
A Proof of CSP Dichotomy Conjecture

Dmitriy Zhuk
Department of Mechanics and Mathematics

Lomonosov Moscow State University
Moscow, Russia

Contents

1 Introduction 2

2 Definitions 4
2.1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Polynomially complete algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 CSP instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Algorithm 6
3.1 Main part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Remaining parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Correctness of the Algorithm 10
4.1 Rosenberg completeness theorem . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Correctness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 An example in Z4 12

6 The Remaining Definitions 13
6.1 Additional notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Variety of algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Formula, pp-formula, subconstraint . . . . . . . . . . . . . . . . . . . . . . . . 13
6.4 Critical, key relations, and parallelogram property . . . . . . . . . . . . . . . . 14
6.5 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.6 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.7 Dummy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Absorption, Center, PC Congruence, and Linear Congruence 16
7.1 Binary Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 PC Subuniverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Linear Subuniverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1

ar
X

iv
:1

70
4.

01
91

4v
8 

 [
cs

.C
C

] 
 2

0 
Fe

b 
20

18



8 Proof of the Auxiliary Statements 22
8.1 Reductions preserve cycle-consistency and irreducibility . . . . . . . . . . . . . 22
8.2 Properties of Con(ρ, x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.3 Adding linear variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Previous reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.5 Existence of a bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.6 Growing population divides into colonies. . . . . . . . . . . . . . . . . . . . . . 32

9 Proof of the Main Theorems 33
9.1 Existence of a next reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.2 Existence of a linked connected component . . . . . . . . . . . . . . . . . . . . 35
9.3 Theorems from Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Abstract

Many natural combinatorial problems can be expressed as constraint satisfaction
problems. This class of problems is known to be NP-complete in general, but certain
restrictions on the form of the constraints can ensure tractability. The standard way
to parameterize interesting subclasses of the constraint satisfaction problem is via finite
constraint languages. The main problem is to classify those subclasses that are solvable in
polynomial time and those that are NP-complete. It was conjectured that if a constraint
language has a weak near unanimity polymorphism then the corresponding constraint
satisfaction problem is tractable, otherwise it is NP-complete.

In the paper we present an algorithm that solves Constraint Satisfaction Problem in
polynomial time for constraint languages having a weak near unanimity polymorphism,
which proves the remaining part of the conjecture.

1 Introduction

Formally, the Constraint Satisfaction Problem (CSP) is defined as a triple 〈X,D,C〉, where

• X = {x1, . . . , xn} is a set of variables,

• D = {D1, . . . , Dn} is a set of the respective domains,

• C = {C1, . . . , Cm} is a set of constraints,

where each variable xi can take on values in the nonempty domain Di, every constraint Cj ∈ C
is a pair (tj, ρj) where tj is a tuple of variables of length mj, called the constraint scope, and
ρj is an mj-ary relation on the corresponding domains, called the constraint relation.

The question is whether there exists a solution to 〈X,D,C〉, that is a mapping that
assigns a value from Di to every variable xi such that for each constraints Cj the image of the
constraint scope is a member of the constraint relation.

In this paper we consider only CSP over finite domains. The general CSP is known to be
NP-complete [16, 18]; however, certain restrictions on the allowed form of constraints involved
may ensure tractability (solvability in polynomial time) [10, 13, 14, 15, 5, 9]. Below we provide
a formalization to this idea.

To simplify the presentation we assume that all the domains D1, . . . , Dn are subsets of a
finite set A. By RA we denote the set of all finitary relations on A, that is, subsets of Am for
some m. Then all the constraint relations can be viewed as relations from RA.

For a set of relations Γ ⊆ RA by CSP(Γ) we denote the Constraint Satisfaction Problem
where all the constraint relations are from Γ. The set Γ is called a constraint language.
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Another way to formalize the Constraint Satisfaction Problem is via conjunctive formulas.
Every h-ary relation on A can be viewed as a predicate, that is, a mapping Ah → {0, 1}.
Suppose Γ ⊆ RA, then CSP(Γ) is the following decision problem: given a formula

ρ1(x1,1, . . . , x1,n1) ∧ · · · ∧ ρs(xs,1, . . . , x1,ns)

where ρi ∈ Γ for every i; decide whether this formula is satisfiable.
It is well known that many combinatorial problems can be expressed as CSP(Γ) for some

constraint language Γ. Moreover, for some sets Γ the corresponding decision problem can be
solved in polynomial time; while for others it is NP-complete. It was conjectured that CSP(Γ)
is either in P, or NP-complete [11].

Conjecture 1. Suppose Γ ⊆ RA is a finite set of relations. Then CSP(Γ) is either solvable
in polynomial time, or NP -complete.

We say that an operation f : An → A preserves the relation ρ ∈ RA of arity m if for any tu-
ples (a1,1, . . . , a1,m), . . . , (an,1, . . . , an,m) ∈ ρ the tuple (f(a1,1, . . . , an,1), . . . , f(a1,m, . . . , an,m))
is in ρ. We say that an operation preserves a set of relations Γ if it preserves every relation
in Γ. A mapping f : A→ A is called an endomorphism of Γ if it preserves Γ.

Theorem 1.1. [5] Suppose Γ ⊆ RA. If f is an endomorphism of Γ, then CSP (Γ) is poly-
nomially reducible to CSP (f(Γ)) and vice versa, where f(Γ) is a constraint language with
domain f(Γ) defined by f(Γ) = {f(ρ) : ρ ∈ Γ}.

A constraint language is a core if every endomorphism of Γ is a bijection. It is not hard
to show that if f is an endomorphism of Γ with minimal range, then f(Γ) is a core. Another
important fact is that we can add all singleton unary relations to a core constraint language
without increasing the complexity of its CSP. By σ=a we denote the unary relation {a}.

Theorem 1.2. [5] Let Γ ⊆ RA be a core constraint language, and Γ′ = Γ ∪ {σ=a | a ∈ A},
then CSP (Γ′) is polynomially reducible to CSP (Γ).

Therefore, to prove Conjecture 1 it is sufficient to consider only the case when Γ contains
all unary singleton relations. In other words, all the predicates x = a, where a ∈ A, are in the
constraint language Γ.

In [20] Schaefer classified all tractable constraint languages over two-element domain. In
[7] Bulatov generalized the result for three-element domain. His dichotomy theorem was
formulated in terms of a G-set. Later, the dichotomy conjecture was formulated in several
different forms (see [5]).

The result of Mckenzie and Maróti [17] allows us to formulate the dichotomy conjecture in
the following nice way. An operation f is called a weak near-unanimity operation (WNU) if
f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, x, . . . , x, y). An operation f is called idempotent
if f(x, x, . . . , x) = x.

Conjecture 2. Suppose Γ ⊆ RA is a finite set of relations. Then CSP(Γ) can be solved in
polynomial time if there exists a WNU preserving Γ; CSP (Γ) is NP-complete otherwise.

It is not hard to see that the existence of a WNU preserving Γ is equivalent to the existence
of a WNU preserving a core of Γ, and also equivalent to the existence of an idempotent
WNU preserving the core. Hence, Theorems 1.1 and 1.2 imply that it is sufficient to prove
Conjecture 2 for a core and an idempotent WNU.

One direction of this conjecture follows from [17].
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Theorem 1.3. [17] Suppose Γ ⊆ RA, {σ=a | a ∈ A} ⊆ Γ. If there exists no WNU preserving
Γ, then CSP(Γ) is NP-complete.

The dichotomy conjecture was proved for many special cases: for CSPs over undirected
graphs [12], for CSPs over digraphs with no sources or sinks [2], for constraint languages
containing all unary relations [6], and many others. Recently, a proof of the dichotomy
conjecture was announced by Andrei Bulatov [8]. More information about the algebraic
approach to CSP can be found in [3].

In this paper we present an algorithm that solves CSP(Γ) in polynomial time if Γ is
preserved by an idempotent WNU, and therefore prove the dichotomy conjecture.

The paper is organized as follows. In Section 2 we give main definitions, in Section 3 we
explain the algorithm. In Section 4 we prove a theorem that explains the main idea of the
algorithm and formulate theorems that prove correctness of the algorithm. In Section 5 we
give an example that explains how the algorithm works for a system of linear equations in Z4.

In the next section we give the remaining definitions. In Section 7 we present properties
of absorbing, central, PC, and linear reductions. The important fact we prove in this section
is that the restriction of some variables to absorbing subuniverses, centers, PC subuniverses,
or linear subuniverses implies the corresponding restriction of other variables.

In Section 8 we prove the auxiliary statements: we show that minimal reductions preserve
cycle-consistency and irreducibility, prove properties of the operator Con(ρ, x), explain how
a linear variable can be added, show that previous reductions cannot harm, and prove the
existence of a bridge.

In the last section we prove the main theorems of this paper formulated in Section 4.
First, we explain the existence of a next reduction. Then we prove the existence of a linked
connected component, and derive the main theorems from this fact.

I am very grateful to Zarathustra Brady whose comments and remarks allowed to fill
many gaps in the original proof and to significantly improve the text. Also, I want to thank
my colleagues and friends for very fruitful discussions, especially Andrei Bulatov, Marcin
Kozik, Libor Barto, Ross Willard, Jakub Opršal, Jakub Bulin, Valeriy Kudryavtsev, Alexey
Galatenko, Stanislav Moiseev, and Grigoriy Bokov.

2 Definitions

A set of operations is called a clone if it is closed under composition and contains all projec-
tions. For a set of operations M by Clo(M) we denote the clone generated by M .

An idempotent WNU w is called special if x ◦ (x ◦ y) = x ◦ y, where x ◦ y = w(x, . . . , x, y).
It is not hard to show that for any idempotent WNU w on a finite set there exists a special
WNU w′ ∈ Clo(w) (see Lemma 4.7 in [17]).

A relation ρ ⊆ A1 × · · · × An is called subdirect if for every i the projection of ρ onto the
i-th coordinate is Ai. For a relation ρ by pri1,...,is(ρ) we denote the projection of ρ onto the
coordinates i1, . . . , is.

2.1 Algebras

An algebra is a pair A := (A;F ), where A is a finite set, called universe, and F is a family of
operations on A, called basic operations of A. In the paper we always assume that we have
a special WNU preserving all constraint relations. Therefore, every domain D can be viewed
as an algebra (D;w). By Clo(A) we denote the clone generated by all basic operations of A.

An equivalence relation σ on the universe of an algebra A is called a congruence if it is
preserved by every operation of the algebra. A congruence (an equivalence relation) is called
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proper, if it is not equal to the full relation A × A. We use standard universal algebraic
notions of term operation, subalgebra, factor algebra, product of algebras, see [4]. We say
that a subalgebra R = (R;FR) is a subdirect subalgebra of A×B if R is a subdirect relation
in A×B.

2.2 Polynomially complete algebras

An algebra (A;FA) is called polynomially complete (PC) if the clone generated by FA and all
constants on A is the clone of all operations on A.

2.3 Linear algebra

A finite algebra (A;wA) is called linear if it is isomorphic to (Zp1×· · ·×Zps ;x1 + . . .+xn) for
prime numbers p1, . . . , ps. It is not hard to show that for every algebra (B;wB) there exists a
minimal congruence σ, called the minimal linear congruence, such that (B;wB)/σ is linear.

2.4 Absorption

Let B = (B;FB) be a subalgebra of A = (A;FA). We say that B absorbs A if there exists
t ∈ Clo(A) such that t(B,B, . . . , B,A,B, . . . , B) ⊆ B for any position of A. In this case we
also say that B is an absorbing subuniverse of A. If the operation t can be chosen binary
then we say that B is a binary absorbing subuniverse of A.

2.5 Center

Suppose A = (A;wA) is a finite algebra with a special WNU operation. C ⊆ A is called
a center if there exists an algebra B = (B;wB) with a special WNU operation of the same
arity and a subdirect subalgebra (R;wR) of A × B such that there is no binary absorbing
subuniverse in B and C = {a ∈ A | ∀b ∈ B : (a, b) ∈ R}.

2.6 CSP instance

An instance of the constraint satisfaction problem is called a CSP instance. Sometimes we
use the same letter for a CSP instance and for the set of all constraints of this instance. For
a variable z by Dz we denote the domain of the variable z.

We say that z1 − C1 − z2 − · · · − Cl−1 − zl is a path in Θ if zi, zi+1 are in the scope of Ci
for every i. We say that a path z1 − C1 − z2 − . . . Cl−1 − zl connects b and c if there exists
ai ∈ Dzi for every i such that a1 = b, al = c, and the projection of Ci onto zi, zi+1 contains
the tuple (ai, ai+1).

A CSP instance is called cycle-consistent if for every variable z and a ∈ Dz, any path
starting and ending with z in Θ connects a and a. A CSP instance Θ is called linked if for
every variable z appearing in Θ and every a, b ∈ Dz there exists a path starting and ending
with z in Θ that connects a and b.

Suppose X′ ⊆ X. Then we can define a projection of Θ onto X′, that is a CSP instance
where variables are elements of X′ and constraints are projections of the constraints of Θ
onto X′. We say that an instance Θ is fragmented if the set of variables X can be divided
into 2 nonempty disjoint sets X1 and X2 such that the constraint scope of any constraint of
Θ either has variables only from X1, or only from X2.

5



A CSP instance Θ is called irreducible if any instance Θ′ such that every constraint of Θ′

is a projection of a constraint from Θ on some set of variables is fragmented, linked, or its
solution set is subdirect.

We say that a constraint ((y1, . . . , yt); ρ1) is weaker than a constraint ((z1, . . . , zs); ρ2) if
{y1, . . . , yt} ⊆ {z1, . . . , zs}, ρ2(z1, . . . , zs)→ ρ1(y1, . . . , yt), and ρ1(y1, . . . , yt) 6→ ρ2(z1, . . . , zs).

Let D′i ⊆ Di for every i. A constraint C of Θ is called crucial in (D′1, . . . , D
′
n) if Θ has

no solutions in (D′1, . . . , D
′
n) but the replacement of C ∈ Θ by all weaker constraints gives an

instance with a solution in (D′1, . . . , D
′
n). A CSP instance Θ is called crucial in (D′1, . . . , D

′
n)

if every constraint of Θ is crucial in (D′1, . . . , D
′
n).

Remark 1. Suppose Θ has no solutions in (D′1, . . . , D
′
n). Then we can replace constraints of

Θ by all weaker constraints until we get a CSP instance that is crucial in (D′1, . . . , D
′
n).

3 Algorithm

3.1 Main part

Suppose we have a constraint language Γ0 that is preserved by an idempotent WNU operation.
As it was mentioned before, Γ0 is also preserved by a special WNU operation w. Let k0 be the
maximal arity of the relations in Γ0. By Γ we denote the set of all relations of arity at most
k0 that are preserved by w. Obviously, Γ0 ⊆ Γ, therefore CSP(Γ0) can be reduced to CSP(Γ)

In this section we provide an algorithm that solves CSP(Γ) in polynomial time. Suppose
we have a CSP instance Θ = 〈X,D,C〉, where X = {x1, . . . , xn} is a set of variables, D =
{D1, . . . , Dn} is a set of the respective domains, C = {C1, . . . , Cq} is a set of constraints. Let
the arity of the WNU w be equal to m.

The algorithm is recursive, the list of all possible recursive calls is given in the end of this
subsection. One of the main recursive calls is the reduction of a subuniverse Di to D′i such
that either Θ has a solution with xi ∈ D′i, or it has no solutions at all.

Step 1. Check whether Θ is cycle-consistent. If not then we reduce a domain Di for some i
or state that there are no solutions.

Step 2. Check whether Θ is irreducible. If not then we reduce a domain Di for some i or
state that there are no solutions.

Step 3. Replace every constraint of Θ by all weaker constraints. Recursively calling the
algorithm, check that the obtained instance has a solution with xi = b for every i ∈ {1, 2, . . . , n}
and b ∈ Di. If not, reduce Di to the projection onto xi of the solution set of the obtained
instance.

By Theorem 4.3 we cannot loose the only solution while doing the following two steps.

Step 4. If Di has a binary absorbing subuniverse Bi ( Di for some i, then we reduce Di to
Bi.

Step 5. If Di has a center Ci ( Di for some i, then we reduce Di to Ci.

By Theorem 4.4 we can do the following step.

Step 6. If there exists a congruence σ on Di such that the algebra (Di;w)/σ is polynomially
complete, then we reduce Di to any equivalence class of σ.
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By Theorem 4.1, it remains to consider the case when for every domain Di there exists a
congruence σi on Di such that (Di;w)/σi is linear, i.e. it is isomorphic to (Zp1×· · ·×Zpl ;x1 +
· · ·+ xm) for prime numbers p1, . . . , pl. Moreover, σi is proper if |Di| > 1.

We denote Di/σi by Li. We define a new CSP instance ΘL with domains L1, . . . , Ln.
To every constraint ((xi1 , . . . , xis); ρ) ∈ Θ we assign a constraint ((x′i1 , . . . , x

′
is); ρ

′), where
ρ′ ⊆ Li1 × · · · × Lis and (E1, . . . , Es) ∈ ρ′ ⇔ (E1 × · · · × Es) ∩ ρ 6= ∅. The constraints of ΘL

are all constraints that are assigned to the constraints of Θ.
Since every relation on Zp1×· · ·×Zpl preserved by x1+. . .+xm is known to be a conjunction

of linear equations, the instance ΘL can be viewed as a system of linear equations in Zp for
different p. Note that all essential variables of every equation have the same domain.

Our general idea is to add some linear equations to ΘL so that for any solution of ΘL there
exists the corresponding solution of Θ. We start with the empty set of equations Eq, which
is a set of constraints on L1, . . . , Ln.

Step 7. Put Eq := ∅.

Step 8. Solve the system of linear equations ΘL ∪ Eq and choose independent variables
y1, . . . , yk. If it has no solutions then Θ has no solutions. If it has just one solution, then,
recursively calling the algorithm, solve the reduction of Θ to this solution. Either we get a
solution of Θ, or Θ has no solutions.

Then there exist Z = Zq1 × · · · × Zqk and a linear mapping φ : Z → L1 × · · · × Ln such
that any solution of ΘL ∪ Eq can be obtained as φ(a1, . . . , ak) for some (a1, . . . , ak) ∈ Z.

Note that for any tuple (a1, . . . , ak) ∈ Z we can check recursively whether Θ has a solution
in φ(a1, . . . , ak). To do this, we just need to solve an easier CSP instance (on smaller domains).
Similarly, we can check whether Θ has a solution in φ(a1, . . . , ak) for every (a1, . . . , ak) ∈ Z.
To do this, we just need to check the existence of a solution in φ(0, . . . , 0, 1, 0, . . . , 0) and
φ(0, . . . , 0) for any position of 1.

Step 9. Check whether Θ has a solution in φ(0, . . . , 0). If it has then stop the algorithm.

Step 10. Put Θ′ := Θ. Iteratively remove from Θ′ all constraints that are weaker than some
other constraints of Θ′.

Step 11. For every constraint C ∈ Θ′

1. Let Ω be obtained from Θ′ by replacing the constraint C ∈ Θ′ by all weaker constraints
without dummy variables. Remove from Ω all constraints that are weaker than some
other constraints of Ω.

2. If Ω has no solutions in φ(a1, . . . , ak) for some (a1, . . . , ak) ∈ Z, then put Θ′ := Ω.
Repeat Step 11.

At this moment, the CSP instance Θ′ has the following property. Θ′ has no solutions
in φ(b1, . . . , bk) for some (b1, . . . , bk) ∈ Z, but if we replace any constraint C ∈ Θ′ by all
weaker constraints, then we get an instance that has a solution in φ(a1, . . . , ak) for every
(a1, . . . , ak) ∈ Z. Therefore, Θ′ is crucial in φ(b1, . . . , bk).

In the remaining steps we will find a new linear equation that can be added to ΘL. Suppose
V is an affine subspace of Zhp of dimension h−1, thus V is the solution set of a linear equation
c1x1+ · · ·+chxh = c0. Then the coefficients c0, c1, . . . , ch can be learned (up to a multiplicative
constant) by (p · h + 1) queries of the form “(a1, . . . , ah) ∈ V ?” as follows. First, we need at
most (h+1) queries to find a tuple (d1, . . . , dh) /∈ V . Then, to find this equation it is sufficient
to check for every a and every i whether the tuple (d1, . . . , di−1, a, di+1, . . . , dh) satisfies this
equation.
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Step 12. Suppose Θ′ is not linked. For each i from 1 to k

1. Check that for every (a1, . . . , ai) ∈ Zq1 × · · · × Zqi there exist (ai+1, . . . , ak) ∈ Zqi+1
×

· · · × Zqk and a solution of Θ′ in φ(a1, . . . , ak).

2. If yes, go to the next i.

3. If no, then find an equation c1y1 + · · · + ciyi = c0 such that for every (a1, . . . , ai) ∈
Zq1×· · ·×Zqi satisfying c1a1 + · · ·+ciai = c0 there exist (ai+1, . . . , ak) ∈ Zqi+1

×· · ·×Zqk
and a solution of Θ′ in φ(a1, . . . , ak).

