arXiv:1704.01914v8 [cs.CC] 20 Feb 2018

A Proof of CSP Dichotomy Conjecture

Dmitriy Zhuk
Department of Mechanics and Mathematics
Lomonosov Moscow State University
Moscow, Russia

Contents
1 Introduction

2 Definitions
2.1 Algebras . . . . . . L
2.2 Polynomially complete algebras . . . . . .. . ... ... ... ... ... ..
2.3 Linear algebra . . . . . . ..
2.4 Absorption. . . . ...
2.5 Center . . . . . ...
2.6 CSPinstance . . . . . . . . e

3 Algorithm
3.1 Mainpart . . . . ...
3.2 Remaining parts . . . . . . ...

4 Correctness of the Algorithm
4.1 Rosenberg completeness theorem . . . . . . .. ... ...
4.2  Correctness of the algorithm . . . . . .. ... ... ... o0

5 An example in Z,

6 The Remaining Definitions
6.1 Additional notations . . . . .. ...
6.2 Variety of algebras . . . . . .. ..o
6.3 Formula, pp-formula, subconstraint . . . . . . ... ..o
6.4 Critical, key relations, and parallelogram property . . . . . . . . ... ... ..
6.5 Reductions. . . . . . . .
6.6 DBridges. . . . . . .
6.7 Dummy variables . . . . .. .. oL

7 Absorption, Center, PC Congruence, and Linear Congruence
7.1 Binary Absorption . . . . . . ...
7.2 Center . . . . . . . e
7.3 PC Subuniverse . . . . . . . . ..
7.4 Linear Subuniverse . . . . . . . . .. ..o



8 Proof of the Auxiliary Statements 22

8.1 Reductions preserve cycle-consistency and irreducibility . . . . . .. .. .. .. 22]
8.2 Properties of Con(p,x) . . . . . . . .. 23
8.3 Adding linear variable . . . . . . ... .o 251
8.4 Previous reductions . . . . . .. ..o 28]
8.5 Existence of a bridge . . . . . . . ... 31
8.6 Growing population divides into colonies. . . . . . . . ... ... 32
9 Proof of the Main Theorems 33l
9.1 Existence of a next reduction . . . . . ... B3l
9.2 Existence of a linked connected component . . . . . .. .. ... 351
9.3 Theorems from Section [ . . . . . . .. ... 5]
Abstract

Many natural combinatorial problems can be expressed as constraint satisfaction
problems. This class of problems is known to be NP-complete in general, but certain
restrictions on the form of the constraints can ensure tractability. The standard way
to parameterize interesting subclasses of the constraint satisfaction problem is via finite
constraint languages. The main problem is to classify those subclasses that are solvable in
polynomial time and those that are NP-complete. It was conjectured that if a constraint
language has a weak near unanimity polymorphism then the corresponding constraint
satisfaction problem is tractable, otherwise it is NP-complete.

In the paper we present an algorithm that solves Constraint Satisfaction Problem in
polynomial time for constraint languages having a weak near unanimity polymorphism,
which proves the remaining part of the conjecture.

1 Introduction

Formally, the Constraint Satisfaction Problem (CSP) is defined as a triple (X, D, C), where
o X ={xy,...,x,} is a set of variables,
e D={D,,...,D,} is a set of the respective domains,
e C={Cy,...,C,} is a set of constraints,

where each variable z; can take on values in the nonempty domain D;, every constraint C; € C
is a pair (¢;, p;) where t; is a tuple of variables of length m;, called the constraint scope, and
p; is an mj-ary relation on the corresponding domains, called the constraint relation.

The question is whether there exists a solution to (X, D, C), that is a mapping that
assigns a value from D; to every variable z; such that for each constraints C; the image of the
constraint scope is a member of the constraint relation.

In this paper we consider only CSP over finite domains. The general CSP is known to be
NP-complete [16], [I8]; however, certain restrictions on the allowed form of constraints involved
may ensure tractability (solvability in polynomial time) [10} 13}, 14} (15} [5, 9]. Below we provide
a formalization to this idea.

To simplify the presentation we assume that all the domains Dy, ..., D, are subsets of a
finite set A. By R4 we denote the set of all finitary relations on A, that is, subsets of A™ for
some m. Then all the constraint relations can be viewed as relations from R 4.

For a set of relations I' C R4 by CSP(I') we denote the Constraint Satisfaction Problem
where all the constraint relations are from I'. The set I' is called a constraint language.



Another way to formalize the Constraint Satisfaction Problem is via conjunctive formulas.
Every h-ary relation on A can be viewed as a predicate, that is, a mapping A" — {0,1}.
Suppose I' C Ry, then CSP(T") is the following decision problem: given a formula

p1(x1a, o Ting) A A ps(Tsay oo T1n,)

where p; € T for every ¢; decide whether this formula is satisfiable.

It is well known that many combinatorial problems can be expressed as CSP(I") for some
constraint language I'. Moreover, for some sets I' the corresponding decision problem can be
solved in polynomial time; while for others it is NP-complete. It was conjectured that CSP(T")
is either in P, or NP-complete [11].

Conjecture 1. Suppose I' C Ry is a finite set of relations. Then CSP(T") is either solvable
in polynomial time, or N P-complete.

We say that an operation f: A™ — A preserves the relation p € R4 of arity m if for any tu-
ples (a11,.-.,@1m)s -y (Ani, .-y Qnm) € p the tuple (f(a11,...,an1), -, f(@1mys -, Qnm))
is in p. We say that an operation preserves a set of relations I' if it preserves every relation
in I'. A mapping f: A — A is called an endomorphism of ' if it preserves T'.

Theorem 1.1. [5] Suppose T' C Ra. If f is an endomorphism of T, then CSP(T) is poly-
nomially reducible to CSP(f(I")) and vice versa, where f(I') is a constraint language with

domain f(T') defined by f(I') ={f(p): p € T'}.

A constraint language is a core if every endomorphism of I' is a bijection. It is not hard
to show that if f is an endomorphism of I" with minimal range, then f(I") is a core. Another
important fact is that we can add all singleton unary relations to a core constraint language
without increasing the complexity of its CSP. By o_, we denote the unary relation {a}.

Theorem 1.2. [5] Let ' C Ry be a core constraint language, and I'" = T'U {o_, | a € A},
then CSP(I") is polynomially reducible to C'SP(T).

Therefore, to prove Conjecture [1] it is sufficient to consider only the case when I' contains
all unary singleton relations. In other words, all the predicates © = a, where a € A, are in the
constraint language I'.

In [20] Schaefer classified all tractable constraint languages over two-element domain. In
[7] Bulatov generalized the result for three-element domain. His dichotomy theorem was
formulated in terms of a G-set. Later, the dichotomy conjecture was formulated in several
different forms (see [3]).

The result of Mckenzie and Maréti [17] allows us to formulate the dichotomy conjecture in
the following nice way. An operation f is called a weak near-unanimity operation (WNU) if
fly,z,...;z) = f(z,y,x,...,x) =--- = f(z,x,...,x,y). An operation f is called idempotent
if f(z,x,...,z)=u.

Conjecture 2. Suppose I' C Ry is a finite set of relations. Then CSP(T") can be solved in
polynomial time if there exists a WNU preserving I'; CSP(T') is NP-complete otherwise.

It is not hard to see that the existence of a WNU preserving I is equivalent to the existence
of a WNU preserving a core of I', and also equivalent to the existence of an idempotent
WNU preserving the core. Hence, Theorems [I.1] and imply that it is sufficient to prove
Conjecture [2| for a core and an idempotent WNU.

One direction of this conjecture follows from [17].



Theorem 1.3. [17] Suppose I' C Ry, {o=, | a € A} CT'. If there exists no WNU preserving
I, then CSP(I") is NP-complete.

The dichotomy conjecture was proved for many special cases: for CSPs over undirected
graphs [12], for CSPs over digraphs with no sources or sinks [2], for constraint languages
containing all unary relations [6], and many others. Recently, a proof of the dichotomy
conjecture was announced by Andrei Bulatov [§]. More information about the algebraic
approach to CSP can be found in [3].

In this paper we present an algorithm that solves CSP(I') in polynomial time if ' is
preserved by an idempotent WNU, and therefore prove the dichotomy conjecture.

The paper is organized as follows. In Section [2| we give main definitions, in Section [3| we
explain the algorithm. In Section [4] we prove a theorem that explains the main idea of the
algorithm and formulate theorems that prove correctness of the algorithm. In Section |5 we
give an example that explains how the algorithm works for a system of linear equations in Zj,.

In the next section we give the remaining definitions. In Section [7] we present properties
of absorbing, central, PC, and linear reductions. The important fact we prove in this section
is that the restriction of some variables to absorbing subuniverses, centers, PC subuniverses,
or linear subuniverses implies the corresponding restriction of other variables.

In Section |8 we prove the auxiliary statements: we show that minimal reductions preserve
cycle-consistency and irreducibility, prove properties of the operator Con(p, z), explain how
a linear variable can be added, show that previous reductions cannot harm, and prove the
existence of a bridge.

In the last section we prove the main theorems of this paper formulated in Section [4]
First, we explain the existence of a next reduction. Then we prove the existence of a linked
connected component, and derive the main theorems from this fact.

I am very grateful to Zarathustra Brady whose comments and remarks allowed to fill
many gaps in the original proof and to significantly improve the text. Also, I want to thank
my colleagues and friends for very fruitful discussions, especially Andrei Bulatov, Marcin
Kozik, Libor Barto, Ross Willard, Jakub Oprsal, Jakub Bulin, Valeriy Kudryavtsev, Alexey
Galatenko, Stanislav Moiseev, and Grigoriy Bokov.

2 Definitions

A set of operations is called a clone if it is closed under composition and contains all projec-
tions. For a set of operations M by Clo(M) we denote the clone generated by M.

An idempotent WNU w is called special if zo (zoy) = zoy, where xoy = w(x,...,z,y).
It is not hard to show that for any idempotent WNU w on a finite set there exists a special
WNU w' € Clo(w) (see Lemma 4.7 in [I7]).

A relation p C Ay x --- x A, is called subdirect if for every 7 the projection of p onto the
i-th coordinate is A;. For a relation p by pr; _; (p) we denote the projection of p onto the
coordinates 71, ..., is.

-----

2.1 Algebras

An algebra is a pair A := (A; F'), where A is a finite set, called universe, and F' is a family of
operations on A, called basic operations of A. In the paper we always assume that we have
a special WNU preserving all constraint relations. Therefore, every domain D can be viewed
as an algebra (D;w). By Clo(A) we denote the clone generated by all basic operations of A.

An equivalence relation o on the universe of an algebra A is called a congruence if it is
preserved by every operation of the algebra. A congruence (an equivalence relation) is called
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proper, if it is not equal to the full relation A x A. We use standard universal algebraic
notions of term operation, subalgebra, factor algebra, product of algebras, see [4]. We say
that a subalgebra R = (R; FRr) is a subdirect subalgebra of A x B if R is a subdirect relation
in Ax B.

2.2 Polynomially complete algebras

An algebra (A; Fy) is called polynomially complete (PC) if the clone generated by F4 and all
constants on A is the clone of all operations on A.

2.3 Linear algebra

A finite algebra (A;wy4) is called linear if it is isomorphic to (Z,, X - -+ X Z, ;21 + ...+ x,) for
prime numbers py, ..., ps. It is not hard to show that for every algebra (B;wp) there exists a
minimal congruence o, called the minimal linear congruence, such that (B;wpg)/o is linear.

2.4 Absorption

Let B = (B; Fg) be a subalgebra of A = (A; F4). We say that B absorbs A if there exists
t € Clo(A) such that (B, B,...,B,A,B,...,B) C B for any position of A. In this case we
also say that B is an absorbing subuniverse of A. If the operation ¢ can be chosen binary
then we say that B is a binary absorbing subuniverse of A.

2.5 Center

Suppose A = (A;w,) is a finite algebra with a special WNU operation. C' C A is called
a center if there exists an algebra B = (B;wg) with a special WNU operation of the same
arity and a subdirect subalgebra (R;wpg) of A x B such that there is no binary absorbing
subuniverse in B and C' = {a € A| Vb € B: (a,b) € R}.

