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Stochastic Stability of Perturbed Learning Automata
in Positive-Utility Games

Georgios C. Chasparis

Abstract—This paper considers a class of reinforcement-based
learning (namely, perturbed learning automata) and provides a
stochastic-stability analysis in repeatedly-played, positive-utility,
strategic-form games. Prior work in this class of learning dynam-
ics primarily analyzes asymptotic convergence through stochastic
approximations, where convergence can be associated with the
limit points of an ordinary-differential equation (ODE). However,
analyzing global convergence through an ODE-approximation
requires the existence of a Lyapunov or a potential function,
which naturally restricts the analysis to a fine class of games. To
overcome these limitations, this paper introduces an alternative
framework for analyzing asymptotic convergence that is based
upon an explicit characterization of the invariant probability
measure of the induced Markov chain. We further provide a
methodology for computing the invariant probability measure in
positive-utility games, together with an illustration in the context
of coordination games.

I. INTRODUCTION

Recently, multi-agent formulations have been utilized to
tackle distributed optimization problems, since communication
and computational complexity might be an issue under central-
ized schemes. In such formulations, decisions are usually taken
in a repeated fashion, where agents select their next actions
based on their own prior experience. Naturally, such multi-
agent interactions can be designed as strategic-form games,
where agents are repeatedly involved in a strategic interaction
with a fixed payoff - or utility-matrix. Such framework finds
numerous applications, including, for example, the problem of
distributed overlay routing [2], distributed topology control [3]
and distributed resource allocation [4].

Given the repeated fashion of the involved strategic in-
teractions in such formulations, several questions naturally
emerge: a) Can agents “learn” to asymptotically select optimal
decisions/actions?, b) What information should agents share
with each other?, and c) What is the computational complexity
of the learning process? Under the scope of engineering
applications, it is usually desirable that each agent shares
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minimum amount of information with other agents, while the
computational complexity of the learning process is small. A
class of learning dynamics that achieves small communication
and computational complexity is the so-called payoff-based
learning. Under such class of learning dynamics, each agent
only receives measurements of its own utility function, without
the need to know the actions selected by other agents, or the
details of its own utility function (i.e., its dependencies on
other agents’ actions).

In such repeatedly-played strategic-form games, a popular
objective for payoff-based learning is to guarantee convergence
(in some sense) to Nash equilibria. Convergence to Nash
equilibria may be desirable, especially when the set of optimal
centralized solutions coincides with the set of Nash equilibria.

Reinforcement-based learning has been utilized in strategic-
form games in order for agents to gradually learn to play Nash
equilibria. It may appear under alternative forms, including
discrete-time replicator dynamics [5], learning automata [6],
[7] or approximate policy iteration or Q-learning [8]. In all
these classes of learning dynamics, deriving conditions under
which convergence to Nash equilibria is achieved may not be
a trivial task especially in the case of large number of agents
(as it will be discussed in detail in the forthcoming Section II).

In the present paper, we consider a class of reinforcement-
based learning introduced in [9] that is closely related to
both discrete-time replicator dynamics and learning automata.
We will refer to this class of dynamics as perturbed learn-
ing automata. The main difference with prior reinforcement
learning schemes lies in a) the step-size sequence, and b) the
perturbation (or mutations) term. The step-size sequence is
assumed constant, thus introducing a fading-memory effect
of past experiences in each agent’s strategy. On the other
hand, the perturbation term introduces errors in the selection
process of each agent. Both these two features can be used
for designing a desirable asymptotic behavior.

We provide an analytical framework for deriving conclu-
sions over the asymptotic behavior of the dynamics that
is based upon an explicit characterization of the invariant
probability measure of the induced Markov chain. In par-
ticular, we show that in all strategic-form games satisfying
the Positive-Utility Property, the support of the invariant
probability measure coincides with the set of pure strategy
profiles. This extends prior work in coordination games, where
convergence to mixed strategy profiles may only be excluded
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under strong conditions in the payoff matrix (e.g., existence of
a potential function). Furthermore, we provide a methodology
for computing the set of stochastically stable states in all
positive-utility games. We illustrate this methodology in the
context of coordination games and provide a simulation study
in distributed network formation.

In the remainder of the paper, Section II presents the
investigated class of learning dynamics, related work and the
main contributions. Section III provides a simplification in
the characterization of stochastic stability, while Section IV
presents its technical derivation. This result is utilized for
computing the stochastically stable states in positive-utility
games in Section V. In Section VI, we present an illustration
of the proposed methodology in the context of coordination
games, together with a simulation study in distributed network
formation. Finally, Section VII presents concluding remarks.

Notation:
− For a Euclidean topological space Z ⊂ Rn, let Nδ(x)

denote the δ-neighborhood of x ∈ Rn, i.e.,

Nδ(x)
.
= {y ∈ Z : |x− y| < δ},

where | · | denotes the Euclidean distance.
− ej denotes the unit vector in Rn where its jth entry is

equal to 1 and all other entries is equal to 0.
− ∆(n) denotes the probability simplex of dimension n,

i.e.,
∆(n)

.
=
{
x ∈ Rn : x ≥ 0,1Tx = 1

}
.

− For some set A in a topological space Z , let IA : Z →
{0, 1} denote the index function, i.e.,

IA(x)
.
=

{
1 if x ∈ A,
0 else.

− For a finite set A, |A| denotes its cardinality.
− For a finite set A and any probability distribution σ ∈

∆(|A|), the random selection of an element of A will
be denoted by randσ[A]. If σ = (1/|A|, ..., 1/|A|), the
random selection will be denoted by randunif [A].

− δx denotes the Dirac measure at x.
− log(·) denotes the natural logarithm.

II. PERTURBED LEARNING AUTOMATA

A. Terminology

We consider the standard setup of finite strategic-form
games. Consider a finite set of agents (or players) I =

{1, ..., n}, and let each agent i have a finite set of actions
Ai. Let αi ∈ Ai denote any such action of agent i. The set of
action profiles is the Cartesian product A .

= A1 × · · · × An
and let α = (α1, ..., αn) be a representative element of this set.
We will denote −i to be the complementary set I\i and often
decompose an action profile as follows α = (αi, α−i). The
payoff/utility function of agent i is a mapping ui(·) : A → R.
A strategic-form game is defined by the triple 〈I,A, {ui(·)}i〉.

TABLE I
PERTURBED LEARNING AUTOMATA

At fixed time instances t = 1, 2, ..., and for each agent i ∈ I, the following
steps are executed recursively. Let αi(t) and xi(t) denote the current action
and strategy of agent i, respectively.

1) (action update) Agent i ∈ I selects a new action αi(t+1) as follows:

αi(t+ 1) =

{
randxi(t)[Ai], with probability 1− λ,
randunif [Ai], with probability λ,

(1)

for some small perturbation factor λ > 0.
2) (evaluation) Agent i applies its new action αi(t+ 1) and receives a

measurement of its utility function ui(α(t+ 1)) > 0.
3) (strategy update) Agent i revises its strategy vector xi ∈ ∆(|Ai|)

as follows:

xi(t+ 1)
= xi(t) + ε · ui(α(t+ 1)) · [eαi(t+1) − xi(t)].
= Ri(α(t+ 1), xi(t)), (2)

for some constant step size ε > 0.

For the remainder of the paper, we will be concerned with
strategic-form games that satisfy the Positive-Utility Property.

Property 2.1 (Positive-Utility Property): For any agent i ∈ I
and any action profile α ∈ A, ui(α) > 0.

This property is rather generic and applies to a large
family of games. For example, games at which some form of
alignment of interests exists between agents (e.g., coordination
games [10] or weakly-acyclic games [11]), can be designed
to satisfy this property, since agents’ utilities/preferences are
rather close to each other at any given action profile. However,
in the forthcoming analysis, we do not impose any structural
constraint other than the Property 2.1.

B. Perturbed Learning Automata

We consider a form of reinforcement-based learning that
belongs to the general class of learning automata [7]. In
learning automata, each agent updates a finite probability
distribution xi ∈ Xi .

= ∆(|Ai|) representing its beliefs with
respect to the most profitable action. The precise manner in
which xi(t) changes at time t, depending on the performed
action and the response of the environment, completely defines
the learning model.

The proposed learning model is described in Table I. At
the first step, each agent i updates its action given its current
strategy vector xi(t). Its selection is slightly perturbed by a
perturbation (or mutations) factor λ > 0, such that, with a
small probability λ agent i follows a uniform strategy (or,
it trembles). At the second step, agent i evaluates its new
selection by collecting a utility measurement, while in the
last step, agent i updates its strategy vector given its new
experience.

Here, we identify actions Ai with vertices of the simplex,
{e1, ..., e|Ai|}. For example, if agent i selects its jth action
at time t, then eαi(t) ≡ ej . To better see how the strategies
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evolve, let us consider the following toy example. Let the
current strategy of player i be xi(t) =

(
1/2 1/2

)T
, i.e.,

player i has two actions, each assigned probability 1/2. Let also
αi(t + 1) = 1, i.e., player i selects the first action according
to rule (1). Then, the new strategy vector for agent i, updated
according to rule (2), is:

xi(t+ 1) = 1/2

(
1 + εui(α(t+ 1))

1− εui(α(t+ 1))

)
.

In other words, when player i selects its first action, the
strategy of this action is going to increase proportionally to
the reward received from this action. We may say that such
type of dynamics reinforce repeated selection, however the
size of reinforcement depends on the reward received.

