse for both estimators. This happens because non-zeros have to

be very spiked when top eigenvalues are larger. The attititudes to catch positive and negative

elements, as well as measures err and errtot, are still better for UNALCE than for POET,
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Figure 3: Estimated proportion of latent variance - Σ̂UNALCE - Setting 1

but they are much worse than for previous settings. In fact, too spiked eigenvalues together

with non-prominent non-zero residual entries may be not consistent with the assumptions

of Theorem 2.1. Finally, concerning eigen-structures we find the same patterns as before,

even amplified, if we exclude that POET is here able to catch the spectral norm of S better

than UNALCE. We can conclude that UNALCE still performs better than POET even in the

case of p
n > 1, but the performance is in general worse, as the absolute statistical bound of

Theorem 2.1 prescribes. Tables for Setting 2 and Setting 3 are reported in the Appendix.

To sum up, our UNALCE estimator outperforms POET concerning fitting and condi-

tioning properties, detection of sparsity pattern, and eigen-structure recovery. We note that

POET does not detect positive and negative elements at all. This is because it only has para-

metric consistency and not also the algebraic one. In addition, in order to obtain a positive

definite estimate, cross validation selects a very high threshold for POET, and this causes the

sparse estimate to be almost completely diagonal if p
n is large. On the contrary, the mathe-

matical optimization procedure of UNALCE procedure gets closer to the target and ensures

to catch the algebraic spaces behind the two components.
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Figure 4: Estimated proportion of latent variance - Σ̂LOREC - Setting 1

5 A Euro Area banking data example

This Section provides a real example on the performance of POET and UNALCE based on a

selection of Euro Area banking data. We acknowledge the assistance of the European Central

Bank, where one of the authors spent a semester as a PhD trainee, in providing access to high-

level banking data. Here we use the covariance matrix computed on a selection of balance

sheet indicators for some of the most relevant Euro Area banks by systemic power. The

overall number of banks (our sample size) is n = 365. These indicators are the ones needed

for supervisory reporting, and include capital and financial variables.

The chosen raw variables (1039) were rescaled to the total asset of each bank. Then,

a screening based on the importance of each variable, intended as the absolute amount of

correlation with all the other variables, was performed in order to remove identities. The

resulting very sparse data matrix contains p = 382 variables: here we are in the typical p > n

case, where the sample covariance matrix is completely ineffective. We plot sample eigenvalues

in Figure 5.

UNALCE estimation method selects a solution having a latent rank equal to 6. The

25



1 2 3 4 5 6 7 8 9 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
The ten largest eigenvalues of Σ

n
- Banking data

Figure 5: Supervisory data: sample eigenvalues

Supervisory data UNALCE

r̂ 6
nz 328

percnz 0.0045

θ̂ 0.3247
ρ̂corr 0.1687

Sample TL 0.0337

cond(Σ̂) 6.35E+15

cond(Ŝ) 2.78E+15

cond(L̂) 3.1335

Table 5: Supervisory data: results for Σ̂UNALCE

number of surviving non-zeros in the sparse component is 328, which is the 0.45% of 72772

elements. Conditioning properties are inevitably very bad. The results are reported in Table

5.

In order to to obtain a POET estimate, we exploit the algebraic consistency of Σ̂UNALCE

setting the rank to 6 and we perform cross-validation for threshold selection. The results are

reported in Table 6, where we note that the number of estimated non-zeros is 404 (0.56%).

Apparently, one could argue that POET estimate is better: the estimated proportion

of common variance is 0.6123, and the proportion of residual covariance is 0.0161. On the

contrary, UNALCE method outputs θ̂ = 0.3247 and ρ̂corr = 0.1687. A relevant question
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Supervisory data POET

r̂ 6
nz 404

percnz 0.0056

θ̂ 0.6123
ρ̂corr 0.0161

Sample TL 0.0645

cond(Σ̂) 6.68E+15

cond(Ŝ) 1.11E+15

cond(L̂) 2.5625

Table 6: Supervisory data: results for Σ̂POET

arises: how much is the true proportion of variance explained by the factors? In fact, a so

high latent proportion variance, which depends on the use of PCA with 6 components, causes

the residual covariance proportion to be very low. Therefore, POET procedure gives a priori

a preference for the low rank part. This pattern does not change even if we choose a lower

value for the rank.