2.6 CSP instance

An instance of the constraint satisfaction problem is called a CSP instance. Sometimes we
use the same letter for a CSP instance and for the set of all constraints of this instance. For
a variable z by D, we denote the domain of the variable z.

We say that 2y — C} — 20 — - -+ — Cj_1 — 2 is a path in © if z;, z;,1 are in the scope of C;
for every 1. We say that a path 21 — C; — 20 — ... Cj_1 — 2z; connects b and c if there exists
a; € D, for every i such that a; = b, a; = ¢, and the projection of C; onto z;, z;4+1 contains
the tuple (a;, a;41).

A CSP instance is called cycle-consistent if for every variable z and a € D,, any path
starting and ending with 2z in © connects a and a. A CSP instance © is called linked if for
every variable z appearing in © and every a,b € D, there exists a path starting and ending
with z in © that connects a and b.

Suppose X’ C X. Then we can define a projection of © onto X', that is a CSP instance
where variables are elements of X’ and constraints are projections of the constraints of ©
onto X'. We say that an instance © is fragmented if the set of variables X can be divided
into 2 nonempty disjoint sets X; and X5 such that the constraint scope of any constraint of
O either has variables only from Xy, or only from X,.



A CSP instance © is called irreducible if any instance ©' such that every constraint of ©’
is a projection of a constraint from © on some set of variables is fragmented, linked, or its
solution set is subdirect.

We say that a constraint ((yi,...,y:);p1) is weaker than a constraint ((z1,...,zs); pa) if
{y1, - SH{zn, 0250, pa(z1, - 2s) = pr(Wy - ue), and p1(yr, -, y) 7 pa(2z1, -y 2s)-

Let D, C D; for every i. A constraint C' of © is called crucial in (D4,..., D)) if © has
no solutions in (D7, ..., D;) but the replacement of C' € © by all weaker constraints gives an
instance with a solution in (D], ..., D! ). A CSP instance © is called crucial in (D},..., D)
if every constraint of © is crucial in (Dj,..., D.).

Remark 1. Suppose © has no solutions in (D1, ..., D). Then we can replace constraints of
© by all weaker constraints until we get a CSP instance that is crucial in (D1, ..., D.).

3 Algorithm

3.1 Main part

Suppose we have a constraint language I'y that is preserved by an idempotent WNU operation.
As it was mentioned before, I'y is also preserved by a special WNU operation w. Let kg be the
maximal arity of the relations in I'y. By I' we denote the set of all relations of arity at most
ko that are preserved by w. Obviously, I'y C T', therefore CSP(I'y) can be reduced to CSP(T")

In this section we provide an algorithm that solves CSP(I") in polynomial time. Suppose
we have a CSP instance © = (X, D, C), where X = {x,...,x,} is a set of variables, D =
{D1,...,D,} is a set of the respective domains, C = {C,...,C,} is a set of constraints. Let
the arity of the WNU w be equal to m.

The algorithm is recursive, the list of all possible recursive calls is given in the end of this
subsection. One of the main recursive calls is the reduction of a subuniverse D; to D) such
that either © has a solution with z; € D}, or it has no solutions at all.

Step 1. Check whether © s cycle-consistent. If not then we reduce a domain D; for some 1
or state that there are no solutions.

Step 2. Check whether © 1is irreducible. If not then we reduce a domain D; for some i or
state that there are no solutions.

Step 3. Replace every constraint of © by all weaker constraints. Recursively calling the
algorithm, check that the obtained instance has a solution with x; = b for everyi € {1,2,...,n}
and b € D;. If not, reduce D; to the projection onto x; of the solution set of the obtained
imstance.

By Theorem we cannot loose the only solution while doing the following two steps.

Step 4. If D; has a binary absorbing subuniverse B; C D; for some i, then we reduce D; to
B;.

Step 5. If D; has a center C; C D; for some i, then we reduce D; to Cj.
By Theorem [4.4) we can do the following step.

Step 6. If there exists a congruence o on D; such that the algebra (D;;w) /o is polynomially
complete, then we reduce D; to any equivalence class of o.



By Theorem [4.1] it remains to consider the case when for every domain D; there exists a
congruence o; on D; such that (D;;w)/o; is linear, i.e. it is isomorphic to (Z,, X - - - X Zy,; 21+

-+« + x,,) for prime numbers py, ..., p;. Moreover, o; is proper if |D;| > 1.
We denote D;/o; by L;. We define a new CSP instance ©p with domains Ly, ..., L,.
To every constraint ((z;,,...,2;);p) € © we assign a constraint ((2},..., ] );p’), where

pC Ly x---x L, and (Ey,...,Es) € pf < (Ey X -+- X Eg) N p # @. The constraints of ©p,
are all constraints that are assigned to the constraints of ©.

Since every relation on Zj, X - - - X Zj, preserved by x1+. ..+, is known to be a conjunction
of linear equations, the instance ©y, can be viewed as a system of linear equations in Z, for
different p. Note that all essential variables of every equation have the same domain.

Our general idea is to add some linear equations to ©, so that for any solution of ©, there
exists the corresponding solution of ©. We start with the empty set of equations Eq, which
is a set of constraints on Lq,..., L,.

Step 7. Put Eq = O.

Step 8. Solve the system of linear equations Op U Eq and choose independent variables
Y1, Yk If it has no solutions then © has no solutions. If it has just one solution, then,
recurswely calling the algorithm, solve the reduction of © to this solution. FEither we get a
solution of ©, or © has no solutions.

Then there exist Z = Z,, X -+ X Z,, and a linear mapping ¢: Z — Ly X --- x L, such
that any solution of ©7 U Eq can be obtained as ¢(ay, ..., a) for some (ay,...,ax) € Z.

Note that for any tuple (ai,...,ax) € Z we can check recursively whether © has a solution
in ¢(ay, . ..,ar). To do this, we just need to solve an easier CSP instance (on smaller domains).
Similarly, we can check whether © has a solution in ¢(ay,...,a;) for every (ay,...,a;) € Z.
To do this, we just need to check the existence of a solution in ¢(0,...,0,1,0,...,0) and
¢(0,...,0) for any position of 1.

Step 9. Check whether © has a solution in ¢(0,...,0). If it has then stop the algorithm.

Step 10. Put ©' := ©O. Iteratively remove from ©' all constraints that are weaker than some
other constraints of ©'.

Step 11. For every constraint C € ©'

1. Let Q) be obtained from ©" by replacing the constraint C' € ©' by all weaker constraints
without dummy variables. Remove from 2 all constraints that are weaker than some
other constraints of €).

2. If ) has no solutions in ¢(ay,...,ax) for some (ay,...,ax) € Z, then put ©" = Q.
Repeat Step [11]

At this moment, the CSP instance ©’ has the following property. ©’ has no solutions
in ¢(by,...,b;) for some (by,...,by) € Z, but if we replace any constraint C' € ©" by all
weaker constraints, then we get an instance that has a solution in ¢(ay,...,a) for every
(a1,...,ax) € Z. Therefore, © is crucial in ¢(by, ..., bg).

In the remaining steps we will find a new linear equation that can be added to ©. Suppose
V' is an affine subspace of ZZ of dimension A —1, thus V' is the solution set of a linear equation
11+ -+ cprp = ¢o. Then the coefficients co, c1, . . ., ¢; can be learned (up to a multiplicative
constant) by (p - h + 1) queries of the form “(ay,...,an) € V7”7 as follows. First, we need at
most (h+1) queries to find a tuple (dy,...,d,) ¢ V. Then, to find this equation it is sufficient
to check for every a and every ¢ whether the tuple (dy,...,d;_1,a,d;11,...,d,) satisfies this
equation.



Step 12. Suppose ©’ is not linked. For each i from 1 to k

1. Check that for every (ai,...,a;) € Zg, X -+ X L, there exist (a1, ...,a5) € Lg,, X
-+ X Ly, and a solution of © in ¢(ai, ..., ak).

2. If yes, go to the next 7.

3. If no, then find an equation cyyy + -+ + ¢y = co such that for every (aq,...,a;) €
Ligy X - - X Ly, satisfying crar +- - -+ c;a; = ¢ there exist (i1, ..., ax) € Lg,,, X -+ X Lg,
and a solution of ©" in ¢(ay,. .., ax).

4. Add the equation ciy; + -+ - + ¢;y; = co to Eq.
5. Go to Step[§

If ©' is linked, then by Theorem [4.5| there exists a constraint ((z;,,...,2;,),p) in © and a
subuniverse o of Dy, x - -+ x Dj, x Zy such that the projection of o onto the first s coordinates
is bigger than p but the projection of o N (D;, x -+ x D;, x {0}) onto the first s coordinates
is equal to p. Then we add a new variable z with domain Z, and replace ((x;,,...,2;,),p)
by ((xi,,...,z;,2),0). We denote the obtained instance by Y. Let L be the set of all tuples
(a1,...,ag,b) € Zy X -+ X Ly, X Z, such that T has a solution with z = b in ¢(aq, ..., a).
We know that the projection of L onto the first n coordinates is a full relation. Therefore
L is defined by one linear equation. If this equation is z = b for some b # 0, then both ©’
and © have no solutions. Otherwise, we put z = 0 in this equation and get an equation that
describes all (aq,...,a;) such that ©" has a solution in ¢(ay,...,ax). It remains to find this
equation.

Step 13. Suppose ©' is linked.

1. Find an equation c1y; +- - - +cxyr = ¢o such that for every (a1, ..., a;) € (Zg, X - -+ X ZLy,)
satisfying cray + - -+ + cgap = ¢ there exists a solution of © in ¢(ay, ..., a).

2. If the equation was not found then © has no solutions.
3. Add the equation cia; + - -+ + cpap = co to Eq.
4. Go to Step[§

Note that every time we reduce our domains, we get constraint relations that are still
from T.
We have four types of recursive calls of the algorithm:

1. we reduce one domain D;, for example to a binary absorbing subuniverse or to a center
(Steps [1] [ [} [6).-

2. we solve an instance that is not linked. In this case we divide the instance into the
linked parts and solve each of them independently (Steps .

3. we replace every constraint by all weaker constraints and solve an easier CSP instance

(Step [3).
4. we reduce every domain D; such that |D;| > 1 (Steps 8] [9] [L1} [L3).

Lemma states the depth of the recursive calls of type 3 is at most |I'|. It is easy to see
that the depth of the recursive calls of type 2 and 4 is at most |A|.



3.2 Remaining parts

In this section we explain Steps 1, 2, and 12 of the algorithm, which were not clarified in the
previous section.

Provide cycle-consistency. To provide cycle-consistency it is sufficient to use con-
straint propagation providing (2,3)-consistency. Formally, it can be done in the following
way. First, for every pair of variables (x;,x;) we consider the intersections of projections of
all constraints onto these variables. The corresponding relation we denote by p; ;. For every
i,5,k € {1,2,...,n} we replace p; ; by p; ; where pf ;(z,y) = 32 pij(z,y) Apig(z, 2) Aprj(2,9).
It is not hard to see that this replacement does not change the solution set.

We repeat this procedure while we can change some p; ;. If at some moment we get a
relation p; ; that is not subdirect in D; x D;, then we can either reduce D; or D, or, if p; ; is
empty, state that there are no solutions. If we cannot change any relation p; ; and every p; ;
is subdirect in D; x D;, then the original CSP instance is cycle-consistent.

Solve the instance that is not linked. Suppose the instance © is not linked and not
fragmented, then it can be solved in the following way. We say that an element d; € D; and
an element d; € D; are linked if there exists a path that connects d; and d;. Let P be the
set of pairs (4;a) such that i € {1,2,...,n}, a € D;. Then P can be divided into the linked
components.

It is easy to see that it is sufficient to solve the problem for every linked component and
join the results. Precisely, for a linked component by D! we denote the set of all elements d
such that (7, d) is in the component. It is easy to see that @ C D! C D; for every i. Therefore,
the reduction to (D7, ..., D)) is a CSP instance on smaller domains.