By playing a strategic-form game repeatedly over time,
players do not always experience the same reward when select-
ing the same action, since other players may also change their
actions. This dynamic element of the size of reinforcement is
the factor that complicates the convergence analysis, as it will
become clear in the forthcoming related work.

Note that by letting the step-size ε to be sufficiently small
and since the utility function ui(·) is uniformly bounded in A,
xi(t) ∈ ∆(|Ai|) for all t.

In case λ = 0, the above update recursion will be referred
to as the unperturbed learning automata.

C. Related work

Discrete-time replicator dynamics: A type of learning dy-
namics which is quite closely related to the dynamics of
Table I is the discrete-time version of replicator dynamics
(cf., [12]). It has been used in different forms, depending
primarily on the step-size sequence ε in Table I. For example,
Arthur [5] considered a similar rule, with λ = 0 and step size
of each agent i defined as εi(t) = 1/(ctν + ui(α(t + 1)),
for some positive constant c and for ν ∈ (0, 1) (in the place
of the constant step size ε of (2)). A comparative model
is also used by Hopkins and Posch in [13], with εi(t) =

1/(Vi(t) + ui(α(t + 1))), where Vi(t) is the accumulated
benefits of agent i up to time t which gives rise to the urn
process of Erev-Roth [14]. Some similarities are also shared
with the Cross’ learning model of [15], where ε(t) = 1 and
ui(α(t)) ≤ 1, and its modification presented by Leslie in [16],
where ε(t), instead, is assumed decreasing with time.

The main difference of the proposed dynamics of Table I lies
in the perturbation parameter λ > 0 which was first introduced
and analyzed in [9]. A state-dependent perturbation term has
also been investigated in [17]. The perturbation parameter may
serve as an equilibrium selection mechanism, since it excludes
convergence to non-Nash action profiles [9]. It resolved one
of the main issues of discrete-time replicator dynamics, that is
the positive probability of convergence to action profiles that
are not Nash equilibria (briefly, non-Nash action profiles).

Although excluding convergence to non-Nash action profiles
can be guaranteed by using sufficiently small λ > 0, estab-
lishing convergence to action profiles that are Nash equilibria
(pure Nash equilibria) may still be an issue. This is desirable in
the context of coordination games [18], where Pareto-efficient
outcomes are usually pure Nash equilibria (see, e.g., the defi-
nition of a coordination game in [10]). As presented in [17],
convergence to pure Nash equilibria can be guaranteed only
under strong conditions in the payoff matrix. For example,
as shown in [17, Proposition 8], and under the ODE-method
for stochastic approximations, it requires a) the existence of a
potential function, and b) conditions over the Jacobian matrix
of the potential function. Even if a potential function does
exist, verifying condition (b) is practically infeasible for games
of more than 2 players [17].

On the other hand, an important side-benefit of using this
class of dynamics is the indirect “filtering” on the utility-
function measurements (through the formulation of the strat-
egy vectors in (2)). This is demonstrated, for example, in
[13] for the Erev-Roth model [14], where the robustness of
convergence/non-convergence asymptotic results is presented
under the presence of noise in the utility measurements.

Learning automata: Learning automata, as first introduced
by [6], have attracted attention with respect to the control of
complex and distributed systems due to their simple struc-
ture and low computational complexity (cf., [7, Chapter 1]).
Variable-structure stochastic automata may incorporate a form
of reinforcement of favorable actions. Therefore, such stochas-
tic automata bear a lot of similarities to the discrete-time
analogs of replicator dynamics discussed above. An example
of such stochastic learning automata is the linear reward-
inaction scheme described in [7, Chapter 4]. Comparing it
with the reinforcement rule of (2), the linear reward-inaction
scheme accepts a utility function of the form ui(α) ∈ {0, 1},
where 0 corresponds to an unfavorable response and 1 corre-
sponds to a favorable one. More general forms can also be used
when the utility function may accept discrete or continuous
values in the unit interval [0, 1].

Analysis of learning automata in games has been restricted
to zero-sum and identical-interest games [7], [19]. In identical
interest games, convergence analysis has been derived for
small number of players and actions, due to the difficulty in
deriving conditions for absolute monotonicity, which corre-
sponds to the property that the expected utility received by
each player increases monotonically in time (cf., [7, Defini-
tion 8.1]). Similar are the results presented in [19].

The property of absolute monotonicity is closely related to
the existence of a potential function, as in the case of potential
games [20]. Similarly to the discrete-time replicator dynamics,
convergence to non-Nash action profiles cannot be excluded
when the step-size sequence is constant, even if the utility
function satisfies ui(α) ∈ [0, 1] as in the learning automata.
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(The behavior under decreasing step-size is different as [17,
Proposition 2] has shown.) Furthermore, deriving conditions
for excluding convergence to mixed strategy profiles in coordi-
nation games continues to be an issue for the case of learning
automata, as in the case of discrete-time replicator dynamics.

Recognizing these issues, reference [21] introduced a class
of linear reward-inaction schemes in combination with a coor-
dinated exploration phase so that convergence to the efficient
(pure) Nash equilibrium is achieved. However, coordination
of the exploration phase requires communication between the
players, an approach that does not fit to the distributed nature
of dynamics pursued here.
Q-learning: Similar questions of convergence to Nash equi-

libria also appear in alternative reinforcement-based learning
formulations, such as approximate dynamic programming and
Q-learning. Usually, under Q-learning, players keep track of
the discounted running average reward received by each action,
based on which optimal decisions are made (see, e.g., [22]).
Convergence to Nash equilibria can be accomplished under a
stronger set of assumptions, which increases the computational
complexity of the dynamics. For example, in the Nash-Q
learning algorithm of [8], it is indirectly assumed that agents
need to have full access to the joint action space and the
rewards received by other agents.

More recently, reference [23] introduced a Q-learning
scheme in combination with either adaptive play or better-
reply dynamics in order to attain convergence to Nash equilib-
ria in potential games [20] or weakly-acyclic games. However,
this form of dynamics requires that each player observes the
actions selected by the other players, since a Q-value needs
to be assigned for each joint action.

When the evaluation of the Q-values is totally independent,
as in the individual Q-learning in [22], then convergence to
Nash equilibria has been shown only for 2-player zero-sum
games and 2-player partnership games with countably many
Nash equilibria. Currently, there exist no convergence results
in multi-player games. This is a main drawback for Q-learning
dynamics in strategic-form games as also pointed out in
[24]. To overcome this drawback, in the context of stochastic
dynamic games, reference [24] employs an additional feature
(motivated by [11]), namely exploration phases. In any such
exploration phase, all agents use constant policies, something
that allows the accurate computation of the optimal Q-factors.
We may argue that the introduction of common exploration
phases for all agents partially destroys the distributed nature
of the dynamics, since it requires synchronization between
agents.

Aspiration-based learning: Recently, there have been sev-
eral attempts to establish convergence to Nash equilibria
through alternative payoff-based learning dynamics, (see, e.g.,
the benchmark-based dynamics of [11] for convergence to
Nash equilibria in weakly-acyclic games, the trial-and-error
learning [25] for convergence to Nash equilibria in generic

games, the mood-based dynamics of [26] for maximizing
welfare in generic games or the aspiration learning in [10]
for convergence to efficient outcomes in coordination games).
We will refer to such approaches as aspiration-based learning.
For these types of dynamics, convergence to Nash equilibria
or efficient outcomes can be established without requiring any
strong monotonicity properties (as in the multi-player weakly-
acyclic games in [11]).

The case of noisy utility measurements, which are present
in many engineering applications, has not currently been ad-
dressed through aspiration-based learning. The only exception
is reference [11], under benchmark-based dynamics, where
(synchronized) exploration phases are introduced through
which each agent plays a fixed action for the duration of
the exploration phase. If such exploration phases are large
in duration (as required by the results in [11]), this may
reduce the robustness of the dynamics to dynamic changes
in the environment (e.g., changes in the utility function).
One reason that such robustness analysis is currently not
possible in this class of dynamics is the fact that decisions
are taken directly based on the measured performances (e.g.,
by comparing the currently measured performance with the
benchmark performance in [11]).

D. Contributions

The aforementioned literature in payoff-based learning dy-
namics in strategic-form games can be grouped into two main
categories, namely reinforcement-based learning (including
discrete-time replicator dynamics, learning automata and Q-
learning) and aspiration-based learning. Summarizing their
main advantages/disadvantages, we may argue the following
high-level observations.

(O1) Strong asymptotic convergence guarantees for large
number of players, even for generic games, are currently
possible under aspiration-based learning. Similar results
in reinforcement-based learning are currently restricted
to games of small number of players and under strong
structural assumptions (e.g., the existence of a potential
function). See, for example, the discussion on discrete-
time replicator dynamics or learning automata in [17],
or the discussion on Q-learning in [24].

(O2) Noisy observations can be “handled” through
reinforcement-based learning due to the indirect
filtering of the observation signals (e.g., through the
strategy-vector formulation in the model of Table I or
in the formulation of the Q factors in Q-learning). This
is demonstrated, for example, in the convergence/non-
convergence asymptotic results presented in [13] for a
variation of the proposed learning dynamics of Table I
(with λ = 0 and decreasing ε) and under the presence
of noise. Similar effects in aspiration-based learning
can currently be achieved only through the introduction
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of synchronized exploration phases, as discussed in
Section II-C.

Motivated by these two observations (O1)–(O2), and the
obvious inability of reinforcement-based learning to provide
strong convergence guarantees in large games, this paper
advances asymptotic convergence guarantees for a class of
reinforcement-based learning described in Table I (closely
related to both discrete-time replicator dynamics and learning
automata, as discussed in Section II-C). Our goal is to go
beyond common restrictions of small number of players and
strong assumptions in the game structure (such as the existence
of a potential function).