On the contrary, the UNALCE estimate, which depends on a double-step iterative thresh-

olding procedure, allows for a larger magnitude of the non-zero elements in the sparse com-

ponent. In fact, the proportion of lost covariance during the procedure is here 29.39%. As

a consequence, via rank/sparsity detection UNALCE shows better approximation properties

respect to POET: its Sample Total Loss is relevantly lower than the one of the competitor

(0.337 VS 0.645).

For UNALCE method, the covariance structure appears so complex that a relevant propor-

tion of residual covariance is present. This allows us to explore the importance of variables,

that is to explore which variables have the largest systemic power (i.e. the most relevant

communality) or the largest idiosyncrasy (i.e. the most relevant residual variance).

In Figure 6 we plot the estimated degree (number of non-zero covariances in the residual

component) sorted by variable. Only 62 out of 382 variables have at least one non-zero residual

covariance.

In Figure 7 we report the top 6 variables by estimated number of non-zero residual covari-

ances. They are mainly credit-based variables: financial assets through profit and loss, central
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Figure 6: Banking data: sorted degree by variable

banks impaired assets, allowances to credit institutions and non-financial corporations, cash.

These variables are related to the largest number of other variables.

Variable Deg_rank

Financial assets designated at fair value through profit or loss 34

Central banks Impaired assets [gross carrying amount] 25

Credit institutions Collective allowances for incurred but not reported losses 20

Other financial corporations Collective allowances for incurred but not reported losses 19

Cash, cash balances at central banks and other demand deposits 16

Other financial corporations Specific allowances for financial assets, collectively estim. 16

Figure 7: Banking data: top 6 variables by degree

In Figure 8 we report the top 5 variables by estimated communality, defined as

l̂UNALCE,jj

σ̂UNALCE,jj
∀j = 1, . . . , 382.

The results are very meaningful: the most systemic variables are debt securities, loans and

advances to households, specific allowances for financial assets, advances which are not loans

to central banks. All these are fundamental variables for banking supervision, because they

represent key indicators for the assessment of bank performance.
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Variable Estimated communality

Debt securities 0.8414

Households Carrying amount 0.821

Non-financial corporations Specific allowances for financial assets 0.811

Loans and advances Specific allowances for financial assets, collect. est. 0.7592

Advances that are not loans Central banks 0.7439

Figure 8: Banking data: top 5 variables by estimated communality

In Figure 9 we report the top 5 variables by estimated idiosyncratic covariance proportion

ŝUNALCE,jj

σ̂UNALCE,jj
∀j = 1, . . . , 382.

We note that those variables have a marginal power in the explanation of the common covari-

ance structure, and are much less relevant for supervisory analysis than the previous five.

Variable Res. Variance proportion

Credit card debt Central banks 0.9995

other collateralized loans Other financial corporations 0.9986

Equity instruments Central banks Carrying amount 0.9971

Equity instruments Other financial corporations Carrying amount 0.997

General governments Carrying amount of unimpaired assets 0.997

Figure 9: Banking data: top 5 variables by residual covariance proportion

In conclusion, our UNALCE procedure offers a more realistic view of the underlying

covariance structure of a set of variables, allowing a larger part of covariance to be explained

by the residual sparse component respect to POET.

6 Conclusions

The present work describes a numerical estimator of large covariance matrices which may

assumed to be the sum of a low rank and a sparse component. Estimation is performed solving

a regularization problem where the objective function is composed by a smooth Frobenius

loss and a non smooth composite penalty, which is the sum of the nuclear norm of the low

rank component and the l1 norm of the sparse component. Our estimator is called UNALCE

(UNshrunk ALgebraic Covariance Estimator) and provides consistent recovery of the low rank
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and the sparse component, as well as of the overall covariance matrix, under a generalized

assumption of spikiness of latent eigenvalues.

In this paper we compare UNALCE and POET (Principal Orthogonal complEment Thresh-

olding, Fan et al. (2013)), an asymptotic estimator which performs PCA to recover the low

rank component and uses a thresholding algorithm to recover the sparse component. Both

estimators provide the usual parametric consistency, while UNALCE provides also the alge-

braic consistency of the estimate, that is, the rank and the position of residual non zeros are

simultaneously detected by the solution algorithm. This automatic recovery is a crucial ad-

vantage respect to POET: the latent rank, in fact, is automatically selected and the sparsity

pattern of the residual component is recovered considerably better.