Check irreducibility. For every k € {1,2,...,n} and every maximal congruence o on
Dy, we do the following.

1. Put I = {k}.

2. Choose a constraint C' having the variable x; in the scope for some ¢ € I, choose another
variable x; from the scope such that j ¢ I.

3. Denote the projection of C' onto (z;,x;) by 0.

4. Put oj(z,y) = 2’ é(2", ) ANS(y',y) Aoi(2,y). If 0} is a proper equivalence relation,
then add 7 to I.

5. go to the next C, z;, and x; in 2.

As a result we get a set I and a congruence o; on D; for every i € I. Put X' = {x; |i € [}. It
follows from the construction that for every equivalence class E) of o}, and every ¢ € I there
exists a unique equivalence class F; of o; such that there can be a solution with x;, € Ej, and
x; € E;. Thus, for every equivalence class of o}, we have a reduction to the instance on smaller
domains. Then for every ¢ and a € E; we consider the corresponding reduction and check
whether there exists a solution with z; = a.

Thus, we can check whether the solution set of the projection of the instance onto X'
is subdirect or empty. If it is empty then we state that there are no solutions. If it is not
subdirect, then we can reduce the corresponding domain. If it is subdirect, then we go to the
next k € {1,2,...,n} and next maximal congruence o on Dy, and repeat the procedure.



4 Correctness of the Algorithm

4.1 Rosenberg completeness theorem

The main idea of the algorithm is based on a beautiful result obtained by Ivo Rosenberg in
1970, who found all maximal clones on a finite set. Applying this result to the clone generated
by a WNU together with all constant operations, we can show that every algebra with a WNU
operation has a binary absorption, a center, or it is polynomially complete or linear modular
some congruence.

Theorem 4.1. Suppose A = (A;w) is an algebra, w is a special WNU of arity m. Then one
of the following conditions hold

1. there ezists a binary absorbing set B C A,
there exists a center C' C A,

there exists a proper congruence o on A such that (A;w)/o is polynomially complete,

there exists a proper congruence o on A such that (A;w)/o is isomorphic to (Z,;x1 +
[N + :L'm)

Proof. Let us prove this statement by induction on the size of A. If we have a binary absorbing
subuniverse in A then there is nothing to prove. Let M be the clone generated by w and all
constant operations on A. If M is the clone of all operations, then (A;w) is polynomially
complete.

Otherwise, by Rosenberg’s Theorem [19], M belongs to one of the following maximal
clones.

1. Maximal clone of monotone operations, that is, a clone of operations preserving a partial
order relation with the greatest and the least element;

2. Maximal clone of autodual operations, that is, a clone of operations preserving the graph
of a permutation of a prime order without a fixed element;

3. Maximal clone defined by an equivalence relation;
4. Maximal clone of quasi-linear operations;

5. Maximal clone defined by a central relation;

6. Maximal clone defined by an h-universal relation.
Let us consider all the cases.

1. The least element of the partial order can be viewed as a center. Since there is no binary
absorbing subuniverse, we have a center in A.

2. Constants are not autodual operations. This case cannot happen.

3. Let 0 be a maximal congruence on A. We consider a factor algebra (A;w)/é and apply
the inductive assumption.

(a) If A/§ has a binary absorbing subuniverse B’ C A/d, then we can check that
Ugep F is a binary absorbing subuniverse of A.

(b) If A/§ has a center C" C A/o, then we can check that | . £ is a center of A.

10



(c) Suppose (A/d)/o is polynomially complete. Since § is a maximal congruence, o is
the equality relation and A /¢ is polynomially complete.

(d) Suppose (A/d)/o is isomorphic to (Z,;x1 + - - - + 2,,). Since 0 is a maximal con-
gruence, o is the equality relation and A /¢ is isomorphic to (Zy;x1 + -+ + xp,).

4. By Lemma 6.4 from [2I], we know that w(zy,...,2,) = 1 + -+ + &, where + is
the operation in an abelian group. We assume that A has no nontrivial congruences,
otherwise we refer to case 3. Then the algebra A is simple and isomorphic to (Z,; x; +
-+« + x,,) for a prime number p.

5. We consider the central relation p. Let k be the arity of p. It is not hard to see that
the existence of a binary absorbing subuniverse on A x --- x A implies the existence of
—_—

k-1
a binary absorbing subuniverse on A (see Lemma [7.3). Therefore, the center of p can
be viewed as a center.

6. By Corollary 5.10 from [21] this case cannot happen.

4.2 Correctness of the algorithm

Lemma 4.2. The depth of the recursive calls of type 3 in the algorithm is less than |T|.

Proof. First, we introduce a partial order on the set of relations in I' in the following way. We
say that p; < po if one of the following conditions hold

1. the arity of p; is less than the arity of p,.

2. the arity of p; equals the arity of py, pr;(p1) C pr;(p2) for every i, pr;(p1) # pr;(p2) for
some j.

3. the arity of p; equals the arity of ps, pr;(p1) = pr;(p2) for every i, and p; D po.

It is easy to see that any reduction makes every relation smaller or does not change it. Since
our constraint language I is finite, there can be at most |I'| recursive calls of type 3. O]

The following three theorems will be proved in Section [9]

Theorem 4.3. Suppose © is a cycle-consistent irreducible CSP instance, B is a binary ab-
sorbing set or a center of D;. Then © has a solution if and only if © has a solution with
r; € B.

Theorem 4.4. Suppose © is a cycle-consistent irreducible CSP instance, there does not exist
a binary absorbing subuniverse or a center on D; for every j, (D;;w)/o is a polynomially
complete algebra, E is an equivalence class of 0. Then © has a solution if and only if © has
a solution with x; € E.

Theorem 4.5. Suppose the following conditions hold:
1. © is a linked cycle-consistent irreducible CSP instance with domain set (D1, ..., D,);

2. there does not exist a binary absorbing subuniverse or a center on D; for every j;

11



3. if we replace every constraint of © by all weaker constraints then the obtained instance
has a solution with x; = b for every i and b € D;.

4. O is © factorized by the minimal linear congruences;
5. (Dy,..., D) is a solution of ©r, and © is crucial in (D, ..., D).

Then there exists a constraint ((z;,,...,x;,), p) in © and a subuniverse ¢ of Dy, X - - - x Dy, X Zyp
such that the projection of ( onto the first s coordinates is bigger than p but the projection of
CN(D;, x -+ x D;, x{0}) onto the first s coordinates is equal to p.

5 An example in Z,

In this section we demonstrate the main part of the algorithm for a system of linear equations
in Z4. Suppose we have a system

T1+ 29+ x3+24 =0
201 + 9+ 23+ 24 =0

T+ 29 =2
r1+ xo+ 223+ 224 =0

(1)

The minimal congruence o such that (Zy; x1+. ..+x5) /0 is linear is an equivalence relation
modulo 2.
We write the corresponding system of linear equations in Zy, where 2, = x; mod 2.

i ay+ay=0
Ty + a3+ 2y =0 (2)
zy+xy=0
We choose independent variables 2 and z%, and write the general solution: z} = 2/, 2} =

),y = x4, 0y = o + 2%, We check that does not have a solution, corresponding to

2} =z = 0. Let us remove the last equation from ().

$1+2$2+I’3+$4:0
2$1+I2+l’3+$4:0 (3)
T1+x0 =2

We check that still has no solutions corresponding to 2} = x4 = 0.

We check that if we remove any equation from , then for any aq, as € Zs there will be a
solution corresponding to x} = a; and 2% = a3. Hence we need to add exactly one equation to
describe all pairs (aj, as) such that has a solution corresponding to z} = a; and z% = as.
Let the equation be ¢,z + c3xy = co. We need to find ¢4, ¢3, and co.

Since (3]) has a solution corresponding to 2} = 1, 2% = 0, but no solutions for z} = 0,25 = 1,
the equation is 2] = 1.

We add this equation to and solve the new system of linear equations in Z,.

/ / /
T, +x3+x,=0
/ / /
/ r
Ty +ay,=0

I
Ty =1

12



The general solution of this system is ) = 1, 2}, = 1, 2 = %, o), = x4 + 1, where 2} is an

independent variable. We go back to , and check whether it has a solution corresponding
to a4 = 0. Thus, we find a solution (1, 1,0, 1).

While solving the system of equations, we just solved systems of linear equations in the
field Z, and constraint satisfaction problems on 2 element set (which are also equivalent to
systems of linear equations in Zs).

6 The Remaining Definitions

6.1 Additional notations

We say that the i-th variable of a relation p is compatible with the congruence o if (aq, ..., a,) €
pand (a;, b;) € o implies (ay,...,a;_1,b;,ai11,...,a,) € p. Wesay that a relation is compatible
with o if every variable of this relation is compatible with o.

We say that a relation p’ is obtained from p by factorization of the i-th variable by a
congruence o if p C Ay X -+ X Ay, pf T Ay X - X Ay X AjJo X Ajpq X -+ X Ay, and

(ai,...,a;1,E ais1,...,a,) € p' & Fa; € E: (a1,...,a,) € p.

We say that a congruence o is irreducible if it cannot be represented as an intersection of
other binary relations 01, ..., ds compatible with o. For an irreducible congruence ¢ on a set
A by ¢* we denote the minimal binary relation 2 o compatible with o.

For a relation p by Con(p,i) we denote the binary relation o(y,7’) defined by

/
dzy ... 3xp 3wy . Fen p(Tr, - T, Y Tk, e T) A P(T1y T, Y T, e X))

For a constraint C' = p(z1,...,x,), by Con(C, z;) we denote Con(p, 7). For a set of constraints
Q by Con(Q2, z) we denote the set {Con(C,z) | C' € Q}.

For an algebra A by ConPC(A) we denote the intersection of all congruences o such that
A /o is a PC algebra. A subuniverse A" of A is called a PC subuniverse if A" = E;N---N Ej,
where E; is an equivalence class of a congruence o; such that A /o; is a PC algebra. A variable
is called a PC variable if its domain is a PC algebra.

For an algebra A by ConLin(A) we denote the minimal linear congruence. A subuniverse
of A is called a linear subuniverse if it is compatible with ConLin(A).

6.2 Variety of algebras

We consider the variety of all algebras A = (A;w) such that w is a special WNU operation
of arity m. In this paper every algebra and every domain is considered as an algebra in
this variety. Every relation p C A; x --- x A,, appearing in this paper is a subalgebra of
Ay x---x A, for some algebras Ay,..., A, of this variety.

6.3 Formula, pp-formula, subconstraint

Every variable x appearing in the paper has its domain, which we denote by D,.

A set of constraints is called a formula. Sometimes we write a formula as C; A---AC,,. For
example, a CSP instance can be viewed as a formula. We say that a formula is a tree-formula
if every there is no a path 2z — C7 — 20 — ... (Cj_1 — z; such that [ > 3, z; = 2, and all the
constraints (', ..., (C;_; are different.
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For a CSP instance © and a formula Q@ C © an expression Q(zy,...,z,) is called a pp-
formula. A pp-formula Q(z1,...,z,) is called a subconstraint of © if Q and © \ {2 do not have
common variables except for zy,..., z,.

We say that a pp-formula Q(z1, ..., x,) defines a relation p if p(z1,...,2,) = Jy; ... Jys Q,

where {x1,...,2n,y1,...,ys} is the set of all variables appearing in €.
For a formula © by Var(£2) we denote the set of all variables of 2. For a formula 2 and two
sets of variables x1,...,z, and y1,...,y, by Q44" we denote the formula obtained from (2

by replacement of every variable x; by v;.
For a formula Q by ExpCov(2) (Ezpanded Coverings) we denote the set of all formulas '
such that there exists a mapping S : Var(§)') — Var(Q) satisfying the following conditions:

1. for every constraint (p; (x1,...,x,)) of Q' either the variables S(x1),...,S(x,) are differ-
ent and the constraint (p; (S(x1),...,S5(x,))) is weaker than or equal to some constraint
of Q, or p is a binary reflexive relation and S(z;) = S(z2);

2. if a variable x appears in Q and €’ then S(z) = z.