The proposed dynamics (also perturbed learning automata)
were first introduced in [9] to resolve stability issues in the
boundary of the domain appearing in prior schemes [5], [13].
This was achieved through the introduction of the perturbation
factor λ of Table I. However, strong convergence guarantees
(e.g., w.p.1 convergence to Nash equilibria or efficient out-
comes) is currently limited to small number of players and
under strict structural assumptions, e.g., the existence of a
potential function and additional conditions on its Jacobian
matrix [17].

In this paper, we drop the assumption of a decreasing step-
size sequence, and instead we consider the case of a constant
step size ε > 0. Such selection increases the adaptivity of the
dynamics to varying conditions (e.g., the number of agents
or the utility function). Furthermore, we provide a stochastic-
stability analysis that provides a detailed characterization of
the invariant probability measure of the induced Markov chain
with no restrictions on the number of players. In particular, our
contributions are the following:

(C1) We provide an equivalent finite-dimensional charac-
terization of the infinite-dimensional induced Markov
chain of the dynamics, that simplifies significantly the
characterization of its invariant probability measure.
This simplification is based upon a weak-convergence
result and it applies to any strategic-form game with the
Positive-Utility Property 2.1 (Theorem 3.1).

(C2) We capitalize on this simplification and provide a
methodology for computing stochastically stable states
in positive-utility strategic-form games (Theorem 5.1).

(C3) We illustrate the utility of this methodology in establish-
ing stochastic stability in a class of coordination games
with no restriction on the number of players or actions
(Theorem 6.1).

These contributions significantly extend the utility of
reinforcement-based learning for the reasons explained in
observation (O1). We have to note that the illustration re-
sult in coordination games (contribution (C3) above) is of
independent interest. To the best of our knowledge, it is the
first convergence result in the context of reinforcement-based
learning in repeatedly-played strategic-form games with the

following features: a) a completely distributed setup (i.e., with
no information exchange), b) more than two players, and c)
a set of weakly-acyclic games that do not require the strong
condition of the existence of a potential function.

This paper is an extention over an earlier version appeared
in [1], which only focused on contribution (C1) above.

III. STOCHASTIC STABILITY

In this section, we provide a characterization of the invariant
probability measure µλ of the induced Markov chain Pλ of
the dynamics of Table I. The importance lies in an equivalence
relation (established through a weak-convergence argument) of
µλ with an invariant distribution of a finite-state Markov chain.
Characterization of the stochastic stability of the dynamics
will follow directly due to the Birkhoff’s individual ergodic
theorem.

This simplification in the characterization of µλ will be
the first important step for providing specialized results for
stochastic stability in strategic-form games.

A. Terminology and notation

Let Z .
= A × X , where X .

= X1 × . . . × Xn, i.e., pairs
of joint actions α and strategy profiles x. We will denote the
elements of the state space Z by z.

The set A is endowed with the discrete topology, X with
its usual Euclidean topology, and Z with the corresponding
product topology. We also let B(Z) denote the Borel σ-field
of Z , and P(Z) the set of probability measures (p.m.) on
B(Z) endowed with the Prohorov topology, i.e., the topology
of weak convergence. The learning algorithm of Table I defines
an Z-valued Markov chain. Let Pλ : Z × B(Z) → [0, 1]

denote its transition probability function (t.p.f.), parameterized
by λ > 0. We refer to the process with λ > 0 as the perturbed
process. Let also P : Z ×B(Z) → [0, 1] denote the t.p.f. of
the unperturbed process, i.e., when λ = 0.

We let Cb(Z) denote the Banach space of real-valued
continuous functions on Z under the sup-norm (denoted by
‖ · ‖∞) topology. For f ∈ Cb(Z), define

Pλf(z)
.
=

∫
Z
Pλ(z, dy)f(y),

and
µ[f ]

.
=

∫
Z
µ(dx)f(z), for µ ∈ P(Z).

The process governed by the unperturbed process P will
be denoted by Z

.
= {Zt : t ≥ 0}. Let Ω

.
= Z∞ denote the

canonical path space, i.e., an element ω ∈ Ω is a sequence
{ω(0), ω(1), . . . }, with ω(t) = (α(t), x(t)) ∈ Z . We use the
same notation for the elements (α, x) of the space Z and for
the coordinates of the process Zt = (α(t), x(t)). Let also Pz[·]
denote the unique p.m. induced by the unperturbed process
P on the product σ-field of Z∞, initialized at z = (α, x),
and Ez[·] the corresponding expectation operator. Let also Ft,
t ≥ 0, denote the σ-field of Z∞ generated by {Zτ , τ ≤ t}.
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B. Stochastic stability

First, we note that both P and Pλ (λ > 0) satisfy the weak
Feller property (cf., [27, Definition 4.4.2]).

Proposition 3.1: Both the unperturbed process P (λ = 0)
and the perturbed process Pλ (λ > 0) have the weak Feller
property.
Proof. See Appendix A. �

The measure µλ ∈ P(Z) is called an invariant probability
measure (i.p.m.) for Pλ if

(µλPλ)(A)
.
=

∫
Z
µλ(dx)Pλ(z,A) = µλ(A), A ∈ B(Z).

Since Z defines a locally compact separable metric space and
P , Pλ have the weak Feller property, they both admit an i.p.m.,
denoted µ and µλ, respectively [27, Theorem 7.2.3].

We would like to characterize the stochastically stable states
z ∈ Z of Pλ, that is any state z ∈ Z for which any collection
of i.p.m. {µλ ∈ P(Z) : µλPλ = µλ, λ > 0} satisfies
lim infλ→0 µλ(z) > 0. As the forthcoming analysis will show,
the stochastically stable states will be a subset of the set of
pure strategy states (p.s.s.) defined as follows:

Definition 3.1 (Pure Strategy State): A pure strategy state is
a state s = (α, x) ∈ Z such that for all i ∈ I, xi = eαi , i.e.,
xi coincides with the vertex of the probability simplex ∆(|Ai|)
which assigns probability 1 to action αi.

We will denote the set of pure strategy states by S.
Theorem 3.1 (Stochastic Stability): There exists a unique

probability vector π = (π1, ..., π|S|) such that for any col-
lection of i.p.m.’s {µλ ∈ P(Z) : µλPλ = µλ, λ > 0}, the
following hold:

(a) limλ→0 µλ(·) = µ̂(·) .
=
∑
s∈S πsδs(·), where conver-

gence is in the weak sense.
(b) The probability vector π is an invariant distribution of

the (finite-state) Markov process P̂ , such that, for any
s, s′ ∈ S,

P̂ss′
.
= lim
t→∞

QP t(s,Nδ(s′)), (3)

for any δ > 0 sufficiently small, where Q is the
t.p.f. corresponding to only one player trembling (i.e.,
following the uniform distribution of (1)).

The proof of Theorem 3.1 requires a series of propositions
and will be presented in detail in Section IV.

Theorem 3.1 implicitly provides a stochastically stability
argument. In fact, the expected asymptotic behavior of the
dynamics can be characterized by µ̂ and, therefore, π. In
particular, by Birkhoff’s individual ergodic theorem [27, The-
orem 2.3.4], the weak convergence of µλ to µ̂, and the fact
that µλ is ergodic, we have that the expected percentage
of time that the process spends in any O ∈ B(Z) such

that ∂O ∩ S 6= ∅ is given by µ̂(O) as the experimentation
probability λ approaches zero and time increases, i.e.,

lim
λ↓0

(
lim
t→∞

1

t

t−1∑
k=0

P kλ (x,O)

)
= µ̂(O) .

C. Discussion

Theorem 3.1 establishes “equivalence” (in a weak conver-
gence sense) of the original (perturbed) learning process with
a simplified process, where only one player trembles at the
first iteration and then no player trembles thereafter. This
simplification in the analysis has originally been capitalized
to analyze aspiration learning dynamics in [28], [10], and
it is based upon the observation that under the unperturbed
process, agents’ strategies will converge to a pure strategy
state, as it will be shown in the forthcoming Section IV.

Furthermore, the limiting behavior of the original (per-
turbed) dynamics can be characterized by the (unique) invari-
ant distribution of a finite-state Markov chain {Pss′}, whose
states correspond to the pure-strategy states S (Definition 3.1).
In other words, we should expect that as the perturbation pa-
rameter λ approaches zero, the algorithm spends the majority
of the time on pure strategy states. The importance of this
result lies on the fact that no constraints have been imposed
in the payoff matrix of the game other than the Positive-Utility
Property 2.1.

In the forthcoming Section V, we will use this result to
provide a methodology for computing the set of stochastically
stable states. This methodology will further be illustrated in
the context of coordination games.

IV. TECHNICAL DERIVATION

In this section, we provide the main steps for the proof of
Theorem 3.1. We begin by investigating the asymptotic behav-
ior of the unperturbed process P , and then we characterize the
i.p.m. of the perturbed process with respect to the p.s.s.’s S.

A. Unperturbed Process

For t ≥ 0 define the sets

At
.
= {ω ∈ Ω : α(τ) = α(t) , for all τ ≥ t} ,

Bt
.
= {ω ∈ Ω : α(τ) = α(0) , for all 0 ≤ τ ≤ t} .

Note that {Bt : t ≥ 0} is a non-increasing sequence, i.e.,
Bt+1 ⊆ Bt, while {At : t ≥ 0} is non-decreasing, i.e.,
At+1 ⊇ At. Let

A∞
.
=

∞⋃
t=0

At and B∞
.
=

∞⋂
t=1

Bt.