UNALCE improves over the most recent numerical estimator, LOREC (LOw Rank and

sparsE Covariance estimator), for two reasons. First, it is proved that the unshrinkage of

the eigenvalues of the low rank component estimated by LOREC corrects for the systematic

underestimation, due to the thresholding procedure, of the variance proportion explained by

the factors, which leaded to a systematic sub-optimality of the overall covariance estimate.

Second, we show that it is possible to overcome the restrictive condition p ≤ n (p is the

dimension, n is the sample length) exploiting the asymptotic theory of POET in the finite-

sample context.

In particular, we prove that UNALCE can effectively recover the covariance matrix even

in presence of spiked eigenvalues with rate O(p), exactly as POET estimator does, allowing

until p = o(n2) variables under POET assumptions. The loss from the target is bounded

in absolute norm (in contrast to POET procedure). In addition, we prove that the recovery

is actually effective even if we have an intermediate degree α ∈ [0, 1] of spikiness, and the

loss is bounded accordingly to α with the allowance of p = o(n2α) variables. In this way we

encompass both LOREC and POET theory in a generalized theory of large covariance matrix

estimation by low rank plus sparse decomposition.

The performance of UNALCE is assessed comparatively to LOREC and POET in a wide

empirical study which exploits a new original simulation setting particularly flexible and useful
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for low rank plus sparse modelling. In that context, we provide a new model selection criterion

specifically thought for our minimization problem. The criterion is observed to detect the best

balance between the low rank latent structure and the (residual) sparsity pattern.

Simulation results show that our method is particularly effective for recovering the pro-

portion of latent variance, as well as the proportion of residual covariance and the number

of non-zeros, both respect to LOREC (because of the unshrinkage and of the new model se-

lection procedure) and respect to POET. Moreover, UNALCE shows better fitting properties

respect to LOREC and POET under various (absolute) losses, like the composite loss of the

low rank and the sparse component and the total loss. The gap is still present if we increase

the ratio between dimensionality and sample size.

A real example on a set of Euro Area banking data shows that our tool is particularly useful

for mapping the covariance structure among variables even in a large dimensional context.

The variables having the largest systemic power, that is, the ones most affecting the common

covariance structure, can be identified, as well as the variables having the largest idiosyncratic

power, that is, the ones most characterized by the residual variance. In addition, the variables

showing the most of idiosyncratic covariances with all the other ones can be identified, thus

recovering the strongest related variables. Particular forms of the residual covariance pattern

can thus be detected if present.

Our research may be ground for possible future developments in many directions. In the

time series context, this procedure can be potentially extended to covariance matrix estimation

under dynamic factor models. Another fruitful extension of our procedure is related to the

spectral matrix estimation context. Finally, this tool can be potentially used in the Big

data context, where both the dimension and the sample size are very large. This poses new

computational and theoretical challenges, the solution of which is crucial to further extend

the power of statistical modelling and its effectiveness in detecting patterns and underlying

drivers of real phenomena.
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A Proofs

A.1 Proof of Theorem 2.1

First of all, we report some technical results of POET approach necessary for our proof

strategy. We recall that L∗ = ULDU ′
L, where B = ULD

1/2 , and λ1(Σ
∗), . . . , λp(Σ

∗) are the

eigenvalues of Σ∗ in decreasing order.

Proposition A.1 (Fan et al. (2013) Proposition 1) All the eigenvalues of the r× r ma-

trix B′B are bounded away from 0 for all large p. Under the assumptions cov(ft) = Ir and

B′B diagonal we have:

|λj − ||b̃j ||2| ≤ ||S∗||, j ≤ r

|λj | ≤ ||S∗||, j > r.

In addition, for j ≤ r, lim infp→∞ ||b̃j ||2/p > 0.

Proposition A.2 (Fan et al. (2013) Proposition 2) Under the assumptions of Proposi-

tion 1, if ||b̃j ||rj=1 are distinct, then ||uj − b̃j
||b̃j ||

|| = O(p−1||S∗||).