4. Add the equation c1y1 + · · ·+ ciyi = c0 to Eq.

5. Go to Step 8.

If Θ′ is linked, then by Theorem 4.5 there exists a constraint ((xi1 , . . . , xis), ρ) in Θ′ and a
subuniverse σ of Di1×· · ·×Dis×Zp such that the projection of σ onto the first s coordinates
is bigger than ρ but the projection of σ ∩ (Di1 × · · · ×Dis × {0}) onto the first s coordinates
is equal to ρ. Then we add a new variable z with domain Zp and replace ((xi1 , . . . , xis), ρ)
by ((xi1 , . . . , xis , z), σ). We denote the obtained instance by Υ. Let L be the set of all tuples
(a1, . . . , ak, b) ∈ Zq1 × · · · × Zqk × Zp such that Υ has a solution with z = b in φ(a1, . . . , ak).
We know that the projection of L onto the first n coordinates is a full relation. Therefore
L is defined by one linear equation. If this equation is z = b for some b 6= 0, then both Θ′

and Θ have no solutions. Otherwise, we put z = 0 in this equation and get an equation that
describes all (a1, . . . , ak) such that Θ′ has a solution in φ(a1, . . . , ak). It remains to find this
equation.

Step 13. Suppose Θ′ is linked.

1. Find an equation c1y1+ · · ·+ckyk = c0 such that for every (a1, . . . , ak) ∈ (Zq1×· · ·×Zqk)
satisfying c1a1 + · · ·+ ckak = c0 there exists a solution of Θ′ in φ(a1, . . . , ak).

2. If the equation was not found then Θ has no solutions.

3. Add the equation c1a1 + · · ·+ ckak = c0 to Eq.

4. Go to Step 8.

Note that every time we reduce our domains, we get constraint relations that are still
from Γ.

We have four types of recursive calls of the algorithm:

1. we reduce one domain Di, for example to a binary absorbing subuniverse or to a center
(Steps 1, 4, 5, 6).

2. we solve an instance that is not linked. In this case we divide the instance into the
linked parts and solve each of them independently (Steps 2, 12).

3. we replace every constraint by all weaker constraints and solve an easier CSP instance
(Step 3).

4. we reduce every domain Di such that |Di| > 1 (Steps 8, 9, 11, 13).

Lemma 4.2 states the depth of the recursive calls of type 3 is at most |Γ|. It is easy to see
that the depth of the recursive calls of type 2 and 4 is at most |A|.
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3.2 Remaining parts

In this section we explain Steps 1, 2, and 12 of the algorithm, which were not clarified in the
previous section.

Provide cycle-consistency. To provide cycle-consistency it is sufficient to use con-
straint propagation providing (2,3)-consistency. Formally, it can be done in the following
way. First, for every pair of variables (xi, xj) we consider the intersections of projections of
all constraints onto these variables. The corresponding relation we denote by ρi,j. For every
i, j, k ∈ {1, 2, . . . , n} we replace ρi,j by ρ′i,j where ρ′i,j(x, y) = ∃z ρi,j(x, y)∧ρi,k(x, z)∧ρk,j(z, y).
It is not hard to see that this replacement does not change the solution set.

We repeat this procedure while we can change some ρi,j. If at some moment we get a
relation ρi,j that is not subdirect in Di ×Dj, then we can either reduce Di or Dj, or, if ρi,j is
empty, state that there are no solutions. If we cannot change any relation ρi,j and every ρi,j
is subdirect in Di ×Dj, then the original CSP instance is cycle-consistent.

Solve the instance that is not linked. Suppose the instance Θ is not linked and not
fragmented, then it can be solved in the following way. We say that an element di ∈ Di and
an element dj ∈ Dj are linked if there exists a path that connects di and dj. Let P be the
set of pairs (i; a) such that i ∈ {1, 2, . . . , n}, a ∈ Di. Then P can be divided into the linked
components.

It is easy to see that it is sufficient to solve the problem for every linked component and
join the results. Precisely, for a linked component by D′i we denote the set of all elements d
such that (i, d) is in the component. It is easy to see that ∅ ( D′i ( Di for every i. Therefore,
the reduction to (D′1, . . . , D

′
n) is a CSP instance on smaller domains.

Check irreducibility. For every k ∈ {1, 2, . . . , n} and every maximal congruence σk on
Dk we do the following.

1. Put I = {k}.

2. Choose a constraint C having the variable xi in the scope for some i ∈ I, choose another
variable xj from the scope such that j /∈ I.

3. Denote the projection of C onto (xi, xj) by δ.

4. Put σj(x, y) = ∃x′∃y′δ(x′, x) ∧ δ(y′, y) ∧ σi(x′, y′). If σj is a proper equivalence relation,
then add j to I.

5. go to the next C, xi, and xj in 2.

As a result we get a set I and a congruence σi on Di for every i ∈ I. Put X′ = {xi | i ∈ I}. It
follows from the construction that for every equivalence class Ek of σk and every i ∈ I there
exists a unique equivalence class Ei of σi such that there can be a solution with xk ∈ Ek and
xi ∈ Ei. Thus, for every equivalence class of σk we have a reduction to the instance on smaller
domains. Then for every i and a ∈ Ei we consider the corresponding reduction and check
whether there exists a solution with xi = a.

Thus, we can check whether the solution set of the projection of the instance onto X′

is subdirect or empty. If it is empty then we state that there are no solutions. If it is not
subdirect, then we can reduce the corresponding domain. If it is subdirect, then we go to the
next k ∈ {1, 2, . . . , n} and next maximal congruence σk on Dk, and repeat the procedure.
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4 Correctness of the Algorithm

4.1 Rosenberg completeness theorem

The main idea of the algorithm is based on a beautiful result obtained by Ivo Rosenberg in
1970, who found all maximal clones on a finite set. Applying this result to the clone generated
by a WNU together with all constant operations, we can show that every algebra with a WNU
operation has a binary absorption, a center, or it is polynomially complete or linear modular
some congruence.

Theorem 4.1. Suppose A = (A;w) is an algebra, w is a special WNU of arity m. Then one
of the following conditions hold

1. there exists a binary absorbing set B ( A,

2. there exists a center C ( A,

3. there exists a proper congruence σ on A such that (A;w)/σ is polynomially complete,

4. there exists a proper congruence σ on A such that (A;w)/σ is isomorphic to (Zp;x1 +
· · ·+ xm).

Proof. Let us prove this statement by induction on the size of A. If we have a binary absorbing
subuniverse in A then there is nothing to prove. Let M be the clone generated by w and all
constant operations on A. If M is the clone of all operations, then (A;w) is polynomially
complete.

Otherwise, by Rosenberg’s Theorem [19], M belongs to one of the following maximal
clones.

1. Maximal clone of monotone operations, that is, a clone of operations preserving a partial
order relation with the greatest and the least element;

2. Maximal clone of autodual operations, that is, a clone of operations preserving the graph
of a permutation of a prime order without a fixed element;

3. Maximal clone defined by an equivalence relation;

4. Maximal clone of quasi-linear operations;

5. Maximal clone defined by a central relation;

6. Maximal clone defined by an h-universal relation.

Let us consider all the cases.

1. The least element of the partial order can be viewed as a center. Since there is no binary
absorbing subuniverse, we have a center in A.

2. Constants are not autodual operations. This case cannot happen.

3. Let δ be a maximal congruence on A. We consider a factor algebra (A;w)/δ and apply
the inductive assumption.

(a) If A/δ has a binary absorbing subuniverse B′ ⊆ A/δ, then we can check that⋃
E∈B′ E is a binary absorbing subuniverse of A.

(b) If A/δ has a center C ′ ⊆ A/σ, then we can check that
⋃
E∈C′ E is a center of A.
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(c) Suppose (A/δ)/σ is polynomially complete. Since δ is a maximal congruence, σ is
the equality relation and A/δ is polynomially complete.

(d) Suppose (A/δ)/σ is isomorphic to (Zp;x1 + · · · + xm). Since δ is a maximal con-
gruence, σ is the equality relation and A/δ is isomorphic to (Zp;x1 + · · ·+ xm).

4. By Lemma 6.4 from [21], we know that w(x1, . . . , xm) = x1 + · · · + xm, where + is
the operation in an abelian group. We assume that A has no nontrivial congruences,
otherwise we refer to case 3. Then the algebra A is simple and isomorphic to (Zp;x1 +
· · ·+ xm) for a prime number p.

5. We consider the central relation ρ. Let k be the arity of ρ. It is not hard to see that
the existence of a binary absorbing subuniverse on A× · · · ×A︸ ︷︷ ︸

k−1

implies the existence of

a binary absorbing subuniverse on A (see Lemma 7.3). Therefore, the center of ρ can
be viewed as a center.

6. By Corollary 5.10 from [21] this case cannot happen.

4.2 Correctness of the algorithm

Lemma 4.2. The depth of the recursive calls of type 3 in the algorithm is less than |Γ|.

Proof. First, we introduce a partial order on the set of relations in Γ in the following way. We
say that ρ1 6 ρ2 if one of the following conditions hold

1. the arity of ρ1 is less than the arity of ρ2.

2. the arity of ρ1 equals the arity of ρ2, pri(ρ1) ⊆ pri(ρ2) for every i, prj(ρ1) 6= prj(ρ2) for
some j.

3. the arity of ρ1 equals the arity of ρ2, pri(ρ1) = pri(ρ2) for every i, and ρ1 ⊇ ρ2.

It is easy to see that any reduction makes every relation smaller or does not change it. Since
our constraint language Γ is finite, there can be at most |Γ| recursive calls of type 3.

The following three theorems will be proved in Section 9.

Theorem 4.3. Suppose Θ is a cycle-consistent irreducible CSP instance, B is a binary ab-
sorbing set or a center of Di. Then Θ has a solution if and only if Θ has a solution with
xi ∈ B.

Theorem 4.4. Suppose Θ is a cycle-consistent irreducible CSP instance, there does not exist
a binary absorbing subuniverse or a center on Dj for every j, (Di;w)/σ is a polynomially
complete algebra, E is an equivalence class of σ. Then Θ has a solution if and only if Θ has
a solution with xi ∈ E.

Theorem 4.5. Suppose the following conditions hold:

1. Θ is a linked cycle-consistent irreducible CSP instance with domain set (D1, . . . , Dn);

2. there does not exist a binary absorbing subuniverse or a center on Dj for every j;

11



3. if we replace every constraint of Θ by all weaker constraints then the obtained instance
has a solution with xi = b for every i and b ∈ Di.

4. ΘL is Θ factorized by the minimal linear congruences;

5. (D′1, . . . , D
′
n) is a solution of ΘL, and Θ is crucial in (D′1, . . . , D

′
n).

Then there exists a constraint ((xi1 , . . . , xis), ρ) in Θ and a subuniverse ζ of Di1×· · ·×Dis×Zp

such that the projection of ζ onto the first s coordinates is bigger than ρ but the projection of
ζ ∩ (Di1 × · · · ×Dis × {0}) onto the first s coordinates is equal to ρ.

5 An example in Z4

In this section we demonstrate the main part of the algorithm for a system of linear equations
in Z4. Suppose we have a system

x1 + 2x2 + x3 + x4 = 0

2x1 + x2 + x3 + x4 = 0

x1 + x2 = 2

x1 + x2 + 2x3 + 2x4 = 0

(1)

The minimal congruence σ such that (Z4;x1+. . .+x5)/σ is linear is an equivalence relation
modulo 2.

We write the corresponding system of linear equations in Z2, where x′i = xi mod 2.
x′1 + x′3 + x′4 = 0

x′2 + x′3 + x′4 = 0

x′1 + x′2 = 0

(2)

We choose independent variables x′1 and x′3, and write the general solution: x′1 = x′1, x
′
2 =

x′1, x
′
3 = x′3, x

′
4 = x′1 + x′3. We check that (1) does not have a solution, corresponding to

x′1 = x′3 = 0. Let us remove the last equation from (1).
x1 + 2x2 + x3 + x4 = 0

2x1 + x2 + x3 + x4 = 0

x1 + x2 = 2

(3)

We check that (3) still has no solutions corresponding to x′1 = x′3 = 0.
We check that if we remove any equation from (3), then for any a1, a3 ∈ Z2 there will be a

solution corresponding to x′1 = a1 and x′3 = a3. Hence we need to add exactly one equation to
describe all pairs (a1, a3) such that (3) has a solution corresponding to x′1 = a1 and x′3 = a3.
Let the equation be c1x

′
1 + c3x

′
3 = c0. We need to find c1, c3, and c0.

Since (3) has a solution corresponding to x′1 = 1, x′3 = 0, but no solutions for x′1 = 0, x′3 = 1,
the equation is x′1 = 1.

We add this equation to (2) and solve the new system of linear equations in Z2.
x′1 + x′3 + x′4 = 0

x′2 + x′3 + x′4 = 0

x′1 + x′2 = 0

x′1 = 1

(4)
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The general solution of this system is x′1 = 1, x′2 = 1, x′3 = x′3, x
′
4 = x′3 + 1, where x′3 is an

independent variable. We go back to (1), and check whether it has a solution corresponding
to x′3 = 0. Thus, we find a solution (1, 1, 0, 1).

While solving the system of equations, we just solved systems of linear equations in the
field Z2 and constraint satisfaction problems on 2 element set (which are also equivalent to
systems of linear equations in Z2).

6 The Remaining Definitions

6.1 Additional notations

We say that the i-th variable of a relation ρ is compatible with the congruence σ if (a1, . . . , an) ∈
ρ and (ai, bi) ∈ σ implies (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ ρ. We say that a relation is compatible
with σ if every variable of this relation is compatible with σ.

We say that a relation ρ′ is obtained from ρ by factorization of the i-th variable by a
congruence σ if ρ ⊆ A1 × · · · × An, ρ′ ⊆ A1 × · · · × Ai−1 × Ai/σ × Ai+1 × · · · × An, and

(a1, . . . , ai−1, E, ai+1, . . . , an) ∈ ρ′ ⇔ ∃ai ∈ E : (a1, . . . , an) ∈ ρ.

We say that a congruence σ is irreducible if it cannot be represented as an intersection of
other binary relations δ1, . . . , δs compatible with σ. For an irreducible congruence σ on a set
A by σ∗ we denote the minimal binary relation δ ) σ compatible with σ.

For a relation ρ by Con(ρ, i) we denote the binary relation σ(y, y′) defined by

∃x1 . . . ∃xi−1∃xi+1 . . . ∃xn ρ(x1, . . . , xi−1, y, xi+1, . . . , xn) ∧ ρ(x1, . . . , xi−1, y
′, xi+1, . . . , xn).

For a constraint C = ρ(x1, . . . , xn), by Con(C, xi) we denote Con(ρ, i). For a set of constraints
Ω by Con(Ω, x) we denote the set {Con(C, x) | C ∈ Ω}.

For an algebra A by ConPC(A) we denote the intersection of all congruences σ such that
A/σ is a PC algebra. A subuniverse A′ of A is called a PC subuniverse if A′ = E1 ∩ · · · ∩Es,
where Ei is an equivalence class of a congruence σi such that A/σi is a PC algebra. A variable
is called a PC variable if its domain is a PC algebra.

For an algebra A by ConLin(A) we denote the minimal linear congruence. A subuniverse
of A is called a linear subuniverse if it is compatible with ConLin(A).

6.2 Variety of algebras

We consider the variety of all algebras A = (A;w) such that w is a special WNU operation
of arity m. In this paper every algebra and every domain is considered as an algebra in
this variety. Every relation ρ ⊆ A1 × · · · × An appearing in this paper is a subalgebra of
A1 × · · · ×An for some algebras A1, . . . ,An of this variety.

6.3 Formula, pp-formula, subconstraint

Every variable x appearing in the paper has its domain, which we denote by Dx.
A set of constraints is called a formula. Sometimes we write a formula as C1∧· · ·∧Cn. For

example, a CSP instance can be viewed as a formula. We say that a formula is a tree-formula
if every there is no a path z1 − C1 − z2 − . . . Cl−1 − zl such that l > 3, z1 = zl, and all the
constraints C1, . . . , Cl−1 are different.
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For a CSP instance Θ and a formula Ω ⊆ Θ an expression Ω(x1, . . . , xn) is called a pp-
formula. A pp-formula Ω(x1, . . . , xn) is called a subconstraint of Θ if Ω and Θ \Ω do not have
common variables except for x1, . . . , xn.

We say that a pp-formula Ω(x1, . . . , xn) defines a relation ρ if ρ(x1, . . . , xn) = ∃y1 . . . ∃ys Ω,
where {x1, . . . , xn, y1, . . . , ys} is the set of all variables appearing in Ω.

For a formula Ω by Var(Ω) we denote the set of all variables of Ω. For a formula Ω and two
sets of variables x1, . . . , xn and y1, . . . , yn by Ωy1,...,yn

x1,...,xn
we denote the formula obtained from Ω

by replacement of every variable xi by yi.
For a formula Ω by ExpCov(Ω) (Expanded Coverings) we denote the set of all formulas Ω′

such that there exists a mapping S : Var(Ω′)→ Var(Ω) satisfying the following conditions:

1. for every constraint (ρ; (x1, . . . , xn)) of Ω′ either the variables S(x1), . . . , S(xn) are differ-
ent and the constraint (ρ; (S(x1), . . . , S(xn))) is weaker than or equal to some constraint
of Ω, or ρ is a binary reflexive relation and S(x1) = S(x2);

2. if a variable x appears in Ω and Ω′ then S(x) = x.

If instead of item 1 we require that (ρ; (S(x1), . . . , S(xn))) is a constraint of Ω, we define the
set of formulas Coverings(Ω). For a variable x we say that S(x) is the parent of x.

Lemma 6.1. Suppose Θ is a cycle-consistent irreducible CSP instance, Θ′ ∈ ExpCov(Θ).
Then Θ′ is cycle-consistent and irreducible.

Proof. For every path in Θ′ there exists a corresponding path in Θ. Therefore Θ′ is cycle-
consistent. Assume that Θ′ is not irreducible. Then there exists an instance Ω′ consisting
of projections of constraints from Θ′ that is not linked, not fragmented, and its solution set
is not subdirect. By Ω we denote the set of projections of constraints from Θ corresponding
to the constraints of Ω′ (corresponding constraints should have the same arity). Let us show
that Ω is not linked. Assume the contrary. For any path in Ω connecting elements a and b of
Dx we build a path connecting a and b in Ω′ in the following way. We replace every constraint
of Ω by the corresponding constraint of Ω′, and glue them with any path in Ω′ starting and
ending with the corresponding variables having the same parent. Since Ω′ is not fragmented,
we can always do this. Since Ω is cycle-consistent, the obtained path connects a and b in Ω′.
Thus, Ω is not linked, not fragmented, and its solution set is not subdirect, which contradicts
the fact that Θ is irreducible.

For a formula Θ and a variable x of this formula by LinkedCon(Θ, x) we denote the
congruence on the set Dx defined as follows: (a, b) ∈ LinkedCon(Θ, x) if there exists a path
in Θ that connects a and b.

6.4 Critical, key relations, and parallelogram property

We say that a relation ρ has the parallelogram property if any permutation of its variables
gives a relation ρ′ satisfying

∀α1, β1, α2, β2 : (α1β2, β1α2, β1β2 ∈ ρ′ ⇒ α1α2 ∈ ρ′).

We say that the i-th variable of a relation ρ is rectangular, if for every (ai, bi) ∈ Con(ρ, i)
and (a1, . . . , an) ∈ ρ we have (a1, . . . , ai−1, bi, ai+1, . . . , an) ∈ ρ. We say that a relation is
rectangular if all of its variables are rectangular. The following facts can be easily seen:
if the i-th variable of ρ is rectangular then Con(ρ, i) is a congruence; if a relation has the
parallelogram property then it is rectangular.
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A relation ρ ∈ Rh
A is called essential if it cannot be represented as a conjunction of relations

with smaller arities. It is easy to see that any relation ρ can be represented as a conjunction
of essential relations.

A relation ρ ⊆ A1×· · ·×An is called critical if it cannot be represented as an intersection
of other subalgebras of A1 × · · · ×An and it has no dummy variables. For a critical relation
ρ the minimal relation ρ′ (a subalgebra of A1× · · · ×An) such that ρ′ ) ρ is called the cover.

Suppose ρ ⊆ A1 × · · · × Ah. A tuple Ψ = (ψ1, ψ2, . . . , ψh), where ψi : Ai → Ai, is called

a unary vector-function. We say that Ψ preserves ρ if Ψ

( a1
a2
...
ah

)
:=

 ψ1(a1)
ψ2(a2)

...
ψh(ah)

 ∈ ρ for every( a1
a2
...
ah

)
∈ ρ. We say that ρ is a key relation if there exists a tuple β ∈ (A1× · · · ×Ah) \ ρ such

that for every α ∈ (A1 × · · · ×Ah) \ ρ there exists a vector-function Ψ which preserves ρ and
gives Ψ(α) = β. A tuple β is called a key tuple for ρ.

A constraint is called critical/essential/key if the constraint relation is critical/essential/key.

6.5 Reductions

A CSP instance is called 1-consistent if every constraint of the instance is subdirect.
Suppose the domain set of the instance Θ is D = (D1, . . . , Dn). The domain set D′ =

(D′1, . . . , D
′
n) is called a reduction if D′i is a subuniverse of Di for every i.