In other words, A∞ corresponds to the event that agents
eventually play the same action profile, while B∞ corresponds
to the event that agents never change their actions.
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Proposition 4.1 (Convergence to p.s.s.): Let us assume that
the step size ε > 0 is sufficiently small such that 0 < εui(α) <

1 for all α ∈ A and i ∈ I. Then, the following hold:

(a) infz∈Z Pz[B∞] > 0,
(b) infz∈Z Pz[A∞] = 1.

Proof. See Appendix B. �

Statement (a) of Proposition 4.1 states that the probability
that agents never change their actions is bounded away
from zero, while statement (b) states that the probability that
eventually agents play the same action profile is one. This
also indicates that any invariant measure of the unperturbed
process can be characterized with respect to the pure strategy
states S, which is established by the following proposition.

Proposition 4.2 (Limiting t.p.f. of unperturbed process): Let
µ denote an i.p.m. of P . Then, there exists a t.p.f. Π on Z ×
B(Z) with the following properties:

(a) for µ-a.e. z ∈ Z , Π(z, ·) is an i.p.m. for P ;
(b) for all f ∈ Cb(Z), limt→∞ ‖P tf −Πf‖∞ = 0;
(c) µ is an i.p.m. for Π;
(d) the support1 of Π is on S for all z ∈ Z .

Proof. The state space Z is a locally compact separable metric
space and the t.p.f. of the unperturbed process P admits an
i.p.m. due to Proposition 3.1. Thus, statements (a), (b) and (c)
follow directly from [27, Theorem 5.2.2 (a), (b), (e)].

(d) Let us assume that the support of Π includes points in Z
other than the pure strategy states in S. Then, there exists an
open set O ∈ B(Z) such that O ∩ S = ∅ and Π(z∗, O) > 0

for some z∗ ∈ Z . According to (b), P t converges weakly to Π.
Thus, from Portmanteau theorem (cf., [27, Theorem 1.4.16]),
we have that lim inft→∞ P t(z∗, O) ≥ Π(z∗, O) > 0. This
is a contradiction of Proposition 4.1(b), which concludes the
proof. �

Proposition 4.2 states that the limiting unperturbed t.p.f.
converges weakly to a t.p.f. Π which accepts the same i.p.m.
as P . Furthermore, the support of Π is the set of pure strategy
states S. This is a rather important observation, since the
limiting perturbed process can also be “related” (in a weak-
convergence sense) to the t.p.f. Π, as it will be shown in the
following section.

B. Invariant probability measure (i.p.m.) of perturbed process

According to the definition of perturbed learning automata
of Table I, when a player updates its action, there is a small
probability λ > 0 that it “trembles,” i.e., it selects a new action
according to a uniform distribution (instead of using its current

1The support of a measure µ on Z is the unique closed set F ⊂ B(Z)
such that µ(Z\F ) = 0 and µ(F ∩O) > 0 for every open set O ⊂ Z such
that F ∩O 6= ∅.

strategy). Thus, we can decompose the t.p.f. induced by the
one-step update as follows:

Pλ = (1− ϕ(λ))P + ϕ(λ)Qλ

where ϕ(λ) = 1− (1−λ)n is the probability that at least one
agent trembles (since (1−λ)n is the probability that no agent
trembles), and Qλ corresponds to the t.p.f. when at least one
agent trembles. Note that ϕ(λ)→ 0 as λ ↓ 0.

Define also Q as the t.p.f. where only one player trembles,
and Q∗ as the t.p.f. where at least two players tremble. Then,
we may write:

Qλ = (1− ψ(λ))Q+ ψ(λ)Q∗, (4)

where ψ(λ)
.
= 1− nλ(1−λ)n−1

1−(1−λ)n corresponds to the probability
that at least two players tremble given that at least one player
trembles. It also satisfies ψ(λ)→ 0 as λ ↓ 0, which establishes
an approximation of Qλ by Q as the perturbation factor λ
approaches zero.

Let us also define the infinite-step t.p.f. when trembling only
at the first step (briefly, lifted t.p.f.) as follows:

PLλ
.
= ϕ(λ)

∞∑
t=0

(1− ϕ(λ))tQλP
t = QλRλ (5)

where Rλ
.
= ϕ(λ)

∑∞
t=0(1 − ϕ(λ))tP t, i.e., Rλ corresponds

to the resolvent t.p.f.
In the following proposition, we establish weak-convergence

of the lifted t.p.f. PLλ with QΠ as λ ↓ 0, which will further
allow for an explicit characterization of the weak limit points
of the i.p.m. of Pλ.

Proposition 4.3 (i.p.m. of perturbed process): The following
hold:

(a) For f ∈ Cb(Z), limλ→0 ‖Rλf −Πf‖∞ = 0.

(b) For f ∈ Cb(Z), limλ→0 ‖PLλ f −QΠf‖∞ = 0.
(c) Any invariant distribution µλ of Pλ is also an invariant

distribution of PLλ .
(d) Any weak limit point in P(Z) of µλ, as λ → 0, is an

i.p.m. of QΠ.

Proof. (a) For any f ∈ Cb(Z), we have

‖Rλf −Πf‖∞
= ‖ϕ(λ)

∞∑
t=0

(1− ϕ(λ))tP tf −Πf‖∞

= ‖ϕ(λ)

∞∑
t=0

(1− ϕ(λ))t(P tf −Πf)‖∞

where we have used the property ϕ(λ)
∑∞
t=0(1−ϕ(λ))t = 1.

Note that

ϕ(λ)

∞∑
t=T

(1− ϕ(λ))t‖P tf −Πf‖∞
≤ (1− ϕ(λ))T sup

t≥T
‖P tf −Πf‖∞.
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From Proposition 4.2(b), we have that for any δ > 0, there
exists T = T (δ) > 0 such that the r.h.s. is uniformly bounded
by δ for all t ≥ T . Thus, the sequence

AT
.
= ϕ(λ)

T∑
t=0

(1− ϕ(λ))t(P tf −Πf)

is Cauchy and therefore convergent (under the sup-norm). In
other words, there exists A ∈ R such that limT→∞ ‖AT −
A‖∞ = 0. For every T > 0, we have

‖Rλf −Πf‖∞ ≤ ‖AT ‖∞ + ‖A−AT ‖∞.

Note that

‖AT ‖∞ ≤ ϕ(λ)

T∑
t=0

(1− ϕ(λ))t‖P tf −Πf‖∞.

If we take λ ↓ 0, then the r.h.s. converges to zero. Thus,

lim
λ↓0
‖Rλf −Πf‖∞ ≤ ‖A−AT ‖∞, for all T > 0,

which concludes the proof.
(b) For any f ∈ Cb(Z), we have

‖PLλ f −QΠf‖∞
≤ ‖Qλ(Rλf −Πf)‖∞ + ‖QλΠf −QΠf‖∞
≤ ‖Rλf −Πf‖∞ + ‖QλΠf −QΠf‖∞.

The first term of the r.h.s. approaches 0 as λ ↓ 0 according to
(a). The second term of the r.h.s. also approaches 0 as λ ↓ 0

since Qλ → Q as λ ↓ 0.
(c) By definition of the perturbed t.p.f. Pλ, we have

PλRλ = (1− ϕ(λ))PRλ + ϕ(λ)QλRλ.

Note that QλRλ = PLλ and (1 − ϕ(λ))PRλ = Rλ − ϕ(λ)I,

where I corresponds to the identity operator. Thus,

PλRλ = Rλ − ϕ(λ)I + ϕ(λ)PLλ .

For any i.p.m. of Pλ, µλ, we have

µλPλRλ = µλRλ − ϕ(λ)µλ + ϕ(λ)µλP
L
λ ,

which equivalently implies that µλ = µλP
L
λ , since µλPλ =

µλ. We conclude that µλ is also an i.p.m. of PLλ .
(d) Let µ̂ denote a weak limit point of µλ as λ ↓ 0. To see

that such a limit exists, take µ̂ to be an i.p.m. of P . Then,

‖Pλf − Pf‖∞
≥ ‖µλ(Pλf − Pf)‖∞
= ‖(µλ − µ̂)(I − P )[f ]‖∞.

Note that the weak convergence of Pλ to P , it necessarily
implies that µλ ⇒ µ̂. Note further that

µ̂[f ]− µ̂QΠf

= (µ̂[f ]− µλ[f ]) + µλ[PLλ f −QΠf ]+

(µλ[QΠf ]− µ̂[QΠf ]).

The first and the third term of the r.h.s. approaches 0 as
λ ↓ 0 due to the fact that µλ ⇒ µ̂. The same holds for the

second term of the r.h.s. due to part (b). Thus, we conclude
that any weak limit point of µλ as λ ↓ 0 is an i.p.m. of QΠ. �

Proposition 4.3 establishes convergence (in a weak sense)
of the i.p.m. µλ of the perturbed process to an i.p.m. of QΠ.
In the following section, this convergence result will allow for
a more explicit characterization of µλ as λ ↓ 0.

C. Equivalent finite-state Markov process

Define the finite-state Markov process P̂ as in (3).
Proposition 4.4 (Unique i.p.m. of QΠ): There exists a

unique i.p.m. µ̂ of QΠ. It satisfies

µ̂(·) =
∑
s∈S

πsδs(·) (6)

for some constants πs ≥ 0, s ∈ S. Moreover, π =

(π1, ..., π|S|) is an invariant distribution of P̂ , i.e., π = πP̂ .
Proof. From Proposition 4.2(d), we know that the support of
Π is the set of pure strategy states S. Thus, the support of QΠ

is also on S. From Proposition 4.3, we know that QΠ admits
an i.p.m., say µ̂, whose support is also S. Thus, µ̂ admits the
form of (6), for some constants πs ≥ 0, s ∈ S.