Proposition A.1 and A.2 together state that UΣ and B̃ are approximately the same if

||S∗|| = o(p). Defining the quantity mp = maxi≤p
∑

j≤p |σij |q, we know that the PCA of Σ̂n

asymptotically identifies the eigenvalues and the eigenvectors of Σ∗ if mp = o(p), because

||S∗|| ≤ O(mp).

Three technical claims, proved in Fan et al. (2011) under POET assumptions, are:

Lemma A.1

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitfjt − E(fitfjt)

∣

∣

∣

∣

= Op

(

1√
n

)
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Lemma A.2

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

sitsjt − E(sitsjt)

∣

∣

∣

∣

= Op

(

log(p)√
n

)

Lemma A.3

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitsjt

∣

∣

∣

∣

= Op

(

log(p)√
n

)

.

Lemmas A.1, A.2, A.3 allow to prove a crucial Lemma for our purpose (see Fan et al.

(2013)):

Lemma A.4 Let λ̂r be the r−th largest eigenvalue of Σ̂n. Then λ̂r > C1p with probability

approaching 1 for some C1 > 0.

In other words, Lemma A.4 states that ||Σ̂n − Σ∗|| = o(p) with a rate proportional to O( p√
n
),

i.e. the r−th largest eigenvalue of Σ̂n grows at rate O(p) with probability approaching 1:

||Σ̂n − Σ∗|| = O

(

p√
n

)

.

The proof of Theorem 2.1 relies on Lemma A.4. Since Lemma A.4 (as it is) is the key to

prove that under Fan’s condition the bound (20) holds, the updated version of Lemma A.4 in

the α - spiked context must be the key to prove that

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

pα√
n
. (41)

This proof requires to adapt claims A.1, A.2, A.3 (coming from Fan et al. (2011)) to the

generalized pervasiveness context, where the pervasiveness of latent factors has been relaxed,

applying the proof technique in Fan et al. (2013), Appendix C, page 639. The bound (14) of

Bickel and Levina (2008a) is also a necessary tool.
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The first step of the proof consists in decomposing En = Σn − Σ in its four components:

En = Σn − Σ = D1 +D2 +D3 +D4

where:

D1 = (n−1B

n
∑

i=1

fif
′
i − Ir)B

′

D2 = n−1(

n
∑

i=1

ǫiǫ
′
i − S)

D3 = Bn−1
n
∑

i=1

fiǫ
′
i

D4 = D′
3,

where fi and ǫi are respectively the vectors of factor scores and residuals for each observation.

Asterisks are omitted to avoid cluttered notation.

From the inequality ||B′Σ−1B|| ≤ |cov(f)−1| (page 194 Fan et al. (2008), Assumption

(B)), Lemma A.1 follows. Lemma A.1 is unaffected the modification of Proposition A.1.

Consequently, following the proof of Lemma A.4, we can argue that under the relaxed per-

vasiveness condition ||D1|| ≤ O(pα
√

1
n), because now ||BB′|| = O(pα). This happens also

because r log p = o(n).

In order to show how Lemma A.2 changes, we need to recall some key results of Bickel and Levina

(2008a). Differently from Luo’s approach, in that setting (as in the POET one) the sparsity

assumption is imposed to S∗, and not to Σ∗. The relevant quantity mp in POET setting is

o(p), in order to have ||S|| = o(p), which allows to identify the low rank component via PCA.

Here, since Definition 2.1 holds, we have that mp = o(p) is no longer appropriate. We impose,

in order to preserve the correspondence between the bounds of the sample and theoretical

eigenvalues, the assumption mp = o(pα) (which causes ||S|| = o(pα) in the POET setting).
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Consider now the uniformity class of sparse matrices:







S∗ : s∗ii ≤ M,

p
∑

j=1

|s∗ij |q ≤ c0(p), ∀i







. (42)

We have residual variances uniformly bounded by M . This assumption here is no longer valid,

because M cannot longer assumed to be negligible respect to p.

Here we can no longer write (see Bickel and Levina (2008a), page 2580)

λmax(S
∗) ≤ max

i

∑

j

|s∗ij | ≤ M1−qc0(p),

as Fan et al. do in their pure spikiness context.