The reduction D′ = (D′1, . . . , D
′
n) is called 1-consistent if the instance obtained after

reduction of every domain is 1-consistent.
We say that D′ is an absorbing reduction, if there exists a term operation t such that D′i

is a binary absorbing subuniverse of Di with the term operation t for every i. We say that
D′ is a central reduction, if D′i is a center of Di for every i. We say that D′ is a PC/linear
reduction, if D′i is a PC/linear subuniverse of Di and Di does not have a center or binary
absorbing subuniverse for every i. Additionally, we say that D′ is a minimal central/PC/linear
reduction if D′ is a minimal center/PC/linear subuniverse of Di for every i. We say that D′ is
a minimal absorbing reduction for a term operation t if D′ is a minimal absorbing subuniverse
of Di with t for every i.

A reduction is called nonlinear if it is an absorbing, central, or PC reduction. A reduction
D′ is called proper if it is an absorbing, central, PC, or linear reduction such that D′ 6= D.

We usually denote reductions by D(j) for some j (or by D(>)). In this case by C(j) we denote
the constraint obtained after the reduction of the constraint C. Similarly, by Θ(j) we denote
the instance obtained after the reduction of Θ. For a relation ρ by ρ(j) we denote the relation
ρ restricted to the corresponding domains of D(j). We sometimes say factorization by (j + 1)

instead of factorization by ConLin(D
(j)
x ) or ConPC(D

(j)
x ) if D(j+1) is a PC or linear reduction.

Sometimes we write (a1, . . . , an) ∈ D(j) to say that every ai belongs to the corresponding D
(j)
x .

A strategy for a CSP instance Θ with a domain setD is a sequence of reductionsD(0), . . . , D(s),
where D(i) = (D

(i)
1 , . . . , D

(i)
n ), such that D(0) = D and D(i) is a proper 1-consistent reduction

of Θ(i−1) for every i > 1. A strategy is called minimal if every reduction in the sequence is
minimal.

6.6 Bridges

Suppose σ1 and σ2 are congruences on D1 and D2, correspondingly. A relation ρ ⊆ D2
1 ×D2

2

is called a bridge from σ1 to σ2 if the first two variables of ρ are compatible with σ1, the last
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two variables of ρ are compatible with σ2, pr1,2(ρ) ) σ1, pr3,4(ρ) ) σ2, and (a1, a2, a3, a4) ∈ ρ
implies

(a1, a2) ∈ σ1 ⇔ (a3, a4) ∈ σ2.

Suppose σ1, σ2, σ3 are irreducible congruences, we have a bridge ρ1 from σ1 to σ2 and a
bridge ρ2 from σ2 to σ3. Then we can compose these bridges to define a bridge from σ1 to σ3,
that is, we define the new bridge by ∃y1∃y2ρ1(x1, x2, y1, y2) ∧ ρ2(y1, y2, z1, z2).

A bridge ρ ⊆ D4 is called reflexive if (a, a, a, a) ∈ ρ for every a ∈ D.
We say that two congruences σ1 and σ2 on a set D are adjacent if there exists a reflexive

bridge from σ1 to σ2.

Remark 2. Since we can always put ρ(x1, x2, x3, x4) = σ(x1, x3) ∧ σ(x2, x4), any congruence
σ is adjacent with itself.

A reflexive bridge ρ from σ1 to σ2 is called optimal if there does not exist a reflexive
bridge ρ′ from σ1 to σ2 such that ρ′(x, x, y, y) is weaker than ρ(x, x, y, y). Since we can
compose two reflexive bridges together, the relation ρ(x, x, y, y) is a congruence for any optimal
bridge ρ. For an irreducible congruence σ by Opt(σ) we denote the congruence defined by
ρ(x, x, y, y) for an optimal bridge ρ from σ to σ. For a set of irreducible congruences Ω put
Opt(Ω) = {Opt(σ) | σ ∈ Ω}.

We say that two constraints C1 and C2 are adjacent in a common variable x if Con(C1, x)
and Con(C2, x) are adjacent. A formula is called connected if every constraint in the formula
is rectangular and for every two constraints there exists a path that connects them. It can be
shown (see Corollary 8.15.1) that every two constraints with common variable in a connected
instance are adjacent.

6.7 Dummy variables

To simplify explanation and avoid collisions in this paper we assume that:

1. every time we replace a constraint by all weaker constraints, the weaker constraints have
no dummy variables but might have smaller scopes;

2. if every constraint of Ω has no dummy variables, then every constraint of an instance
Ω′ ∈ ExpCov(Ω) has no dummy variables;

3. every constraint in a crucial instance has no dummy variables.

7 Absorption, Center, PC Congruence, and Linear Con-

gruence

7.1 Binary Absorption

Lemma 7.1. [1] Suppose ρ is defined by a pp-formula Ω(x1, . . . , xn), Ω′ is obtained from Ω by
replacement of some constraint relations σ1, . . . , σs by constraint relations σ′1, . . . , σ

′
s such that

σ′i absorbs σi with a term operation t for every i. Then the relation defined by Ω′(x1, . . . , xn)
absorbs ρ with the term operation t.

Corollary 7.1.1. Suppose ρ ⊆ A1 × · · · × An is a relation such that pr1(ρ) = A1, C =
pr1((C1 × · · · × Cn) ∩ ρ), where Ci is an absorbing subuniverse in Ai with a term operation t
for every i. Then C is an absorbing subuniverse in A1 with the term operation t.
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Lemma 7.2. Suppose κA ⊆ A × A is the equality relation, σ ⊇ κA, ω is a binary absorbing
subuniverse in σ. Then ω ∩ κA 6= ∅.

Proof. We prove by induction on the size of A. Suppose ω absorbs σ with a binary absorbing
term operation t.

Assume that there exists a binary absorbing set B ( A with the absorbing operation f .
For any (b1, b2) ∈ ω and b ∈ B we have (f(b1, b), f(b2, b)) ∈ ω∩ (B×B). Then we can restrict
σ and ω to B and apply the inductive assumption.

Thus, we assume that there does not exist an absorbing set B ( A with the absorbing
operation f . By Lemma 7.1, pr1(ω) binary absorbs A, pr2(ω) binary absorbs A. Then
pr1(ω) = pr2(ω) = A. For every b ∈ A we consider the set Ab = {a | (a, b) ∈ σ} and
Cb = {a | (a, b) ∈ ω}. If Ab = A then Cb is a binary absorbing set in A. Therefore Cb = A
and (b, b) ∈ ω.

Assume that Ab 6= A for some b. Since b ∈ Ab, we have (Ab × Ab) ∩ ω 6= ∅. Then we
restrict σ and ω to Ab and apply the inductive assumption.

Lemma 7.3. Suppose ρ is a binary absorbing set on A1×· · ·×An. Then there exists a binary
absorbing set Bi in Ai for some i.

Proof. We prove by induction on the arity of ρ. If the projection of ρ onto the first coordinate
is not A1 then by Lemma 7.1 this projection is an absorbing set.

Otherwise, we choose any element a ∈ A1 such that ρ does not contain all tuples with a
as the first element.

Then we consider ρ′ = {(a2, . . . , an) | (a, a2, . . . , an) ∈ ρ}, which is a binary absorbing
subuniverse in A2 × · · · × An. It remains to apply the induction assumption.

A relation ρ ⊆ An is called C-essential if ρ ∩ (Ci−1 × A × Cn−i) 6= ∅ for every i but
ρ ∩ Cn = ∅.

Lemma 7.4. [1] Suppose C is a subuniverse of A. Then C absorbs A with an operation of
arity n if and only if there does not exist a C-essential relation ρ ⊆ An.

It is easy to check the following lemma.

Lemma 7.5. Suppose D(1) is an absorbing reduction, the relation ρ is subdirect, then ρ(1) is
not empty.

7.2 Center

Lemma 7.6. Suppose ρ is defined by a pp-formula Ω(x1, . . . , xn), Ω′ is obtained from Ω by
replacement of some constraint relations σ1, . . . , σs by constraint relations σ′1, . . . , σ

′
s such that

σ′i is a center of σi for every i. Then the relation defined by Ω′(x1, . . . , xn) is a center of ρ.

Proof. Suppose Ω′(x1, . . . , xn) defines the relation ρ′. Suppose Bi and Ri are the corresponding
algebra and binary relation such that σ′i = {c | ∀b ∈ Bi : (c, b) ∈ Ri}. Let |Bi| = ni for every
i. Let Υ be obtained from Ω by replacement of every constraint σi(y1, . . . , yt) by

Ri((y1, . . . , yt), zi,1) ∧ · · · ∧Ri((y1, . . . , yt), zi,ni
).

Suppose Υ((x1, . . . , xn), (z1,1, . . . , zs,ns)) defines the relation R. It is not hard to see that
ρ′ = {c | ∀b ∈ (Bn1

1 × · · · × Bns
s ) : (c, b) ∈ R}. By Lemma 7.3, there is no binary absorption

on Bn1
1 × · · · ×Bns

s . This proves that ρ′ is a center of ρ.
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Corollary 7.6.1. , Suppose ρ ⊆ A1 × · · · × An is a relation such that pr1(ρ) = A1, C =
pr1((C1 × · · · × Cn) ∩ ρ), where Ci is a center in Ai for every i. Then C is a center in A1.

Corollary 7.6.2. Suppose Ci is a center of Di for every i, then C1 × · · · × Cn is a center of
D1 × · · · ×Dn.

Corollary 7.6.3. Suppose C1 and C2 are centers of D. Then C1 ∩ C2 is a center of D.

In the proof of the following two lemmas we assume that a center C is defined by C =
{a ∈ A | ∀b ∈ B : (a, b) ∈ R} for a subalgebra R of A × B. For an element a ∈ A we put
a+ = {b | (a, b) ∈ R}.

Lemma 7.7. Suppose w is a special WNU, C is a center of A, then w(c, c, . . . , c, a, c, . . . , c) ∈
C for any a ∈ A and c ∈ C.

Proof. Assume the contrary. Put w(c, . . . , c, a) = b /∈ C. Since w is a special WNU, we have
w(b, c, . . . , c) = b and w(c, . . . , c, b) = b. Then w(b+, B, . . . , B) ⊆ b+ and w(B, . . . , B, b+) ⊆
b+, and w(x, . . . , x, y) defines a binary absorbing operation. This contradiction completes the
proof.

Lemma 7.8. Suppose w is a special WNU of arity m, C is a proper center in A, δ ⊆ As is
C-essential. Then s < (m · |A|m|A|

)|A|.

Proof. Assume the contrary. For every i choose a tuple αi ∈ δ such that αi ∈ Ci−1×A×Cs−i.
First, we introduce a quasi-order on elements of A. We say that y1 6 y2 if y+1 ⊆ y+2 , and
y1 ∼ y2 if y+1 = y+2 . We can easily check that b1, b2, . . . , bn > c implies w(b1, . . . , bn) > c.

Suppose we have two tuples (c1, . . . , cn), (d1, . . . , dn), and i 6= j such that cl ∈ C for
every l 6= i, dl ∈ C for every l 6= j, ci ∼ dj. It follows from the above argument that
w(c1, . . . , cn) > ci and w(d1, . . . , dn) > dj. If ci ∼ w(c1, . . . , cn) and dj ∼ w(d1, . . . , dn)
then w(B, . . . , B︸ ︷︷ ︸

i−1

, c+i , B, . . . , B) ⊆ c+i and w(B, . . . , B︸ ︷︷ ︸
j−1

, c+i , B, . . . , B) ⊆ c+i . Therefore, the

formula w(x, . . . , x︸ ︷︷ ︸
i−1

, y, x, . . . , x) defines a binary absorbing operation on B, which contradicts

the definition of a center.
We say that an element is foreign if it is not from the center. We say that tuples are

independent if they do not have foreign elements on the same position. We start with s tuples
α1, . . . , αs. On every step we exclude at least one element of A from all tuples.

Assume that we have independent tuples β1, . . . , βsi . Choose a minimal element appearing
in βs. Let it be c. Assume that the foreign elements of β1 appear in the positions j1, . . . , jh.
Then we choose the most popular projection of tuples β2, . . . , βsi onto coordinates j1, . . . , jh,
and remove all tuples but β1 with a different projection. Our independent set became smaller.
Without loss of generality we assume that β1, . . . , βs′i is the obtained independent set.

We know that there can be only one position of d such that w(. . . , d, . . .) ∼ c for some d ∼ c.
Without loss of generality we assume that this is the first position. Then we generate new inde-
pendent tuples in the following way β′1 = w(β1, β2, . . . , βm), β′2 = w(β1, βm+1, βm+2, . . . , β2m−1)
and so on. It remains to show that there are no elements equivalent to c in the obtained tuples.

By Lemma 7.7, the jk-th element of every new tuple is a central element. We cannot get
such an element in the remaining positions because w(. . . , d, . . .) > c for every d ∼ c (we put
d not in the first position).

Thus, we exclude at least one element on every step. Hence in |A| steps we get a tuple
where all elements are from the center. Therefore, on every step we have less than m|A| foreign
elements in each tuple. Hence, on every step we decrease the number of tuples by a factor of
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at most |A|m|A|
(because we choose tuples that are the same in some coordinates) and by m

(because from m tuples we obtain just one). Thus, if the original number of tuples is at least

(m · |A|m|A|
)|A| then we get a tuple where all elements are from the center. This contradicts

Cs ∩ δ = ∅.

Combining this result with Lemma 7.4, we obtain the following corollary.

Corollary 7.8.1. Suppose C is a center of A, then C is a absorbing subuniverse of A.

The following lemma is a stronger version of the original lemma suggested by Marcin
Kozik.

Lemma 7.9. Suppose C1 ⊆ A1 and C2 ⊆ A2 are centers, B is a subuniverse of D, a relation
ρ ⊆ A1 × Dl × A2 satisfies the following properties: (C1 × Bl × C2) ∩ ρ = ∅, for every
i ∈ {1, 2, . . . , l}

(C1 ×Bi−1 ×D ×Bl−i × C2) ∩ ρ 6= ∅,
(A1 ×Bl × C2) ∩ ρ 6= ∅, (C1 ×Bl × A2) ∩ ρ 6= ∅.

Then there exists a relation ρ′ ⊆ A1 ×D2l × A1 such that for every i ∈ {1, 2, . . . , 2l}

(C1 ×Bi−1 ×D ×B2l−i × C1) ∩ ρ′ 6= ∅,

(A1 ×B2l × C1) ∩ ρ′ 6= ∅, (C1 ×B2l × A1) ∩ ρ 6= ∅, (C1 ×B2l × C1) ∩ ρ′ = ∅.

Proof. Assume that ρ is a minimal by inclusion relation of arity l + 2 satisfying the above
properties. Put E = prl+2(ρ∩ (C1 ×Bl ×A2)). Since ρ is minimal, for any b ∈ E the algebra
generated by {b} ∪ C2 contains prl+2(ρ). Fix b ∈ E.

Let σ be the subalgebra of A2 × A2 generated by {b} × C2 ∪ C2 × C2 ∪ C2 × {b}. Put

ρ′(x, y1, . . . , yl, y
′
1, . . . , y

′
l, x
′) = ∃z∃z′ ρ(x, y1, . . . , yl, z) ∧ ρ(x′, y′1, . . . , y

′
l, z
′) ∧ σ(z, z′).

It is not hard to see that ρ′ satisfies all necessary conditions, possibly except for the last
one. Assume that (C1 × B2l × C1) ∩ ρ′ 6= ∅ and the tuple in the intersection is obtained
by sending z to d and z′ to d′. Clearly, d, d′ ∈ E and {e ∈ A2 | (e, d′) ∈ σ} ⊇ {d} ∪ C2,
therefore {e ∈ A2 | (e, d′) ∈ σ} ⊇ prl+2(ρ). Hence, {e ∈ A2 | (b, e) ∈ σ} ⊇ {d′} ∪ C2 and
{e ∈ A2 | (b, e) ∈ σ} ⊇ prl+2(ρ).

Thus, (b, b) ∈ σ and there exists an n-ary term t such that

t(b, b, . . . , b, c1, . . . , ci) = b, t(c′1, . . . , c
′
j, b, b, . . . , b) = b,

where i+ j > n and c1, . . . , ci, c
′
1, . . . , c

′
j ∈ C2. Suppose R ⊆ A2 ×G is a binary relation from

the definition of the center C2, b
+ = {a | (b, a) ∈ R}. Then, b+ absorbs G with the binary

term t(x, . . . , x︸ ︷︷ ︸
j

, y, . . . , y). This contradiction completes the proof.

Corollary 7.9.1. Suppose C1 ⊆ A1 and C2 ⊆ A2 are centers, B ⊆ D is an absorbing
subuniverse, ρ ⊆ A1 × D × A2 is a ternary relation such that (C1 × D × C2) ∩ ρ 6= ∅,
(C1 ×B × A2) ∩ ρ 6= ∅, (A1 ×B × C2) ∩ ρ 6= ∅. Then (C1 ×B × C2) ∩ ρ 6= ∅.

Proof. Assume the contrary. By Lemma 7.9 we can increase the arity of ρ as much as we
need. If we restrict the first and the last variables to the corresponding centers and consider
the projection onto the remaining variables we get a C-essential relation. This contradicts the
fact that C is an absorbing subuniverse.

Corollary 7.9.2. Suppose C is a center of A, then C is a ternary absorbing subuniverse of A.

Corollary 7.9.3. Suppose ρ ⊆ A1 × · · · × Ak is a relation, k > 3, Ci is a center in Ai and
ρ ∩ (C1 × · · · × Ci−1 ×Ai × Ci+1 × · · · × Ck) 6= ∅ for every i. Then ρ ∩ (C1 × · · · × Ck) 6= ∅.
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7.3 PC Subuniverse

Lemma 7.10. Suppose ρ ⊆ A×B is a subdirect relation, A is a PC algebra. Then either for
every c ∈ B there exists a unique a ∈ A such that (a, c) ∈ ρ, or there exists c ∈ B such that
(a, c) ∈ ρ for every a ∈ A.

Proof. Put σl(x1, x2, . . . , xl) = ∃y ρ(x1, y) ∧ · · · ∧ ρ(xl, y). Since A is PC algebra, σ2 is either
full, or the equality relation.

If σ2 is the equality relation, then for every c ∈ B there exists a unique a ∈ A such that
(a, c) ∈ ρ.

Suppose σ2 is full. Then we consider the minimal l such that σl is not full. It is easy to
see that σl cannot be preserved by all operations on A. This contradiction proves that σ|A| is
also full. This means that for some c we have (a, c) ∈ ρ for every a ∈ A.

Lemma 7.11. Suppose ρ ⊆ A1×· · ·×An is a subdirect relation, Ai is a PC algebra for every
i ∈ {2, . . . , n}, there is no binary absorption and center on Ai for every i ∈ {1, . . . , n}. Then
ρ can be represented as a conjunction of binary relations δ1, . . . , δk such that Con(δl, j) is the
equality relation whenever the domain of the j-th variable of δl is a PC algebra.

Proof. Assume the contrary. Let us consider a relation of the minimal arity such that the
lemma does not hold.

Assume that ρ is not essential, then it can be represented as a conjunction of essential
relations satisfying the same properties. By the inductive assumption, each of them can be
represented as a conjunction of binary relations. It remains to join these binary relation to
complete the proof for this case.

Assume that ρ is essential. The projection of ρ onto any set of variables gives a relation
of a smaller arity satisfying the same properties. By the inductive assumption, the relation
of a smaller arity can be represented as a conjunction of binary relations δ1, . . . , δk such that
Con(δl, j) is the equality relation whenever the domain of the j-th variable of δl is a PC
algebra. Since ρ is essential, the relation of smaller arity is a full relation.

Let us consider the relation ρ ⊆ (A1×· · ·×An−1)×An as a binary relation. By Lemma 7.10
we have one of the following two situations.

Case 1: there exist b1, . . . , bn−1 such that (b1, . . . , bn−1, a) ∈ ρ for every a ∈ An. We
consider the maximal s such that ρ(b1, . . . , bs, xs+1, . . . , xn) is not a full relation. Obviously
s 6 n− 2 and s exists. Then we get a proper center C on As+1 defined by C = {as+1 ∈ As+1 |
∀as+2 . . . ∀an : (b1, . . . , bs, as+1, as+2, . . . , an) ∈ ρ}.

Case 2: for every a1, . . . , an−1 there exists a unique b such that (a1, . . . , an−1, b) ∈ ρ. In
the same way we can show that for any i ∈ {2, . . . , n} and (a1, . . . , an) there exists a unique b
such that (a1, . . . , ai−1, b, ai+1, . . . , an) ∈ ρ. Thus, if ρ is binary, then the statement is proved.

If the arity of ρ is greater than 2, then the following formula defines a subdirect relation
on An such that the projection onto any 3 coordinates is a full relation:

ζ(z1, z2, z3, z4) = ∃x1∃x2 . . . ∃xn−1∃x′1∃x′2 ρ(x1, x2, x3, . . . , xn−1, z1)∧
ρ(x1, x

′
2, x3, . . . , xn−1, z2)∧ρ(x′1, x2, x3, . . . , xn−1, z3) ∧ ρ(x′1, x

′
2, x3, . . . , xn−1, z4).

