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Abstract

The ability to automatically detect certain types of cells or cellular subunits in

microscopy images is of significant interest to a wide range of biomedical research and

clinical practices. Cell detection methods have evolved from employing hand-crafted

features to deep learning-based techniques. The essential idea of these methods is that

their cell classifiers or detectors are trained in the pixel space, where the locations

of target cells are labeled. In this paper, we seek a different route and propose a

convolutional neural network (CNN)-based cell detection method that uses encoding

of the output pixel space. For the cell detection problem, the output space is the

sparsely labeled pixel locations indicating cell centers. We employ random projections

to encode the output space to a compressed vector of fixed dimension. Then, CNN

regresses this compressed vector from the input pixels. Furthermore, it is possible

to stably recover sparse cell locations on the output pixel space from the predicted

compressed vector using L1-norm optimization. In the past, output space encoding

using compressed sensing (CS) has been used in conjunction with linear and non-linear

predictors. To the best of our knowledge, this is the first successful use of CNN with CS-

based output space encoding. We made substantial experiments on several benchmark

datasets, where the proposed CNN + CS framework (referred to as CNNCS) achieved

the highest or at least top-3 performance in terms of F1-score, compared with other

state-of-the-art methods.

Keywords: Cell Detection, Convolutional Neural Network, Compressed Sensing.
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1 Introduction

Automatic cell detection is to find whether there are certain types of cells present in an

input image (e.g. microscopy images) and to localize them in the image. It is of significant

interest to a wide range of medical imaging tasks and clinical applications. An example is

breast cancer, where the tumor proliferation speed (tumor growth) is an important biomarker

indicative of breast cancer patients’ prognosis. In practical scenario, the most common

method is routinely performed by pathologists, who examine histological slides under a

microscope based on their empirical assessments, which could be really accurate in several

cases, but generally is slow and prone to fatigue induced errors.

Cell detection and localization constitute several challenges that deserves our attention.

First, target cells are surrounded by clutters represented by complex histological structures

like capillaries, adipocytes, collagen etc. In many cases, the size of the target cell is small, and

consequently, it can be difficult to distinguish from the aforementioned clutter. Second, the

target cells can appear very sparsely (only in tens), moderately densely (in tens of hundreds)

or highly densely (in thousands) in a typical 2000-by-2000 pixel high resolution microscopy

image as shown in Fig. 1. Additionally, significant variations in the appearance among the

targets can also be seen. These challenges render the cell detection/localization/counting

problems far from being solved at the moment, in spite of significant recent progresses in

computer vision research.

In recent years, object detection has been significantly advanced following the big success

by deep learning. However, cell detection or localization task is not simply a sub-task of a

general object detection, which typically deals with extended objects, such as humans and

vehicles that occupy a significant portion of the field of view in the image. Extended object

detection and localization have witnessed much progress in the computer vision community.

For example, Region-based Convolutional Neural Networks (R-CNN) [17] and its variants

[16], [31], Fully Convolutional Networks (FCN) [34] with recent optimization [30] have be-

come the state-of-the-art algorithms for the extended object detection problem. These so-

lutions cannot be easily translated to cell detection, since assumptions and challenges are

different for the latter. For example, for an extended object, localization is considered suc-
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Figure 1: Left picture shows a microscopy image with two target cells annotated by yellow

crosses on their centers. Right top pictures give details about the two target cells whose

nuclei are in mitotic phase. Right bottom pictures provide more examples of mitotic figures.

cessful if a detection bounding box is 50% overlapping with the actual bounding box. For

cell detection, tolerance is typically on a much tighter side in order for the localization to be

meaningful.

Conventional cell detection approaches

In the last few decades, different cell recognition methods had been proposed [15]. Tra-

ditional computer vision based cell detection systems adopt classical image processing tech-

niques, such as intensity thresholding, feature detection, morphological filtering, region ac-

cumulation, and deformable model fitting. For example, Laplacian-of-Gaussian (LoG) [24]

operator was a popular choice for blob detection; Gabor filter or LBP feature [29] offers

many interesting texture properties and had been attempted for a cell detection task [3].

Conventional cell detection approaches follow a “hand-crafted feature representation”+“classifier”

framework. First, detection system extracts one (or multiple) kind of features as the repre-

sentation of input images. Image processing techniques offer a range of feature extraction

algorithms for selection. After that, machine learning based classifiers work on the fea-

ture vectors to identify or recognize regions containing target cells. “Hand-crafted feature

representation”+“classifier” approaches suffer from the following limitations:
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(1) It is a non-trivial and difficult task for humans to select suitable features. In many

cases, it requires significant prior knowledge about the target cells and background.

(2) Most hand-crafted features contain many parameters that are crucial for the overall

performance. Consequently, users need to perform a lot of trial-and-error experiments to

tune these parameters.