If instead of item 1 we require that (p; (S(z1),...,S(x,))) is a constraint of {2, we define the
set of formulas Coverings(£2). For a variable x we say that S(z) is the parent of .

Lemma 6.1. Suppose © is a cycle-consistent irreducible CSP instance, ©' € ExpCov(0O).
Then ©' is cycle-consistent and irreducible.

Proof. For every path in © there exists a corresponding path in ©. Therefore ©' is cycle-
consistent. Assume that © is not irreducible. Then there exists an instance {2’ consisting
of projections of constraints from ©’ that is not linked, not fragmented, and its solution set
is not subdirect. By ) we denote the set of projections of constraints from © corresponding
to the constraints of Q' (corresponding constraints should have the same arity). Let us show
that €2 is not linked. Assume the contrary. For any path in €2 connecting elements a and b of
D, we build a path connecting a and b in £ in the following way. We replace every constraint
of 2 by the corresponding constraint of ', and glue them with any path in € starting and
ending with the corresponding variables having the same parent. Since 2’ is not fragmented,
we can always do this. Since {2 is cycle-consistent, the obtained path connects a and b in €V'.
Thus, €2 is not linked, not fragmented, and its solution set is not subdirect, which contradicts
the fact that © is irreducible. O

For a formula © and a variable z of this formula by LinkedCon(©,z) we denote the
congruence on the set D, defined as follows: (a,b) € LinkedCon(©, z) if there exists a path
in © that connects a and b.

6.4 Critical, key relations, and parallelogram property

We say that a relation p has the parallelogram property if any permutation of its variables
gives a relation p’ satisfying

Vay, B, g, Ba: (a1fa, fraw, f1B2 € p' = aras € p').

We say that the i-th variable of a relation p is rectangular, if for every (a;, b;) € Con(p,1)
and (ay,...,a,) € p we have (ay,...,a;-1,b;,ai11,...,a,) € p. We say that a relation is
rectangular if all of its variables are rectangular. The following facts can be easily seen:
if the i-th variable of p is rectangular then Con(p,i) is a congruence; if a relation has the
parallelogram property then it is rectangular.
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A relation p € R is called essential if it cannot be represented as a conjunction of relations
with smaller arities. It is easy to see that any relation p can be represented as a conjunction
of essential relations.

A relation p C Ay x - -+ x A, is called critical if it cannot be represented as an intersection
of other subalgebras of A; x --- x A,, and it has no dummy variables. For a critical relation
p the minimal relation p’ (a subalgebra of A; x --- x A,,) such that p’ 2 pis called the cover.

Suppose p € Ay X -+ x Ap. A tuple ¥ = (¢, 19, ..., 1y), where ¢; : A; — A;, is called

al 'lpl(al)
. . az 2(az)

a unary vector-function. We say that U preserves p if W ( . ) = 2, ’ € p for every
a'h wh(‘ah)

ai
az
( : ) € p. We say that p is a key relation if there exists a tuple 5 € (A; x .-+ X Ay) \ p such
ap,
that for every a € (A; X -+ x Ay) \ p there exists a vector-function ¥ which preserves p and

gives W(a) = 5. A tuple § is called a key tuple for p.
A constraint is called critical/essential/key if the constraint relation is critical /essential /key.

6.5 Reductions

A CSP instance is called I-consistent if every constraint of the instance is subdirect.

Suppose the domain set of the instance © is D = (Dy,...,D,). The domain set D' =
(DY, ..., D) is called a reduction if D} is a subuniverse of D; for every i.

The reduction D' = (D},..., D)) is called I-consistent if the instance obtained after
reduction of every domain is 1-consistent.

We say that D' is an absorbing reduction, if there exists a term operation ¢ such that D
is a binary absorbing subuniverse of D; with the term operation ¢ for every i. We say that
D’ is a central reduction, if D) is a center of D; for every i. We say that D" is a PC/linear
reduction, if D} is a PC/linear subuniverse of D; and D; does not have a center or binary
absorbing subuniverse for every i. Additionally, we say that D’ is a minimal central/PC/linear
reduction if D’ is a minimal center/PC/linear subuniverse of D; for every i. We say that D’ is
a minimal absorbing reduction for a term operation ¢ if D’ is a minimal absorbing subuniverse
of D; with t for every i.

A reduction is called nonlinear if it is an absorbing, central, or PC reduction. A reduction
D’ is called proper if it is an absorbing, central, PC, or linear reduction such that D’ # D.

We usually denote reductions by DY) for some j (or by D(T)). In this case by C'Y) we denote
the constraint obtained after the reduction of the constraint C'. Similarly, by ©U) we denote
the instance obtained after the reduction of ©. For a relation p by pl) we denote the relation
p restricted to the corresponding domains of D). We sometimes say factorization by (j + 1)

instead of factorization by ConLin(DY) or ConPC(DY") if DUTY is a PC or linear reduction.
Sometimes we write (ay, ..., a,) € DY) to say that every a; belongs to the corresponding DY,

A strategy for a CSP instance © with a domain set D is a sequence of reductions D, ... D),
where D) = (Dy), e 7D,(f‘)), such that D©© = D and D is a proper 1-consistent reduction
of @01 for every i > 1. A strategy is called minimal if every reduction in the sequence is
minimal.

6.6 Bridges

Suppose o, and o, are congruences on D; and Ds, correspondingly. A relation p C D} x D3
is called a bridge from oy to oy if the first two variables of p are compatible with oy, the last
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two variables of p are compatible with oy, pry 5(p) 2 01, Pr34(p) 2 09, and (as, as, as,as) € p
implies
(abag) €01 < (CL3,CZ4) € 09.

Suppose o1, 09, 03 are irreducible congruences, we have a bridge p; from oy to o5 and a
bridge ps from o3 to 3. Then we can compose these bridges to define a bridge from oy to o3,
that is, we define the new bridge by JyyJyap1 (21, T2, y1,Y2) A p2(y1, Yo, 21, 22).

A bridge p C D* is called reflerive if (a,a,a,a) € p for every a € D.

We say that two congruences o and o5 on a set D are adjacent if there exists a reflexive
bridge from o to os.

Remark 2. Since we can always put p(xq, T2, x3,24) = o(x1,23) A 0(x2,14), any congruence
o 18 adjacent with itself.

A reflexive bridge p from o; to oy is called optimal if there does not exist a reflexive
bridge p' from oy to o9 such that p/(z,z,y,y) is weaker than p(z,x,y,y). Since we can
compose two reflexive bridges together, the relation p(z, z, v, y) is a congruence for any optimal
bridge p. For an irreducible congruence o by Opt(c) we denote the congruence defined by
p(x,z,y,y) for an optimal bridge p from o to o. For a set of irreducible congruences ) put
Opt(Q2) = {Opt(o) | o € Q}.

We say that two constraints C; and Cy are adjacent in a common variable x if Con(C, x)
and Con(Cy, x) are adjacent. A formula is called connected if every constraint in the formula
is rectangular and for every two constraints there exists a path that connects them. It can be
shown (see Corollary that every two constraints with common variable in a connected
instance are adjacent.

6.7 Dummy variables

To simplify explanation and avoid collisions in this paper we assume that:

1. every time we replace a constraint by all weaker constraints, the weaker constraints have
no dummy variables but might have smaller scopes;

2. if every constraint of {2 has no dummy variables, then every constraint of an instance
Y € ExpCov(2) has no dummy variables;

3. every constraint in a crucial instance has no dummy variables.

7 Absorption, Center, PC Congruence, and Linear Con-
gruence

7.1 Binary Absorption

Lemma 7.1. [1l] Suppose p is defined by a pp-formula Q(xy, ..., z,), Q' is obtained from Q by
replacement of some constraint relations oy, ..., 05 by constraint relations oy, ..., 0. such that
ol absorbs o; with a term operation t for every i. Then the relation defined by Q' (z1,...,x,)
absorbs p with the term operation t.

Corollary 7.1.1. Suppose p C Ay X -+ X A, is a relation such that pry(p) = Ay, C =
pry((Cy x -+ x Cy) N p), where C; is an absorbing subuniverse in A; with a term operation t
for every i. Then C is an absorbing subuniverse in Ay with the term operation t.
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Lemma 7.2. Suppose k4 C A x A is the equality relation, 0 O Ky, w is a binary absorbing
subuniverse in o. Then w Nky # .

Proof. We prove by induction on the size of A. Suppose w absorbs ¢ with a binary absorbing
term operation t.

Assume that there exists a binary absorbing set B C A with the absorbing operation f.
For any (b1, bs) € w and b € B we have (f(b1,b), f(b2,b)) € wN (B x B). Then we can restrict
o and w to B and apply the inductive assumption.

Thus, we assume that there does not exist an absorbing set B C A with the absorbing
operation f. By Lemma pr;(w) binary absorbs A, pry(w) binary absorbs A. Then
pry(w) = pry(w) = A. For every b € A we consider the set A, = {a | (a,b) € o} and
Cy, ={a| (a,b) € w}. If A, = A then C, is a binary absorbing set in A. Therefore C;, = A

and (b,b) € w.
Assume that A, # A for some b. Since b € Ay, we have (4, X Ay) Nw # &. Then we
restrict o and w to A, and apply the inductive assumption. O]

Lemma 7.3. Suppose p is a binary absorbing set on Ay x ---x A,. Then there exists a binary
absorbing set B; in A; for some 1.

Proof. We prove by induction on the arity of p. If the projection of p onto the first coordinate
is not A; then by Lemma this projection is an absorbing set.

Otherwise, we choose any element a € A; such that p does not contain all tuples with a
as the first element.

Then we consider p' = {(ag,...,a,) | (a,as,...,a,) € p}, which is a binary absorbing
subuniverse in Ay X - -+ X A,. It remains to apply the induction assumption. m

A relation p C A" is called C-essential if p N (C1 x A x C"%) # & for every i but
pNC"=0g.

Lemma 7.4. [1/ Suppose C' is a subuniverse of A. Then C absorbs A with an operation of
arity n if and only if there does not exist a C-essential relation p C A™.

It is easy to check the following lemma.
Lemma 7.5. Suppose DY is an absorbing reduction, the relation p is subdirect, then p™) is

not empty.

7.2 Center

Lemma 7.6. Suppose p is defined by a pp-formula Q(xy,...,x,), ' is obtained from Q by
replacement of some constraint relations oy, .. .,0s by constraint relations oy, ..., 0. such that
ol is a center of o; for every i. Then the relation defined by Q' (x1,...,x,) is a center of p.

Proof. Suppose (x4, ..., x,) defines the relation p’. Suppose B; and R; are the corresponding
algebra and binary relation such that o, = {c | Vb € B;: (¢,b) € R;}. Let |B;| = n; for every
i. Let T be obtained from 2 by replacement of every constraint o;(y;,...,4:) by

Ri((yr, o) zi) A ARi((yas -0, Zim, )
Suppose Y((x1,...,2n), (211, -, 2sn,)) defines the relation R. It is not hard to see that

p={c|Vbe (B x---x B’): (¢,b) € R}. By Lemma (7.3 there is no binary absorption
on By" x --- x Bls. This proves that p’ is a center of p. O
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Corollary 7.6.1. , Suppose p C Ay X --- X A, is a relation such that pry(p) = A;, C =
pr((Cy x --- x C,) N p), where C; is a center in A; for every i. Then C is a center in A;.

Corollary 7.6.2. Suppose C; is a center of D; for every i, then Cy x --- x (), is a center of
Dy x---xD,,.

Corollary 7.6.3. Suppose Cy and Cy are centers of D. Then C; N Cy is a center of D.

In the proof of the following two lemmas we assume that a center C' is defined by C' =
{a € A|¥b € B: (a,b) € R} for a subalgebra R of A x B. For an element a € A we put
at ={b]| (a,b) € R}.

Lemma 7.7. Suppose w is a special WNU, C'is a center of A, then w(c,c, ..., c,a,c,...,c) €
C foranya e A and c € C.