We can check that if (a1, a2, a3, a4) ∈ ζ then (a1 = a2)⇔ (a3 = a4). This contradicts the fact
that An is a PC algebra.

It follows from Lemma 7.11 that the quotient of any algebra A without a center and binary
absorption by ConPC(A) is a direct product of PC algebras.

Corollary 7.11.1. Suppose ρ ⊆ A1 × · · · × An is a subdirect relation, there is no binary
absorption and center on Ai for every i, C = pr1((C1 × · · · × Cn) ∩ ρ), where Ci is a PC
subuniverse in Ai for every i. Then C is a PC subuniverse in A1.
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Corollary 7.11.2. Suppose ρ ⊆ A1 × · · · × Ak is a subdirect relation, k > 3, Ci is a PC
subuniverse in Ai, there is no binary absorption and center on Ai for every i, ρ∩ (C1 × · · · ×
Ci−1 × Ai × Ci+1 × · · · × Ck) 6= ∅ for every i. Then ρ ∩ (C1 × · · · × Ck) 6= ∅.

Lemma 7.12. Suppose ρ ⊆ A × B is a subdirect relation, A is a PC algebra without center
and binary absorption, C = {b ∈ B | ∀a ∈ A : (a, b) ∈ ρ}. Then C binary absorbs B.

Proof. Suppose A = {a1, . . . , ak}. Let us consider the matrix M whose rows are tuples
(a, a, . . . , a︸ ︷︷ ︸

k+1

, b, a1, . . . , ak) and (b, a1, . . . , ak, a, a, . . . , a︸ ︷︷ ︸
k+1

) for all a, b ∈ A. The 2k + 2 columns

of this matrix we denote by α1, . . . , α2k+2. By β we denote the tuple of length 2k2 such
that the i-th element of β equals b from the corresponding row. By Lemma 7.11, the re-
lation generated by α1, . . . , α2k+2 is a full relation. Hence, there exists a term operation
f such that f(α1, . . . , α2k+2) = β. Let us show that C absorbs B with the term oper-
ation defined by h(x, y) = f(x, . . . , x︸ ︷︷ ︸

k+1

, y, . . . , y). Suppose d ∈ B, c ∈ C. Assume that

h(d, c) = e /∈ C. Choose elements a, a′ ∈ A such that (a, e) /∈ ρ and (a′, d) ∈ ρ. Con-
sider the row (a′, . . . , a′, a, a1, . . . , ak) from the matrix. We know that f returns a on this
tuple and f(d, . . . , d︸ ︷︷ ︸

k+1

, c, . . . , c) = e, which contradicts the fact that f preserves ρ.

In the same way we prove that h(c, d) ∈ C for every d ∈ B, c ∈ C.

Lemma 7.13. Suppose ρ ⊆ A × B × B is a subdirect relation, A is a PC algebra without
a center and a binary absorption, for every b ∈ B there exists a ∈ A such that (a, b, b) ∈ ρ.
Then for every a ∈ A there exists b ∈ B such that (a, b, b) ∈ ρ.

Proof. We prove by induction on the size of B.
By Lemma 7.10, only two situations are possible: either there exists c1, c2 ∈ B such

that (a, c1, c2) ∈ ρ for every a ∈ A, or for all b1, b2 ∈ B there exists a unique a ∈ A such
that (a, b1, b2) ∈ ρ. Consider the first case. Put D = {(b, c) | ∀a ∈ A : (a, b, c) ∈ ρ}. By
Lemma 7.12, D is a binary absorbing subuniverse in the projection of ρ onto the last two
variables. By Lemma 7.2, there exists (b, b) ∈ D. This completes this case.

Consider the second case. Let δ1 be the projection of ρ onto the first two variables. By
Lemma 7.10 we have one of two situations. Assume that for every b ∈ B there exists a unique
a such that (a, b) ∈ δ1. Then we can check that if (a, b, b′) ∈ ρ then (a, b, b) ∈ ρ, which
completes this case. Otherwise, there exists an element b such that (a, b) ∈ δ1 for every a ∈ A.
Consider the relation δ2(x, y2) = ρ(x, b, y2). If pr2(δ2) 6= B, then we restrict the last two
variables of ρ to pr2(δ2) and apply the inductive assumption. Assume that pr2(δ2) = B. By
the definition of the second case we know that for every c ∈ B there exists a unique a such
that (a, c) ∈ δ2. Then there exists a congruence σ on B such that B/σ is a PC algebra. If σ
is the equality relation, then B is a PC algebra without center and binary absorption. Then
the statement follows from Lemma 7.11.

If σ is not the equality relation, then we consider the relation ρ′ obtained from ρ by
factorization of the last two variables by σ. By the inductive assumption for any a ∈ A there
exists E ∈ B/σ such that (a,E,E) ∈ ρ′. By Lemma 7.10, we have one of the following
situations. Case 1. There exists E ∈ B/σ such that for every a ∈ A we have (a,E,E) ∈ ρ′.
Then we restrict the last two variables of ρ to E and apply the inductive assumption. Case
2. For every E ∈ B/σ there exists a unique a ∈ A such that (a,E,E) ∈ ρ′. In this case for
any a ∈ A we choose E such that (a,E,E) ∈ ρ′. By the above condition we have (a, b, b) ∈ ρ
for any b ∈ E, which completes the proof.
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7.4 Linear Subuniverse

Lemma 7.14. Suppose ρ ⊆ A1 × A2 is a subdirect relation, A2 is a linear algebra, no binary
absorption on A1. Then for all a, b ∈ A1 we have

|{c | (a, c) ∈ ρ}| = |{c | (b, c) ∈ ρ}|.

Proof. Assume the contrary, then we choose all elements a with the maximal |{c | (a, c) ∈ ρ}|.
Denote the set of such elements by C.

Since w(a1, . . . , ai−1, x, ai+1, . . . , am) is a bijection on A2 for every a1, . . . , am ∈ A2, we have
w(A1, . . . , A1, C, A1, . . . , A1) ⊆ C. Hence w(x, . . . , x, y) is a binary absorbing operation and
C is a binary absorbing set.

Lemma 7.15. Suppose ρ ⊆ A1 × A2 is a subdirect relation, A2 is a linear algebra, no binary
absorption on A1. Then ρ has the parallelogram property.

Proof. First, we define a relation σk for every k > 2 by

σk(y1, . . . , yk) = ∃x ρ(x, y1) ∧ · · · ∧ ρ(x, yk).

Since σk is preserved by the Mal’tsev operation w(x, y, . . . , y, z) and reflexive, σ2 is a con-
gruence. Let us show by induction on k that σk(y1, . . . , yk) =

∧k
i=2 σ2(y1, yi). Let k be

the minimal number such that (a1, . . . , ak) /∈ σk and (ai, aj) ∈ σ2 for every i, j. Then
(a1, a1, a3, . . . , ak), (a1, a2, a1, a4, . . . , ak) ∈ σk. Therefore (a1, a1, a1, a4 . . . , ak) /∈ σk, which
contradicts our assumption.

Thus, for every equivalence class E of σ2 there exists c ∈ A1 such that (c, d) ∈ ρ for any
d ∈ E. It follows from Lemma 7.14, that ρ has parallelogram property.

Corollary 7.15.1. Suppose ρ ⊆ A1 × · · · × An is a relation such that pr1(ρ) = A1, there is
no binary absorption on A1, C = pr1((C1× · · · ×Cn)∩ ρ), where Ci is a linear subuniverse in
Ai for every i. Then C is a linear subuniverse in A1.

8 Proof of the Auxiliary Statements

8.1 Reductions preserve cycle-consistency and irreducibility

Lemma 8.1. Suppose D(1) is a proper minimal reduction, the constraint ρ(x1, . . . , xn) is
subdirect, ρ(1) is not empty. Then ρ(1) is subdirect.

Proof. By Corollaries 7.1.1, 7.6.1, 7.11.1, 7.15.1, if we restrict the variables x1, x2, . . . , xn of
ρ to D(1), then we restrict the projection correspondingly. Since D

(1)
xi is a minimal absorbing

subuniverse, a minimal center, a minimal PC subuniverse, or a minimal linear subuniverse,
the relation ρ(1)(x1, . . . , xn) is subdirect.

Lemma 8.2. Suppose D(1) is a proper minimal reduction for a cycle-consistent irreducible
CSP instance Θ, Θ(1) has a solution. Then Θ(1) is cycle-consistent and irreducible.

Proof. Consider a path z1 − C1 − z2 − · · · − Cl−1 − zl starting and ending with one variable
x. By Ω we denote the formula corresponding to this path, that is a formula obtained from
the path such that every variable except for z2, . . . , zl−1 occurs just once, z2, . . . , zl−1 occur
twice. Let {z1, . . . , zl, y1, . . . , yt} be the set of all variables appearing in Ω. By Ω′ we denote
the formula obtained from Ω by replacement of zl by z1.
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First, we want to prove that this path connects a with a in Θ(1) for every a ∈ D(1)
x . Second,

we prove that if the path connects any two elements of Dx, then it connects any two elements
of D

(1)
x .

Assume that D(1) is not a PC reduction. We know that Ω′(z1) defines Dx. Since Θ(1)

has a solution, Corollaries 7.1.1, 7.6.1, 7.15.1 imply that Ω′(1)(z1) defines the corresponding

subuniverse in Dx. Since D(1) is minimal, this subuniverse is equal to D
(1)
x . Hence, this path

connects a with a in Θ(1) for every a ∈ D(1)
x . Assume that the path connects any two elements

of Dx. Then Ω(z1, zl) contains all pairs (a, a′) ∈ Dx ×Dx. Combining Corollaries 7.1.1, 7.6.1,
7.15.1 with the fact that D(1) is a minimal reduction, we prove that Ω(1)(z1, zl) contains all

pairs (a, a′) ∈ D(1)
x ×D(1)

x .
Suppose D(1) is a PC reduction. Let Ω(z1, . . . , zl−1, zl, y1, . . . , yt) define a relation ρ. We

factorize variables z2, . . . , zl−1, y1, . . . , yt of ρ by (1) and replace by PC variables. As a result
we get a relation δ(z1, zl, u1, . . . , uk), where u1, . . . , uk are PC variables. By Lemma 7.13, if we
identify z1 and zl in δ then we do not restrict any variable ui. Therefore δ(z1, z1, u1, . . . , uk)
defines a subdirect relation. By Corollary 7.11.1, if we restrict variables u1, . . . , uk of this
subdirect relation to D(1), then we restrict the variable z1 to a PC subuniverse. Since D(1)

is minimal and Θ(1) has a solution, the path connects a with a in Θ(1) for every a. Thus, we
proved that Θ(1) is cycle-consistent.

Assume that the path connects any two elements of Dx. By Lemma 7.11, if we put z1 = a
in δ then we restrict a variable ui to one-element set or do not restrict at all. Therefore, by
Corollary 7.11.1, if we put z1 = a and restrict u1, . . . , uk to D(1), then we restrict zl to a PC
subuniverse. Since D(1) is minimal, the path connects any two elements of D

(1)
x .

Let us prove that Θ(1) is irreducible. Assume the contrary. Consider a formula Υ1 con-
sisting of projections of constraints from Θ(1) such that it is not fragmented, not linked and
its solution set is not subdirect. Let Var(Υ1) = {x1, . . . , xn}. It is not hard to find an in-
stance Υ ∈ Coverings(Θ) such that Υ1(x1, . . . , xn) = Υ(1)(x1, . . . , xn) (every variable except
for x1, . . . , xn appears just once). By Lemma 6.1, Υ is irreducible.

Assume that Υ is linked. Consider a path that connects any two elements of Dx1 in Υ.

By the above argument, it also connects any two elements of D
(1)
x1 in Υ(1). Therefore, Υ1 is

also linked, which contradicts our assumption.
Suppose Υ is not linked. Since Υ is irreducible, the solution set of Υ is subdirect. Let

v1, . . . , vr be the remaining variables of Υ. By Corollaries 7.1.1, 7.6.1, 7.15.1, 7.11.1 the restric-
tion of v1, . . . , vr and x1, . . . , xn to D(1) implies the corresponding restrictions of x1, . . . , xn.
Since the reduction D(1) is minimal, the relation defined by Υ(1)(x1, . . . , xn) is subdirect.

8.2 Properties of Con(ρ, x)

Lemma 8.3. Suppose ρ is a critical subdirect relation, the i-th variable of ρ is rectangular.
Then Con(ρ, i) is an irreducible congruence.

Proof. To simplify notations assume that i = 1. Put σ = Con(ρ, i). Assume the contrary.
Consider binary relations δ1, . . . , δs compatible with σ such that δ1 ∩ · · · ∩ δs = σ. Put

ρi(x1, . . . , xn) = ∃x′1 ρ(x′1, x2, . . . , xn) ∧ δi(x1, x′1).

It is easy to see that the intersection of ρ1, . . . , ρs gives ρ, which contradicts the fact that ρ is
critical.

Lemma 8.4. Suppose σ, σ1, and σ2 are congruences on A, σ ∩σ1 = σ ∩σ2, σ \σ1 6= ∅. Then
σ1 and σ2 are adjacent.
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Proof. Let us define a relation ρ by

ρ(x1, x2, y1, y2) = ∃z1∃z2 σ1(x1, z1) ∧ σ2(z1, y1) ∧ σ1(x2, z2) ∧ σ2(z2, y2) ∧ σ(z1, z2).

It is easy to check for any (a1, a2, a3, a4) ∈ ρ that (a1, a2) ∈ σ1 ⇔ (a3, a4) ∈ σ2. Also
(a, a, a, a) ∈ ρ for any a ∈ A. Choose (a, b) ∈ σ \ σ1. Then (a, b, a, b) ∈ ρ, which proves that ρ
is a reflexive bridge.

For a relation ρ of arity n by UnPol(ρ) we denote the set of all unary vector-functions
preserving the relation ρ.

Suppose Σ is a set of constraints with the same scope of variables. For a tuple α we say
that a constraint C is maximal without α in Σ if there does not exist a weaker constraint
C ′ ∈ Σ such that α does not satisfy C ′.

Lemma 8.5. Suppose a pp-formula Ω(x1, . . . , xn) defines a relation ρ, α /∈ ρ, ρ′ = {f(α) |
f ∈ UnPol(ρ)}. Then there exists Ω′ ∈ Coverings(Ω) such that Ω′(x1, . . . , xn) defines ρ′.

Proof. Suppose α = (a1, . . . , an). We introduce new variables xai for every i ∈ {1, 2, . . . , n}
and a ∈ Dxi . By Υ we denote the following formula

∧
(b1,...,bn)∈ρ

ρ(xb11 , . . . , x
bn
n ). It is easy to

see that ρ′ is defined by a pp-formula Υ(xa11 , . . . , x
an
n ). To obtain formula Ω′ it is sufficient to

replace every occurrence of ρ by Ω with the corresponding variables.

Corollary 8.5.1. Suppose Ω is a formula, Σ is the set of all constraints defined by Υ(x1, . . . , xn)
where Υ ∈ Coverings(Ω), C is a maximal constraint in Σ without a tuple α. Then α is a key
tuple for the constraint relation of C.

Proof. Suppose C = ρ(x1, . . . , xn). For every tuple β /∈ ρ we consider ρβ := {f(β) | f ∈
UnPol(ρ)}. It is easy to see that ρβ ) ρ for every β. By Lemma 8.5, ρβ can be defined by a
constraint from Σ. Since C is maximal, α ∈ ρβ. Therefore, α is a key tuple for ρ.

Lemma 8.6. Suppose D(1) is a minimal nonlinear reduction for a formula Υ, the solution set
of Υ is subdirect, Υ(1)(x1, . . . , xn) defines a subdirect rectangular relation. Then for every i

(Con(Υ(x1, . . . , xn), xi))
(1) = Con(Υ(1)(x1, . . . , xn), xi).

Proof. WLOG we prove for i = 1. Let {x1, . . . , xn, y1, . . . , ys} be the set of all variables
of Υ. Define the relation ρ by Υ(x1, . . . , xn, y1, . . . , ys). Put σ0 = Con(Υ(x1, . . . , xn), x1),
σ1 = Con(Υ(1)(x1, . . . , xn), x1),

ρ′(x1, x2, . . . , xn, y1, . . . , ys, y
′
1, . . . , y

′
s, x
′
1) =

ρ(x1, x2, . . . , xn, y1, . . . , ys) ∧ ρ(x′1, x2, . . . , xn, y
′
1, . . . , y

′
s).

Assume the opposite. Choose a pair (a, b) ∈ σ(1)
0 \ σ1. Then there exists α such that aαb ∈ ρ′.

Since Υ(1)(x1, . . . , xn) defines a subdirect relation, for every c ∈ D(1)
x1 there exists βc such

that cβcc ∈ ρ′(1). Consider tuples ξ0 = aαbβbbβbb, ξ1 = aβaaαbβbb, ξ2 = aβaaβaaαb. If D(1)

is a central reduction, then by Lemma 7.9.2, there exists a ternary absorbing term operation
t. Then t(ξ0, ξ1, ξ2) defines a path from a to b with edges from σ1. If D(1) is an absorbing
reduction, then t′(ξ0, ξ1) defines a path from a to b with edges from σ1, where t′ is the binary
absorbing operation. Since Υ(1)(x1, . . . , xn) defines a rectangular relation, σ1 is a congruence.
Therefore, there is no path from a to b in σ1.

Assume that D(1) is a PC reduction. We factorize variables x2, . . . , xn, y1, . . . , ys, y
′
1, . . . , y

′
s

of ρ′ by (1), replace every new variable by a set of PC variables, and restrict variables x1 and
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x1′ to D
(1)
x1 . As a result we obtain the relation ρ′′(x1, z1, . . . , zk, x

′
1), where the domain of zi is

a PC algebra for every i. By Corollary 7.11.1, every variable zi in ρ′′ either takes on all values
from the domain or just one value. By Lemma 8.1, ρ(1) is subdirect. Then, without loss of
generality we assume that the relation ρ′′ is subdirect (otherwise we consider the projection
of ρ′′ onto all variables taking on more than 1 value).

By 0 we denote the element of every PC algebra corresponding to the reduction D(1). Since
ρ(1) is subdirect, (c, 0, . . . , 0, c) ∈ ρ′′ for every c ∈ D

(1)
x1 . Lemma 7.11 implies that for every

c ∈ D(1)
x1 the formula ∃x′1ρ′′(c, z1, . . . , zk, x′1) defines a subdirect relation. We also know that

there exist c1, . . . , ck such that (a, c1, . . . , ck, b) ∈ ρ′′. Put

ρ0(z1, . . . , z4k) = ∃x′∃y∃y′ ρ′′(a, z1, . . . , zk, y) ∧ ρ′′(x′, zk+1, . . . , z2k, y)∧
ρ′′(x′, z2k+1, . . . , z3k, y

′) ∧ ρ′′(b, z3k+1, . . . , z4k, y
′).

Since we can put x′ = a or x′ = b, ρ0 is subdirect. We can check that

(c1, . . . , ck, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0) ∈ ρ0 (for x′ = y = y′ = b);

(0, . . . , 0, 0, . . . , 0, c1, . . . , ck, 0, . . . , 0) ∈ ρ0 (for x′ = y = a, y′ = b);

(c1, . . . , ck, c1, . . . , ck, c1, . . . , ck, 0, . . . , 0) ∈ ρ0 (for x′ = a, y = y′ = b)

but (0, . . . , 0) /∈ ρ0. By Lemma 7.11, ρ0 can be represented as a conjunction of bijective
binary relations, and none of them can omit the tuple (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0).
Contradiction.

Lemma 8.7. Suppose D(1) is a minimal linear reduction for Υ, Υ(1)(x1, . . . , xn) defines a
subdirect rectangular relation, Var(Υ) = {x1, . . . , xn, v1, . . . , vr}, Ω = Υ∧

∧r
i=1 σi(vi, ui), where

σi = ConLin(Dvi). Then (Con(Ω(x1, . . . , xn, u1, . . . , ur), xj))
(1) = Con(Υ(1)(x1, . . . , xn), xj))

for every j.

Proof. Without loss of generality assume that j = 1. Suppose Ω(x1, . . . , xn, u1, . . . , ur) and
Υ(1)(x1, . . . , xn) define the relations ρ′ and ρ correspondingly. Assume the opposite. Then

there exist a, b ∈ D(1)
x1 such that (a, b) ∈ Con(ρ′, 1) \ Con(ρ, 1). Therefore for some β we have

aβ, bβ ∈ ρ′. Since ρ is subdirect, there exist αa and αb in D(1) such that aαa, bαb ∈ ρ′. It is
easy to check that

w(a, a, . . . , a)w(αa, β, . . . , β) ∈ ρ′,
w(a, b, . . . , b)w(αa, β, . . . , β) ∈ ρ′,
w(a, b, . . . , b)w(αb, β, . . . , β) ∈ ρ′,
w(b, b, . . . , b)w(αb, β, . . . , β) ∈ ρ′.