For any two distinct s, s′ ∈ S, note that Nδ(s′), δ > 0, is
a continuity set of QΠ(s, ·), i.e., QΠ(s, ∂Nδ(s′)) = 0. Thus,
from Portmanteau theorem, given that QP t ⇒ QΠ,

QΠ(s,Nδ(s′)) = lim
t→∞

QP t(s,Nδ(s′)) = P̂ss′ .

If we also define πs
.
= µ̂(Nδ(s)), then

πs′ = µ̂(Nδ(s′)) =
∑
s∈S

πsQΠ(s,Nδ(s′)) =
∑
s∈S

πsP̂ss′ ,

which shows that π is an invariant distribution of P̂ , i.e., π =

πP̂ .
It remains to establish uniqueness of the invariant

distribution of QΠ. Note that the set S of pure strategy
states is isomorphic with the set A of action profiles. If
agent i trembles (as t.p.f. Q dictates), then all actions
in Ai have positive probability of being selected, i.e.,
Q(α, (α′i, α−i)) > 0 for all α′i ∈ Ai and i ∈ I. It follows by
Proposition 4.1 that QΠ(α, (α′i, α−i)) > 0 for all α′i ∈ Ai
and i ∈ I. Finite induction then shows that (QΠ)n(α, α′) > 0

for all α, α′ ∈ A. It follows that if we restrict the domain
of QΠ to S, it defines an irreducible stochastic matrix.
Therefore, QΠ has a unique i.p.m. �

D. Proof of Theorem 3.1

Theorem 3.1(a)–(b) is a direct implication of Proposi-
tions 4.3–4.4.

V. STOCHASTICALLY STABLE STATES

In this section, we capitalize on Theorem 3.1 and we further
simplify the computation of the stochastically stable states in
games satisfying Property 2.1.



9

s s

s s

Fig. 1. Examples of s-graphs in case S contains four states.

A. Background on finite Markov chains

In order to compute the invariant distribution of a finite-
state, irreducible and aperiodic Markov chain, we are going to
consider a characterization introduced by [29]. In particular,
for finite Markov chains an invariant measure can be expressed
as the ratio of sums of products consisting of transition
probabilities. These products can be described conveniently by
means of graphs on the set of states of the chain. In particular,
let S be a finite set of states, whose elements will be denoted
by sk, s`, etc., and let a subset W of S.

Definition 5.1: (W-graph) A graph consisting of arrows
sk → s` (sk ∈ S\W, s` ∈ S, s` 6= sk) is called a W-graph if
it satisfies the following conditions:

1) every point k ∈ S\W is the initial point of exactly one
arrow;

2) there are no closed cycles in the graph; or, equivalently,
for any point sk ∈ S\W there exists a sequence of
arrows leading from it to some point s` ∈ W .

Fig. 1 provides examples of {s}-graphs for some state s ∈ S
when S contains four states. We will denote by G{W} the set
of W-graphs and we shall use the letter g to denote graphs. If
P̂sks` are nonnegative numbers, where sk, s` ∈ S, define also
the transition probability along path g as

$(g)
.
=

∏
(sk→s`)∈g

P̂sks` .

The following Lemma holds:
Lemma 5.1 (Lemma 6.3.1 in [29]): Let us consider a Markov

chain with a finite set of states S and transition probabilities
{P̂sks`} and assume that every state can be reached from any
other state in a finite number of steps. Then, the stationary
distribution of the chain is π = [πs], where

πs =
Rs∑

si∈S Rsi
, s ∈ S (7)

where Rs
.
=
∑
g∈G{s}$(g).

In other words, in order to compute the weight that the
stationary distribution assigns to a state s ∈ S, it suffices
to compute the ratio of the transition probabilities of all {s}-
graphs over the transition probabilities of all graphs.

B. Approximation of one-step transition probability

We wish to provide an approximation in the computation
of the transition probabilities between states in S since this
will allow for explicitly computing the stationary distribution
π of Theorem 3.1. Based on the definition of the t.p.f. QΠ,
and as λ ↓ 0, a transition from s to s′ influences the stationary
distribution only if s differs from s′ in the action of a single
player. This observation will be capitalized by the forthcoming
Lemmas 5.2–5.3, to approximate the transition probability
from s to s′.

Let τ(D) denote the first hitting time of the unperturbed
process to the set D ⊂ Z . Denote the minimum hitting time
of a set D ⊂ Z as τ∗s(D) when the process starts from state
s ∈ S. Let us also define the set

Di,`(α)
.
=
{

(α, x) ∈ Z : xiαi > 1−Hi(α)`
}
,

where Hi(α)
.
= 1 − εui(α). The set Di,`(α) defines the

unreachable set in the strategy space of agent i when starting
from xiαi = 0 under QΠ and plays action αi for ` consecutive
times.

Lemma 5.2 (One-step transition probability): Consider any
two action profiles α, α′ ∈ A which differ in the action of
a single player j. Let s, s′ define the corresponding pure
strategy states associated with α and α′, respectively. Let also
z = (α′, x′), where x′j

.
= eαj +εuj(α

′)(eα′j−eαj ), which cor-
responds to the state after agent j perturbed once starting from
s and played α′j . Define also P̆ss′(δ)

.
= Pz[τ(Nδ(s′)) < ∞]

which corresponds to the probability that the process transits
from the perturbed state z to a δ-neighborhood of s′ in finite
time. For sufficiently small ε such that 0 < εuj(α

′) < 1, the
following hold:

(a) The transition probability from s to s′ under QΠ can be
approximated as follows:

P̂ss′ = γj · lim
δ↓0

P̆ss′(δ), (8)

where γj
.
= 1/(n |Aj |) corresponds to the probability

that agent j trembled and selected action α′j , given that
only one player trembles (under t.p.f. Q).

(b) Along any sample path that reaches the set Nδ(s′),
action profile α′ is played at least τ∗s(Nδ(s′)) times.

(c) P̆ss′(δ) corresponds to the probability of the shortest
path, i.e.,

P̆ss′(δ) = Pz [α(t+ 1) = α′, t < τ∗s(Nδ(s′))] .
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(d) There exists positive constant C0(δ), such that for any
transition step s→ s′ (with the above properties) and as
ε ↓ 0,

P̆ss′(δ) ≈ exp

(
− C0(δ)

εuj(α′)

)
. (9)

Proof. See Appendix C. �

Note that for sufficiently small ε, the larger the destination
utility uj(α

′), the larger the transition probability to s′. In
a way, the inverse of the destination utility at s′ represents
a measure of “resistance” of the process to transit to s′.
Lemma 5.2 provides a tool for simplifying the computation
of stochastically stable pure strategy states as it will become
apparent in the following section.

C. Approximation of stationary distribution

In this section, using Lemma 5.2 that approximates one-step
transition probabilities, we provide an approximation of the
invariant stationary distribution of the QΠ t.p.f.. By definition
of QΠ, this approximation is based upon the observation that
for the computation of the quantities Rs of Lemma 5.1, it
suffices to consider only those paths in G{s} which involve
one-step transitions as defined in the previous section.

Define G(1){s} ⊆ G{s} to be the set of s-graphs consisting
solely of one-step transitions, i.e., for any g ∈ G(1){s} and
any arrow (sk → s`) ∈ g, the associated action profiles, say
α(k), α(`), respectively, differ in a single action of a single
player. It is straightforward to check that G(1){s} 6= ∅ for
any s ∈ S.

Lemma 5.3 (Approximation of stationary distribution): The
stationary distribution of the finite Markov chain {P̂sks`}, π =

[πs], satisfies

πs = lim
δ↓0

R̆s(δ)∑
si∈S R̆si(δ)

, s ∈ S, (10)

where R̆s(δ)
.
=
∑
g∈G(1){s} $̆(g; δ), and

$̆(g; δ)
.
= γ̄g

∏
(sk→s`)∈g

P̆sks`(δ), (11)

for some constant γ̄g ∈ (0, 1).
Proof. According to Lemma 5.1, for any s ∈ S, we have
πs = Rs/

∑
si∈S Rsi . Given the definition of the t.p.f. Q,

where only one player trembles, we should only consider one-
step transition probabilities (as defined in Lemma 5.2). Thus,

Rs =
∑

g∈G(1){s}

$(g) =
∑

g∈G(1){s}

∏
(sk→s`)∈g

P̂sks` .

According to Lemma 5.2 and Equation (8), we have

Rs = lim
δ↓0

∑
g∈G(1){s}

∏
(sk→s`)∈g

γj(sk,s`)P̆sks`(δ)

= lim
δ↓0

∑
g∈G(1){s}

γ̄g
∏

(sk→s`)∈g

P̆sks`(δ)

where j(sk, s`) denotes the single player whose action changes
from sk to s`, and γ̄g

.
=
∏

(sk→s`)∈g γj(sk,s`) ∈ (0, 1). Thus,
the conclusion follows. �

Note that Lemma 5.3 provides a simplification to Theo-
rem 3.1, since it suffices to compute the transition probabilities
of the W-graphs consisting solely of one step transitions.
Furthermore, the transition probability of any such graph,
$̆(g; δ), can be computed by Lemma 5.2, which provides
an explicit formula for one-step transitions. In the following
section, the computation of the stationary distribution will
further be simplified and related to the order of the one-step
transition probabilities.