Proof. Assume the contrary. Put w(c,...,c,a) =b ¢ C. Since w is a special WNU, we have
w(b,e,...,c) =band w(c,...,c,b) =b. Then w(b*,B,...,B) C b and w(B,...,B,b") C
b*, and w(x,...,x,y) defines a binary absorbing operation. This contradiction completes the
proof. O

Lemma 7.8. Suppose w is a special WNU of arity m, C' is a proper center in A, 6 C A® is
C-essential. Then s < (m - |A]™™)1Al.

Proof. Assume the contrary. For every i choose a tuple o; € 6 such that ; € C71 x Ax C57°,
First, we introduce a quasi-order on elements of A. We say that y; < y» if ¥ C v, and
Y1 ~ yo if yi7 = v We can easily check that by, by, ..., b, > ¢ implies w(by,...,b,) = c.
Suppose we have two tuples (cq,...,¢,), (di,...,d,), and @ # j such that ¢, € C for
every | # i, d € C for every | # j, ¢; ~ d;. It follows from the above argument that

w(cr,...,0,) =2 ¢ and w(dy,...,d,) > d;. If ¢; ~ w(er,...,c,) and dj ~ w(dy,...,d,)
then w(B,...,B,c¢/,B,...,B) C ¢/ and w(B,...,B,c/,B,...,B) C ¢. Therefore, the
i—1 i—1
i— j—
formula w(z,...,z,y,x,...,x) defines a binary absorbing operation on B, which contradicts
i—1

the definition of a center.
We say that an element is foreign if it is not from the center. We say that tuples are
independent if they do not have foreign elements on the same position. We start with s tuples

aq, ..., as On every step we exclude at least one element of A from all tuples.

Assume that we have independent tuples fy, ..., Bs,. Choose a minimal element appearing
in #s. Let it be ¢. Assume that the foreign elements of 3; appear in the positions ji, ..., jp.
Then we choose the most popular projection of tuples f,, ..., s, onto coordinates ji, ..., jn,

and remove all tuples but $; with a different projection. Our independent set became smaller.
Without loss of generality we assume that fi, ..., 0y is the obtained independent set.

We know that there can be only one position of d such that w(...,d,...) ~ ¢ for some d ~ c.
Without loss of generality we assume that this is the first position. Then we generate new inde-
pendent tuples in the following way 3] = w(51, B2, - - -, Bm)s By = wW(B1, Bna1, Bmt2s - -+ Bom—1)
and so on. It remains to show that there are no elements equivalent to ¢ in the obtained tuples.

By Lemma [7.7], the ji-th element of every new tuple is a central element. We cannot get
such an element in the remaining positions because w(...,d,...) > ¢ for every d ~ ¢ (we put
d not in the first position).

Thus, we exclude at least one element on every step. Hence in |A] steps we get a tuple
where all elements are from the center. Therefore, on every step we have less than m/4l foreign
elements in each tuple. Hence, on every step we decrease the number of tuples by a factor of
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at most |A|m‘A| (because we choose tuples that are the same in some coordinates) and by m
(because from m tuples we obtain just one). Thus, if the original number of tuples is at least
(m - [A|™")IAl then we get a tuple where all elements are from the center. This contradicts

C°No=0g. m
Combining this result with Lemma [7.4], we obtain the following corollary.
Corollary 7.8.1. Suppose C' is a center of A, then C' is a absorbing subuniverse of A.

The following lemma is a stronger version of the original lemma suggested by Marcin
Kozik.

Lemma 7.9. Suppose C; C Ay and Cy C Ay are centers, B is a subuniverse of D, a relation
p C Ay x D' x Ay satisfies the following properties: (Cy x B! x Cy) N p = &, for every
ief{1,2,...,0} | |

(CL x B™'xDxB"™ xCy)Np+#0a,

(Al XBZ XCg)ﬁp#@, (Cl XBIXAQ)QP#@.

Then there exists a relation o' C Ay x D? x Ay such that for every i € {1,2,...,2l}

(Cix B7'x Dx B xC)Np #9,

<A1 XB2l xC’l)ﬂp'%Q, (Cl XBQl xAl)ﬂp%Q,(C’l XBQZ XCl)ﬂpIZQ.

Proof. Assume that p is a minimal by inclusion relation of arity [ + 2 satisfying the above
properties. Put E = pr;,,(pN (Cy x B' x Ay)). Since p is minimal, for any b € E the algebra
generated by {b} U C5 contains pr; ,(p). Fix b € E.

Let o be the subalgebra of A x Ay generated by {b} x Cy U Cy x Co U Cy x {b}. Put

Oy, Ly, sy, = 3232 pla,yn, oy 2) Ap(a Y,y 2) Aoz, 2.

It is not hard to see that p’ satisfies all necessary conditions, possibly except for the last
one. Assume that (C; x B* x Cy) N p' # @ and the tuple in the intersection is obtained
by sending z to d and 2’ to d’. Clearly, d,d’ € E and {e € Ay | (e,d') € o} D {d} U (s,
therefore {e € Ay | (e,d') € o} D pr;4(p). Hence, {e € Ay | (bje) € o} D {d'} UC, and
{e€ Ay | (be) € 0} 2 pryya(p).

Thus, (b,b) € o and there exists an n-ary term t such that

t(b,b,...,b,c1,...,¢c;) =0, t(ch,...,c}b,D,...,0) =D,
where i +j >n and ¢q,..., ¢, ¢, ... ,c; € (5. Suppose R C A, x (G is a binary relation from
the definition of the center Cy, bt = {a | (b,a) € R}. Then, b" absorbs G with the binary
term t(z,...,x,y,...,y). This contradiction completes the proof. ]
———

J
Corollary 7.9.1. Suppose Cy C Ay and Cy C As are centers, B C D is an absorbing

subuniverse, p C Ay X D x As is a ternary relation such that (C1 x D x Cy) Np # @,
(Cl XBXAQ)HP#@, (A1 XBXCQ)ﬂp#@ Then (Cl XBXCg)ﬁp#Q

Proof. Assume the contrary. By Lemma we can increase the arity of p as much as we
need. If we restrict the first and the last variables to the corresponding centers and consider
the projection onto the remaining variables we get a C-essential relation. This contradicts the
fact that C' is an absorbing subuniverse. m

Corollary 7.9.2. Suppose C' is a center of A, then C' is a ternary absorbing subuniverse of A.
Corollary 7.9.3. Suppose p C Ay X -+ X Ay, is a relation, k > 3, C; is a center in A; and
pN(Cyx - xCioy X Ay X Ciyqg X -+ X Ck) # & for everyi. Then pN (Cy x -+ x C) # 2.
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7.3 PC Subuniverse

Lemma 7.10. Suppose p C A x B is a subdirect relation, A is a PC algebra. Then either for
every ¢ € B there exists a unique a € A such that (a,c) € p, or there ezists ¢ € B such that
(a,c) € p for every a € A.

Proof. Put o;(x1,x9,...,2;) = Jy p(x1,y) A+ A p(x,y). Since A is PC algebra, oy is either
full, or the equality relation.

If o5 is the equality relation, then for every ¢ € B there exists a unique a € A such that
(a,c) € p.

Suppose oy is full. Then we consider the minimal [ such that o; is not full. It is easy to
see that 0; cannot be preserved by all operations on A. This contradiction proves that o4 is
also full. This means that for some ¢ we have (a,c) € p for every a € A. O

Lemma 7.11. Suppose p C Ay X --- X A, is a subdirect relation, A; is a PC algebra for every
i € {2,...,n}, there is no binary absorption and center on A; for every i € {1,...,n}. Then
p can be represented as a conjunction of binary relations o1, ..., such that Con(d;, j) is the
equality relation whenever the domain of the j-th variable of §; is a PC algebra.

Proof. Assume the contrary. Let us consider a relation of the minimal arity such that the
lemma does not hold.

Assume that p is not essential, then it can be represented as a conjunction of essential
relations satisfying the same properties. By the inductive assumption, each of them can be
represented as a conjunction of binary relations. It remains to join these binary relation to
complete the proof for this case.

Assume that p is essential. The projection of p onto any set of variables gives a relation
of a smaller arity satisfying the same properties. By the inductive assumption, the relation
of a smaller arity can be represented as a conjunction of binary relations d1, ..., d; such that
Con(d;,7) is the equality relation whenever the domain of the j-th variable of ¢; is a PC
algebra. Since p is essential, the relation of smaller arity is a full relation.

Let us consider the relation p C (A; x---x A, 1) x A, as a binary relation. By Lemma
we have one of the following two situations.

Case 1: there exist by,...,b,_1 such that (by,...,b,_1,a) € p for every a € A,. We
consider the maximal s such that p(by,...,bs, Zs41,...,2,) is not a full relation. Obviously
s < n—2 and s exists. Then we get a proper center C' on Ay, defined by C' = {as;1 € Asyq |
Vasio...Vay: (bi,... b, Qsi1, 0512, .-.,0,) € p}.

Case 2: for every ay,...,a,_; there exists a unique b such that (a1,...,a,-1,b) € p. In
the same way we can show that for any i € {2,...,n} and (aq,...,a,) there exists a unique b
such that (aq,...,a;-1,b,a;41,...,a,) € p. Thus, if p is binary, then the statement is proved.

If the arity of p is greater than 2, then the following formula defines a subdirect relation
on A, such that the projection onto any 3 coordinates is a full relation:

/ /
C(21, 22, 23, 24) = w129 ... Fxy_ 2|32 p(a1, To, T3, . o, Ty1, 21)A
/ / / /
p(x17$27 T3y -y Tp—1, ZQ)AP(xp L2y L35 -« Lp—1, 23) A p(l’p Loy L3y -+ Tn—1, 24)-

We can check that if (a1, as, as,ay) € ¢ then (a1 = as) < (a3 = a4). This contradicts the fact
that A, is a PC algebra. O

It follows from Lemma that the quotient of any algebra A without a center and binary
absorption by ConPC(A) is a direct product of PC algebras.

Corollary 7.11.1. Suppose p C Ay x --- x A, is a subdirect relation, there is mo binary
absorption and center on A; for every i, C' = pri((Cy x --- x Cy,) N p), where C; is a PC
subuniverse in A; for every i. Then C is a PC subuniverse in A;.
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Corollary 7.11.2. Suppose p C Ay X -+ X Ay is a subdirect relation, k > 3, C; is a PC
subuniverse in A;, there is no binary absorption and center on A; for every i, pN(Cy X - -+ X
Ciog X Ay X Ciyq X -+ X Cy) # & for every i. Then pN(Cy X -+ x Cy) # 2.

Lemma 7.12. Suppose p C A X B is a subdirect relation, A is a PC algebra without center
and binary absorption, C = {b € B |Va € A: (a,b) € p}. Then C binary absorbs B.

Proof. Suppose A = {ay,...,a;}. Let us consider the matrix M whose rows are tuples
(a,a,...,a,b,ay,...,a;) and (b,aq,...,ax,a,a,...,a) for all a,b € A. The 2k 4+ 2 columns
—— ——
k+1 k+1
of this matrix we denote by ay,...,ag4s. By B we denote the tuple of length 2k* such
that the i-th element of 5 equals b from the corresponding row. By Lemma [7.11] the re-
lation generated by aq,...,agrso is a full relation. Hence, there exists a term operation
f such that f(aq,...,a02) = . Let us show that C absorbs B with the term oper-
ation defined by h(z,y) = f(z,...,z,y,...,y). Suppose d € B, ¢ € C. Assume that
k+1
Jr
h(d,c) = e ¢ C. Choose elements a,a’ € A such that (a,e) ¢ p and (a’,d) € p. Con-
sider the row (d/,...,d,a,aq,...,a;) from the matrix. We know that f returns a on this
tuple and f(d,...,d,c,...,c) = e, which contradicts the fact that f preserves p.
———

k+1
In the same way we prove that h(c,d) € C for every d € B, c € C. O

Lemma 7.13. Suppose p C A X B x B is a subdirect relation, A is a PC algebra without
a center and a binary absorption, for every b € B there exists a € A such that (a,b,b) € p.
Then for every a € A there exists b € B such that (a,b,b) € p.

Proof. We prove by induction on the size of B.