The quantity c0(p) can still be assumed not to scale with p, because we want to have a

sparse S∗, but the assumption mp = op(p
α) causes that M cannot longer be considered as a

constant as p → ∞. In order to normalize it, we need to divide by p1−α, thus obtaining thatmp

grows at a rate of O(pα−1) as p increases. Imposing M = O(pα−1) in the proof which derives

the rate of the sample covariance matrix under class (42) (see Bickel and Levina (2008a), page

2582), we can prove:

Lemma A.5

||Ŝn − S||∞ ≤ O

(

pα−1

√

log p

n

)

.

Using Lemma A.5, we can apply the proof strategy of Lemma A.4 (Appendix C) to matrix

D2, obtaining

||D2|| ≤ pOp(p
α−1)O

(
√

log(p)

n

)

= Op

(

pα
√

log p

n

)

,

because ||D2| ≤ p||D||∞. Since log(p) = o(n), we can write

||D2|| ≤ pOp(p
α−1)O

(

√

log p

n

)

= Op

(

pα
1√
n

)

, (43)

as we needed.
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To conclude, we analyze Lemma A.3:

max
i≤r,j≤p

∣

∣

∣

∣

1

n

n
∑

k=1

fiksjk

∣

∣

∣

∣

≤ 1√
n

n
∑

k=1

max
i

|fik|
1√
n
max

j

n
∑

k=1

|sjk| ≤
√

r

n
ppα−1

√

log p

n
,

Exploiting the assumption r = O(log (pα)) (since log (pα) = o(n)), and n = O (pα) we

obtain O(
√

r
n) = O(p−

α
2 ). This replacement is valid if and only if n = o(p2α). Therefore, the

bound above becomes O

(

p
α
2

√

log p
n

)

.

Applying the proof strategy of Lemma A.4 to D3 we obtain

||D3|| ≤ O

(

p
α
2

√

log p

n

)

O
(

p
α
2

)

= O

(

pα
√

log p

n

)

,

because ||B|| = O(p
α
2 ). The condition log(p) = o(n) finally leads to:

||D3|| ≤ O

(

pα√
n

)

. (44)

The bound (21) is consequently proved. Therefore we can affirm

Lemma A.6 Let λ̂r be the r−th largest eigenvalue of Σ̂n. Then λ̂r > C1p
α with probability

approaching 1 for some C1 > 0.

Lemma A.6 states that ||Σn − Σ∗||2 is o(p) with rate O( pα√
n
), or, in other words,

P

(

||En|| ≥ C1
pα√
n

)

≤ 1− C2e
−C3p2α . (45)

The proof relies on the combined use of proof tools by Fan et al. (2013), Fan et al. (2011),

Fan et al. (2008) and Bickel and Levina (2008a).

Since we have dropped assumption (13) for Σ∗, we can simply write, using the basic

property ||.||∞ ≤ ||.||2 and the minimum for γ in the range of Theorem 2.1,

P

(

||En||∞ ≥ C1ξ(T )
pα√
n

)

≤ 1− C2e
−C3p2α . (46)

According to Chandrasekaran et al. (2012) and Luo (2011a), the only probabilistic com-

36



ponent of the error norm gγ(Ŝ − S∗, L̂ − L∗) is gγ(En). Therefore, following the proof of

Luo (2011a) and setting λ =
(

1
ξ(T )

pα√
n

)

, we can finally prove, under all the assumptions and

conditions of Theorem 2.1, the thesis

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

pα√
n
. (47)

A.2 Proof of Theorem 2.2

Given finite p and n we have

TL(L,S ) = ||L∗ + S ∗ +W − L− S ||2Fro ≤

≤ ||L− L∗||2Fro + ||S − S ∗||2Fro + ||W ||2Fro = A+ B +C .

The ALCE solution is Σ̂ALCE = L̂+ Ŝ , L ∈ B̂(r̂),S ∈ Â(ŝ), with

L̂ = Û D̂Û ′, (48)

where D̂ = Dλ is the diagonal eigenvalue matrix coming out from the singular value thresh-

olding procedure, and Û is the matrix of corresponding eigenvectors.

We start from a standard result: the spectral decomposition of a real square matrix M

truncated to the r-th component is the r-ranked matrix best approximating M . In fact, the

optimization problems minK ,rank(K )=r ||M − K |2 and minK ,rank(K )=r ||M − K ||Fro are both

solved for K =
∑r

i=1 λiuiu
′
i
, which is the spectral decomposition of M truncated to the r-th

summand when r is known. This result was proved in Eckart and Young (1936), who called

the identified directions ”canonical components”.