D. δ-resistance

We have shown in Lemma 5.2, that the order of the one-
step transition probability P̆ss′(δ) increases as the destination
utility increases. Informally, the inverse destination utility at
s′ represents a form of “resistance” in approaching state s′.
In this section, we will formalize this notion and we will relate
it to the stationary distribution π.

Definition 5.2 (δ-resistance): For a pure strategy state s ∈ S,
let us consider any graph g ∈ G(1){s}. For any δ > 0, the δ-
resistance associated with s ∈ S in graph g, is defined as
follows:

ϕδ(s|g)
.
=

∑
(sk→s`)∈g

1

εuj(α(`))
. (12)

In other words, the δ-resistance of a state s along a graph
corresponds to the sum of the inverse utilities of the destination
states along that graph. We further denote by ϕ∗δ(s) the
minimum δ-resistance, i.e., ϕ∗δ(s)

.
= ming∈G(1){s} ϕδ(s|g) and

by g∗(s) the {s}-graph that attains this minimum resistance.
The stochastically stable states can be identified as the states
of minimum resistance.

Theorem 5.1: As ε ↓ 0, the set of stochastically-stable p.s.s.’s
S∗ is such that, for any δ > 0

Φδ(S∗) .
= max
s∗∈S∗

ϕ∗δ(s
∗) < min

s∈S\S∗
ϕ∗δ(s)

.
= Φδ(S\S∗). (13)

Proof. By Lemmas 5.2–5.3, for any state s ∈ S and for any
graph g ∈ G(1){s}, we have that, as ε ↓ 0,

$̆(g; δ) = γ̄g
∏

(sk→s`)∈g

P̆sks`(δ) ≈ γ̄g exp (−C0(δ)ϕδ(s|g)),

and, R̆s(δ) =
∑
g∈G(1){s} γ̄g exp (−C0(δ)ϕδ(s|g)). Thus, for

the states in S\S∗, and as ε ↓ 0, we have∑
s∈S\S∗

R̆s(δ) = e−C0(δ)Φ(S\S∗)·∑
s∈S\S∗

∑
g∈G(1){s}

γ̄ge
−C0(δ)(ϕδ(s|g)−Φ(S\S∗)),
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which approaches 0 as ε ↓ 0, since ϕδ(s|g) ≥ Φ(S\S∗) for
each s ∈ S\S∗. Analogously, for the states in S∗, we have∑

s∈S∗
R̆s(δ) = e−C0(δ)Φδ(S∗)·∑
s∈S∗

∑
g∈G(1){s}

γ̄ge
−C0(δ)(ϕδ(s|g)−Φδ(S∗)).

Thus, as ε ↓ 0,∑
s∈S\S∗ R̆s(δ)∑
s∈S∗ R̆s(δ)

= e−C0(δ)(Φ(S\S∗)−Φδ(S∗))· ∑
s∈S\S∗

∑
g∈G(1){s} γ̄ge

−C0(δ)(ϕδ(s|g)−Φ(S\S∗))∑
g∈G(1){s} γ̄ge

−C0(δ)(ϕδ(s|g)−Φδ(S∗))
.

Given that Φ(S\S∗)−Φδ(S∗) > 0, the first part of the above
ratio approaches 0 as ε ↓ 0. The same holds for the numerator
of the second part, due to the definition of Φδ(S∗). On the
other hand, the denominator approaches ∞ as ε ↓ 0. Thus, we
conclude that ∑

s∈S\S∗ R̆s(δ)∑
s∈S∗ R̆s(δ)

ε↓0−−→ 0. (14)

Denote by πS∗ the probability assigned by the invariant
probability distribution π to the subset S∗ of S. Then, accord-
ing to (10), we have:

lim
ε↓0

πS∗

= lim
ε↓0

lim
δ↓0

∑
s∗∈S∗ R̆s∗(δ)∑
s∈S R̆s(δ)

= lim
δ↓0

lim
ε↓0

∑
s∗∈S∗ R̆s∗(δ)∑
s∈S R̆s(δ)

= lim
δ↓0

lim
ε↓0

1

1 +
∑
s∈S\S∗ R̆s(δ)/

∑
s∗∈S∗ R̆s∗(δ)

.

Note that that the interchange of limits in the second equality
is valid due to the fact that, by Lemma 5.3, the transition
probabilities P̆sks` → 0, either when ε ↓ 0 or when δ ↓ 0.
Given (14), we conclude that limε↓0 πS∗ = 1. Conversely,
limε↓0 πS\S∗ = 0. Thus, the stochastically stable states may
only be contained in S∗. �

Theorem 5.1 provides a guidance in the computation of the
stochastically stable states (through the computation of the
minimum δ-resistance). It further applies to any game that
satisfies the positive-utility property. In the following section,
we illustrate the utility of Theorem 5.1 in computing the
stochastically stable states in coordination games.

VI. ILLUSTRATION IN COORDINATION GAMES

A. Stochastic stability

In this section, we will be using the notion of best response
of a player i into an action profile α = (αi, α−i), as well as
the notion of Nash equilibrium. In particular, we define:

Definition 6.1 (Best response): The best response of a player
i to an action profile α = (αi, α−i) is defined as the following
set of actions:

BRi(α)
.
= arg max

a∈Ai
ui(a, α−i).

Definition 6.2 (Nash equilibrium): An action profile α∗ =

(α∗i , α
∗
−i) is a Nash equilibrium, if for every player i,

α∗i ∈ BRi(α
∗).

A best-response of a player i to the current action profile
will often be denoted by α∗i . Note that, according to the above
definition, the best response of a player to an action profile
is never empty. We also introduce the following notion of a
coordination game.

Definition 6.3 (Coordination game): A strategic-form game
satisfying the positive-utility property (Property 2.1) is a
coordination game if, for every action profile α and player
i, uj(α′i, α−i) ≥ uj(αi, α−i) for any α′i ∈ BRi(α).

In other words, a coordination game is such that at any
action profile, if a player plays a best response to its current
action profile, then no other player gets worse-off. This is
satisfied by default when the current action profile corresponds
to a Nash equilibrium, since a player’s best response is to play
the same action.

In order to address stochastic stability, we will further need
to introduce the notion of the best-BR (briefly, BBR).

Definition 6.4 (Best-BR): Let i∗ : A → I be defined as:

i∗(α)
.
= arg max

i∈I
{ui(αi, α−i) : αi ∈ BRi(α)} .

The one-step transition α = (αi∗ , α−i∗)→ (α∗i∗ , α−i∗), where
α∗i∗ ∈ BRi∗(α), is the best-BR to the current action profile α
and will briefly be denoted by BBR(α).

In other words, BBR(α) corresponds to the one-step tran-
sition, where the player which changes its action receives the
largest utility among all possible one-step transitions from α.

Lemma 6.1: Let SNE be the set of p.s.s.’s which correspond
to the set of pure Nash equilibria. In any coordination game,
the {SNE}-graph that attains the minimum δ-resistance is:
g∗(SNE) =

{
(sk → s`) : α(`) ∈ BBR(α)

}
.

Proof. Under the coordination property, and starting from any
state s /∈ SNE, we can construct a path starting from s and
leading to SNE that consists only of one-step best-BR’s. Such
a path will include no cycles (since the utility of all players
may not decrease along such path). Furthermore, such path of
best-BR’s may only terminate at a Nash equilibrium.

By Definition 5.1 of a {SNE}-graph, a state s /∈ SNE is
the source of exactly one arrow. Among the possible arrows
with source s, the one that corresponds to a best-BR is the
one with the minimum δ-resistance (since it provides the
maximum possible destination utility). We conclude that the
{SNE}-graph(s) consisting only of best-BR’s provide the
minimum δ-resistance. Thus, the conclusion follows. �

In other words, Lemma 6.1 shows that the {SNE}-graph of
minimum δ-resistance is the graph consisting of the one-step
best-BR’s starting from any non-Nash action profile. Using
this property, we can show that the set of Nash equilibria are
the stochastically stable states in any coordination game.
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Theorem 6.1 (Stochastic stability in coordination games): In
any coordination game of Definition 6.3, as ε ↓ 0 and λ ↓ 0,
the stochastically-stable pure-strategy states satisfy S∗ ⊆ SNE.

Proof. It suffices to show that all p.s.s.’s outside SNE provide a
δ-resistance which is higher than the δ-resistance of any Nash
equilibrium in SNE (as Theorem 5.1 dictates).

Consider an action profile α which is not a Nash equilibrium
and the corresponding p.s.s. s. Consider the part of the optimal
SNE-graph which leads to s, i.e.,

g∗(s|SNE)
.
= {(sk → s`) ∈ g∗(SNE) : ∃ path from s` to s} .

In other words, g∗(s|SNE) corresponds to the part of the
minimum-resistance graph g∗(SNE) whose arrows lead to s.
This graph might be empty if s is not a recipient of any
arrow in g∗(SNE). For the remainder of the proof, define the
graphs: g1

.
= g∗(SNE)\g∗(s|SNE), g2

.
= g∗(s)\g∗(s|SNE).

Note that, g∗(s|SNE) ⊂ g∗(s), i.e., the graph that leads to s

through the minimum resistance graph of SNE is also part of
the minimum resistance graph of s. By construction, we also
have g∗(s|SNE) ⊂ g∗(SNE). Thus, the exact same arrows (i.e.,
the ones in g∗(s|SNE)) are subtracted from g∗(SNE) and g∗(s)
to define the graphs g1 and g2, respectively.