By Lemma [7.10, only two situations are possible: either there exists ¢i,¢o € B such
that (a,cy,ce) € p for every a € A, or for all by,by € B there exists a unique a € A such
that (a,by,be) € p. Consider the first case. Put D = {(b,c¢) | Va € A: (a,b,c) € p}. By
Lemma [7.12] D is a binary absorbing subuniverse in the projection of p onto the last two
variables. By Lemma there exists (b,b) € D. This completes this case.

Consider the second case. Let ¢; be the projection of p onto the first two variables. By
Lemma [7.10| we have one of two situations. Assume that for every b € B there exists a unique
a such that (a,b) € 6;. Then we can check that if (a,b,0') € p then (a,b,b) € p, which
completes this case. Otherwise, there exists an element b such that (a,b) € 0, for every a € A.
Consider the relation da(x,y2) = p(x,b,ya). If pry(ds) # B, then we restrict the last two
variables of p to pry(d2) and apply the inductive assumption. Assume that pry(ds) = B. By
the definition of the second case we know that for every ¢ € B there exists a unique a such
that (a,c) € dy. Then there exists a congruence o on B such that B/o is a PC algebra. If o
is the equality relation, then B is a PC algebra without center and binary absorption. Then
the statement follows from Lemma [Z.11]

If o is not the equality relation, then we consider the relation p’ obtained from p by
factorization of the last two variables by o. By the inductive assumption for any a € A there
exists £ € B/o such that (a, E,E) € p/. By Lemma we have one of the following
situations. Case 1. There exists £ € B/o such that for every a € A we have (a, E, E) € p'.
Then we restrict the last two variables of p to E and apply the inductive assumption. Case
2. For every E € B/o there exists a unique a € A such that (a, F, E) € p'. In this case for
any a € A we choose F such that (a, F, E) € p/. By the above condition we have (a,b,b) € p
for any b € E, which completes the proof. O

21



7.4 Linear Subuniverse

Lemma 7.14. Suppose p C Ay X Ag is a subdirect relation, As is a linear algebra, no binary
absorption on Ay. Then for all a,b € Ay we have

{el (a¢) € p}f = He | (bc) € p}l.

Proof. Assume the contrary, then we choose all elements a with the maximal |{c | (a,c) € p}|.
Denote the set of such elements by C.

Since w(ay, ..., a;_1,T,a;41,--.,0y) is a bijection on A, for every ay, ..., a,, € Ay, we have
w(Ay, ..., A, C Ay, ..., Ay) C C. Hence w(x,...,x,y) is a binary absorbing operation and
(' is a binary absorbing set. O]

Lemma 7.15. Suppose p C Ay X As is a subdirect relation, Ay is a linear algebra, no binary
absorption on Ay. Then p has the parallelogram property.

Proof. First, we define a relation oy, for every k > 2 by

or(Y1, - yk) = 3z pla,y1) A A p(e, ye).

Since oy, is preserved by the Mal’tsev operation w(z,y,...,y,z) and reflexive, oy is a con-
gruence. Let us show by induction on k that ox(yi,...,yx) = /\f:2 oo(y1,yi). Let k be
the minimal number such that (ay,...,ax) ¢ o and (a;,a;) € oy for every i,j. Then
(ay,a1,as,...,a),(a,as,a1,ay,...,ar) € or. Therefore (ay,ai,a1,a4...,ar) ¢ oy, which
contradicts our assumption.

Thus, for every equivalence class F of oy there exists ¢ € Ay such that (¢,d) € p for any
d € E. Tt follows from Lemma [7.14] that p has parallelogram property. O

Corollary 7.15.1. Suppose p C Ay X .-+ X A, is a relation such that pry(p) = Ay, there is
no binary absorption on Ay, C = pry((Cy x --- x C,) N p), where C; is a linear subuniverse in
A; for every i. Then C' is a linear subuniverse in A;.

8 Proof of the Auxiliary Statements

8.1 Reductions preserve cycle-consistency and irreducibility

Lemma 8.1. Suppose DY is a proper minimal reduction, the constraint p(x,...,x,) is
subdirect, pV) is not empty. Then pV) is subdirect.

Proof. By Corollaries [7.1.1], [7.6.1], [7.11.1} [7.15.1] if we restrict the variables x1, 25, ..., 2, of
p to DU then we restrict the projection correspondingly. Since D&) is a minimal absorbing
subuniverse, a minimal center, a minimal PC subuniverse, or a minimal linear subuniverse,
the relation p(xy, ..., x,) is subdirect. O

Lemma 8.2. Suppose D is a proper minimal reduction for a cycle-consistent irreducible
CSP instance ©, O has a solution. Then OW is cycle-consistent and irreducible.

Proof. Consider a path z; — C} — 20 — - -+ — (j_1 — 2 starting and ending with one variable
x. By Q we denote the formula corresponding to this path, that is a formula obtained from
the path such that every variable except for zs,...,z_1 occurs just once, zo,...,2_1 occur

twice. Let {z1,...,2,%1,...,y:} be the set of all variables appearing in 2. By @' we denote
the formula obtained from 2 by replacement of z; by z;.
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First, we want to prove that this path connects a with a in @ for every a € DY, Second,
we prove that if the path connects any two elements of D,, then it connects any two elements
of DIV,

Assume that DM is not a PC reduction. We know that €(z;) defines D,. Since O
has a solution, Corollaries [7.1.1}, [7.6.1}, [7.15.1] imply that Q') (z,) defines the corresponding
subuniverse in D,. Since DM is minimal, this subuniverse is equal to DY, Hence, this path
connects ¢ with a in O for every a € DIV, Assume that the path connects any two elements
of D,. Then Q(z1, z;) contains all pairs (a,a’) € D, x D,. Combining Corollaries [7.1.1] [7.6.1]
with the fact that D™ is a minimal reduction, we prove that Q")(z, 2) contains all
pairs (a,a’) € DS x DV,

Suppose D is a PC reduction. Let Q(zy,..., 21,2, 91, ...,y:) define a relation p. We
factorize variables zs,...,2_1,91,...,y: of p by (1) and replace by PC variables. As a result
we get a relation 0(z1, 2, ug, . .., ux), where uy, ..., u; are PC variables. By Lemma if we
identify z; and z in ¢ then we do not restrict any variable u;. Therefore §(z1, 21, uy, ..., ux)
defines a subdirect relation. By Corollary [7.11.1] if we restrict variables wy,...,ux of this
subdirect relation to D™, then we restrict the variable z; to a PC subuniverse. Since D)
is minimal and ©" has a solution, the path connects a with a in @1 for every a. Thus, we
proved that O is cycle-consistent.

Assume that the path connects any two elements of D,. By Lemma[7.11] if we put z; = a
in 0 then we restrict a variable u; to one-element set or do not restrict at all. Therefore, by
Corollary if we put 21 = a and restrict uq, ..., u; to DY, then we restrict z to a PC
subuniverse. Since D is minimal, the path connects any two elements of DV,

Let us prove that O is irreducible. Assume the contrary. Consider a formula Y; con-
sisting of projections of constraints from ©™) such that it is not fragmented, not linked and
its solution set is not subdirect. Let Var(Y;) = {z1,...,2,}. It is not hard to find an in-
stance T € Coverings(0) such that Yi(z1,...,2,) = YW (21,...,2,) (every variable except
for z1,...,z, appears just once). By Lemma , T is irreducible.

Assume that T is linked. Consider a path that connects any two elements of D,, in T.

By the above argument, it also connects any two elements of Dg(cll) in YW, Therefore, T, is
also linked, which contradicts our assumption.

Suppose T is not linked. Since Y is irreducible, the solution set of T is subdirect. Let
v1, ..., 0, be the remaining variables of Y. By Corollaries[7.1.1], [7.6.1], [7.15.1], [7.11.1] the restric-
tion of v1,...,v, and xq,...,x, to DU implies the corresponding restrictions of 1, ..., z,.
Since the reduction D) is minimal, the relation defined by Y™ (a1, ..., ,) is subdirect. [

8.2 Properties of Con(p, z)

Lemma 8.3. Suppose p is a critical subdirect relation, the i-th variable of p is rectangular.
Then Con(p, 1) is an irreducible congruence.

Proof. To simplify notations assume that ¢ = 1. Put ¢ = Con(p,i). Assume the contrary.
Consider binary relations 41, ..., d, compatible with ¢ such that 6; N---NJ, = 0. Put

pi(x1, ... xy) = 32 p(a, ze, ..., x0) A6z, 27).

It is easy to see that the intersection of py, ..., ps gives p, which contradicts the fact that p is
critical. O

Lemma 8.4. Suppose 0,01, and oy are congruences on A, c Noy = o Noy, 0\ oy # S. Then
o1 and oo are adjacent.
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Proof. Let us define a relation p by

p(T1, T2, Y1, Y2) = F21322 01(@1, 21) A 0221, Y1) A 01(@2, 22) N 02(22,y2) N 0 (21, 22).

It is easy to check for any (a1,as,as,as) € p that (aj,a2) € 01 & (as,a4) € 09. Also
(a,a,a,a) € p for any a € A. Choose (a,b) € o\ o1. Then (a,b,a,b) € p, which proves that p
is a reflexive bridge. O]

For a relation p of arity n by UnPol(p) we denote the set of all unary vector-functions
preserving the relation p.

Suppose ¥ is a set of constraints with the same scope of variables. For a tuple o we say
that a constraint C' is mazimal without o in 3 if there does not exist a weaker constraint
C' € ¥ such that a does not satisfy C”.

Lemma 8.5. Suppose a pp-formula Q(z1,...,x,) defines a relation p, o & p, p' = {f(«) |
f € UnPol(p)}. Then there exists € € Coverings(€2) such that (xq, ..., x,) defines p'.

Proof. Suppose a = (ay,...,a,). We introduce new variables z¢ for every i € {1,2,...,n}

and a € D,.. By T we denote the following formula A p(2b,...,2%). It is easy to

(b1,...,bn)€EP
see that p' is defined by a pp-formula Y (z{*,..., 2% ). To obtain formula €’ it is sufficient to
replace every occurrence of p by 2 with the corresponding variables. ]

Corollary 8.5.1. Suppose 2 is a formula, 3 is the set of all constraints defined by Y (x1, ..., x,)
where YT € Coverings(2), C' is a mazimal constraint in ¥ without a tuple a. Then « is a key
tuple for the constraint relation of C'.

Proof. Suppose C' = p(xy,...,x,). For every tuple 8 ¢ p we consider pg := {f(B) | f €
UnPol(p)}. Tt is easy to see that pg 2 p for every 3. By Lemma 8.5 pg can be defined by a
constraint from . Since C' is maximal, o € pg. Therefore, o is a key tuple for p. m

Lemma 8.6. Suppose DWW is a minimal nonlinear reduction for a formula Y, the solution set
of Y is subdirect, YN (x1,. .., x,) defines a subdirect rectangular relation. Then for every i

(COD(T(xh s axn)a xz))(l) = COD(T(I) (:Eh s 7In)7 Iz)

Proof. WLOG we prove for ¢ = 1. Let {z1,...,2,,v1,...,ys} be the set of all variables
of T. Define the relation p by Y(xy,...,Zn,41,-..,ys). Put o9 = Con(Y(z1,...,2,),21),
o1 = Con(YW (2y,...,2,),71),

/ / / /
p(xbx%"'7‘rn7y17‘"7y$7y17"'7ys7$1):

P($173327---,iffmyl,---ays)/\0(55/173727--->5Cnay/17---ay;)-

Assume the opposite. Choose a pair (a,b) € 081) \ o1. Then there exists « such that aab € p'.