Since w is a special WNU, w(αa, β, . . . , β) and w(αb, β, . . . , β) belong toD(1), for c = w(a, b, . . . , b)
we have (a, c), (c, b) ∈ Con(ρ, 1). Since ρ is rectangular, we have (a, b) ∈ Con(ρ, 1). This con-
tradiction completes the proof.

8.3 Adding linear variable

Below we formulate few statements from [21] that will help us to prove the main property of
a bridge. A relation ρ ⊆ An is called strongly rich if for every tuple (a1, . . . , an) and every
j ∈ {1, . . . , n} there exists a unique b ∈ A such that (a1, . . . , aj−1, b, aj+1, . . . , an) ∈ ρ. We will
need two statements from [21].
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Theorem 8.8. [21] Suppose ρ ⊆ An is a strongly rich relation preserved by an idempotent
WNU. Then there exists an abelian group (A; +) and bijective mappings φ1, φ2, . . . ,φn : A→ A
such that

ρ = {(x1, . . . , xn) | φ1(x1) + φ2(x2) + . . .+ φn(xn) = 0}.

Lemma 8.9. [21] Suppose (G; +) is a finite abelian group, the relation σ ⊆ G4 is defined by
σ = {(a1, a2, a3, a4) | a1 + a2 = a3 + a4}, σ is preserved by an idempotent WNU f . Then
f(x1, . . . , xn) = t · x1 + t · x2 + . . .+ t · xn for some t ∈ {1, 2, 3, . . .}.

Theorem 8.10. Suppose σ ⊆ A2 is a congruence, ρ(x1, x2, y1, y2) is a bridge from σ to σ such
that ρ(x, x, y, y) defines a full relation, pr1,2(ρ) = ω, ω is a minimal relation compatible with
σ such that ω ) σ. Then there exists a prime number p and a relation ζ ⊆ A× A× Zp such
that (x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ σ and pr1,2 ζ = ω.

Proof. Since the relations ρ and ω are compatible with σ, we consider A/σ instead of A and
assume that σ is the equality relation, ρ and ω are relations on A/σ.

Without loss of generality we assume that ρ(x1, x2, y1, y2) = ρ(y1, y2, x1, x2) and (a, b, a, b) ∈
ρ for any (a, b) ∈ ω. Otherwise, we consider the relation ρ′ instead of ρ, where

ρ′(x1, x2, y1, y2) = ∃z1∃z2 ρ(x1, x2, z1, z2) ∧ ρ(y1, y2, z1, z2).

We prove by induction on the size of A. Assume that for some subuniverse A′ ( A we have
(A′×A′)∩ (ω \σ) 6= ∅. By σ′ we denote the restriction of σ to A′. By ω′ we denote a minimal
relation compatible with σ′ such that σ′ ( ω′ ⊆ (A′×A′)∩ω. By the inductive assumption for
ρ∩ (ω′× ω′) there exists a relation ζ ′ ⊆ A′×A′×Zp such that (x1, x2, 0) ∈ ζ ′ ⇔ (x1, x2) ∈ σ′
and pr1,2(ζ

′) = ω′. Put

ζ(x1, x2, z) = ∃y1∃y2 ρ(x1, x2, y1, y2) ∧ ζ ′(y1, y2, z).

It is easy to see that ζ satisfies the necessary conditions.
Thus, we assume that for any subuniverse A′ ( A we have (A′ × A′) ∩ (ω \ σ) = ∅.
Consider a pair (a1, a2) ∈ ω \ σ. Then {a | (a1, a) ∈ ω} = {a | (a, a2) ∈ ω} = A.

Hence, any element connected in ω to some other element is connected to all elements. Since
(a1, a), (a, a2) ∈ ω for every a ∈ A \ {a1, a2}, if |A| > 2 then ω = A× A.

If |A| = 2 and ω 6= A×A then ω = {(a, a), (a, b), (b, b)}. This case cannot happen because
the corresponding relation ρ is not preserved by any idempotent WNU.

Thus, we assume that ω = A× A.
Let us show that for any a1, a2, a3 ∈ A there exists a unique a4 such that (a1, a2, a3, a4) ∈ ρ.

For every a ∈ A put λa(x1, x2) = ∃y2ρ(x1, x2, a, y2). It is easy to see that σ ( λa ⊆ ω.
Therefore λa = ω = A × A for every a. We consider the unary relation defined by δ(x) =
ρ(a1, a2, a3, x). By the above fact δ is not empty. If δ contains more than one element, then
we get a contradiction with the fact that there are no proper subuniverses.

Then ρ is a strongly rich relation. By Theorem 8.8, there exist an Abelian group (A; +)
and bijective mappings φ1, φ2, φ3, φ4 : A→ A such that

ρ = {(a1, a2, b1, b2) | φ1(a1) + φ2(a2) + φ3(b1) + φ4(b2) = 0}.

We know that (a, a, b, b) ∈ ρ for any a, b ∈ A, ρ(x1, x2, y1, y2) = ρ(y1, y2, x1, x2). Then without
loss of generality we can assume that φ1(x) = φ3(x) = x, φ2(x) = φ4(x) = −x.

Since w is a special WNU, it follows from Lemma 8.9 that w on A is defined by x1+. . .+xm.
Therefore, the relation ζ ⊆ A × A × A defined by ζ = {(b1, b2, b3) | b1 − b2 + b3 = 0} is
preserved by w. If (A; +) is not simple, then there exists a subuniverse A′ ( A contradicting
our assumption. Therefore, (A; +) is a simple Abelian group.
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Corollary 8.10.1. Suppose σ ⊆ A2 is an irreducible congruence, ρ(x1, x2, y1, y2) is a bridge
from σ to σ such that ρ(x, x, y, y) defines a full relation. Then there exists a prime number p
and a relation ζ ⊆ A× A× Zp such that (x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ σ and pr1,2 ζ = σ∗.

Lemma 8.11. Suppose ρ is an optimal bridge from σ1 to σ2, σ1 and σ2 are different irreducible
congruences. Then ρ̃ ) σ2, where ρ̃(x, y) = ρ(x, x, y, y).

Proof. It is easy to see that σ1 ⊆ ρ̃ and σ2 ⊆ ρ̃. Therefore, if σ1 6⊆ σ2, then ρ̃ ) σ2.
Assume that σ1 ( σ2. Assume the contrary, that is, ρ(x, x, y, y) = σ2(x, y).
First, we want to get the following property: for every (a, b, c, d) ∈ ρ we have (a, d) ∈ σ2.

Put ρ1(x1, x2, y1, y2) = ρ(x1, x2, y1, y2) ∧ σ2(x1, y2). If ρ1 is a bridge then we replace ρ by
ρ1. Assume that ρ1 is not a bridge, then for every (a, b, c, d) ∈ ρ with (a, d) ∈ σ2 we have
(a, b) ∈ σ1. Put ρ2(x1, x2, y1, y2) = ∃z ρ(x1, x2, z, y1) ∧ σ2(x1, y2) and replace ρ by ρ2.

Second, we replace ρ by the relation defined by ρ(x1, x2, y1, y2) ∧ σ∗1(x1, x2) ∧ σ∗2(y1, y2),
which has the same properties.

Let D0 be the domain of the congruences σ1 and σ2. We build a sequence of subsets
D0, D1, . . . , Ds (not necessarily subuniverses) such that for every i there exists a unary oper-
ation hi : D0 → D0 such that hi(hi(x)) = hi(x), hi(D0) = Di, and hi preserves the relation ρ.
It is not hard to see that hi(w(x1, . . . , xm)) is an idempotent WNU on Di. By wi we denote a
special WNU on Di that can be derived from the idempotent WNU on Di. For any relation
δ and any formula Θ by δ(i) and Θ(i) we denote their restriction to Di. We require ρ(i) to be
a reflexive bridge from σ

(i)
1 to σ

(i)
2 for every i.

Suppose we have a sequence D0, D1, . . . , Ds. First, we want to show that for any (b1, b2) ∈
(σ∗2)(s) \ σ(s)

2 the unary operation g(x) = ws(b1, . . . , b1, x) maps a bridge ρ(s) to a bridge. To
prove this, we need to show that g(ρ(s)) contains a tuple (d1, d2, e1, e2) with (d1, d2) 6∈ σ1. We
know that there exists (a1, a2, b1, b2) ∈ ρ. Since (a1, b2) ∈ σ2, we have (a1, b1) /∈ σ2. Since σ2 is
irreducible, pr1,3(ρ) contains (b1, b2). Since ρ(x, x, y, y) = σ2(x, y), there exists (b1, b

′
1, b2, b

′
2) ∈

ρ(s) such that (b1, b
′
1) /∈ σ1. Restrict ws to the equivalence class of σ

(s)
2 containing b1. The

obtained operation and the equivalence class we denote by w′ and E, correspondingly. Put
ρ′ = ρ ∩ (E2 × D2

s) and σ′1 = σ
(s)
1 ∩ E2. Let ω ⊆ σ∗1 ∩ E2 be a minimal relation compatible

with σ′1 such that ω ) σ′1. It is not hard to check that the formula

∃y1∃y2 ρ′(x1, x2, y1, y2) ∧ ρ′(x′1, x′2, y1, y2) ∧ ω(x1, x2) ∧ ω(x′1, x
′
2)

defines a reflexive bridge ρ′′(x1, x2, x
′
1, x
′
2) from σ′1 to σ′1. By Theorem 8.10, there exists a

prime number p and a relation ζ ⊆ E × E × Zp such that (x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ σ′1 and
pr1,2 ζ = ω. Therefore, for some (e1, e2) ∈ ω we have (ws(b1, . . . , b1, e1), ws(b1, . . . , b1, e2)) /∈ σ1
and the unary operation g(x) = ws(b1, . . . , b1, x) maps the bridge ρ(s) to a bridge.

Consider two cases. Case 1: there exists (b1, b2) ∈ (σ∗2)(s)\σ(s)
2 such that ws(b1, . . . , b1, x) 6=

x on D(s). Then put hs+1(x) = ws(b1, . . . , b1, hs(x)) and Ds+1 = hs+1(D0). Thus, we made
our sequence longer.

Case 2: For any (b1, b2) ∈ (σ∗2)(s) \ σ(s)
2 we have ws(b1, . . . , b1, x) = x on Ds. Assume that

there exist (a1, a2, a3, a4), (a
′
1, a2, a3, a4) ∈ ρ(s) such that (a1, a

′
1) /∈ σ1. Since ws preserves ρ(s),

we have

(ws(a
′
1, a1, . . . , a1), ws(a2, . . . , a2, a1), ws(a3, . . . , a3, a1), ws(a4, . . . , a4, a1)) ∈ ρ(s).

Since (a1, a4) ∈ σ2 and (a1, a2), (a
′
1, a2) ∈ σ2, we have (a1, a3), (a2, a3), (a3, a4) ∈ (σ∗2)(s) \ σ(s)

2 .
Therefore, the above tuple equals (a′1, a1, a1, a1) and belongs to ρ(s), which contradicts our
assumptions. In the same way we can show that (a1, a2, a3, a4), (a1, a2, a

′
3, a4) ∈ ρ(s) implies

(a3, a
′
3) ∈ σ2.
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Consider (a1, a2, b1, b2) ∈ ρ(s) with (b1, b2) /∈ σ2 and the formula

Θ = ρ(z, x1, x2, x3) ∧ ρ(z′, x1, x
′
2, x
′
3) ∧ ρ(z, x4, x5, x6) ∧ ρ(z′, x4, x

′
5, x
′
6).

Suppose Θ(x2, x
′
2, x5, x

′
5) defines a relation ε. Since hs(hs(x)) = hs(x) and hs preserves ρ, the

formula Θ(s)(x2, x
′
2, x5, x

′
5) defines the relation ε(s). By sending (z, x1, x2, x3) to (a1, a2, b1, b2),

(z′, x1, x
′
2, x
′
3) to (a2, a2, a2, a2), (z, x4, x5, x6) to (a1, a2, b1, b2), (z′, x4, x

′
5, x
′
6) to (a2, a2, a2, a2),

we show that (b1, a2, b1, a2) ∈ ε. Assume that ε(s) is not a bridge, then there exists (a, a, b, c) ∈
ε(s) such that (b, c) /∈ σ2. This contradicts the rectangularity of the first and third variables
of ρ(s).

Let us show that ε is also a bridge. Assume the contrary. Then without loss of gener-
ality we assume that there exists (d0, d0, d1, d2) ∈ ε such that (d1, d2) /∈ σ2. Put δ0(y, z) =
∃x ε(x, x, y, z). Since σ2 is irreducible, we have (b1, b2) ∈ δ0 and there exists d such that
(d, d, b1, b2) ∈ ε, which means that (hs(d), hs(d), b1, b2) ∈ ε(s). This contradiction proves that ε
is a bridge. By sending (z, x1, x2, x

′
2, x3, x

′
3) to (a1, a2, b1, b1, b2, b2) and (z′, x4, x5, x

′
5, x6, x

′
6) to

(a1, a1, a1, a1, a1, a1) we can show that (b1, b1, a1, a1) ∈ ε. Since we can compose the bridges ρ
and ε, we get a contradiction with the fact that ρ is optimal.

8.4 Previous reductions

Theorem 8.12. Suppose D(0), D(1), . . . , D(s) is a strategy for Ω, the solution set of Ω(i) is
subdirect for every i ∈ {0, 1, . . . , s}, j < s, D(s+1) is a proper reduction, at least one of the
two reductions D(j+1), D(s+1) is nonlinear, (Ω(j)(x1, . . . , xn))(s+1) defines a nonempty relation.
Then (Ω(j+1)(x1, . . . , xn))(s+1) defines a nonempty relation.

Proof. Assume the contrary. Let {x1, . . . , xn, y1, . . . , yt} be the set of all variables appearing
in Ω. Suppose Ω(j)(x1, . . . , xn, y1, . . . , yt) defines the relation ρ. We consider the type of the
reduction D(j+1) and the type of the reduction D(s+1).

D(s+1) is an absorbing reduction. Since Ω(s)(x1, . . . , xn, y1, . . . , yt) defines a subdirect
relation, Lemma 7.5 implies that Ω(s+1)(x1, . . . , xn, y1, . . . , yt) defines a nonempty relation.

D(j+1) is a PC reduction. First, using the definition of a PC subuniverse, for every
variable yi we choose a congruence on D

(j)
yi such that D

(j+1)
yi is an equivalence class of this

congruence. Second, we factorize the variables y1, . . . , yt of ρ by these congruences and replace
these variables by a set of PC variables. As a result we get a relation ρ′(x1, . . . , xn, z1, . . . , zk),
where the domain of zi is a PC algebra for every i. By ρl we denote the relation obtained
from ρ′ by restricting of the variables x1, . . . , xn to D(l). Obviously, ρj = ρ′.

Since ρ is subdirect, every variable zi takes on all values in ρj. Let us prove by induction
on l ∈ {j, . . . , s} that the variable zi either takes on all values in ρl, or just one value. Let l
be the minimal number such that this is not true. Then zi takes on all values in ρl−1.

Let us consider the type of the reduction D(l). If it is an absorbing or central reduction,
then by Corollaries 7.1.1, 7.6.1 we get a center or a binary absorbing set on the domain of zi
and therefore on the domain D

(j)
yq for some variable yq. This contradicts the fact that D(j+1)

is a PC reduction. Similarly, if it is a PC or linear reduction then we get a contradiction
with Corollaries 7.11.1 and 7.15.1 correspondingly. Thus, we know that every variable zi of
ρs either takes on all values, or just one value.

Assume that D(s+1) is a central reduction or a linear reduction. Let 0 be the value in the
domain of every variable zi corresponding to the reduction D(j+1). Let us consider the tuple
(a1, . . . , an, b1, . . . , bk) ∈ ρs with the maximal number of 0s such that a1, . . . , an ∈ D(s+1).
Without loss of generality assume that bi = 0 for every i ∈ {k′ + 1, . . . , k}. Then we consider
the relation ρ′s defined by ρs(x1, . . . , xn, z1, . . . , zk′ , 0, . . . , 0). Since ρ(s) is subdirect, every
variable zi takes on value 0 in ρ′s. Therefore, z1, . . . , zk′ take on all values from their domains
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in ρ′s. By Corollaries 7.6.1, 7.15.1, if we restrict variables x1, . . . , xn of ρ′s to D(s+1), then we
restrict the remaining variables of ρ′s to a center or to a linear subuniverse. Hence, we get a
center or a linear subuniverse on the domain of zi. This contradicts the fact that D(j+1) is a
PC reduction.

Assume that D(s+1) is a PC reduction. We factorize variables x1, . . . , xn of ρs by (s +
1) and replace these variables by PC variables u1, . . . , uh. As a result we get a relation
ρ′′(u1, . . . , uh, z1, . . . , zk). By Lemma 7.11, ρ′′ can be represented as a conjunction of binary
relations with the parallelogram property. Since ρ(s) is subdirect, we can not have a binary
relation involving a variable from {u1, . . . , uh} and a variable from {z1, . . . , zk}. This means
that if we put zi = 0 for every i we do not reduce the projection of ρ′′ onto the first h variables.
This contradicts our assumption.

D(s+1) is a central reduction, D(j+1) is an absorbing or central reduction. Let
N be the maximal number such that there exists a tuple in ρ with the first N elements
from D(s+1) and the last t elements from D(j+1). Let the relation ρ′ be obtained from ρ by
restriction of the first n variables to D(s). We consider the relation ρ′ as a ternary relation
ρ′ ⊆ (D

(s)
x1 ×· · ·×D

(s)
xN )×(D

(s)
xN+1×· · ·×D

(s)
xn )×(D

(j)
y1 ×· · ·×D

(j)
yt ), where D

(s+1)
x1 ×· · ·×D(s+1)

xN is

a center of D
(s)
x1 ×· · ·×D

(s)
xN , D

(s+1)
xN+1×D

(s)
xN+2×· · ·×D

(s)
xn is a center of D

(s)
xN+1×D

(s)
xN+2×· · ·×D

(s)
xn ,

and D
(j+1)
y1 × · · · ×D(j+1)

yt is a center or a binary absorbing set in D
(j)
y1 × · · · ×D

(j)
yt . This gives

us a contradiction with Corollary 7.9.1.
D(s+1) is a central reduction, D(j+1) is a linear reduction. We factorize the last

t variables of ρ by (j + 1) and restrict the first n variables to D(s). As a result we get a
relation ρ′(x1, . . . , xn, z1, . . . , zt), where the domain of zi is a linear algebra for every i. By
Corollary 7.6.1, if we restrict variables x1, . . . , xn of ρ′ to D(s+1) then we restrict the remaining
variables to a center, which is not possible for a linear algebra.

D(s+1) is a linear reduction, D(j+1) is an absorbing or central reduction. By ρ′

we denote the relation obtained from ρ by the restriction of the variables x1, . . . , xn to D(s)

and factorization of them by (s + 1). By Corollaries 7.1.1, 7.6.1, if we restrict the variables
y1, . . . , yt of ρ′ to D(j+1), then we get a restriction of the remaining variables to a center or a
binary absorbing subuniverse, which is not possible for linear algebra.

D(s+1) is a PC reduction, D(j+1) is an absorbing, central, or linear reduction.
Again, using the definition of a PC subuniverse, for every variable xi we choose a congruence
on D

(s)
xi such that D

(s+1)
xi is an equivalence class of this congruence. Then, we factorize the

variables x1, . . . , xn of ρ by these congruences and replace these variables by a set of PC
variables. As a result we get a relation ρ′(z1, . . . , zk, y1, . . . , yt), where the domain of zi is a
PC algebra for every i. Let 0 be the value in the domain of every variable zi corresponding to
the reduction D(s+1). Let us consider a tuple from ρ′ with the maximal number of elements
equal to 0 and the last t elements from D(j+1). Without loss of generality assume that this
tuple is (a1, . . . , ak′ , 0, . . . , 0, b1, . . . , bt), where ai 6= 0 for every i ∈ {1, . . . , k′}. Let us consider
the relation ρ′′(z1, . . . , zk′ , y1, . . . , yt) defined by ρ′(z1, . . . , zk′ , 0, . . . , 0, y1, . . . , yt). It is easy to
see that every variable zi takes on all values in ρ′′. By Corollaries 7.1.1, 7.6.1, 7.15.1, the
restriction of y1, . . . , yt to D(j+1) implies the restriction of each of the variables z1, . . . , zk′ to a
binary absorbing subuniverse, a center, or a linear subuniverse. This contradicts the definition
of a PC reduction.

Corollary 8.12.1. Suppose Θ is a cycle-consistent CSP instance, D(0), D(1), . . . , D(s) is a
strategy for Θ, Υ ∈ ExpCov(Θ) is a tree-formula, x is a parent of x1 and x2, B is a center of

D
(s)
x , or B is a PC subuniverse of D

(s)
x and D

(s)
y has no binary absorption and center for every

y. Then the pp-formula Υ(s)(x1, x2) defines a binary relation with a nonempty intersection
with B ×B.
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Lemma 8.13. Suppose D(0), D(1), . . . , D(s) is a strategy for the constraint ρ(x1, . . . , xn), D(s+1)

is a linear reduction,

(b1, . . . , bt, at+1, . . . , an) ∈ ρ,
(a1, . . . , at, bt+1, . . . , bn) ∈ ρ,
(b1, . . . , bt, bt+1, . . . , bn) ∈ ρ,

(a1, . . . , at, at+1, . . . , an) ∈ D(s+1).