(3) Usually, one particular feature is not versatile enough. The feature may often be

tightly coupled with a particular type of target cell and may not work well when presented

with a different type of target cell.

(4) The performance of a hand-crafted feature-based classifier soon reaches an accuracy

plateau, even when trained with plenty of training data.

Deep learning based cell detection approaches

In comparison to the conventioal cell detection methods, deep neural networks recently

has been applied to a variety of computer vision problems, and has achieved better perfor-

mance on several benchmark vision datasets [25], [17], [34]. The most compelling advantage

of deep learning is that it has evolved from fixed feature design strategies towards automated

learning of problem-specific features directly from training data [26]. By providing massive

amount of training images and problem-specific labels, users do not have to go into the

elaborate procedure for the extraction of features. Instead, deep neural network (DNN) is

subsequently optimized using a mini-batch gradient descent method over the training data,

so that the DNN allows autonomic learning of implicit relationships within the data. For

example, shallow layers of DNN focus on learning low-level features (such as edges, lines,

dots), while deep layers of DNN form more abstract high-level semantic representations (such

as probability maps, or object class labels).

With the advent of deep learning in the computer vision community, it is no wonder

that the state-of-the-art methods in cell detection are based on deep neural networks. The

essential idea behind all these methods is that detectors are trained as a classifier in the

image pixel space, either as a pixel lableing [4] or as a region proposal network [8]. Thus,

these methods predict the {x, y}-coordinates of cells directly on a 2-D image. Because, target

cell locations are sparse in an image, the classifiers in these methods face the class imbalance

issue. Moreover, target cells are often only subtly different from other cells. Thus, these
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methods tend produce significant amount of false positives.

Compressed sensing-based output encoding

In this work, deviating from past approaches, we introduce output space encoding in the

cell detection and localization problem. Our observation is that the output space of cell

detection is quite sparse: an automated system only needs to label a small fraction of the

total pixels as cell centroid locations. To provide an example, if there are 5000 cells present in

an image of size 2000-by-2000 pixels, this fraction is 5000/(2000∗2000) = 0.00125, signifying

that even a dense cell image is still quite sparse in the pixel space.

Based on the observation about sparse cell locations within a microscopy image, we are

motivated to apply compressed sensing (CS) [12] techniques in the cell detection task. First,

a fixed length, compressed vector is formed by randomly projecting the cell locations from

the sparse pixel space. Next, a deep CNN is trained to predict the encoded, compressed

vector directly from the input pixels (i.e., microscopy image). Then, L1 norm optimization

is utilized to recover sparse cell locations. We refer to our proposed cell detection framework

as CNNCS (convolutional neural network + compressed sensing).

Output space encoding/representation/transformation sometimes yields more accurate

predictions in machine learning [11], [36]. In the past, CS-based encoding was used in con-

junction with linear and non-linear predictions [19], [23], [21]. We believe, the proposed

CNNCS is the first such attempt to solve cell detection and localization that achieved com-

petitive results on benchmark datasets. There are several advantages of using CS-based

output encoding for cell detection and localization. First, the compressed output vector is

much shorter in length than the original sparse pixel space. So, the memory requirement

would be typically smaller and consequently, there would be less risk of overfitting. Next,

there are plenty of opportunities to apply ensemble averages to improve generalization. Fur-

thermore, CS-theory dictates that pairwise distances are approximately maintained in the

compressed space [12], [13]. Thus, even after output space encoding, the machine learner still

targets the original output space in an equivalent distance norm. From earlier research, we

also point out a generalization error bound for such systems. Our contribution is summarized

below:

First, this is the first attempt to combine deep learning with CS-based output encoding
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to solve cell detection and localization problem.

Second, we try to overcome the aforementioned class imbalance issue by converting a

classification problem into a regression problem, where sparse cell locations are distributed

by a random projection into a fixed length vector as a target for the regression.

Third, we introduce redundancies in the CS-based output encoding that are exploited by

CNN to boost generalization accuracy in cell detection and localization. This redundancies

also help to reduce false detections.

Fourth, we demonstrate that the proposed CNNCS framework achieves competitive re-

sults compared to the state-of-the-art methods on several benchmark datasets and challeng-

ing cell detection contests.

2 Background and Related Work

2.1 General Object Detection

Prior to deep learning, general object detection pipeline consisted of feature extraction fol-

lowed by classifiers or detectors. Detection had traditionally been addressed using the hand-

crafted features such as SIFT [27], HOG [10], LBP [29], etc. At that time, progress in object

detection greatly depended on the invention of more discriminative hand-crafted features.

Following the big success of Convolutional Neural Network (CNN) in image classification task

[25], deep learning model have been widely adopted in the computer vision community. For

example, Region-based Convolutional Neural Networks (R-CNN) [17] and its variants [16],

[31], Fully Convolutional Networks (FCN) [34] with recent optimization [30] have become

the state-of-the-art algorithms for the extended object detection problems.