Since YW (1, ..., 2,) defines a subdirect relation, for every ¢ € Dg(gll) there exists (3. such
that cfB.c € p'V). Consider tuples & = aabBybfb, & = afaacbfyb, & = aB.abacd. If DM
is a central reduction, then by Lemma [7.9.2] there exists a ternary absorbing term operation
t. Then t(&, &1, &) defines a path from a to b with edges from ;. If D) is an absorbing
reduction, then (&, &;) defines a path from a to b with edges from oy, where ¢’ is the binary

absorbing operation. Since Y (a1, ..., ,) defines a rectangular relation, oy is a congruence.
Therefore, there is no path from a to b in oy.
Assume that D™ is a PC reduction. We factorize variables &g, ..., Tn, Y1, .-\ Ys: Uiy - - - U,

of p/ by (1), replace every new variable by a set of PC variables, and restrict variables x; and
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Ty to Dgc1 . As a result we obtain the relation p”(x1, z1, . . ., 2, 2} ), where the domain of z; is
a PC algebra for every i. By Corollary [7.11.1] every variable z; in p” either takes on all values
from the domain or just one value. By Lemma o is subdirect. Then, without loss of
generahty we assume that the relation p” is subdirect (otherwise we consider the projection
of p” onto all variables taking on more than 1 value).

By 0 we denote the element of every PC algebra correspondmg to the reduction DM Since

pW is subdirect, (c,0,...,0,¢c) € p” for every c € D;,;1 . Lemma m implies that for every
c € D;(cll) the formula 327p"(c, z1, . . . ,zk,xl) defines a subdirect relation. We also know that

there exist ¢y, ..., ¢ such that (a,cq,..., ¢, b) € p’. Put

po(21, -y zae) = 32y p"(a, 21,20, y) AP (2 Zsns - 2ok, YA

p”(xlv Z2k415 -+ -y 23k 3//) A p”(b7 Z3k+1y -+ + 5 Rk 3//)
Since we can put ' = a or ' = b, pg is subdirect. We can check that

(e, y¢8,0,...,0,0,...,0,0,...,0) € pg (for 2’ =y =19 =b);
0,...,0,0,...,0,¢1,...,¢,,0,...,0) € pg (for 2’ =y =a,yy =0);
(Clyeee s ClyCLy ooy Cly CLy e o5 Cry 0,000, 0) € po (for 2’ =a, y =3y =b)

but (0,...,0) ¢ po. By Lemma [7.11] py can be represented as a conjunction of bijective
binary relatlons, and none of them can omit the tuple (0,...,0,0,...,0,0,...,0,0,...,0).
Contradiction. 0

Lemma 8.7. Suppose DY) is a minimal linear reduction for Y, YW (xy,... x,) defines a
subdirect rectangular relation, Var(Y) = {z1,..., 2, v1,..., 0.}, @ = TAA_, 0:(vi, u;), where
0; = ConLin(D,,). Then (Con(Q(z1,...,Tn, U1,y u), 7)) = Con(YD(zy,...,2,),25))
for every j.

Proof. Without loss of generality assume that j = 1. Suppose Q(z1,...,Tp, ug,...,u,) and
T (x1,...,2,) define the relations p’ and p correspondingly. Assume the opposite. Then
there exist a,b € D) such that (a,b) € Con(p’,1) \ Con(p,1). Therefore for some S we have
afB,bB € p'. Since p is subdirect, there exist o, and o in DM such that aag, boy, € p'. Tt is
easy to check that

w(a,a,...,a)w(ag, B,....8) €,
w(a,b, ..., bw(ag, B,...,0) €0,
w(a,b,...,.bw(a,B,...,0) € P)
w(b,b,...,.b)w(aw, B,...,0) €

Since w is a special WNU, w(aw, 3, .. ., 8) and w(ay, 3, ..., 3) belong to DY for ¢ = w(a, b, .. .,
we have (a,c), (¢,b) € Con(p,1). Since p is rectangular, we have (a,b) € Con(p,1). This con-
tradiction completes the proof. O

8.3 Adding linear variable

Below we formulate few statements from [21] that will help us to prove the main property of
a bridge. A relation p C A" is called strongly rich if for every tuple (ay,...,a,) and every
Jj €{1,...,n} there exists a unique b € A such that (ai,...,a;-1,b,a41,...,a,) € p. We will
need two statements from [21].
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Theorem 8.8. [Z1] Suppose p C A™ is a strongly rich relation preserved by an idempotent
WNU. Then there ezists an abelian group (A;+) and bijective mappings ¢1, ¢a, ..., : A — A
such that

p={(z1,....2) | d1(21) + P2(22) + ... + Pn(zn) = O}

Lemma 8.9. [2]] Suppose (G;+) is a finite abelian group, the relation o C G* is defined by
o = {(a1,as2,a3,a4) | a1 + a3 = a3 + a4}, o is preserved by an idempotent WNU f. Then
flzy,...,xn) =t -2+t -z0+ ...+t -2, for somet € {1,2,3,...}.

Theorem 8.10. Suppose o C A? is a congruence, p(x1, T2, Y1,%2) 8 a bridge from o to o such
that p(w,x,y,y) defines a full relation, pry 4(p) = w, w is a minimal relation compatible with
o such that w 2 o. Then there exists a prime number p and a relation ( C A x A X Z,, such
that (21,22,0) € ¢ & (21,22) € 0 and pry,( = w.

Proof. Since the relations p and w are compatible with o, we consider A/o instead of A and
assume that o is the equality relation, p and w are relations on A/o.

Without loss of generality we assume that p(z1, x2, y1,y2) = p(¥1, y2, 1, x2) and (a, b, a, b) €
p for any (a,b) € w. Otherwise, we consider the relation p’ instead of p, where

Pl<$1, 55271/173/2> = dzdz ,0(%, T2, 21, 22) A p(yh Y2, 21, 22)-

We prove by induction on the size of A. Assume that for some subuniverse A" C A we have
(A x AYN(w\ o) # . By ¢’ we denote the restriction of o to A’. By w’ we denote a minimal
relation compatible with ¢’ such that ¢’ C w’ C (A’ x A’)Nw. By the inductive assumption for
pN (W x w') there exists a relation (' C A’ x A’ x Z,, such that (x1,22,0) € (' & (x1,22) € 0’
and pr; 5(¢’) = w'. Put

C(x1, @9, 2) = 1 Tya p(1, T2, Y1, Y2) A C' (Y1, Y2, 2).

It is easy to see that ( satisfies the necessary conditions.

Thus, we assume that for any subuniverse A’ C A we have (A’ x A )N (w\ o) = 2.

Consider a pair (aj,as3) € w \ 0. Then {a | (a1,a) € w} = {a | (a,a2) € w} = A.
Hence, any element connected in w to some other element is connected to all elements. Since
(a1,a), (a,a2) € w for every a € A\ {a1, a2}, if |A| > 2 then w = A x A.

If |[A| =2 and w # A x A then w = {(a,a), (a,b), (b,b)}. This case cannot happen because
the corresponding relation p is not preserved by any idempotent WNU.

Thus, we assume that w = A x A.

Let us show that for any aq, as, a3 € A there exists a unique a4 such that (a1, as, as, as) € p.
For every a € A put A\,(z1,22) = Jyap(z1, 22, a,y2). It is easy to see that o C A\, C w.
Therefore A\, = w = A x A for every a. We consider the unary relation defined by d(x) =
play,as,as, ). By the above fact § is not empty. If § contains more than one element, then
we get a contradiction with the fact that there are no proper subuniverses.

Then p is a strongly rich relation. By Theorem , there exist an Abelian group (A;+)
and bijective mappings ¢1, @9, @3, ¢4 A — A such that

p = {(a1,a2,b1,bs) | $1(a1) + d2(az) + d3(b1) + da(b2) = 0}.

We know that (a,a,b,b) € p for any a,b € A, p(x1, 2, y1,y2) = p(y1, Y2, T1,x2). Then without
loss of generality we can assume that ¢1(x) = ¢3(x) = z, ¢a(z) = ¢d4(z) = —2.

Since w is a special WNU, it follows from Lemma[8.9 that w on A is defined by z1+. . .+xy,.
Therefore, the relation ( € A x A x A defined by ¢ = {(b1,b2,b3) | by — by + b3 = 0} is
preserved by w. If (A;+) is not simple, then there exists a subuniverse A’ C A contradicting
our assumption. Therefore, (A;+) is a simple Abelian group. O
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Corollary 8.10.1. Suppose ¢ C A% is an irreducible congruence, p(x1, T2, y1,y2) is a bridge
from o to o such that p(x,x,y,y) defines a full relation. Then there exists a prime number p
and a relation ( € A X A X Z, such that (11,72,0) € ( & (21,22) € 0 and pry ¢ = 0*.

Lemma 8.11. Suppose p is an optimal bridge from oy to 05, 01 and oo are different irreducible
congruences. Then p D oy, where p(z,y) = p(x,x,y,y).

Proof. 1t is easy to see that oy C p and oy C p. Therefore, if o1 € 09, then p 2 os.

Assume that o1 C 0y. Assume the contrary, that is, p(z, x,y,y) = oo(z,y).

First, we want to get the following property: for every (a,b,c,d) € p we have (a,d) € os.
Put pi(z1,22,91,%2) = p(x1,T2,y1,92) A 02(x1,92). If py is a bridge then we replace p by
p1. Assume that p; is not a bridge, then for every (a,b,c,d) € p with (a,d) € oy we have
(a,b) € 01. Put pa(x1, 22,y1,92) = 32 p(x1, 22, 2,91) A 02(21,92) and replace p by pa.

Second, we replace p by the relation defined by p(x1, 22, y1,y2) A of (21, 22) A 05(y1, y2),
which has the same properties.

Let Dy be the domain of the congruences o; and o5. We build a sequence of subsets
Dy, Dy, ..., Dy (not necessarily subuniverses) such that for every i there exists a unary oper-
ation h; : Dy — Dy such that h;(h;(z)) = hi(z), hy(Dy) = D;, and h; preserves the relation p.
It is not hard to see that h;(w(xy,...,z,)) is an idempotent WNU on D;. By w; we denote a
special WNU on D; that can be derived from the idempotent WNU on D;. For any relation
§ and any formula © by 6@ and ©® we denote their restriction to D;. We require p¥ to be
a reflexive bridge from a?) to ag) for every 1.

Suppose we have a sequence Dy, D1, ..., D,. First, we want to show that for any (b, by) €
(03)®)\ ags) the unary operation g(z) = w,(by, ..., b1, 2) maps a bridge p® to a bridge. To
prove this, we need to show that g(p(®)) contains a tuple (dy, d, €1, e2) with (dy, dy) & o1. We
know that there exists (aj, ag, b1, by) € p. Since (aq,bs) € 02, we have (aq,b;) ¢ o9. Since o9 is
irreducible, pr; 3(p) contains (b, b). Since p(x,z,y,y) = oa2(x,y), there exists (b1, by, by, by) €
p'® such that (by,b)) ¢ oy. Restrict w, to the equivalence class of aés) containing b;. The
obtained operation and the equivalence class we denote by w’ and F, correspondingly. Put
P =pN(E?%x D? and o] = af) N E?. Let w C of N E? be a minimal relation compatible
with ¢ such that w 2 ¢]. It is not hard to check that the formula

Jy13yo Pl(xh T, y17y2) A Pl(xlpxéyyh Y2) A w(wy, 952) A w(xlpxé)

defines a reflexive bridge p”(z1, z2, 2}, x3) from o} to of. By Theorem [8.10] there exists a
prime number p and a relation ( C E X E x Z, such that (xq,22,0) € ( & (21,22) € 0} and
pry o ( = w. Therefore, for some (1, e3) € w we have (w,(by, ..., b1, e1), ws(by, ..., bi,e2)) & o1
and the unary operation g(z) = w(by, ..., b1, ) maps the bridge p® to a bridge.

Consider two cases. Case 1: there exists (by, by) € (03)) \oés) such that ws(by, ..., by, x) #
x on D®. Then put hepi(x) = we(by, ..., b1, he(z)) and Dyyy = heyi(Dg). Thus, we made
our sequence longer.