By definition of the {SNE}-graphs, a node within the set
{SNE} cannot be the source of any arrow in g1. Similarly, node
s may not be the source of any arrow in g2. Since |SNE| ≥ 1,
and the fact that only a single arrow may stem from any given
node, we conclude that |g1| ≤ |g2|, i.e., g2 contains at least as
many arrows as g1.

Furthermore, by construction of graphs g1 and g2, there
exists at least one node s′ /∈ SNE with the following property:
(s′ → s′′) ∈ g1 such that α′′ ∈ BBR(α′), and (s′ → s′′′) ∈ g2

such that α′′′ /∈ BBR(α′). This is due to the fact that any path
in g2 should eventually lead to s /∈ SNE.

Thus, we conclude that g2 contains at least as many arrows
as g1, and g2 contains arrows which are not best-BR steps.
Since only best-BR transition steps achieve the minimum
resistance, we conclude that ϕ(s|g2) > ϕ(s|g1), which
implies that any {s}-graph may only have larger δ-resistance
as compared to the minimum δ-resistance of g∗(SNE). �

B. Simulation study in distributed network formation

In this section, we perform a simulation study of the
perturbed learning automata in network formation games,
analyzed in [30]. We consider n nodes deployed on the plane
and assume that the set of actions of each agent i, Ai, contains
all possible combinations of neighbors of i, denoted Ni, with
which a link can be established, i.e., Ai = 2Ni . Links are
considered unidirectional, and a link established by node i

with node j, denoted (j, i), starts at j with the arrowhead
pointing to i.

A graph G is defined as a collection of nodes and directed
links. Define also a path from j to i as a sequence of nodes

1

2 3

1

2 3

Fig. 2. Nash networks in case of n = 3 agents and 0 < ν < 1.

and directed links that starts at j and ends to i following the
orientation of the graph, i.e.,

(j → i) =
{
j = j0, (j0, j1), j1, . . . , (jm−1, jm), jm = i

}
for some positive integer m. In a connected graph, there is a
path from any node to any other node.

Let us consider the utility function ui : A → R, i ∈ I,
defined by

ui(α)
.
=

∑
j∈I\{i}

χα(j → i)− c |αi| , (15)

where |αi| denotes the number of links corresponding to αi
and c is a constant in (0, 1). Also,

χα(j → i)
.
=

{
1 if (j → i) ⊆ Gα ,
0 otherwise,

where Gα denotes the graph induced by joint action α. As it
was shown in Proposition 4.2 in [30], a network G∗ is a Nash
equilibrium if and only if it is critically connected, i.e., i) it is
connected, and ii) for any (s, i) ∈ G, (s → i) is the unique
path from s to i. For example, the Nash equilibria for n = 3

agents and unconstrained neighborhoods are shown in Fig. 2.
Proposition 6.1: The network formation game defined by

(15) is a coordination game.
Proof. First, note that any network formation game with the
utility of (15) satisfies the positive-utility property. This is due
to the fact that for any single link of cost c ∈ (0, 1), an agent
receives utility of at least 1.

For a joint action α /∈ A∗ suppose that a node i picks its
best response. Then no other agent becomes worse off, since a
best response of any node i always retains connectivity. Note
that this is not necessarily true for any other change in actions.
Thus, the coordination property of Definition 6.3 is satisfied. �

Fig. 3 depicts the response of the learning dynamics in the
network formation game. We consider 6 nodes deployed on
the plane, where the neighbors of each node are defined as
the two immediate nodes (e.g., the neighbors of node 1 are
{2, 6}). According to Theorem 6.1, in order for the average
behavior to be observed λ and ε need to be sufficiently small.
We choose: ε = λ = 0.005, and c = 1/2.

Given the large number of actions, we do not plot the
strategy vector for each node. Instead, we plot the inverse total
distance from each node to its neighboring nodes. In a wheel
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Fig. 3. (a) Final graph and (b) running-average inverse total distance with time under reinforcement-learning.

structure (and only under this structure), the inverse total dis-
tance to the neighboring nodes is equal to 1/1+5 = 1/6 ≈ 0.167.
The wheel structure is among the Nash equilibria of this game
(as shown in [30]) and the unique payoff-dominant equilibrium
(i.e., every node receives its maximum utility). The wheel
structure is the emergent structure under perturbed learning
automata as shown in Fig. 3.

The simulation of Fig. 3 verifies Theorem 6.1, since conver-
gence (in a weak sense) is attained to the set of Nash equilibria.
However, it also demonstrates the potential of this class of
dynamics for stronger convergence results, since the emergent
Nash equilibrium is also payoff-dominant.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we considered a class of reinforcement-
learning dynamics that belongs to the family of discrete-time
replicator dynamics and learning automata, and we provided
an explicit characterization of the invariant probability measure
of the induced Markov chain. Through this analysis, we
demonstrated convergence (in a weak sense) to the set of
pure-strategy states, overcoming prior limitations of the ODE-
method for stochastic approximations, such as the existence
of a potential function. Furthermore, we provided a simplified
methodology for computing the set of stochastically-stable
states, and we demonstrated its utility in the context of
coordination games. This is the first result in this class of dy-
namics that demonstrates global convergence properties with
no restrictions in the number of players and without requiring

the existence of a potential function. Thus, it opens up new
possibilities for the use of reinforcement-based learning in
distributed control of multi-agent systems.

APPENDIX A
PROOF OF PROPOSITION 3.1

Let us consider the perturbed process Pλ. The proof for the
unperturbed process will be directly implied by employing
λ = 0.

Let us also consider any sequence {z(k) = (α(k), x(k))}
such that z(k) → z = (α, x) ∈ Z . For any open set O ∈
B(Z), the following holds:

Pλ(z(k) = (α(k), x(k)), O)

=
∑

α∈PA(O)

{∏
i∈I

x̃
(k)
iαi
·
∏
i∈I

Pz(k) [Ri(α, x(k)
i ) ∈ PXi(O)]

}
=

∑
α∈PA(O)

{ n∏
i=1

IPXi (O)(Ri(α, x(k)
i ))x̃

(k)
iαi

}
,

where PXi(O) and PA(O) are the canonical projections de-
fined by the product topology, and x̃(k)

iαi

.
= (1−λ)x

(k)
iαi

+λ/|Ai|.
Similarly, we have:

Pλ(z,O) =
∑

α∈PA(O)

{ n∏
i=1

IPXi (O) (Ri (α, xi)) x̃iαi

}
.

To investigate the limit of Pλ(z(k), O) as k →∞, it suffices
to investigate the behavior of the sequence

y
(k)
i

.
= IPXi (O)(Ri(α, x(k)

i )).
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We distinguish the following (complementary) cases:
(a) Ri(α, xi) /∈ PXi(O) and Ri(α, xi) /∈ ∂PXi(O): In this

case, there exists an open ball about the next strategy vector
that does not share any common points with the canonical
projection of O. Due to the continuity of the function Ri(α, ·),
we have that y(k)

i → yi
.
= IPXi (O)(Ri(α, xi)) ≡ 0.

(b) Ri(α, xi) ∈ PXi(O): In this case, there exists an open
ball about the next strategy vector that belongs to the canonical
projection of O, since O ∈ B(Z). Due to the continuity of
the function Ri(α, ·), we have that y(k)

i → yi = 1.
(c) Ri(α, xi) /∈ PXi(O) and Ri(α, xi) ∈ ∂PXi(O): In this

case, yi ≡ 0. We conclude that lim infk→∞ y
(k)
i ≥ yi = 0,

since y(k)
i ∈ {0, 1}.

In either one of the above (complementary) cases, we have
that lim infk→∞ y

(k)
i ≥ yi. Finally, due to the continuity of

the perturbed strategy vector x̃iαi with respect to xiαi , we
conclude that for any sequence z(k) → z,

lim inf
k→∞

Pλ(z(k), O) ≥ Pλ(z,O).

By [27, Proposition 7.2.1], we conclude that Pλ satisfies the
weak Feller property.

The above derivation can be generalized to any selection
probability function f(xiαi) in the place of x̃iαi , provided that
it is a continuous function. Thus, the proof for the unperturbed
process P follows the exact same reasoning by simply setting
f(xiαi) = xiαi .

APPENDIX B
PROOF OF PROPOSITION 4.1

(a) Let us consider an action profile α = (α1, ..., αn) ∈ A,
and an initial strategy profile x(0) = (x1(0), ..., xn(0)) such
that xiαi(0) > 0 for all i ∈ I. Note that if the same action
profile α is selected up to time t, then the strategy of agent i
satisfies:

xi(t) = eαi − (1− εui(α))t(eαi − xi(0)). (16)

Given that Bt is non-increasing, from continuity from above
we have

Pz[B∞] = lim
t→∞

Pz[Bt] = lim
t→∞

t∏
k=0

n∏
i=1

xiαi(k).

Note that Pz[B∞] > 0 if and only if
∞∑
t=0

log(xiαi(t)) > −∞, for all i ∈ I. (17)

Let us introduce the variable yi(t)
.
= 1 − xiαi(t), which

corresponds to the probability of agent i selecting any action
other than αi. Condition (17) is equivalent to

−
∞∑
t=0

log(1− yi(t)) <∞, for all i ∈ I. (18)

Note that yi(t + 1)/yi(t) = 1 − εui(α) < 1, which implies
(by the Ratio test, cf., [31, Theorem 6.2.4]) that the series of

positive terms
∑∞
t=1 yi(t) is convergent. This further implies

that limt→∞ yi(t) = 0. Thus, from L’Hospital’s rule (cf., [32,
Theorem 5.13]),

lim
t→∞

− log(1− yi(t))
yi(t)

= lim
t→∞

1

1− yi(t)
= 1 > 0. (19)

From the Limit Comparison Test (cf., [31, Theorem 6.2.2]), we
conclude that condition (18) holds, which equivalently implies
that Pz[B∞] > 0. Lastly, due to (16), Pz[B∞] is continuous
with respect to x(0) which takes values in a bounded and
closed set X . Thus, by [31, Theorem 3.2.2], we conclude that
infz∈Z Pz[B∞] > 0.