Then there exists (d1, d2, . . . , dn) ∈ ρ(s+1).

Proof. Let I be the set of all i such that D
(0)
xi is not linear. We prove by induction on the sum∑

i∈I |D
(0)
xi |.

If s = 0, then we put b′i = w(bi, . . . , bi, ai) for every i. Obviously, (b′1, . . . , b
′
n) ∈ ρ(s+1).

From here on we assume that s > 0. Put

Ω = ρ(y1, . . . , yt, xt+1, . . . , xn) ∧ ρ(x1, . . . , xt, yt+1, . . . , yn) ∧ ρ(y1, . . . , yt, yt+1, . . . , yn).

Since ρ(j) is subdirect, the solution set of Ω(j) is also subdirect for every j ∈ {0, 1, . . . , s}.
If (Ω(1)(x1, . . . , xn))(s+1) is not empty, then we can apply the inductive assumption to ρ(1)

to complete the proof.
Suppose (Ω(1)(x1, . . . , xn))(s+1) is empty. Since (Ω(x1, . . . , xn))(s+1) is not empty, if D(1) is

a nonlinear reduction then we get a contradiction with Theorem 8.12.
It remains to consider the case when D(1) is linear. Suppose Ω(x1, . . . , xn, y1, . . . , yn) defines

the relation ρ′. By ρ′′ we denote the relation obtained from ρ′ by factorization of y1, . . . , yn
by (1). For an element b by b(1) we denote the equivalent class containing b.

We consider two cases. Case 1. There does not exist a tuple (c1, . . . , cn, d1, . . . , dn) ∈ ρ′
such that c1, . . . , cn ∈ D(s+1) and d1, . . . , dt ∈ D(1) (we do not require dt+1, . . . , dn to be in
D(1)). Put

ε(x1, . . . , xn, z1, . . . , zt) = ∃zt+1 . . . ∃zn ρ′′(x1, . . . , xn, z1, . . . , zn).

Put b′i = w(bi, . . . , bi, ai). Since D(1) is a linear reduction and

(a1, . . . , an, b
(1)
1 , . . . , b

(1)
t ), (b1, . . . , bn, a

(1)
1 , . . . , a

(1)
t ), (b1, . . . , bn, b

(1)
1 , . . . , b

(1)
t ) ∈ ε,

we have
(b′1, . . . , b

′
n, a

(1)
1 , . . . , a

(1)
t ), (b′1, . . . , b

′
n, b

(1)
1 , . . . , b

(1)
t ) ∈ ε

We know that (b′1, . . . , b
′
n) ∈ D(1). Let us restrict the variables x1, . . . , xn of the relation ε to

D(1). The obtained relation we denote by ε′. It is easy to find a strategy E(1), . . . , E(s) for
ε′(x1, . . . , xn, z1, . . . , zt) such that E

(j)
xi = D

(j)
xi and E

(j)
zi contains {a(1)i } for every i and j. By

E(s+1) we denote the reduction of E(s) such that E
(s+1)
xi = D

(s+1)
xi and E

(s+1)
zi = {a(1)i } for every

i. Then we apply the inductive assumption for ε′ and a strategy E(1), . . . , E(s) to get a tuple
in ε′(s+1). This contradicts our assumption.

Case 2: There exists a tuple (c1, . . . , cn, d1, . . . , dn) ∈ ρ′ such that c1, . . . , cn ∈ D(s+1) and

d1, . . . , dt ∈ D(1). Then d
(1)
i = a

(1)
i for i ∈ {1, . . . , t}. Since c1, . . . , cn ∈ D(s+1), we have

c
(1)
i = a

(1)
i for every i ∈ {1, . . . , n}. Therefore,

(d1, . . . , dt, ct+1, . . . , cn, a
(1)
1 , . . . , a

(1)
t , a

(1)
t+1, . . . , a

(1)
n ) ∈ ρ′′,

(c1, . . . , ct, ct+1, . . . , cn, a
(1)
1 , . . . , a

(1)
t , d

(1)
t+1, . . . , d

(1)
n ) ∈ ρ′′,

(d1, . . . , dt, ct+1, . . . , cn, a
(1)
1 , . . . , a

(1)
t , d

(1)
t+1, . . . , d

(1)
n ) ∈ ρ′′.
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Let us restrict the variables x1, . . . , xn of the relation ρ′′ to D(1). The obtained relation we de-
note by ε. In the same way as in case 1 we define a strategy E(1), . . . , E(s) for ε(x1, . . . , xn, z1, . . . , zn)

and a reduction E(s+1) such that E
(j)
xi = D

(j)
xi for every i and j. Then we apply the inductive

assumption for ε and a strategy E(1), . . . , E(s) to get a tuple in ε(s+1). This contradicts our
assumption that (Ω(1)(x1, . . . , xn))(s+1) is empty.

8.5 Existence of a bridge

In this subsection we explain how to get a bridge from a rectangular relation and to compose
bridges appearing in the instance.

Lemma 8.14. Suppose ρ ⊆ A1 × · · · × An is a subdirect relation, the first and the last
variables of ρ are rectangular, there exist (b1, a2, . . . , an), (a1, . . . , an−1, bn) ∈ ρ such that
(a1, a2, . . . , an) /∈ ρ. Then there exists a bridge δ from Con(ρ, 1) to Con(ρ, n) such that
δ(x, x, y, y) is equal to the projection of ρ onto the first and the last variables.

Proof. The required bridge can be defined by

δ(x1, x2, y1, y2) = ∃z2 . . . ∃zn−1 ρ(x1, z2, . . . , zn−1, y1) ∧ ρ(x2, z2, . . . , zn−1, y2).

Theorem 8.15. Suppose Θ is a cycle-consistent connected formula such that every constraint
relation is a critical rectangular relation. Then for every constraints C,C ′ with the correspond-
ing variables x, x′ there exists a bridge δ from Con(C, x) to Con(C ′, x) such that δ(x, x, y, y)
contains all pairs of elements linked in Θ. Moreover, if Con(C ′′, x′′) 6= LinkedCon(Θ, x′′) for
some constraint C ′′ ∈ Θ and a variable x′′, then δ(x, x, y, y) contains all pairs of elements
linked in Θ′, where Θ′ is obtained from Θ by replacement of every constraint relation by its
cover.

Proof. Since C and C ′ are connected, there exists a path z0C1z1C2z2 . . . Ct−1zt−1Ctzt, where
z0 = x, zt = x′, C1 = C, Ct = C ′, and Ci and Ci+1 are adjacent in zi for every i.

By Lemma 8.3, every relation defined by Con(C0, x0) for some C0 and x0 is an irreducible
congruence. Suppose σi is an optimal bridge from Con(Ci, zi) to Con(Ci+1, zi), δi is a bridge
from Con(Ci, zi−1) to Con(Ci, zi) from Lemma 8.14 for every i. Then we compose all bridges
together and define a new bridge δ(u0, u

′
0, vt, v

′
t) by

∃u1∃u′1∃v1∃v′1 . . . ∃ut−1∃u′t−1∃vt−1∃v′t−1 δ1(u0, u′0, v1, v′1)∧
t−1∧
i=1

(σi(vi, v
′
i, ui, u

′
i) ∧ δi+1(ui, u

′
i, vi+1, v

′
i+1)). (5)

Since Θ is cycle-consistent, if x = x′ then δ is a reflexive bridge from Con(C, x) to Con(C ′, x).
Thus we proved that any two constraints with a common variable are adjacent.

Since the instance Θ is cycle-consistent, there exists a path in Θ starting at x and ending at
x′ that connects any pair of elements linked in Θ. Since every pair of constraints with common
variable are adjacent, we can assume that the above path z0C1z1C2z2 . . . Ct−1zt−1Ctzt satisfies
this property. Then it is easy to check that δ(x, x, y, y) contains all pairs of elements linked
in Θ.

To prove the remaining part of the theorem, assume that Con(C ′′, x′′) 6= LinkedCon(Θ, x′′)
for some constraint C ′′ ∈ Θ and a variable x′′. For any bridge ρ, by ρ̃ we denote binary relation
defined by ρ(x, x, y, y). First, observe that any bridge ρ from σ1 to σ2 defined by Lemma 8.14
satisfies one of the following properties:
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1. Con(ρ̃, 1) = σ1 and Con(ρ̃, 2) = σ2,

2. Con(ρ̃, 1) ) σ1 and Con(ρ̃, 2) ) σ2.

Similarly, one of the above properties holds for any reflexive bridge. Thus, every bridge in (5)
satisfies one of the above properties.

By the first part of the theorem Opt(Con(C ′′, x′′)) ) Con(C ′′, x′′). It is not hard to see
that if we join bridges together as in (5) and at least one of the bridges satisfies property 2
then the obtained bridge satisfies property 2. We may assume that any path goes through
the variable x′′, which guarantees that every bridge we obtain satisfies property 2. Thus, we
showed that Opt(Con(C0, x0)) ) Con(C0, x0) for any constraint C0 ∈ Θ and any variable x0
in it.

To complete the proof, notice that the composition of bridges δi and σi in (5) gives a bridge
ρi such that ρi(x, x, y, y) contains the projection of the cover of Ci onto the variables zi−1 and
zi.

Corollary 8.15.1. Suppose Θ is a cycle-consistent connected formula such that every con-
straint relation is a critical rectangular relation. Then for every constraints C,C ′ with a
common variable x there exists a bridge δ from Con(C, x) to Con(C ′, x) such that δ(x, x, y, y)
contains the relation LinkedCon(Θ, x).

8.6 Growing population divides into colonies.

In this section we prove a theorem that clarifies the inductive strategy used in the proof of
Theorem 9.8. To simplify explanation we decided to avoid our usual terminology. Instead, we
argue in terms of organisms, reproduction, and friendship.

We consider a set X whose elements we call organisms. At every moment some organisms
give a birth to new organisms, as a result we get a sequence of organisms X1 ⊆ X2 ⊆ X3 ⊆ . . . ,
where Xi ⊆ X and |Xi| <∞ for every i. Note that every organism has only one parent.

Every organism has a characteristic that we call strength, that is a mapping ξ : X →
{1, 2, . . . , S}. Also we have a binary reflexive symmetric relation F on the set X, which we
call friendship. For an organism x by BirthDate(x) we denote the minimal i such that x ∈ Xi.
A sequence of organisms x1, . . . , xn such that xi is a friend of xi+1 for every i is called a path.

Theorem 8.16. Suppose X1, X2, X3, . . ., ξ, and F satisfy the following conditions:

1. A child is always weaker than its parent. If y is the parent of x, then ξ(y) > ξ(x).

2. Older friends are parents’s friends. If BirthDate(y) < BirthDate(x) and x is a
friend of y, then the parent of x is a friend of y. Also a child and its parent can be
friends.

3. Friends’s kids can be friends. If BirthDate(x) = BirthDate(y) and x is a friend of
y, then the parents of x and y are friends.

4. No one can have infinitely many friends. |{y ∈ X | (x, y) ∈ F}| <∞ for every
x ∈ X.

5. Reproduction never stops. |
⋃
iXi| =∞.

Then there exists N such that XN can be divided into two nonempty disjoint sets X ′N and X ′′N
such that no friendship between X ′N and X ′′N .
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Proof. Choose a maximal strength s such that we have infinitely many organisms of strength
s. Then infinitely many of them have the same parent, hence, there exists a parent reproducing
infinitely many times.

For every x and a strength s by KIDs(x, s) we denote all children y of x such that there
exists a path from x to y with all the variables in the path stronger than s. We consider the
maximal s0 such that KIDs(x, s0) is infinite for some variable x. Note that this implies that
x is stronger than s0 + 1.

By Y we denote the set of all organisms y such that there exists a path from x to y with
all the variables in the path stronger than s0 + 1. Note that Y includes x. Let us show that
Y is finite. Assume the opposite. Let s be the maximal strength such that we have infinitely
many organisms of this strength in Y . We consider all the parents of organisms from Y with
strength s. It is not hard to see that all of them are also from Y . Since parents are stronger
than children, we can have only finitely many of them. Therefore, there exists an organism
z with infinitely many children from Y , which means that KIDs(z, s0 + 1) is infinite. This
contradicts the maximality of s0 and proves that Y is finite.

Let t be the moment such that all friends of organisms from Y get new friends before t.
Consider an organism y from KIDs(x, s0) with BirthDate(y) > t. Choose a path from x to
y in XBirthDate(y) with all organisms stronger than s0. We consider the last organism u in the
path such that BirthDate(u) < BirthDate(y). Considering the moment BirthDate(y) − 1 we
can show that there exists a path from x to u with all organisms but u stronger than s0 + 1.
Since u cannot get a new friend after the moment t we get a contradiction with the fact that
u gets a new friend at the moment BirthDate(y).

9 Proof of the Main Theorems

9.1 Existence of a next reduction

Lemma 9.1. Suppose D(0), D(1), . . . , D(s) is a strategy for a cycle-consistent CSP instance Θ,
D(>) is a reduction of Θ(s).

1. If there exists a 1-consistent reduction contained in D(>) and D(s+1) is maximal among
such reductions, then for every variable y of Θ there exists a tree-formula Υy ∈ Coverings(Θ)

such that Υ
(>)
y (y) defines D

(s+1)
y .

2. Otherwise, there exists a tree-formula Υ ∈ Coverings(Θ) such that Υ(>) has no solutions.

Proof. The proof is based on the constraint propagation procedure. We consider the instance
Θ(s). We start with an empty set Υy for every y.

Then we introduce the recursive algorithm that gives a correct tree-formula Υy for every
variable y. If at some step the obtained instance is 1-consistent, then we are done. Otherwise,
we consider a constraint C that breaks 1-consistency. Then the current restrictions of the
variables z1, . . . , zl in the constraint C = ρ(z1 . . . , zl) implies a stronger restriction of some

variable zi and the corresponding domainD
(s)
zi . Then we change the tree-formula Υzi describing

the reduction of the variable zi in the following way Υzi := C ∧Υz1 ∧ · · · ∧Υzl .
Note that we have to be careful with all the variables appearing in different Υy to avoid

collisions. Every time we join Υu and Υv together we rename the variables so that they do
not have common variables.

Obviously, this procedure either gives a maximal 1-consistent CSP instance whose domains
are defined by tree-formulas Υy for every y, or it gives a contradiction, that is, a tree-formula
that defines an empty-set, which can be taken as Υ.
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Theorem 9.2. Suppose D(0), D(1), . . . , D(s) is a strategy for a cycle-consistent CSP instance
Θ.

• If D
(s)
x has a binary absorbing set B then there exists a 1-consistent absorbing reduction

D(s+1) of Θ(s) with D
(s+1)
x ⊆ B.

• If D
(s)
x has a center B then there exists a 1-consistent central reduction D(s+1) of Θ(s)

with D
(s+1)
x ⊆ B.

• If D
(s)
y has no binary absorption and center for every y but there exists a proper PC

subuniverse B in D
(s)
x for some x, then there exists a 1-consistent PC reduction D(s+1)

of Θ(s) with D
(s+1)
x ⊆ B.

Proof. Without loss of generality we assume that B is a minimal center, minimal binary
absorbing set, or minimal PC subuniverse. Let us reduce the domainD

(s)
x toB. By Lemma 9.1,

either we get a contradiction, or we get a 1-consistent reduction. We consider two cases. If we
get a contradiction, then we consider the tree-formula Υ from Lemma 9.1. First, we consider
the minimal set of variables {x1, . . . , xk} from Υ whose parent is x such that Υ(s)(x1, . . . , xk)
does not have tuples in Bk. Since Θ is 1-consistent, k > 2. If B is a binary absorbing set, then
we get a contradiction with Lemma 7.5. For other cases with k = 2 we get a contradiction from
Corollary 8.12.1. If k > 3 and B is a center then we get a contradiction with Lemma 7.9.3. If
k > 3 and B is a PC subuniverse then we get a contradiction with Corollary 7.11.2.

Thus, by Lemma 9.1, we have a 1-consistent reduction D(>) of Θ(s) such that for every vari-
able y the new domain D

(>)
y can be defined by a tree-formula Υy. By Corollaries 7.1.1, 7.6.1,

7.11.1, for every y the domain D
(>)
y is a center, a binary absorbing set, or a PC subuniverse,

correspondingly.

Theorem 9.3. Suppose D(0), D(1), . . . , D(s) is a strategy for a cycle-consistent CSP instance
Θ, D(>) is a nonlinear 1-consistent reduction. Then there exists a minimal 1-consistent re-
duction D(s+1) of the same type such that D

(s+1)
x ⊆ D

(>)
x for every variable x.

Proof. Let us consider a minimal by inclusion 1-consistent reduction D(s+1) of Θ(s) such that
D(s+1) has the same type as D(>) and D

(s+1)
x ⊆ D

(>)
x for every variable x.

Assume that for some z the domainD
(s+1)
z is not a minimal center/binary absorbing set/PC

subuniverse. Then choose a minimal center/binary absorbing set/PC subuniverse B of D
(s)
z

contained in D
(s+1)
z . We consider the reduction D(⊥) of Θ(s) such that D

(⊥)
z = B, D

(⊥)
y = D

(s+1)
y

if y 6= z. Since D
(s+1)
y is a minimal by inclusion reduction, Lemma 9.1 implies that there

exists a tree-formula Υ ∈ Coverings(Θ) such that Υ(⊥) has no solutions. Again, we consider
a minimal set of variables {z1, . . . , zk} from Υ whose parent is z such that Υ(s+1)(z1, . . . , zk)

does not have tuples in Bk. Since D
(s+1)
z is 1-consistent and B ( D

(s+1)
z , we have k > 2. If B

is a binary absorbing set, then we get a contradiction with Lemma 7.5. If B is a center and
k = 2, then we get a contradiction from Corollary 8.12.1. If k > 3 and B is a center then
we get a contradiction with Lemma 7.9.3. It remains to consider the case when B is a PC
subuniverse. Choose a minimal set of variables y1, . . . , yt from Υ whose parent is not z such
that (Υ(s)(z1, . . . , zk, y1, . . . , yt))

(s+1) does not have tuples with the first k elements from B. If
t = 0 and k = 2 then we get a contradiction with Corollary 8.12.1. If t+ k > 3 then we get a
contradiction with Corollary 7.11.2.

Theorem 9.4. Suppose D(>) is a 1-consistent PC reduction for a cycle-consistent irreducible
CSP instance Θ, Θ is not linked and not fragmented. Then there exists a minimal strat-
egy D(0), D(1), . . . , D(s) for Θ such that the solution set of Θ(1) is subdirect, the reductions
D(2), . . . , D(s) are nonlinear, D

(s)
x ⊆ D

(>)
x for every variable x.
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Proof. Since Θ is not linked, there exists a maximal congruence σx on Dx for a variable x of
Θ such that LinkedCon(Θ, x) ⊆ σx. Choose an equivalence class D

(1)
x of σx with a nonempty

intersection with D
(>)
x . For every variable y by Θ

(1)
y we denote the set of all elements of Dy

linked to an element of D
(1)
x . Since Θ is irreducible, the solution set of Θ(1) is subdirect. If

Dx/σx is a PC algebra, then D(1) is a PC reduction, otherwise, D(1) is a linear reduction.
We build the remaining part of the strategy in the following way. Suppose we already

have D(0), D(1), . . . , D(t), where the reductions D(2), . . . , D(t) are absorbing or central. If there
exists a binary absorption or a center on D

(t)
y for some y, then by Theorems 9.2, 9.3 we can

find the next minimal 1-consistent absorbing or central reduction D(t+1).
Suppose there is no a binary absorption and a center on D

(t)
y for every y. Put D

(⊥)
y =

D
(>)
y ∩D(t)

y for every variable y. First, let us show that D
(⊥)
y is a PC subuniverse of D

(t)
y for

every variable y. Consider a maximal congruence σ on Dy such that Dy/σ is a PC algebra. If
D(1) is a PC reduction, then Lemma 7.11 implies that either σ(1) has just one equivalence class,
or D

(1)
y /σ(1) is isomorphic to Dy/σ. Since the reductions D(2), . . . , D(t) are absorbing or central

and D
(1)
y /σ(1) has no binary absorption and center, D

(i+1)
y /σ(i+1) is isomorphic to D

(i)
y /σ(i) for

every i ∈ {1, . . . , t− 1}. Thus, we can prove that either σ(t) has just one equivalence class, or

D
(t)
y /σ(t) is a PC algebra, which means that D(⊥) is a PC reduction.

Then we apply Lemma 9.1 to find a 1-consistent reduction smaller than D(⊥). If we cannot
find it, then there exists a tree-formula Υ such that Υ(⊥) has no solutions. Choose a minimal
set of variables y1, . . . , yk from Υ such that (Υ(t)(y1, . . . , yk))

(⊥) is empty. If k > 3 then we get
a contradiction with Corollary 7.11.2.

Suppose k = 2. Let Fi be the subuniverse of Dy2 defined by ∃y1Υ(i)(y1, y2) ∧ y1 ∈ D(>)
y1 .