Aware of the best approximation property of canonical components, our question is the

following: which is the matrix in the variety B̂(r̂) being closer to the unknown r-ranked matrix

L∗, keeping fixed Û ?

The solution is straightforward: the matrix we are looking for has the same eigenvectors

Û , but has the original (natural) eigenvalues. This new matrix D̂UNALCE can be obtained
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simply un-shrinking the obtained eigenvalues: D̂UNALCE = Dλ + λIr . This is why term A is

minimized as follows: min
L∈B̂(r̂) ||L− L∗||2Fro ⇐⇒ L̂UNALCE = Û (Dλ + λIr )Û

′.

Suppose that Σ̂ALCE is given, and assume that the off-diagonal elements of Ŝ are in-

variant. We can re-write term B as follows:

min
S∈Â(ŝ)

||S − S ∗||2Fro =

= min
L∈B̂(r̂)

||(Σ̂ − L)− (Σ ∗ − L∗)||2Fro =

= min
L∈B̂(r̂)

||(Σ̂ − Σ ∗)− (L− L∗)||2Fro ≤

p
∑

i=1

(σ̂ii − σii)
2 +

p
∑

i=1

(l̂ii − lii)
2 =

= B ′ + B ′′.

Term B ′ is assumed to be fixed respect to L, i.e. we are assuming the invariance of diagonal

elements in Σ̂ALCE (diag(Σ̂UNALCE) = diag(Σ̂ALCE)). The minimization of term B ′′, given

that rank(L) = r̂ , falls back into the previous case, i.e. B ′′ is minimum ⇐⇒ L̂UNALCE =

Û (Dλ + λIr )Û
′.

Term C depends on the quality of the estimation input Σn , and on the degree of corre-

spondence with ALCE assumptions.

Consequently, we can write:

ŜUNALCE,ii = Σ̂ii − L̂UNALCE,ii, ∀i.

ŜUNALCE,ij = Ŝij, ∀i 6= j.

A.3 Proof of Corollary 2.1

We know that ||L̂UNALCE − L̂ALCE||2 = λ. Recalling that

L̂UNALCE = min
L ∈ B̂(r̂)

||L− L∗||2Fro ,
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and the triangular inequality

||L̂ALCE − L∗||2 ≤ ||L̂UNALCE − L̂ALCE ||2 + ||L̂UNALCE − L∗||2 ,

we can write

0 < ||L̂ALCE − L∗||2 − ||L̂UNALCE − L∗||2 ≤ λ. (49)

As a consequence, ||L̂UNALCE − L̂ALCE||Fro =
√
2rλ and

0 < ||L̂ALCE − L∗||Fro − ||L̂UNALCE − L∗||Fro ≤
√
2rλ. (50)

The analogous triangular inequality for the sparse component is

||ŜALCE − S ∗||2 ≤ ||ŜUNALCE − ŜALCE ||2 + ||ŜUNALCE − S ∗||2 .

In order to quantify ||ŜUNALCE − ŜALCE ||Fro, we need to study the behaviour of the term

∑p
i=1(l̂UNALCE,i − lii)

2. This can be re-written as

p
∑

i=1

(l̂UNALCE,ii − l̂ALCE,ii + l̂ALCE,ii − lii)
2 ≤

≤
p
∑

i=1

(l̂UNALCE,ii − l̂ALCE,ii)
2 +

p
∑

i=1

(l̂ALCE,ii − lii)
2.

The sum
∑p

i=1(l̂ALCE,ii − lii)
2 depends on the statistical properties of L̂ALCE.

The term
∑p

i=1(l̂UNALCE,ii − l̂ALCE,ii)
2 is less or equal to rλ2, because it is less or equal to

tr(L̂UNALCE − L̂ALCE)
2 = rλ2.

As a consequence, we have ||ŜUNALCE − ŜALCE ||Fro ≤ √
rλ. Recalling that ŜUNALCE =

min
S∈Â(ŝ) ||S − S ∗||2Fro , we can write:

0 < ||ŜALCE − S ∗||Fro − ||ŜUNALCE − S ∗||Fro ≤
√
rλ. (51)

The last claim is less immediate. We recall that ||L̂UNALCE−L̂ALCE ||2 = ||ÛλIr Û ′||2 = λ.
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ÛλIr Û ′ can be divided in the contribution coming from diagonal elements and the rest:

||diag(L̂UNALCE − L̂ALCE)+ off − diag(L̂UNALCE − L̂ALCE)||2. Both contributes are part of

ÛλIr Û ′.