Once again, cell detection or localization task is not simply a sub-task of a general object

detection, those state-of-the-art solutions for general object detection are able to provide

useful clues to right direction, but cannot be easily translated to cell detection.
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2.2 Cell Detection and Localization

The state-of-the-art methods in detection and localization today include deep learning tech-

niques for cell detection and localization. Recently a deep Fully Convolutional Network

(FCN) [34] was proposed for the image segmentation problem and had shown remarkable

performance. Soon after the FCN is proposed, [38] presented a FCN-based framework for

cell counting, where their FCN is responsible for predicting a spatial density map of target

cells, and the number of cells can be estimated by an integration over the learned density

map. Slightly similar to [38], a cascaded network [8] has been proposed for cell detection.

[8] uses a FCN for candidate region selection, and then a CNN for further discrimination

between target cells and background.

In [9], a mitosis detection method has been proposed by CNN-based prediction followed

by ad-hoc post processing. As the winner of ICPR 2012 mitosis detection competition, [9]

used deep max-pooling convolutional neural networks to detect mitosis in breast histology

images. The networks were trained to classify each pixel in the images, using a patch centered

on the pixel as context. Then post processing was applied to the network output. In [33],

expectation maximization has been utilized within deep learning framework in an end-to-end

fashion for mitosis detection. This work presents a new concept for learning from crowds

that handle data aggregation directly as part of the learning process of the convolutional

neural network (CNN) via additional crowd-sourcing layer. It is the first piece of work where

deep learning has been applied to generate a ground-truth labeling from non-expert crowd

annotation in a biomedical context.

2.3 Compressed Sensing

During the past decade, compressed sensing or compressive sensing (CS) [12] has emerged as a

new framework for signal acquisition and reconstruction, and has received growing attention,

mainly motivated by the rich theoretical and experimental results as shown in many reports

[13], [14], [12], and so on. As we know, the Nyquist-Shannon sampling theorem states that

a certain minimum sampling rate is required in order to reconstruct a band-limited signal.

However, CS enables a potentially large reduction in the sampling and computation costs for
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sensing/reconstructing signals that are sparse or have a sparse representation under some

linear transformation (e.g. Fourier transform).

Under the premise of CS, an unknown signal of interest is observed (sensed) through a

limited number of linear observations. Many works [13], [14], [12] have proven that it is

possible to obtain a stable reconstruction of the unknown signal from these observations,

under the general assumptions that the signal is sparse (or can be represented sparsely with

respect to a linear basis) and matrix discoherence. The signal recovery techniques typically

rely on a convex optimization with a penalty expressed by L1 norm, for example orthogonal

matching pursuit (OMP) [5] and dual augmented Lagrangian (DAL) method [35].

3 Proposed Method

3.1 System Overview

The proposed detection framework consists of three major components: (1) cell location

encoding phase using random projection, (2) a CNN based regression model to capture the

relationship between a cell microscopy image and the encoded signal y, and (3) decoding

phase for recovery and detection. The flow chart of the whole framework is shown in Fig. 2.

During training, the ground truth location of cells are indicated by a pixel-wise binary

annotation map B. We propose two cell location encoding schemes, which convert cell

location from the pixel space representation B to a compressed signal representation y.

Then, training pairs, each consisting of a cell microscopy image and the compressed signal

y, train a CNN to work as a multi-label regression model. We employ the Euclidean loss

function during training, because it is often more suitable for a regression task. Image

rotations may be performed on the training sets for the purpose of data augmentation as

well as making the system more robust to rotations.

During testing, the trained network is responsible for outputting an estimated signal ŷ

for each test image. After that, a decoding scheme is designed to estimate the ground truth

cell location by performing L1 minimization recovery on the estimated signal ŷ, with the

known sensing matrix.
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Figure 2: The system overview of the proposed CNNCS framework for cell detection and

localization.

3.2 Cell Location Encoding and Decoding Scheme

3.2.1 Encoding Schemes

In the CNNCS framework, we employ two types of random projection-based encodings as

described below.

Scheme-1: Encoding by Reshaping

For the cell detection problem, cells are often annotated by pixel-level labels. The most

common way is to attach a dot or cross at the center of every cell, instead of a bounding

box around the cell. So, let us suppose there is a pixel-wise binary annotation map B of

size w-by-h, which indicates the location of cells by labeling 1 at the pixels of cell centroids,

otherwise labeling 0 at background pixels. To vectorize the annotation map B, the most

intuitive scheme is to concatenate every row of B into a binary vector f of length wh. Thus,
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a positive element in B with {x, y} coordinates will be encoded to the [x + h(y − 1)]-th

position in f . f is also a k-sparse signal, so, there are at most k non-zero entries in f . Here,

we refer this intuitive encoding scheme as ”Scheme-1: Encoding by Reshaping”.