Then there exists a maximal PC congruence δ on Dy2 and an equivalence class E of δ such

that D
(>)
y2 ⊆ E and Ft ∩ E = ∅. It is easy to check that F1/δ

(1) contains more than one
element. Since the reductions D(2), . . . , D(t) are absorbing or central and Dy2/δ has no binary
absorption and center, Fi+1/δ

(i+1) is isomorphic to Fi/δ
(i) for every i ∈ {0, 1, . . . , t− 1}. This

contradicts the fact that Ft ∩ E = ∅.
This contradiction proves that there exists a 1-consistent reduction D(4) smaller than

D(⊥) such that for every variable y the new domain D
(4)
y can be defined by a tree-formula Υy.

By Corollary 7.11.1, for every y the domain D
(4)
y is a PC subuniverse. It remains to apply

Theorem 9.3 to find a minimal reduction D(t+1) smaller than D
(4)
y , put s = t + 1, and finish

the strategy.

9.2 Existence of a linked connected component

In this subsection we prove that all constraints in a crucial instance have the parallelogram
property, show that we can always find a linked connected component with required properties,
prove that we cannot loose the only solution while applying a minimal nonlinear reduction.

Theorem 9.5. Suppose D(0), . . . , D(s) is a minimal strategy for a cycle-consistent irreducible
CSP instance Θ, the constraint ρ(x1, . . . , xn) is crucial in D(s). Then ρ is a critical relation
with the parallelogram property.

Theorem 9.6. Suppose D(0), . . . , D(s) is a minimal strategy for a cycle-consistent irreducible
CSP instance Θ, Υ(x1, . . . , xn) is a subconstraint of Θ, the solution set of Υ(s) is subdirect,
Var(Υ) = {x1, . . . , xn, u1, . . . , ut},

Ω = Υy1,...,yk,v1,...,vt
x1,...,xk,u1,...,ut

∧Υyk+1,...,yn,vt+1,...,v2t
xk+1,...,xn,u1,...,ut

∧Υy1,...,yn,v2t+1,...,v3t
x1,...,xn,u1,...,ut

,
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the domains of the variables xj, yj are the same for every j ∈ {1, . . . , n}, the domains of the
variables ui, vi, vt+i, v2t+i are the same for every i ∈ {1, . . . , t}, Θ(s) has no solutions. Then
(Θ \Υ) ∪ Ω has no solutions in D(s).

Theorem 9.7. Suppose D(0), D(1) is a minimal strategy for a cycle-consistent irreducible CSP
instance Θ, Ω(1)(x1, . . . , xn) is a subconstraint of Θ(1), the solution set of Ω(1) is subdirect, Θ\Ω
has a solution in D(1), Θ has no solutions in D(1). Then there exist formulas Ω1, . . . ,Ωt ∈
Coverings(Ω) such that (Θ \ Ω) ∪ Ω1 ∪ · · · ∪ Ωt has no solutions in D(1) and Ω

(1)
i (x1, . . . , xn)

defines a subdirect key relation with the parallelogram property for every i.

Theorem 9.8. Suppose D(1) is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance Θ, Θ is crucial in D(1) and not connected. Then there exists an
instance Θ′ ∈ ExpCov(Θ) that is crucial in D(1) and contains a linked connected component
whose solution set is not subdirect.

Theorem 9.9. Suppose D(1) is a minimal 1-consistent nonlinear reduction of a cycle-consistent
irreducible CSP instance Θ. If Θ has a solution then it has a solution in D(1).

To prove these theorems we need to introduce a partial order on on the reductions (domain
sets). Suppose we have two domain sets D(>) and D(⊥). We say that D(⊥) 6 D(>) if for every

D
(⊥)
y one of the following conditions hold

1. there exists a variable x such that D
(⊥)
y = D

(>)
x .

2. there exists a variable x such that D
(⊥)
y ( D

(>)
x ; there does not exist a variable z such

that D
(⊥)
z = D

(>)
x .

We say that D(⊥) < D(>) if D(⊥) 6 D(>) and D(>) 66 D(⊥). It is not hard to see that the
relation 6 is transitive and there does not exist an infinite descending chain of reductions.

We prove theorems of this subsection simultaneously by the induction on the size of the
reductions (domain sets). Let D(⊥) be a domain set. Assume that Theorems 9.7, 9.8, and 9.9
hold if D(1) < D(⊥), and Theorems 9.5 and 9.6 hold if D(s) < D(⊥). Let us prove Theorems 9.7,
9.8, and 9.9 for D(1) = D(⊥), and Theorems 9.5 and 9.6 for D(s) = D(⊥).

Theorem 9.5. Suppose D(0), . . . , D(s) is a minimal strategy for a cycle-consistent irreducible
CSP instance Θ, the constraint ρ(x1, . . . , xn) is crucial in D(s). Then ρ is a critical relation
with the parallelogram property.

Proof. Since ρ(x1, . . . , xn) is crucial, ρ is a critical relation. Let Θ′ be obtained from Θ by
replacement of ρ(x1, . . . , xn) by all weaker constraints. By Lemma 6.1, Θ′ is cycle-consistent
and irreducible.

Assume that |D(s)
x | = 1 for every variable x. Since the reduction D(s) is 1-consistent, we

get a solution, which contradicts the fact that Θ has no solutions in D(s).
If we have a binary absorption, or a center, or a proper PC subuniverse on some domain

D
(s)
x , then by Theorems 9.2, 9.3, there exists a minimal nonlinear reduction D(s+1) for Θ. By

Lemma 8.2, Θ′(s) is cycle-consistent and irreducible. Hence, by Theorem 9.9 Θ′ has a solution
in D(s+1). Hence, ρ(x1, . . . , xn) is crucial in D(s+1). By the inductive assumption ρ has the
parallelogram property.

It remains to consider the case when ConLin(D
(s)
x ) is proper for every x such that |D(s)

x | > 1.
Let α be a solution of Θ′ in D(s). Let the projection of α onto the variables x1, . . . , xn be
(a1, . . . , an).
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Assume that ρ does not have the parallelogram property. Without loss of generality we
can assume that there exist c1, . . . , cn and d1, . . . , dn such that

(c1, . . . , ck, ck+1, . . . , cn) /∈ ρ,
(c1, . . . , ck, dk+1, . . . , dn) ∈ ρ,
(d1, . . . , dk, ck+1, . . . , cn) ∈ ρ,
(d1, . . . , dk, dk+1, . . . , dn) ∈ ρ.

Put

ρ′(x1, . . . , xn) = ∃y1 . . . ∃yn ρ(x1, . . . , xk, yk+1, . . . , yn)∧
ρ(y1, . . . , yk, xk+1, . . . , xn) ∧ ρ(y1, . . . , yk, yk+1, . . . , yn).

Obviously, ρ ( ρ′ and ρ′ ∈ Γ, therefore (a1, . . . , an) ∈ ρ′. Hence, there exist b1, . . . , bn such
that

(a1, . . . , ak, bk+1, . . . , bn) ∈ ρ,
(b1, . . . , bk, ak+1, . . . , an) ∈ ρ,
(b1, . . . , bk, bk+1, . . . , bn) ∈ ρ.

By Lemma 8.13, there exists a tuple (e1, . . . , en) ∈ ρ such that (ai, ei) ∈ ConLin(D
(s)
xi ) for

every i. It is easy to see that Θ(s) factorized by ConLin(D
(s)
x ) for every x has a solution

corresponding to α. By Lemma 7.15.1, the minimal linear reduction corresponding to this
solution is 1-consistent. We denote this reduction by D(s+1). Since Θ′ has a solution in D(s+1),
ρ(x1, . . . , xn) is crucial in D(s+1). We get a longer minimal strategy with smaller D(s+1),
hence by the inductive assumption the relation ρ is a critical relation with the parallelogram
property.

Theorem 9.6. Suppose D(0), . . . , D(s) is a minimal strategy for a cycle-consistent irreducible
CSP instance Θ, Υ(x1, . . . , xn) is a subconstraint of Θ, the solution set of Υ(s) is subdirect,
Var(Υ) = {x1, . . . , xn, u1, . . . , ut},

Ω = Υy1,...,yk,v1,...,vt
x1,...,xk,u1,...,ut

∧Υyk+1,...,yn,vt+1,...,v2t
xk+1,...,xn,u1,...,ut

∧Υy1,...,yn,v2t+1,...,v3t
x1,...,xn,u1,...,ut

,

the domains of the variables xj, yj are the same for every j ∈ {1, . . . , n}, the domains of the
variables ui, vi, vt+i, v2t+i are the same for every i ∈ {1, . . . , t}, Θ(s) has no solutions. Then
(Θ \Υ) ∪ Ω has no solutions in D(s).

Proof. Put Θ′ = (Θ\Υ)∪Ω. Assume that Θ′ has a solution in D(s). Then we build a sequence
of reductions D(s), D(s+1), . . . , D(q), which is a strategy for Υ(s) and a minimal strategy for
((Θ \ Υ) ∪ Ω)(s). Also we want Θ′ to have a solution in D(q), and the solution set of Υ(j) to
be subdirect for every j ∈ {s, . . . , q}.

We will prove that we can make this sequence longer while |D(q)
xi | > 1 for some i. Assume

that |D(q)
xi | = 1 for every i. Since D(s), D(s+1), . . . , D(q) is a strategy for Θ, Θ has a solution in

D(q), which contradicts the fact that Θ has no solutions in D(s).
If we have a binary absorption, or a center, or a proper PC congruence on some domain

D
(q)
x , then by Theorems 9.2, 9.3 there exists a minimal 1-consistent nonlinear reduction D(q+1)

for Θ ∪ Ω. By Lemma 8.2, Θ′(q) is cycle-consistent and irreducible. By Theorem 9.9 Θ′ has a
solution in D(q+1) and Υ has a solution in D(q+1). By Lemma 8.1, the solution set of Υ(q+1) is
subdirect. Thus, we made the sequence longer.
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It remains to consider the case when ConLin(D
(q)
x ) is proper for every x such that |D(q)

x | > 1.

Let α be a solution of Θ′ in D(s). For all variables x but u1, . . . , ut, let D
(q+1)
x be equal to

the equivalence class of ConLin(D
(q)
x ) corresponding to the solution α. Let the projection of

α onto the variables x1, . . . , xn be (a1, . . . , an). Suppose Υ(s)(x1, . . . , xn) defines the relation
ρ. Since α is a solution of Θ′(s), there exist b1, . . . , bn such that

(a1, . . . , ak, bk+1, . . . , bn) ∈ ρ,
(b1, . . . , bk, ak+1, . . . , an) ∈ ρ,
(b1, . . . , bk, bk+1, . . . , bn) ∈ ρ.

By Lemma 8.13, there exists a tuple (d1, . . . , dn) ∈ ρ such that (ai, di) ∈ ConLin(D
(q)
xi ) for

every i. Therefore, (Υ(s)(x1, . . . , xn))(q+1) is not empty. Let us show that (Υ(q)(x1, . . . , xn))(q+1)

is not empty. Assume the opposite. Let j > s be the minimal number such that the relation
defined by (Υ(j+1)(x1, . . . , xn))(q+1) is empty. If the reduction D(j+1) is not linear, we get a
contradiction with Theorem 8.12. If the reduction D(j+1) is linear then it follows from the
construction (see below) that (Υ(j+1)(x1, . . . , xn))(q+1) is not empty. Thus, we can prove that
(Υ(q)(x1, . . . , xn))(q+1) is not empty.

Let ρ′ be obtained from Υ(x1, . . . , xn, u1, . . . , ut) by restricting the variables x1, . . . , xn to

D(q+1). Let D
(q+1)
ui be the projection of ρ′ onto ui. By Corollary 7.15.1, the reduction D(q+1)

is a 1-consistent linear reduction. Thus, we get a longer strategy such that Θ′(q+1) has a
solution.

Theorem 9.7. Suppose D(0), D(1) is a minimal strategy for a cycle-consistent irreducible CSP
instance Θ, Ω(1)(x1, . . . , xn) is a subconstraint of Θ(1), the solution set of Ω(1) is subdirect, Θ\Ω
has a solution in D(1), Θ has no solutions in D(1). Then there exist formulas Ω1, . . . ,Ωt ∈
Coverings(Ω) such that (Θ \ Ω) ∪ Ω1 ∪ · · · ∪ Ωt has no solutions in D(1) and Ω

(1)
i (x1, . . . , xn)

defines a subdirect key relation with the parallelogram property for every i.

Proof. Let Σ be the set of all constraints defined by Υ(1)(x1, . . . , xn) where Υ ∈ Coverings(Ω).
It is easy to see that we can find Σ0 ⊆ Σ such that the instance (Θ(1) \ Ω(1)) ∪ Σ0 has no
solutions, but if we replace any constraint of Σ0 by all weaker constraints from Σ then we get
an instance with a solution.

Let Σ0 = {C1, . . . , Ct}. It is easy to see that for every i we can find a tuple αi such that
Ci is maximal without αi in Σ. Otherwise, we take a maximal constraint without α in Σ for
every α /∈ Ci, and replace Ci by all such constraints. Obviously, the instance does not get a
solution after the replacement.

By Corollary 8.5.1, Ci is a key constraint for every i. Therefore we get a sequence of
formulas Ω1, . . . ,Ωt ∈ Coverings(Ω) that define constraints C1, . . . , Ct in D(1). We choose
variables in the formulas so that the only common variables of Ω1, . . . ,Ωt are x1, . . . , xn. It
follows from Theorem 9.6 that Ci has the parallelogram property for every i.

To prove the next theorem we define several transformations of a CSP instance Θ.
Transformation T1(Θ): make the instance crucial in D(1). Using Remark 1, we

replace constraints by all weaker constraints until we get a CSP instance that is crucial in
D(1). After that we remove all isolated variables, that is, the variables that do not appear in
any constraint.

Below we assume that the instance Θ is crucial in D(1), which by Theorem 9.5 means that
every constraint in Θ has the parallelogram property.

Transformation T2(Θ, C1, C2, x): split two constraints with a common variable.
Assume that two constraints C1 and C2 have common variable x. Let Ωi be the set of all
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constraints C ∈ Θ such that Con(C, x) = Con(Ci, x) for i ∈ {1, 2}. Let Ω0 be the set of all
constraints C ∈ Θ \ (Ω1 ∪Ω2) containing x. Put σi = Con(Ci, x) for i ∈ {1, 2}. We transform
our instance in the following way.

1. We remove all constraints with x.

2. Choose 2 new variables x1 and x2.

3. Add all constraints from Ω0 twice (with x1 and x2 instead of x).

4. Add all constraints from Ω1 with x1 instead of x.

5. Add all constraints from Ω2 with x2 instead of x.

6. Add the constraints σ∗1(x1, x2) and σ∗2(x1, x2).

Lemma 9.10. Suppose D(1) is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance Θ, Θ is crucial in D(1), C1 and C2 are constraints of Θ with a
common variable x, C1 and C2 are not adjacent in x. Then the instance T2(Θ, C1, C2, x) has
no solutions in D(1).

Proof. Let Θ′ = T2(Θ, C1, C2, x), σ be the intersection of all congruences from Con(Ω0, x).
Assume that Θ′ has a solution in D(1). Suppose (x1, x2) = (a1, a2) in this solution. Put

Υ = σ1(x1, x) ∧ σ2(x2, x) ∧ σ(x2, x). It is not hard to see that Θ′ ∧ Υ has no solutions in
D(1) (otherwise we could take this solution as a solution to Θ(1)). We apply Theorem 9.7
to the subconstraint Υ(x1, x2). Then Υ(x1, x2) can be replaced by a sequence of formulas

Ω1, . . . ,Ωt ∈ Coverings(Ω). Assume that Ω
(1)
i (x1, x2) defines a relation ρi. It is easy to see

that every ρi is a reflexive relation with the parallelogram property, that is a congruence on
D

(1)
x1 . If the reduction D(1) is nonlinear then by ωi we denote the relation defined by Ωi(x1, x2).

If the reduction D(1) is linear then by ωi we denote the relation defined by Ω′i(x1, x2, u1) from
Lemma 8.7. We know from Lemma 8.7 and Lemma 8.6 that Con(ωi, 1)(1) = Con(ρi, 1) and
Con(ωi, 2)(1) = Con(ρi, 2).

Case 1. Assume that ρi 6= σ
(1)
1 for every i, then Con(ωi, 1) ⊇ σ1

∗. Hence ρi ⊇ (σ1
∗)(1) for

every i. Then we may put x1 = a1 and x = x2 = a2 to get a solution for Θ′ ∧Υ in D(1), which
contradicts our assumption.

Case 2. Assume that ρi = σ
(1)
1 for some i. Since (a1, a2) ∈ (σ1

∗)(1) \ σ1 and Con(ωi, 1)(1) =
Con(ρi, 1), we have Con(ωi, 1) 6⊇ σ1

∗. Hence Con(ωi, 1) = σ1. Suppose D(1) is a nonlinear
reduction. Υ(x1, x2) contains σ2∩σ, and therefore σ2∩σ ⊆ Con(ωi, 1) = σ1. In the same way
we can show that σ1 ∩ σ ⊆ σ2. Since, (a1, a2) ∈ σ \ σ1, by Lemma 8.4 C1 and C2 are adjacent
in x, which contradicts our assumptions. Similarly, if D(1) is a linear reduction, σ2 ∩ σ ∩
ConLin(Dx) ⊆ Con(ωi, 1) = σ1, σ1 ∩ σ ∩ ConLin(Dx) ⊆ σ2, (a1, a2) ∈ (σ ∩ ConLin(Dx)) \ σ1,
and Lemma 8.4 gives a contradiction.

For a Ω ⊆ Θ by MinVar(Ω,Θ) we denote the set of all variables x such that Con(C, x) is
minimal in Con(Θ, x) for some C ∈ Ω.

Transformation T3(Θ,Ω) for a connected component Ω. Let MinVar(Ω,Θ) =
{x1, . . . , xs}. Let us define the new instance in the following way.

1. Choose new variables x′1, . . . , x
′
s.

2. Replace the variables x1, . . . , xs in Θ \ Ω by x′1, . . . , x
′
s.

3. Add a copy of Ω with all the variables x1, . . . , xs replaced by x′1, . . . , x
′
s and all constraints

replaced by their covers.
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Lemma 9.11. Suppose D(1) is a proper minimal 1-consistent reduction of a cycle-consistent ir-
reducible CSP instance Θ, Θ is crucial in D(1), Ω is a connected component of Θ, LinkedCon(Ω, y) =
Con(C, y) for every variable y and every constraint C ∈ Ω with y, MinVar(Ω,Θ) 6= Var(Ω).
Then the instance T3(Θ,Ω) has no solutions in D(1).

Proof. By Ω′ we denote the copy of Ω we introduce in item 3 of the definition. Since all
constraints of Ω are rectangular and critical, they are also essential. Therefore, if the arity of
the constraint C is greater than 2, then by Lemma 8.14, Con(C, y) ( LinkedCon(Ω, y), which
means that every constraint in Ω is binary. We can imagine that we factorize all the variables
xi by the only congruence in Con(Ω, xi). In this case, every constraint relation from Ω can be
viewed as the equality relation and the cover of every constraint relation becomes the minimal
binary relation containing the equality relation. It is not hard to see that any congruence in
Con(Θ \ Ω, xi) factorized by the only congruence in Con(Ω, xi) contains this binary relation,
which means that every congruence in Con(Θ \ Ω, xi) contains LinkedCon(Ω′, x′i).

Assume that T3(Θ,Ω) has a solution in D(1) with

(x1, . . . , xs, x
′
1, . . . , x

′
s) = (b1, . . . , bs, b

′
1, . . . , b

′
s).

Since (bi, b
′
i) ∈ LinkedCon(Ω′, x′i) for every i, we can assign

(x1, . . . , xs, x
′
1, . . . , x

′
s) = (b1, . . . , bs, b1, . . . , bs).

to get a solution of Θ(1) (the remaining variables take on the same values). This contradiction
proves that T3(Θ,Ω) has no solutions in D(1).

Transformation T4(Θ,Ω, u) for a connected component Ω and a variable u. Let
MinVar(Ω,Θ) = {x1, . . . , xs}. Let us define the new instance in the following way.

1. Choose new variables x′1, . . . , x
′
s.

2. Rename the variables x1, . . . , xs by x′1, . . . , x
′
s in Θ \ Ω.

3. Add the covers of all constraints from Ω with x′1, . . . , x
′
s instead of x1, . . . , xs.

4. For every i and every σ ∈ Con(Θ \ Ω, xi) add the constraint σ∗(xi, x
′
i).

5. If u = xh, then add the constraint δh(xh, x
′
h), where ζ ∈ Con(Ω, xh) and δh = Opt(ζ).

Note that we allow to put ∅ instead of u.

Lemma 9.12. Suppose D(1) is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance Θ, Θ is crucial in D(1), Ω is a connected component of Θ, the solution
set of Ω is subdirect, Ω has a solution in D(1), LinkedCon(Ω, y) 6= Con(C, y) for some variable
y and some constraint C ∈ Ω, u ∈ MinVar(Ω,Θ) or u = ∅ and MinVar(Ω,Θ) 6= Var(Ω).
Then the instance T4(Θ,Ω, u) has no solutions in D(1).