Given the matrix of eigenvectors Û , we can write diag(L̂UNALCE−L̂ALCE) =
∑p

i=1 ||ûi||Kii ,

where Kii is a null matrix except for the i-th diagonal element equal to λ and ûi is the i-th

row of Û . Similarly we can write off−diag(L̂UNALCE−L̂ALCE) =
∑p

i=1

∑

j 6=i ûiû
′
jKij where

Kij is a null matrix except for the element ij equal to λ. Note that the rows of Û , differently

from the columns, are not orthogonal.

Since all summands are orthogonal to each other (A⊥B ⇔ tr(AB ′) = 0 ), the triangular

inequalities relative to ||diag(L̂UNALCE − L̂ALCE)||, ||off − diag(L̂UNALCE − L̂ALCE)|| and

||L̂UNALCE − L̂ALCE||2 become equalities. Therefore we can write:

||diag(L̂UNALCE − L̂ALCE)|| =
p
∑

i=1

||ûi||||Kii || =
p
∑

i=1

||ûi ||λ (52)

||off − diag(L̂UNALCE − L̂ALCE)|| =
p
∑

i=1

∑

j 6=i

ûiû
′
j ||Kij || =

p
∑

i=1

∑

j 6=i

ûi û
′
jλ (53)

||L̂UNALCE − L̂ALCE ||2 =
p
∑

i=1

||ûi||||Kii ||+
p
∑

i=1

∑

j 6=i

ûi û
′
j ||Kij || = λ. (54)

From this consideration it follows that

||diag(L̂UNALCE − L̂ALCE)|| ≤ ||L̂UNALCE − L̂ALCE||2|| = λ.

Since, by definition, ||diag(ŜUNALCE − ŜALCE)|| = ||diag(L̂UNALCE − L̂ALCE)|| (because

diag(ŜUNALCE − ŜALCE) = −diag(L̂UNALCE − L̂ALCE)), and recalling that ŜUNALCE has the

best approximation property (for Theorem (2.2)), we can conclude

0 < ||ŜALCE − S ∗||2 − ||ŜUNALCE − S ∗||2 ≤ λ. (55)
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A.4 Proof of Corollary 2.2

The relevant triangular inequality for the overall estimate is

||Σ̂ALCE − Σ ∗||2 ≤ ||Σ̂UNALCE − Σ̂ALCE ||2 + ||Σ̂UNALCE − Σ ∗||2 .

We know that, by definition, ||Σ̂UNALCE − Σ̂ALCE||2 = ||off − diag(L̂UNALCE − L̂ALCE)||.

For the same considerations explained before,

||off − diag(L̂UNALCE − L̂ALCE)|| ≤ ||L̂UNALCE − L̂ALCE||2 = λ.

As a consequence, recalling that Σ̂UNALCE = minΣ=L+S (TL(L,S )) under the described as-

sumptions, we can conclude

0 < ||Σn − Σ̂ALCE ||2 − ||Σn − Σ̂UNALCE ||2 ≤ λ. (56)

Applying the formula ||A||fro ≤ √
r ||A|| (if A has rank r) we can then claim

0 < ||Σn − Σ̂ALCE ||Fro − ||Σn − Σ̂UNALCE ||Fro ≤
√
rλ. (57)

Therefore, the real gain is terms of approximation of Σn respect to ALCE measured in

squared Frobenius norm is strictly positive and bounded from rλ2.

A.5 Proof of Theorem 2.3

We can easily write

||Σ̂UNALCE − Σ || =

= ||Σ̂UNALCE − Σn +Σn − Σ || ≤ ||Σ̂UNALCE − Σn ||2 + ||Σn −Σ ||2 . (58)

The quality of the estimation input ||Σn −Σ ||2Fro does not depend on the estimation method.
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Therefore, by (56) and (58), it is straightforward that

0 < ||Σ̂ALCE − Σ ||2 − ||Σ̂UNALCE − Σ |||2 ≤ λ. (59)

Analogously, it is easy to prove that

0 < ||Σ̂ALCE − Σ ||Fro − ||Σ̂UNALCE − Σ |||Fro ≤
√
rλ. (60)

A.6 Proof of Corollary 2.3

We recall the following expression:

||(L̂+ Ŝ )−1 − (Σ )−1 ||Fro = ||(L̂+ Ŝ )−1 [L̂y + Ŝ − Σ ](Σ )−1 || ≤

≤ ||(L̂+ Ŝ )−1|| · ||[L̂+ Ŝ − Σ ]||Fro · ||(Σ )−1 ||.