After the vector f is generated, we apply a random projection. CS theory guarantees

that f could be fully represented by linear observations y:

y = Φf, (1)

provided the sensing matrix Φ satisfies a restricted isometry property (RIP) condition [13],

[14]. In many cases, Φ is typically a M × N (M � N = hw) random Gaussian matrix.

Here, the number of observations M is much smaller than N , and obeys: M ≥ CMklog(N),

where CM is a small constant greater than one.

Scheme-2: Encoding by Signed Distances

For the encoding scheme-1, the space complexity of the interim result f is O(wh). For

example, to encode the location of cells in a 260-by-260 pixel image, scheme-1 will produce f

as a 67,600-length vector; so that in the subsequent CS process, a huge sensing matrix in size

of M -by-67600 is required in order to match the dimension of f , which will make the system

quite slow, even unacceptable for larger images. To further optimize the encoding scheme,

we propose a second scheme, where the coordinates of every cell centroid are projected onto

multiple observation axes. We refer the second encoding scheme as ”Scheme-2: Encoding by

Projection.”

To encode location of cells, we create a set of observation axesOA = {oal} , l = 1, 2, . . . , L,

where L indicates the total number of observation axes used. The observation axes are

uniformly-distributed around an image (See Fig. 3, left-most picture) For the l-th observation

axis oal, the location of cells is encoded into a R-length (R =
√
w2 + h2) sparse signal,

referred as fl (See Fig. 3, third picture). We calculate the perpendicular signed distances (fl)

from cells to oal. Thus, fl contains signed distances, which not only measure the distance,

but also describe on which side of oal cells are located. After that, the encoding of cell

locations under oal is yl, which is obtained by the following random projection:

yl = Φfl, (2)
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We repeat the above process for all the L observation axes and obtain each yl. After con-

catenating all the yl, l = 1, 2, . . . , L, the final encoding result y is available, which is the joint

representation of cells location. The whole encoding process is illustrated by Fig. 3.

Figure 3: Cell location encoding by signed distances (Scheme-2).

For encoding scheme-2, the size of the sensing matrix Φ is M -by-
√
w2 + h2. In com-

parison, encoding scheme-1 requires a much larger sensing matrix of size M -by-wh. The

first advantage of encoding scheme-2 is that it dramatically reduces the size of the sensing

matrix, which is quite helpful for the recovery process, especially when the size of images is

large. Secondly, the encoding result y carries redundant information about cell locations.

In the subsequent decoding phase, averaging over the redundant information makes the final

detection more reliable. More details can be found in experiments section. A final point

is that in case more than one cell locations are projected to the same bin in a particular

observation axis, such a conflict will not occur for the same set of cells at other observation

axes.

3.2.2 Decoding Scheme

Accurate recovery of f can be obtained from the encoded signal y by solving the following

L1 norm convex optimization problem:

f̂ = arg min
f
‖f‖1 subject to y = Φf (3)

After f̂ is recovered, every true cell is localized L times, i.e. with L candidate positions

predicted. The redundancy information allows us to estimate more accurate detection of a

true cell.
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The first two images of Fig. 4 from left present examples of the true location signal f

and decoded location signal f̂ , respectively. The noisy signed distances of f̂ are typically

very close to each observation axis. That is why we create observation axes outside of the

image space, so that these noisy distances can be easily distinguished from true candidate

distances. This separation is done by mean shift clustering, which also groups true detections

into localized groups of detections. Two such groups (clusters) are shown in Fig. 4, where the

signed distances formed circular patterns of points (in green) around ground truth detections

(in yellow). Averaging over these green points belonging to a cluster provides us a predicted

location (in red) as shown in Fig. 4.

Figure 4: Cell Location Decoding Scheme. From left to right: true location signal f , decoded

location signal f̂ and detection results. Yellow crosses indicate the ground-truth location of

cells, green crosses are the candidates points, red crosses represent the final detected points.

3.3 Signal Prediction by Convolutional Neural Network

We utilize a CNN to build a regression model between a cell microscopy image and its cell

location representation: compressed signal y. We employ two kinds of CNN architectures.

One of them is AlexNet [25], which consists of 5 convolution layers + 3 fully connected layers;

the other is the deep residual network (ResNet) [18] where we use its 152-layer model. In

both the architectures, the loss function is defined as the Euclidean loss. The dimension of

output layer of AlexNet and ResNet has been modified to the length of compressed signal

y. We train the AlexNet model from scratch, in comparison, we perform fine-tuning on the

weights in fully-connected layer of the ResNet.

To prepare the training data, we generate a large number of square patches from training
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Figure 5: An illustration of the process of signal prediction by convolutional neural network.

The bottom row presents the feature maps learned from Convolutional (Conv) layers of the

CNN with training process going on. The current CNN follows the AlexNet architecture.