(b) Define the event

Ct
.
=
{
∃α′ 6= α(t) : xiα′i(t) > 0, for all i ∈ I

}
,

i.e., Ct corresponds to the event that there exists an action
profile different from the current action profile for which the
nominal strategy assigns positive probability for all agents i.
Note that Act ⊆ Ct, since Act may only occur if there is some
action profile α′ 6= α(t) for which the strategy assigns positive
probability. This further implies that Pz[Act ] ≤ Pz[Ct]. Then,
we have:

Pz[At+1|Act ]
= Pz[At+1 ∩Act ]/Pz[Act ]
≥ Pz[At+1 ∩Act ]/Pz[Ct]
≥ Pz[At+1 ∩Act ∩ Ct]/Pz[Ct]
= Pz[At+1 ∩Act |Ct]
= Pz[At+1|Act ∩ Ct] · Pz[Act |Ct]
= Pz[Z(θt+1(ω)) ∈ B∞|Act ∩ Ct] · Pz[Act |Ct],

where θ : Ω → Ω denotes the shift operator, such that
Z(θt(ω)) = {Zt, Zt+1, ...}. We have

inf
z∈Z

Pz[Act |Ct] ≥
inf

{α′ 6=α(t):xiα′
i
(t)>0,∀i}

(1− εui(α)) · xiα′i(t) > 0,

which corresponds to the probability of switching action at
time t+ 1 to α′ 6= α. Furthermore, if we define the restricted
domain

Z+(α)
.
= {(α′, x) ∈ Z : α′ 6= α, xiα′i > 0,∀i},

then

Pz[Z(θt+1(ω)) ∈ B∞|Act ∩ Ct]
= inf

z∈Z+(α)
Pz[Z(θt+1(ω)) ∈ B∞]

≥ inf
z∈Z

Pz[B∞]

due to the fact that Z+(α) ⊆ Z and the Markov property.
Thus, we conclude that infz∈Z Pz[At+1|Act ] > 0 which further
implies that

∑∞
t=0 Pz[At+1|Act ] =∞. Hence, from the coun-

terpart of the Borel-Cantelli Lemma (cf., [33, Section 3.3])
and the fact that At ⊆ At+1, we have supz∈Z Pz [A∞] = 1.
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APPENDIX C
PROOF OF LEMMA 5.3

(a) This is a direct implication of the definition of QΠ t.p.f..
(b) Let us assume that along a sample path from s to Nδ(s′)

and at iteration t, the strategy of agent j with respect to action
α′j is xjα′j (t) = ρ > 0. If agent j selects action α′j at time
t+ 1, then

xjα′j (t+1) = ρ+εuj(α
′)(1−ρ) = εuj(α

′)+Hj(α
′)ρ

.
= x∗jα′j .

If, instead, agent j selects action αj 6= α′j at time t + 1 and
then α′j at time t+ 2, i.e., it deviates from playing action α′j ,
then the strategy evolves as follows:

xjα′j (t+ 1) = ρ+ εuj(α)(−ρ)

= Hj(α)ρ,

xjα′j (t+ 2) = Hj(α)ρ+ εuj(α
′)(1−Hj(α)ρ)

= (Hj(α
′)ρ)Hj(α) + εuj(α

′)

< x∗jα′j ,

since εuj(α) < 1. Informally, any single deviation from the
shortest path to s′ cannot recover the drop in the strategy at
the next iteration. Thus, along any path to Nδ(s′), action α′

will be played for at least τ∗(Nδ(s′)) times.
(c) Observe that one possibility for realizing a transition

from s to Nδ(s′) is to follow the shortest path, that is, the
path of playing action α′ consecutively. Thus,

P̆ss′(δ) ≥ Pz [α(t+ 1) = α′,∀t < τ∗(Nδ(s′))] .

Let us denote by tk, k ∈ N, a subsequence of the iteration
index t. Given (b), when the process reaches Dj,k(α′) for the
first time, action α′ has been played for at least τ∗s(Nδ(s′))
times. Furthermore, when action profile α′ has been played
for the kth time (at time instance tk + 1), the state at time
tk may not have reached Dj,k(α′) (by definition of the set
Dj,k(α′)). Formally, we can write:

P̆ss′(δ) ≤ Pz [∃{tk} : α(tk + 1) = α′, tk < τ(Dj,k(α′)),

∀k < τ∗s(Nδ(s′))] ,
≤ Pz [∃{tk} : α(tk + 1) = α′, Ztk ∈ Dj,k(α′)c,

∀k < τ∗s(Nδ(s′))] .

The second inequality is due to the Markov property and the
fact that, tk < τ(Dj,k(α′)) implies that the previous state Ztk
may only be within Dj,k(α′)c. Using the properties of the
conditional probability, we may also write:

P̆ss′(δ) ≤ Pz [∃{tk} : α(tk + 1) = α′|
Ztk ∈ Dj,k(α′)c,∀k < τ∗s(Nδ(s′))] .

By the Markov property,

P̆ss′(δ) ≤
τ∗s(Nδ(s′))−1∏

k=0

Pz [α(tk + 1) = α′|Ztk ∈ Dj,k(α′)c]

≤
τ∗s(Nδ(s′))−1∏

t=0

sup
Zt∈Dj,t(α′)c

Pz [α(t+ 1) = α′]

= Pz [α(t+ 1) = α′, t < τ∗s(Nδ(s′))] .

Thus, the conclusion follows.
(d) The minimum hitting time of the set Nδ(s′) starting

from s, satisfies:

τ∗s(Nδ(s′)) =

⌈
log(δ)

log(1− εuj(α′))

⌉
.
= T (ε).

There exists correction function c(ε) : R+ → [0, 1), such that

T (ε) =
log(δ) + c(ε)

log(1− εuj(α′))
=

log(δ) + c(ε)

log(Hj(α′))
, (20)

where we recall that Hj(α
′)
.
= 1 − εuj(α′). Due to (c), we

can write:

log
(
P̆ss′(δ)

)
=

T (ε)∑
t=1

log
(
1−Hj(α

′)t
)
. (21)

In the remainder of the proof, we will approximate the r.h.s.
of (21). To simplify notation, denote H .

= Hj(α
′). Note that

lim
ε↓0

log
(
HT (ε)

)
= lim

ε↓0

{
log(δ) + c(ε)

log(H)
log(H)

}
= log(δ),

and due to the continuity of the natural logarithm,

lim
ε↓0

HT (ε) = δ. (22)

Let us define the sequence Γt
.
= − log(1−Ht)/Ht. Note that

lim
ε↓0

ΓT (ε) = − log(1− δ)
δ

.
= ω(δ)

δ↓0−−→ −1. (23)

Thus, there exists T0 ∈ N, such that for any sufficiently small
ε > 0, for which T0 < T (ε), we have

ω(δ)− ε ≤ Γt ≤ ω(δ) + ε (24)

for any 0 < T0 ≤ t ≤ T (ε). Equivalently,

−(ω(δ) + ε)Ht ≤ log(1−Ht) ≤ −(ω(δ)− ε)Ht

for any 0 < T0 ≤ t ≤ T (ε). Thus,

−(ω(δ) + ε)

T (ε)∑
t=T0

Ht

≤
T (ε)∑
t=T0

log(1−Ht) ≤ −(ω(δ)− ε)
T (ε)∑
t=T0

Ht.

Given
T (ε)∑
t=T0

Ht =
HT0 −HT (ε)

1−H ,

we conclude that

lim
ε↓0

{
(1−H)

T (ε)∑
t=T0

log(1−Ht)
}

= −ω(δ)(1− δ),

where, we have used the property (22) and the fact that
limε↓0H

T0 = limε↓0(1− εuj(α′))T0 = 1. Thus,

lim
ε↓0

{
(1−H)

T (ε)∑
t=1

log(1−Ht)
}

= c0 − ω(δ)(1− δ), (25)
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where c0
.
= limε↓0(1 − H)

∑T0−1
t=1 log(1 − Ht) < 0. The

constant c0 is independent of ε and δ, and it only depends on
T0. Furthermore, it is finite. In fact, by using the property of
the natural logarithm log(x) ≥ 1 − 1

x , x > 0 (which can be
shown using the Mean Value Theorem), we have that, for each
fixed t > 0

lim
ε↓0

{
(1−H) log(1−Ht)

}
≥ lim

ε↓0

−Ht +Ht+1

1−Ht
= −1

t
,

where the last equality is derived using the L’Hospital’s rule.
Thus, c0 ≥ −

∑T0−1
t=0

1/t > −∞ for fixed T0. From (21) and
(25), and using the fact that 1 − H = εuj(α

′), we conclude
that, as ε ↓ 0,

log(P̆ss′(δ)) ≈ −
C0(δ)

εuj(α′)
,

where C0(δ)
.
= −c0 + ω(δ)(1− δ) > 0.

Since the selection of T0 only depends on the utility function
(which admits finite number of values), we may select T0 so
that condition (24) holds uniformly over all action profiles
in A. In this case, C0(δ) can be selected uniformly for any
transition step s→ s′.
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