From (60) we can conclude that

0 < ||(L̂ALCE + ŜALCE)
−1 − Σ−1 ||2Fro − ||(L̂UNALCE + ŜUNALCE )

−1 −Σ−1 ||2Fro ≤ rλ2 . (61)

Analogously, since it holds

||(L̂+ Ŝ )−1 − (Σ )−1 || = ||(L̂+ Ŝ )−1 [L̂+ Ŝ −Σ ](Σ )−1 || ≤

≤ ||(L̂+ Ŝ )−1|| · ||[L̂+ Ŝ − Σ ]|| · ||(Σ )−1 ||.

it is straightforward that

0 < ||(L̂ALCE + ŜALCE)
−1 − Σ−1 ||2 − ||(L̂UNALCE + ŜUNALCE )

−1 − Σ−1 ||2 ≤ λ. (62)
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B Additional tables

Table 7: Setting 2: all losses
Setting 2 UNALCE POET Target

ρ 0.0270
λ 0.2300

Sample TL 1.7464 2.8632
Total Loss 11.7399 12.4781

Loss 13.1401 14.2190
r̂ 5 5 5
nz 210 453 378

percnz 0.0188 0.0405 0.0338

θ̂ 0.8089 0.8363 0.8
ρ̂corr 0.0024 5.8249e-005 0.0033

Table 8: Setting 3: all losses
Setting 3 UNALCE POET Target

ρ 0.0700
λ 0.5450

Sample TL 3.5821 4.1688
Total Loss 24.0471 24.6359

Loss 25.6832 26.5689
r̂ 6 6 6
nz 74 1 631

percnz 0.0037 5.0251e-005 0.0317

θ̂ 0.8073 0.8318 0.8
ρ̂corr 6.1954e-004 2.5805e-008 0.0036
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Table 9: Setting 2: sparsity pattern
Setting 2 UNALCE POET

senspos 0.3016 0
specpos 0.2092 0
spec 0.9911 0.9580
err 0.0322 0.0744

errplus 0.0291 0
errtot 0.0332 0.0744

Table 10: Setting 3: sparsity pattern
Setting 3 UNALCE POET

senspos 0.0603 0
specpos 0.0854 0
spec 0.9988 0.9999
err 0.0303 0.0318

errplus 0.0085 0
errtot 0.0079 0.0318

Table 11: Setting 2: eigen-structure properties
Setting 2 UNALCE POET Σ

cond(Σ̂) 2.1820e+004 2.6178e+004 6.4838e+013

cond(Ŝ) 1.8404e+003 1.5612e+003 3.7043e+009

cond(L̂) 2.7213 2.6545 2

||eig(Σ̂)− eig(Σ)|| 7.8055 8.7183

||eig(Ŝ)− eig(S)|| 0.4372 1.2487

||eig(L̂)− eig(L)|| 7.9288 8.9843

||Σ̂||2 39.8818 40.6020 32.7258

||L̂||2 39.2926 40.1838 32

||Ŝ||2 3.1799 3.7756 2.9034

Table 12: Setting 3: eigen-structure properties
Setting 3 UNALCE POET Σ

cond(Σ̂) 2.1424e+004 1.8320e+004 2.0147e+014

cond(Ŝ) 1.6783e+003 1.0376e+003 5.3513e+009

cond(L̂) 3.4337 3.2890 2

||eig(Σ̂)− eig(Σ)|| 11.1913 11.9235

||eig(Ŝ)− eig(S)|| 0.9242 1.2141

||eig(L̂)− eig(L)|| 11.3453 12.1670

||Σ̂||2 44.7070 45.5133 36.1000

||L̂||2 44.3976 45.2441 35.5556

||Ŝ||2 3.3438 2.4894 2.5701
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