These feature maps come from the Conv1, Conv1, Conv2, Conv3, Conv3, Conv4 and Conv5

respectively. The top-right picture shows the ground-truth compressed signal (red) and

compressed signal (blue) predicted from the Fullly-connected (Fc) layer of the CNN. From

the picture, we can observe that the predicted signal approximate the pattern of ground

truth signal well.
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images. Along with each training patch, there is a signal (i.e. the encoding result: y),

which indicates the location of target cells present in the patch. After that, patch rotation is

performed on the collected training patches for data augmentation and making the system

rotation invariant.

The trained CNN not only predicts the signal from its output layer, the feature maps

learned from its Conv layers also provide rich information for recognition. Fig. 5 visualizes

the learned feature maps, which represents the probabilistic score or activation maps of

target cell regions (indicated by green boxes in the left image) during training process. It

can be observed that higher scores are fired on the target regions of score masks, while most

of the non-target regions have been suppressed more and more with training process going

on.

To further optimize our CNN model, we apply Multi-Task Learning (MTL) [7]. During

training a CNN, two kinds of labels are provided. The first kind is the encoded vector:

y, which carries the pixel-level location information of cells. The other kind is a scalar:

cell count (c), which indicates the total number of cells in a training image patch. We

concatenate the two kinds of labels into the final training label by label = {y, λc}, where λ

is a hyper parameter. Then, Euclidean loss is applied on the fusion label. Thus, supervision

information for both cell detection and cell counting can be jointly used to optimize the

parameters of our CNN model.

3.4 Theoretical Justification

Equivalent Targets for Optimization

We first show that from the optimization standpoint, compressed vector is a good proxy

for the original, sparse output space. This result directly follows from the CS theory. As

mentioned before, f indicates the cell location represented in pixel space, and y is the cell

location represented in compressed signal space. They follow the relationship: y = Φf ,

where Φ is the sensing matrix. Let us assume that fp and fg are respectively the prediction

and ground-truth vectors in the pixel space. Similarly, we have yp and yg as their compressed

counterparts, respectively.

Claim: ‖yg − yp‖ and ‖fg − fp‖ are approximately equivalent targets for optimization.
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Proof: According to the CS theory, a sensing matrix Φ ∈ Rm×d should satisfy the

(k, δ)− restricted isometry property ((k, δ)−RIP ), which states that for all k−sparse f ∈

Rd, δ ∈ (0, 1), the following holds [13], [14], [12]:

(1− δ) ‖f‖ ≤ ‖Φf‖ ≤ (1 + δ) ‖f‖. (4)

Note that if the sensing matrix Φ satisfies (2k, δ)-RIP, then (4) also holds good. Now

replace f with (fg − fp) and note that (fg − fp) is 2k-sparse. Thus,

(1− δ) ‖fg − fp‖ ≤ ‖yg − yp‖ ≤ (1 + δ) ‖fg − fp‖ . (5)

From the right hand side inequality, we note that if ‖fg − fp‖ is small, then ‖yg − yp‖ would

be small too. In the same way, if ‖yg − yp‖ is large, then the inequality implies that ‖fg − fp‖

would be large too. Similarly, from the left hand side inequality, we note that if ‖fg − fp‖

is large then ‖yg − yp‖ will be large, and if ‖yg − yp‖ is small then ‖fg − fp‖ will small too.

These relationships prove the claim that from the optimization perspective ‖yg − yp‖ and

‖fg − fp‖ are approximately equivalent.

A Bound on Generalization Prediction Error

In this section we mention a powerful result from [19]. Let h be the predicted compressed

vector by the CNN, f be the ground truth sparse vector, f̂ be the reconstructed sparse vector

from prediction, and Φ be the sensing matrix. Then the generalization error bound provided

in [19] is as follows:

‖f̂ − f‖22 ≤ C1 · ‖h− Φf‖22 + C2 · sperr(f̂ , f), (6)

where C1 and C2 are two small constants and sperr measures how well the reconstruction

algorithm has worked [19]. This result demonstrates that expected error in the original space

is bound by the expected errors of the predictor and that of the reconstruction algorithm.

Thus, it makes sense to apply a very good machine learner such as deep CNN that can

minimize the first term in the right hand side of (6). On the other hand, DAL provides one

of the best L1 recovery algorithms to minimize the second term in the right side of (6).
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4 Experiments

4.1 Datasets and Evaluation Criteria

We utilize seven cell datasets, on which CNNCS and other comparison methods are eval-

uated. The 1st dataset [22] involves 100 H&E stained histology images of colorectal ade-

nocarcinomas. The 2nd dataset [6] consists of 200 highly realistic synthetic emulations of

fluorescence microscopic images of bacterial cells. The 3rd dataset [39] comprises of 55 high

resolution microscopic images of breast cancers double stained in red (cytokeratin epithelial

marker) and brown (nuclear proliferative marker). The 4th dataset is the ICPR 2012 mitosis

detection contest dataset [32] including 50 high-resolution (2084-by-2084) RGB microscope

slides of Mitosis. The 5th dataset [1] is the ICPR 2014 grand contest of mitosis detection,

which is a follow-up and an extension of the ICPR 2012 contest on detection of mitosis.