Proof. To prove this lemma we consider a different transformation defined as follows

1. Choose new variables x′1, . . . , x
′
s and x′′1, . . . , x

′′
s .

2. Add a copy of Ω to Θ with all the variables x1, . . . , xs replaced by x′1, . . . , x
′
s. The copy

we denote by Ω′.

3. Rename x1, . . . , xs in Θ \ Ω by x′′1, . . . , x
′′
s .
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4. For every i and every σ ∈ Con(Θ \ Ω, xi) add a new variable y and add the constraints
σ(x′i, y) and σ(x′′i , y).

5. For every i and every σ ∈ Con(Θ \ Ω, xi) add the constraint σ∗(xi, x
′′
i ).

6. If u = xh, then add the constraint δh(xh, x
′
h), where ζ ∈ Con(Ω, xh) and δh = Opt(ζ).

It is easy to see that the obtained instance has no solutions inD(1). Then we replace constraints
from Ω′ containing at least one of the variables x′1, . . . , x

′
s by their covers step by step. Thus,

in one step we replace just one constraint from Ω′. We consider two cases.
Assume that after all replacements we get an instance without solutions in D(1). It is not

hard to see that any solution of T4(Θ,Ω, u) gives a solution of this instance: if x′i = a′i in the
solution of T4(Θ,Ω, u), then we put x′i = x′′i = y = ai in this instance for every i and the
corresponding y’s. This completes this case.

Assume that after some replacement the instance gets a solution in D(1). Suppose the
instance before this replacement is Θ′ and the corresponding constraint to be replaced is C.
Choose a variable x′l ∈ Var(C).

Let δ = Con(C, x′l), ρ be an optimal bridge from δ to δ. Let us define a new bridge by

ρ′(u1, u2, u3, u4) = ∃v1∃v2ρ(u1, u2, v1, v2) ∧ ρ(u3, u4, v1, v2) ∧ ρ(u1, u1, u3, u3) ∧ δ∗(u3, u4).

It is not hard to see that ρ′ is still an optimal bridge.
Then we change Θ′ in the following way. We add three new variables u1, u2, x

′′′
l , replace x′l

in C by x′′′l , add the constraint ρ′(x′l, x
′′′
l , u1, u2) and the constraint δ(u1, u2). The new instance

we denote by Θ′′. Obviously, Θ′′ has no solutions in D(1).
By Υ we denote all constraints of Θ′′ containing x′j for some j or x′′′l . Suppose Var(Ω) \

MinVar(Ω,Θ) = {z1, . . . , zn}. Let {y1, . . . , yt} be the set of all variables of Υ except for
z1, . . . , zn, x′1, . . . , x

′
s, xh, u1, u2, and x′′′l . Suppose that the variable xij is the corresponding

variable and σj is the corresponding congruence for yj (see Step 4 of the transformation).
Consider a subconstraint Υ(y1, . . . , yt, xh, z1, . . . , zn, u1, u2). Since the solution set of Ω is

subdirect, by Lemma 8.1 we know that the solution set of Υ(1) is subdirect. Then by Theo-
rem 9.7, we can find Υ1, . . . ,Υv ∈ Coverings(Υ) such that Υ

(1)
i (y1, . . . , yt, xh, z1, . . . , zn, u1, u2)

defines a key relation ρi with the parallelogram property for every i.
Let us define a relation ωi for every i ∈ {1, . . . , v}. If D(1) is a nonlinear reduction, it is

the relation defined by Υi(y1, . . . , yt, xh, z1, . . . , zn, u1, u2). If D(1) is a linear reduction, it is
the relation defined by Υ′i(y1, . . . , yt, xh, z1, . . . , zn, u1, u2, q1, . . . , qr), where Υ′i is the formula
from Lemma 8.7. We know from Lemmas 8.7 and 8.6 that Con(ωi, j)

(1) = Con(ρi, j) for every
j ∈ {1, 2, . . . , t+ n+ 3}.

We know that if we remove the constraint δ(u1, u2) from Θ′′, then we get a solution in
D(1). Let

(x1, . . . , xs, x
′
1, . . . , x

′
s, x
′′
1, . . . , x

′′
s , y1, . . . , yt, z1, . . . , zn, u1, u2) =

(a1, . . . , as, a
′
1, . . . , a

′
s, a
′′
1, . . . , a

′′
s , d1, . . . , dt, b1, . . . , bn, c1, c2)

in this solution. Choose k such that ρk omits the tuple (d1, . . . , dt, ah, b1, . . . , bn, c1, c1). For
every j we put d′j = aij . It is easy to see that (d′1, . . . , d

′
t, ah, b1, . . . , bn, al, al) ∈ ρk.

We want to show that (al, al, c1, c1) ∈ ρ′. We consider two cases.
Case 1. Suppose u = ∅ and n > 0. In this case al and a′l are linked in Ω′′, where Ω′′ is the

instance obtained from Ω by replacing every constraint by its cover. We apply Theorem 8.15
to get a bridge from δ to δ containing (al, al, a

′
l, a
′
l). Then we compose this bridge with the

bridge ρ′ to obtain a bridge from δ to δ containing (al, al, c1, c1). Since the bridge ρ′ is optimal,
we have (al, al, c1, c1) ∈ ρ′.
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Case 2. Suppose u = xh. We know that al and ah are linked in Ω, a′h and a′l are linked in
Ω′′, where Ω′′ is the instance obtained from Ω by replacing every constraint by its cover. We
apply Theorem 8.15 to get a bridge from δ to ζ containing (al, al, ah, ah) and a bridge from
ζ to δ containing (a′h, a

′
h, a
′
l, a
′
l). Then we compose these two bridges with the optimal bridge

from Step 6 and the bridge ρ′ to obtain a bridge from δ to δ containing (al, al, c1, c1). Since
the bridge ρ′ is optimal, we have (al, al, c1, c1) ∈ ρ′.

Therefore, (d′1, . . . , d
′
t, ah, b1, . . . , bn, c1, c1) ∈ ρk. Also, we know that ρk is a key relation

with the parallelogram property and (d1, . . . , dt, ah, b1, . . . , bn, c1, c2) ∈ ρk. For some j we have
(dj, d

′
j) /∈ Con(ρk, j), hence (dj, d

′
j) /∈ Con(ωk, j). Since (dj, d

′
j) ∈ (σj

∗)(1), the j-th variable
of ωk is rectangular and Con(ωk, j) = σj. Similarly, the last variable of ρk is rectangular and
Con(ωk, t+ n+ 3) = δ. By Lemma 8.14 there exists a bridge ζ1 from δ to σj.

Suppose δ0 ∈ Con(Ω, xij). Applying Theorem 8.15 to Ω, we get a bridge ζ2 from δ0 to δ.
Composing the bridges ζ1 and ζ2 we get a reflexive bridge from δ0 to σj. Hence δ0 and σj are
adjacent. This contradicts the fact that σj ∈ Con(Θ \ Ω, xij).

Theorem 9.8. Suppose D(1) is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance Θ, Θ is crucial in D(1) and not connected. Then there exists an
instance Θ′ ∈ ExpCov(Θ) that is crucial in D(1) and contains a linked connected component
whose solution set is not subdirect.

Proof. The proof is organized as follows. Using the transformations above we build a sequence
of instances Θ1,Θ2, . . . such that Θi+1 ∈ ExpCov(Θi). This sequence will be used to apply
Theorem 8.16: variables are viewed as organisms, constraints are viewed as a relationship
between variables.

First, we assign a characteristic to every variable. For a variable x of an instance Φ let
Ω1 be the set of all minimal congruences among the set Con(Φ, x). Then let Ω2 be the set of
all minimal congruences among the congruences of Con(Φ, x) that are not adjacent with the
congruences from Ω1. Thus, we assign a pair (Ω1,Ω2) to every variable x, which we denote
ξ(Φ, x).

Let us introduce a partial order on the set of all characteristics. For two sets of congruences
Ω1 and Ω2 we write Ω1 6 Ω2 if for every σ ∈ Ω1 there exists δ ∈ Ω2 such that δ ⊆ σ. We
write Ω1 < Ω2 if Ω1 6 Ω2 and Ω2 66 Ω1.

We write (Ω1,Ω2) . (Ω′1,Ω
′
2) if one of the following conditions hold

1. Ω1 < Ω′1;

2. if Ω1 = Ω′1 and Ω2 6 Ω′2.

3. if Ω1 = Ω′1, Ω2 66 Ω′2, Ω′2 66 Ω2, (Ω2 \Opt(Ω1)) < (Ω′2 \Opt(Ω1)).

To use Theorem 8.16, we extend a partial order . on characteristics to a linear order 6
such that (Ω1,Ω2) . (Ω′1,Ω

′
2) implies (Ω1,Ω2) 6 (Ω′1,Ω

′
2). We say that a variable x of Θ is

weaker than a variable x′ of Θ′ if ξ(Θ, x) < ξ(Θ′, x′).
Second, if Θ′ ∈ ExpCov(Θ) is connected then by Corollary 8.15.1 any two constraints of

Θ′ with a common variable are adjacent. Since every constraint of Θ appears in Θ′, Θ is also
connected. This contradiction proves that we cannot get a connected instance Θ′.

We start with Θ1 = Θ. Suppose we already defined Θi.
If there exist constraints C1 and C2 having a common variable x such that C1 and C2 are

not adjacent in x, Con(C1, x) and Con(C2, x) are minimal congruences in Con(Θ, x), then put
Θi+1 = T1(T2(Θi, C1, C2, x)). By Lemma 9.10, Θi+1 has no solutions in D(1). Note that Θi+1

is always different from Θi.
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Otherwise, we know that any two minimal congruences in Con(Θ, x) for every variable x
are adjacent. Since Θi is not connected and not fragmented, there exist a variable x and two
congruences in Con(Θ, x) that are not adjacent. Choose a connected component Ω containing
a minimal congruence of Con(Θ, x).

If Ω is not linked, then irreducibility of Θ implies that the solution set of Ω is subdirect.
If Ω is linked and the solution set of Ω is not subdirect, then the theorem is proved and we
stop the process. Thus, we assume that the solution set of Ω is subdirect.

Since Θi is crucial in D(1) and not connected, Ω(1) has a solution. Since the solution
set of Ω is subdirect, Lemma 8.1 implies that the solution set of Ω(1) is also subdirect. Let
MinVar(Ω,Θi) = {x1, . . . , xs}, Var(Ω) \MinVar(Ω,Θi) = {z1, . . . , zn}.

Assume that n = 0 and LinkedCon(Ω, xj) ⊆ σ for every j and every σ ∈ Con(Θi \ Ω, xj).
If there exist a constraint in Ω and a variable z such that Con(C, z) ( LinkedCon(Ω, z), then
we replace C by its cover. Since Θi is crucial in D(1), the new instance has a solution β in
D(1). Let z be equal to c in β. Since the solution set of Ω(1) is subdirect, there exists a solution
γ of Ω(1) with z = c. Then we build a solution of Θ

(1)
i with the values for xj from γ and the

values for the remaining variables from β, which gives us a contradiction.
Assume that Con(C, z) = LinkedCon(Ω, z) for every constraint C ∈ Ω and every vari-

able z of C. Since all constraints of Ω are rectangular and critical, they are also essen-
tial. Therefore, if the arity of the constraint C is greater than 2, then by Lemma 8.14,
Con(C, y) ( LinkedCon(Ω, y), which means that every constraint in Ω is binary. We can
choose a constraint C ∈ Ω with a variable xj that appears just once in Ω. Then we replace
the constraint C by its cover. Since Θi is crucial in D(1), the new instance has a solution β in
D(1). Since Con(C, xj) ( σ for every σ ∈ Con(Θi \ Ω, xj), we can change the value of xj in β
to get a solution of Θi in D(1) which gives us a contradiction.

Otherwise, suppose n > 0 and LinkedCon(Ω, z) = Con(C, z) for every variable z and every
constraint C ∈ Ω with z. Then we put Θi+1 = T1(T3(Θi,Ω)). By Lemma 9.11, Θi+1 has no
solutions in D(1). Again, Θi+1 is always different from Θi.

Otherwise, if n > 0, then we put Θi+1 = T1(T4(Θi,Ω,∅)). If n = 0 and LinkedCon(Ω, xh) 6⊆
σ for some h and a congruence σ ∈ Con(Θ \ Ω, xh) then we put Θi+1 = T1(T4(Θi,Ω, xh)). By
Lemma 9.12, Θi+1 has no solutions in D(1). Again, Θi+1 is always different from Θi.

It can be checked that we always define the instance Θi+1.
It remains to explain how we build a sequence for Theorem 8.16. We consider the set of

all pairs (x, ξ(Θi, x)) as the set of organisms. Two organisms are friends if they represent
the same variable, or if the corresponding variables ever appeared in one constraint. The
characteristic of every variable is considered as a strength. Then the set of organisms Xi

corresponds to the set of all pairs (x, ξ(Θj, x)) for j 6 i.
It is not hard to see that any copy of any variable we generate is weaker than the original

variable, which guarantees condition 1 of the theorem. Similarly, we can check that all new
constraints satisfy conditions 2 and 3.

Every time we apply the transformation T2 we replace a variable by two weaker variables.
Then, if our sequence of instances is infinite, we apply the transformations T3 and T4 (at least
one of them) infinitely many times.

A variable x is called stable at the moment i if all congruence in Con(Θi, x) are adjacent.
Note that if x is not stable at the moment i and a connected component Ω ⊆ Θi contains a
minimal congruence of Con(Θi, x), then the transformations T3 and T4 make the variable x
weaker.

To guarantee condition 4, we choose a connected component Ω on every step so that the
following condition holds. For every variable x that is not stable at the moment i a connected
component with a minimal congruence on x should be chosen at some moment j > i. This
means that every variable will be stable at some moment. It is not hard to check that a
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new “friend” of a stable variable z, which may appear in the transformations T2, T3, or T4, is
weaker than the old “friend” of z. Moreover, if z gets a new “friend” we remove the constraint
containing the old “friend” and z. Thus, every variable can have only finitely many friends.

Since Θi is crucial in D(1), it is not fragmented. We can check that Θi and Θi+1 have at
least one common variable for every i. Therefore, the set of all organisms cannot be divided
into two disjoint sets. Thus, condition 5 of Theorem 8.16 cannot hold, which proves that the
process will stop at some Θi having a linked connected component whose solution set is not
subdirect.

Theorem 9.9. Suppose D(1) is a minimal 1-consistent nonlinear reduction of a cycle-consistent
irreducible CSP instance Θ. If Θ has a solution then it has a solution in D(1).

Proof. Assume the contrary. First, we consider the set of all minimal 1-consistent nonlinear
reductions of Θ, which we denote by R. Then we consider an instance Θ′ ∈ ExpCov(Θ) with
the minimal positive number of reductions D(M) ∈ R such that Θ′ has no solutions in D(M).
Note that this transformation of Θ to Θ′ can be omitted if D(1) is not a PC reduction. Then
we weaken the instance Θ′ (replace any constraint by all weaker constraints) while we still
have a reduction D(M) ∈ R such that Θ′ has no solutions in D(M). The obtained instance we
denote by Θ′′. As a result we know that for any reduction D(M) ∈ R the instance Θ′′ is either
crucial in D(M), or has a solution in D(M). Choose a reduction D(M) from R.

Assume that Θ′′ is not linked. If D(1) is a PC reduction, then the statement follows from
Theorem 9.4 and the inductive assumption. If D(1) is an absorbing or central reduction, then
we choose a variable x of Θ′′ and an element c ∈ D(1)

x , and for every variable y by D
(>)
y we

denote the set of all elements of Dy linked to c. Since Θ′′ is irreducible, the solution set of
Θ′′(>) is subdirect. Therefore, Θ′′(>) is irreducible and cycle-consistent. It is not hard to see
that the reduction D(⊥), defined by D

(⊥)
y = D

(>)
y ∩D(M)

y for every variable y, is a 1-consistent
absorbing or central reduction for Θ′′(>). By the inductive assumption, Θ′′(⊥) has a solution,
which completes this case.

Thus, we assume that Θ′′ is linked. Then, by Theorem 9.5, every constraint in the obtained
instance has the parallelogram property. If Θ′′ is not connected, then by Theorem 9.8, there
exists an instance Υ ∈ ExpCov(Θ′′) that is crucial in D(M) and contains a linked connected
component Ω. If Θ′′ is connected, then Θ′′ is a linked connected component itself and we put
Υ = Ω = Θ′′.

Choose a variable x appearing in a constraint C ∈ Ω. By Lemma 8.3, Con(C, x) is
irreducible. By Theorem 8.15.1, there exists a bridge δ from Con(C, x) to Con(C, x) such that
δ(x, x, y, y) is a full relation. By Corollary 8.10.1, there exists a relation ζ ⊆ Dx × Dx × Zp
such that (x1, x2, 0) ∈ ζ ⇔ (x1, x2) ∈ Con(C, x) and pr1,2(ζ) = Con(C, x)∗. Let us replace the
variable x of C in Υ by x′ and add the constraint ζ(x, x′, z). The obtained instance we denote
by Υ′. By the assumption, Υ′ has a solution with z = 0, and a solution in D(M) with z 6= 0.

If D(M) is an absorbing or central reduction, then by Corollaries 7.1.1, 7.6.1 the restriction
of all variable of Υ′ but z to D(M) implies the corresponding restriction of the variable z. This
contradicts the fact that the domain of z is Zp.

It remains to consider the case when D(M) is a PC reduction. By Theorems 9.2, 9.3, for
every variable y and every PC subuniverse U of Dy there exists a minimal 1-consistent PC

reduction D(O) ∈ R such that D
(O)
y = U . Since Υ′ has a solution in any reduction from R,

we conclude that for every variable y and every PC subuniverse U of Dy the instance Υ′ has
a solution with y ∈ U . Hence, by Corollary 7.11.1, the restriction of Υ′ to D(M) implies the
corresponding restriction of z, which contradicts the fact that the domain of z is Zp.
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9.3 Theorems from Section 4

In this subsection we assume that variables of the instance Θ are x1, . . . , xn, and the domain
of xi is Di for every i. The first two theorems are proved together.

Theorem 4.3. Suppose Θ is a cycle-consistent irreducible CSP instance, B is a binary ab-
sorbing set or a center of Di. Then Θ has a solution if and only if Θ has a solution with
xi ∈ B.

Theorem 4.4. Suppose Θ is a cycle-consistent irreducible CSP instance, there does not exist
a binary absorbing subuniverse or a center on Dj for every j, (Di;w)/σ is a polynomially
complete algebra, E is an equivalence class of σ. Then Θ has a solution if and only if Θ has
a solution with xi ∈ E.

Proof. By Theorem 9.2, 9.3, there exists a smaller minimal 1-consistent reduction. By Theo-
rem 9.9, there exists a solution in this reduction.

Theorem 4.5. Suppose the following conditions hold:

1. Θ is a linked cycle-consistent irreducible CSP instance with domain set (D1, . . . , Dn);

2. there does not exist a binary absorbing subuniverse or a center on Dj for every j;

3. if we replace every constraint of Θ by all weaker constraints then the obtained instance
has a solution with xi = b for every i and b ∈ Di.

4. ΘL is Θ factorized by the minimal linear congruences;

5. (D′1, . . . , D
′
n) is a solution of ΘL, and Θ is crucial in (D′1, . . . , D

′
n).

Then there exists a constraint ((xi1 , . . . , xis), ρ) in Θ and a subuniverse ζ of Di1×· · ·×Dis×Zp

such that the projection of ζ onto the first s coordinates is bigger than ρ but the projection of
ζ ∩ (Di1 × · · · ×Dis × {0}) onto the first s coordinates is equal to ρ.

Proof. Assume the contrary. We denote the reduction (D′1, . . . , D
′
n) by D(1). By Theorem 9.5,

every constraint in Θ has the parallelogram property. If Θ is not connected, then by The-
orem 9.8, there exists an instance Θ′ ∈ ExpCov(Θ) that is crucial in D(1) and contains a
linked connected component Ω such that the solution set of Ω is not subdirect. By condition
3), if the solution set of Ω is not subdirect then Ω contains a constraint relation from Θ.
If Θ is connected, then Θ is a linked connected component itself and we put Ω = Θ. Let
((xi1 , . . . , xis), ρ) ∈ Ω be a constraint such that ρ is a constraint relation from Θ.

By Lemma 8.3, Con(ρ, 1) is an irreducible congruence. By Theorem 8.15.1, there exists a
bridge δ from Con(ρ, 1) to Con(ρ, 1) such that δ(x, x, y, y) is a full relation. By Corollary 8.10.1,
there exists a relation ξ ⊆ Di1 ×Di1 ×Zp such that (x1, x2, 0) ∈ ξ ⇔ (x1, x2) ∈ Con(ρ, 1) and
pr1,2(ξ) = Con(ρ, 1)∗.

Put ζ(xi1 , . . . , xis , z) = ∃x′i1 ρ(x′i1 , xi2 , . . . , xis) ∧ ξ(xi1 , x
′
i1
, z).
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