Compared with the contest in 2012, the ICPR 2014 contest is much more challenging, which

contains way more images for training and testing. The 6th dataset is the AMIDA-2013

mitosis detection dataset [37], which contains 676 breast cancer histology images belonging

to 23 patients. The 7th dataset is the AMIDA-2016 mitosis detection dataset [2], which is

an extension of the AMIDA 2013 contest on detection of mitosis. It contains 587 breast

cancer histology images belonging to 73 patients for training, and 34 breast cancer histology

images for testing with no ground truth available. For each dataset, the annotation that

represents the location of cell centroids is shown in Fig.6, details of datasets are summarized

in Table. 1.

Figure 6: Dataset examples and their annotation.

For evaluation, we adopt the criteria of the ICPR 2012 mitosis detection contest [32],

which is also adopted in several other cell detection contests. A detection would be counted

as true positive (TP ) if the distance between the predicted centroid and ground truth cell
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Table 1: Size is the image size; Ntr/Nte is the number of images selected for training and

testing; AC indicates the average number of cells per image.

Cell Dataset Size Ntr/Nte AC

Nuclei [22] 500×500 50/50 310.22

Bacterial [6] 256×256 100/100 171.47

Ki67 Cell [39] 1920×2560 45/10 2045.85

ICPR 2012 [32] 2084×2084 35/15 5.31

ICPR 2014 [1] 1539×1376 1136/496 4.41

AMIDA 2013 [37] 2000×2000 447/229 3.54

AMIDA 2016 [2] 2000×2000 587/34 2.13

centroid is less than ρ. Otherwise, a detection is considered as false positives (FP ). The

missed ground truth cells are counted as false negatives (FN). In our experiments, ρ is set

to be the radius of the smallest cell in the dataset. Thus, only centroids that are detected

to lie inside cells are considered correct. The results are reported in terms of Precision:

P = TP/(TP +FP ) and Recall: R = TP/(TP +FN) and F1-score: F1 = 2PR/(P +R) in

the following sections.

4.2 Experiments with Encoding Scheme-1

To evaluate, we carry out performance comparison experiment between CNNCS and three

state-of-the-art cell detection methods (“FCN-based” [38], “Le.detect” [4], “CasNN” [8]). In

this experiment, the scheme-1: encoding by reshaping is applied in CNNCS.

For the four methods to provide different values of Precision-Recall as shown in Fig. 7,

we tune hyper parameters of every method. With scheme-1, CNNCS has a threshold T

to apply on the recovered sparse signal f̂ before re-shaping it to a binary image B. T

is used to perform cell vs. non-cell binary classification and can be treated as a hyper

parameter during training. In “FCN-based” [38], there is also a threshold applied to the

local probability-maximum candidate points to make final decision about cell or non-cell.

Similarly, in the first step of “Le.detect” [4], researchers use a MSER-detector (a stability

threshold involved here) to produce a number of candidate regions, on which their learning
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procedure determines which of these candidates regions correspond to cells. In the first

experiment, we analyze the three methods using Precision-Recall curves by varying their

own thresholds.

Fig. 7 presents Precision-Recall curves on three cell datasets. All the four methods give

reliable detection performances in the range of recall=[0.1-0.4]. After about recall=0.6, the

precision of “FCN-based” [38] drops much faster. This can be attributed to the fact that

“FCN-based” [38] works by finding local maximum points on a cell density map. However,

the local maximum operation fails in several scenarios, for example when two cell density

peaks are close to each other, or large peak may covers neighboring small peaks. Conse-

quently, to obtain the same level of recall, “FCN-based” [38] provides many false detections.

Figure 7: Precision and recall curves of four methods on three datasets.

Furthermore, it also can be observed that CNNCS has an improvement over “Le.detect”
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[4] (red line clearly outperforms black line under varying recall values). This can be largely

explained by the fact that traditional methods (no matter if [4] or [38] is used) always try

to predict the coordinates of cells directly on a 2-D image. The coordinates are sensitive

to system prediction bias or error, considering the nature of cell detection that cells are

small and quite dense in most cases. It is not surprising that “Le.detect” [4] will miss

some cells and/or detect other cells in wrong locations. In comparison, CNNCS transfers

the cell detection task from pixel space to compressed signal space, where the location

information of cells is no longer represented by {x, y}-coordinates. Instead, CNNCS performs

cell detection by regression and recovery on a fixed length compressed signal. Compared to

{x, y}-coordinates representation, the compressed signal is more robust to system prediction

errors. For example, as shown in the right top corner of Fig. 5, even though there are

differences between the ground-truth compressed signal and predicted compressed signal,

the whole system can still give reliable detection performance as shown in Fig. 7.

To get a better idea of the CNNCS method, we visualize a set of cell images with their

detected cells and ground-truth cells in Fig. 8. It can be observed that CNNCS is able to

accurately detect most cells under a variety of conditions.

4.3 Experiments with Encoding Scheme-2

4.3.1 Experiment on ICPR 2012 mitosis detection dataset

To evaluate the performance of encoding scheme 2, we carry out the second group of perfor-

mance comparison experiments. In the first experiment, we apply the proposed method on

the ICPR 2012 mitosis detection contest dataset, which consists of 35 training images and

15 testing images. For the training process, we extracted image sub-samples (260-by-260)

with no overlap between each other from the 35 training images. After that every 90◦ image

rotation is performed on each sub-sample for data augmentation, resulting in a total of 8,960

training dataset. In addition, we perform random search to tune the three hyper parameters

in scheme-2: (1) the number of rows in sensing matrix: M , (2) the number of observation

lines: L and (3) the importance (λ) of cell count during MTL. After that, the best perfor-

mance is achieved when M = 112, L = 27, λ = 0.20. Furthermore, we trained five CNN
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Figure 8: Detection results. Ground-truth: red, Prediction: blue. Left part shows the

ground truth signal and the predicted sparse signal that carries the location information of

cells; right part shows the ground-truth and detected cells.

models to reduce the performance variance introduced by a single model and to improve

the robustness of the whole system. Recently, deep residual network (ResNet) introduces

residual connections into deep convolutional networks and has yielded state-of-the-art per-

formance in the 2015 ILSVRC challenge [18]. This raises the question of whether there is any

benefit in introducing and exploiting more recent CNN architectures into the cell detection

task. Thus, in the experiment, we have explored the performance of CNNCS with differ-

ent neural network architectures (AlexNet and ResNet). Finally, CNNCS gets the highest

F1-score among all the comparison methods, details are summarized in Table 2.

Compared to the state-of-the-art method: CasNN-average [8], CNNCS with ResNet and

MTL achieved a better performance with F1-score 0.837. It can be observed from Table 2

that the precision of our method outperforms the previous best precision by 0.06-0.07, and

recall also has recorded about 0.02 improvement. This phenomenon can be attributed to the
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Table 2: Results of ICPR 2012 grand challenge of mitosis detection.

Method Precision Recall F1-score

UTRECHT 0.511 0.680 0.584

NEC [28] 0.747 0.590 0.659

IPAL [20] 0.698 0.740 0.718

DNN [9] 0.886 0.700 0.782

RCasNN [8] 0.720 0.713 0.716

CasNN-single [8] 0.738 0.753 0.745

CasNN-average [8] 0.804 0.772 0.788

CNNCS-AlexNet 0.860 0.788 0.823

CNNCS-ResNet 0.867 0.801 0.833

CNNCS-ResNet-MTL 0.872 0.805 0.837

detection principle of our method, where every ground-truth cell is localized with multiple

candidate points guaranteed to be around the true location, then the average coordinates of

these candidates is computed as the final detection. As a result, localization closer to the true

cell becomes more reliable compared to other methods, thus leading to a higher precision.

In addition, an improvement of F1-score from 0.833 to 0.837 achieved by MTL demonstrates

that the knowledge jointly learned from cell detection and cell counting provides further

benefits at negligible additional computations.

4.3.2 Experiment on ICPR 2014 mitosis detection dataset

In the second experiment, we evaluated CNNCS on the ICPR 2014 contest of mitosis detec-

tion dataset (also called MITOS-ATYPIA-14), which is a follow-up and an extension of the

ICPR 2012 contest on detection of mitosis. Compared with the contest in 2012, the ICPR

2014 contest is much more challenging, which contains more images for training and testing.

It provides 1632 breast cancer histology images, 1136 images for training, 496 images for

testing. Each image is in the size of 1539×1376. We divide the training images into training

set (910 images) and validation set (226 images). We perform random search on the valida-

tion set to optimize the hyper parameters. The best performance on MITOS-ATYPIA-14

dataset is achieved when M = 103, L = 30, λ = 0.24. On the test dataset, we have achieved
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the highest F1-score among all the participated teams. The F1-score of all the participated

teams are shown in Table 3. As we see, the CNNCS method shows significant improvement

compared to the results of other teams in all the histology slice groups. On an average,

CNNCS has almost doubled the F1-score of teams at the second place.

Table 3: Results of ICPR 2014 contest of mitosis detection in breast cancer histological

images. F1-scores of participated teams are shown.

Slice group CUHK MINES YILDIZ STRAS CNNCS

A06 0.119 0.317 0.370 0.160 0.783

A08 0.333 0.171 0.172 0.024 0.463

A09 0.593 0.473 0.280 0.072 0.660

A19 0.368 0.137 0.107 0.011 0.615

Average 0.356 0.235 0.167 0.024 0.633

4.3.3 Experiment on AMIDA 2013 mitosis detection dataset

The third experiment was performed on the AMIDA-2013 mitosis detection dataset, which

contains 676 breast cancer histology images, belonging to 23 patients. Suspicious breast

tissue is annotated by at least two expert pathologists, to label the center of each cancer

cell. We train the proposed CNNCS method using 377 images, validate on 70 training images

and test it on the testing set of AMIDA-2013 challenge that has 229 images from the last

8 patients. We employ ResNet as the network architecture with data balancing and MTL

in the training set. Similar to previous experiments, we perform random search on the

validation set to optimize the hyper parameters. The best performance on AMIDA-2013

dataset is achieved when M = 118, L = 25, λ = 0.32. Finally among all the 17 participated

teams, we achieve the third highest F1-score=0.471, which is quite close to the second

place, and has a significant improvement over the fourth place method [33]. For details,

Table 4 summarizes the comparison between CNNCS and other methods.
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Table 4: Results of AMIDA-2013 MICCAI grand challenge of mitosis detection.

Method Precision Recall F1-score

IDSIA [9] 0.610 0.612 0.611

DTU 0.427 0.555 0.483

AggNet [33] 0.441 0.424 0.433

CUHK 0.690 0.310 0.427

SURREY 0.357 0.332 0.344

ISIK 0.306 0.351 0.327

PANASONIC 0.336 0.310 0.322

CCIPD/MINDLAB 0.353 0.291 0.319

WARWICK 0.171 0.552 0.261

POLYTECH/UCLAN 0.186 0.263 0.218

MINES 0.139 0.490 0.217

SHEFFIELD/SURREY 0.119 0.107 0.113

SEOUL 0.032 0.630 0.061

UNI-JENA 0.007 0.077 0.013

NIH 0.002 0.049 0.003

CNNCS 0.3588 0.5529 0.4352

4.3.4 Experiment on AMIDA 2016 mitosis detection dataset

In the fourth experiment, we participated in the AMIDA-2016 mitosis detection challenge

(also called TUPAC16), which is a follow-up and an extension of the AMIDA-2013 contest

on detection of mitosis. Its training dataset has 587 breast cancer histology images in size

of 2000×2000, belonging to 73 patients. Its test dataset contains 34 breast cancer histology

images in the same size without publicly available ground truth labels.

We train the proposed CNNCS method using randomly chosen 470 training images and

validate on the remaining 117 training images. Additionally, we apply the following ensemble

averaging technique to further increase precision and recall values. Originally, we have

partitioned every test image into about 100 non-overlapping patches. Instead of starting

the partitioning from the top-left corner, now we set the starting point of the first patch

from {offset, offset}. The offset values are set as 0, 20, 40,..., 160, and 180 (i.e. every

20 pixel) resulting in a total of 10 different settings. Under every offset setting, CNNCS
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Table 5: Results of AMIDA-2016 MICCAI grand challenge of mitosis detection.

Team F1-score

Lunit Inc. 0.652

IBM Research Zurich and Brazil 0.648

Contextvision (SLDESUTO-BOX) 0.616

The Chinese University of Hong Kong 0.601

Microsoft Research Asia 0.596

Radboud UMC 0.541

University of Heidelberg 0.481

University of South Florida 0.440

Pakistan Institute of Engineering and Applied Sciences 0.424

University of Warwick 0.396

Shiraz University of Technology 0.330

Inha University 0.251

CNNCS (on validation set) 0.634

method is run on all the generated patches and provides detection results. Then, we merge

detection results from all the offset settings. The merging decision rule is that if there are

6 or more detections within a radius of 9 pixels, then we accept average of these locations

as our final detected cell center. Other implementation settings are similar to the settings

in the experiment of AMIDA-2013. Finally, we achieved F1-score=0.634 on the validation

set (becuase of the lack of publicly available test set), which is the third highest in all the

15 participated teams. Table 5 provides more details of the contest results. Furthermore,

Fig.9 provides twelve examples of our detection results in the AMIDA-2016 grand challenge

of mitosis detection.

5 Conclusion

This is the first attempt demonstrating that deep convolutional neural network can work

in conjunction with compressed sensing-based output encoding schemes toward solving a

significant medical image processing task: cell detection and localization from microscopy

images. In this work, we made substantial experiments on several mainstream datasets and
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Figure 9: Results on AMIDA-2016 dataset. Yellow cross indicates the ground-truth position

of target cells. Green cross indicates cell position predicted by an observation axis. Red

cross indicates the final detected cell position, which is the average of all green crosses.

challenging cell detection contests, where the proposed CNN + CS framework (referred to

as CNNCS) achieved very competitive (the highest or at least top-3 in terms of F1-score)

results compared to the state-of-the-art methods in cell detection task. In addition, the

CNNCS framework has the potential to be trained in End-to-End manner, which is our near

future plan and could further boost performance.
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