Case 2: For any (by,by) € (03)®)\ O'és) we have wg(by,...,b1,2) = x on D,. Assume that
there exist (a1, as, as, as), (@}, as, as, as) € p'® such that (ar,a}) ¢ ;. Since w, preserves pl*,
we have

(ws(all, ay, ..., a1), ws(az, ..., a,a1),ws(as, ..., as,ar), ws(as, ..., a4,a1)) € P(S)'
Since (ay,a4) € 09 and (ay,as), (@}, az) € o2, we have (ay,a3), (az,as), (as,aq) € (03)®\ O'és).
Therefore, the above tuple equals (a},a;,a1,a;) and belongs to p'®, which contradicts our

assumptions. In the same way we can show that (a1, as,as, as), (a1, as, ay,as) € pt implies
(a3, ay) € 0.
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Consider (ay, ag, by, by) € p® with (b, bs) & 0 and the formula
O = p(ZJ Ty, T2, Ig) A p(Z/7 Ty, 13/2, xé) A p(Za Ty, Ts, Iﬁ) A p(Z/7 Ty, 13/5, x%)

Suppose O(xq, x4, x5, %) defines a relation e. Since hg(hs(x)) = hs(x) and hy preserves p, the
formula ©)(z,, 24, x5, 23) defines the relation €®). By sending (2, 21, 2o, 23) to (a1, as, by, by),
(2, xq, xhy, xh) to (ag, az, as, a2), (2,24, T5,T6) t0 (a1, a2, by, bs), (2,24, 2%, x5) to (ag, asz, az,as),
we show that (b, as, by, as) € €. Assume that € is not a bridge, then there exists (a, a, b, c) €
¢®) such that (b,c) ¢ o,. This contradicts the rectangularity of the first and third variables
of pt®

Let us show that € is also a bridge. Assume the contrary. Then without loss of gener-
ality we assume that there exists (dy,dp, d1,ds) € € such that (dy,ds) ¢ o9. Put do(y,2) =
dr e(x,x,y,z). Since oy is irreducible, we have (by,bs) € &y and there exists d such that
(d,d, by, by) € €, which means that (h(d), hs(d), b1, bs) € €*). This contradiction proves that e
is a bridge. By sending (z, 1, xa, ¥4, x3, 2%) to (a1, az, by, by, be, by) and (2/, x4, x5, 2%, 26, T4) tO
(a1,a1,a1,a1,a1,a;) we can show that (by, by, a1,a;1) € €. Since we can compose the bridges p
and €, we get a contradiction with the fact that p is optimal. O]

8.4 Previous reductions

Theorem 8.12. Suppose D© DWW . DG js q strateqy for Q, the solution set of Q)
subdirect for every i € {0,1,...,s}, j < s, D®*Y is a proper reduction, at least one of the
two reductions DUTY | DG 4s nonlinear, (QU) (x4, ..., 2,)) "+ defines a nonempty relation.
Then (QUHD(zy, ..., 2,))*Y) defines a nonempty relatzon

Proof. Assume the contrary. Let {xy,...,2Z,41,...,y:} be the set of all variables appearing
in . Suppose QU (x1,...,2,,v1,...,y;) defines the relation p. We consider the type of the
reduction DUt and the type of the reduction DG+,

D®*D is an absorbing reduction. Since Q) (zy,...,2,,v1,...,1:) defines a subdirect
relation, Lemma [7.5) ﬂ implies that Q¢+ (xy, ..., 2,,91,...,7,) defines a nonempty relation.

D(J“) is a PC reduction. First, using the definition of a PC subuniverse, for every
variable y; we choose a congruence on DZSZ) such that D(J s an equivalence class of this
congruence. Second, we factorize the variables yy, ..., y; of p by these congruences and replace
these variables by a set of PC variables. As a result we get a relation p/(z1,...,Zn, 21, .., 2k),
where the domain of z; is a PC algebra for every i. By p; we denote the relation obtained
from p’ by restricting of the variables z,, ..., z, to DY. Obviously, p; = p'.

Since p is subdirect, every variable z; takes on all values in p;. Let us prove by induction
onl € {j,...,s} that the variable z; either takes on all values in p;, or just one value. Let [
be the minimal number such that this is not true Then z; takes on all values in p;_;.

Let us consider the type of the reduction DW. If it is an absorbing or central reduction,
then by Corollaries [7.1.1] [7.6.1] we get a center or a binary absorbing set on the domain of 2
and therefore on the domain Dg(ﬂl for some variable y,. This contradicts the fact that DUV
is a PC reduction. Similarly, if it is a PC or linear reduction then we get a contradiction
with Corollaries [7.11.1] and [7.15.1] correspondingly. Thus, we know that every variable z; of
ps either takes on all values, or just one value.

Assume that D®*1) is a central reduction or a linear reduction. Let 0 be the value in the
domain of every variable z; corresponding to the reduction DU+, Let us consider the tuple
(ay,...,0Qn,b1,...,bx) € ps with the maximal number of Os such that ai,...,a, € DED,
Without loss of generality assume that b; = 0 for every i € {k’ +1,... k}. Then we consider
the relation p, defined by ps(z1,...,Tn, 21,...,2k,0,...,0). Since p(*) is subdirect, every
variable z; takes on value 0 in pf. Therefore, z1, ..., zp take on all values from their domains
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in p.. By Corollaries , , if we restrict variables zy,...,z, of g, to DTV, then we
restrict the remaining variables of p!, to a center or to a linear subuniverse. Hence, we get a
center or a linear subuniverse on the domain of z;. This contradicts the fact that DUt is a
PC reduction.

Assume that D®*D is a PC reduction. We factorize variables z1,...,z, of ps by (s +
1) and replace these variables by PC variables uq,...,u;. As a result we get a relation
p'(u1, ..., up, 21, ..., 2). By Lemma [7.11] p” can be represented as a conjunction of binary
relations with the parallelogram property. Since p(®) is subdirect, we can not have a binary
relation involving a variable from {uy,...,u,} and a variable from {z,..., 2z }. This means
that if we put z; = 0 for every i we do not reduce the projection of p” onto the first h variables.
This contradicts our assumption.

DG+ is a central reduction, DU*D is an absorbing or central reduction. Let
N be the maximal number such that there exists a tuple in p with the first N elements
from DGHY and the last ¢ elements from DU+Y. Let the relation p’ be obtained from p by
restriction of the first n variables to D). We consider the relation p’ as a ternary relation
g C (DY x - x ngv) x (DS),, x---x DS x (DY) x - - x DY), where DS x - - x Dg(f;l) is

a center of Dy s) : x'Déf\),, Dg(thll) X Dg(013+2 - X Dg(cn) is a center of DQCN+1 X Dg(gsjgﬁ - X Dg(cn),
and Dy ] UL s x Dz(,iﬂ) is a center or a blnary absorbing set in DzEu) - X Dyt . This gives

us a contradlction with Corollary [7.9.1]

D&Y is a central reduction, DUtY is a linear reduction. We factorize the last
t variables of p by (j + 1) and restrict the first n variables to D®). As a result we get a
relation p/(xy,..., oy, 21,...,2), where the domain of z; is a linear algebra for every i. By
Corollary if we restrict variables z1, ..., z, of p' to DTV then we restrict the remaining
variables to a center, which is not possible for a linear algebra.

DG is a linear reduction, DUtV is an absorbing or central reduction. By p/
we denote the relation obtained from p by the restriction of the variables z1,..., 2, to D
and factorization of them by (s + 1). By Corollaries [7.1.1] [7.6.1], if we restrict the variables
Y1, ...,y of o/ to DUY then we get a restriction of the remaining variables to a center or a
binary absorbing subuniverse, which is not possible for linear algebra.

DG+ is a PC reduction, DUtV is an absorbing, central, or linear reduction.
Again, using the deﬁmtlon of a PC subuniverse, for every variable x; we choose a congruence
on Dxl) such that Dfor is an equivalence class of this congruence. Then, we factorize the
variables z1,...,z, of p by these congruences and replace these variables by a set of PC
variables. As a result we get a relation p/(z1,..., 2k, ¥1,--.,y:), where the domain of z; is a
PC algebra for every i. Let 0 be the value in the domain of every variable z; corresponding to
the reduction DGV, Let us consider a tuple from p’ with the maximal number of elements
equal to 0 and the last ¢ elements from DU*!. Without loss of generality assume that this
tuple is (ag,...,ap,0,...,0,by,...,b;), where a; # 0 for every i € {1,...,k'}. Let us consider
the relation p”(z1,..., 21, Y1, ..., y:) defined by p'(z1, ..., 21, 0,...,0,y1,...,y). It is easy to
see that every variable z; takes on all values in p”. By Corollaries [7.1.1}, [7.6.1}, [7.15.1] the

restriction of y1, ...,y to DYUTY implies the restriction of each of the variables 21, ...,z to a
binary absorbing subuniverse, a center, or a linear subuniverse. This contradicts the definition
of a PC reduction. O]

Corollary 8.12.1. Suppose © is a cycle-consistent CSP instance, D, DM ... D®) s g
strategy for ©, T € ExpCov(0) is a tree-formula, z is a parent of x1 and x4, B is a center of

Dg(f), or B is a PC subuniverse of DY and Dés) has no binary absorption and center for every
y. Then the pp-formula Y (1, zy) defines a binary relation with a nonempty intersection
with B x B.
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Lemma 8.13. Suppose D, DWW . D) is a strategy for the constraint p(x1, . .., z,), DD
18 a linear reduction,

(b1, by aggq, .. an) € p,
(a1, ... a4,be41,...,by) € p,
(bt by bosns - ba) € p,
(a1, ..., a4 Qi1 ..., Gp) € DY,

Then there exists (dy,ds, ..., d,) € pt+Y.

Proof. Let I be the set of all ¢ such that D;ES) is not linear. We prove by induction on the sum

D ier
If s = O, then we put 0, = w(b;, ..., b, a;) for every i. Obviously, (b),...,b]) €
From here on we assume that s > 0. Put

p(s—i-l)‘

Q:p(yla'”ayhxt-i-lu"'?x’rl)/\p(l‘h"'7xtayt+17"'ayn>Ap(yla"'7yt7yt+17"'7yn)'

Since p) is subdirect, the solution set of QU) is also subdirect for every j € {0,1,...,s}.

If (QW(2y,...,2,))") is not empty, then we can apply the inductive assumption to p(*
to complete the proof.

Suppose (QW (1, ..., 2,))"Y is empty. Since (Q(zy,...,2,))"V is not empty, if DM is
a nonlinear reduction then we get a contradiction with Theorem [8.12

It remains to consider the case when D™ is linear. Suppose Qx1, ..., Ty Y1,y - - -, Yn) defines
the relation p/. By p” we denote the relation obtained from p’ by factorization of yi,...,y,
by (1). For an element b by b(!) we denote the equivalent class containing b.

We consider two cases. Case 1. There does not exist a tuple (ci,...,¢,,dy,...,d,) € p'

such that ci,...,c, € D®*Y) and dy,...,d, € DY (we do not require dyy1,...,d, to be in
DW). Put

€(T1y e Ty 21,y 2) = 32p41 .- 3z P (X1, o Ty 21, 20).
Put b, = w(b;,...,b;,a;). Since DU is a linear reduction and
(ar, ... an, 0, 0, by, e al? o a), by, b, B b)Y € e
we have
@, a o ay, e Y ) e e

We know that (b,...,b,) € D). Let us restrict the variables z,...,, of the relation € to
D . The obtained relatlon we denote by €. It is easy to find a strategy E, ... E®) for
€(x1,...,Tn,21,...,2) such that Ea(;jz) = DQR and ng) contains {a () } for every i and j. By
EG+) we denote the reduction of E®) such that ES™ = DEY and BT = {a '} for every
i. Then we apply the inductive assumption for € and a strategy EV, ..., E®) to get a tuple
in €+Y. This contradicts our assumption.

Case 2: There exists a tuple (ci,...,¢n,d1,...,d,) € p/ such that cy,..., ¢, € DEY and
di,....,d; € DO, Then dgl) = al(-l) for i € {1,...,t}. Since ci,...,c, € DTV we have

M =V for every i € {1,...,n}. Therefore,

(dl,...,dt,ct+1,...,cn,agl),...,agl),ai_lgl,.. ,anl)) ep’,
(cl,...,ct,CtH,...,cn,agl),...,agl),dg)l,.. ,d;”) ep’,

(dl,...,dt,cHl,...,cn,agl),.. at ,di?l,...,dn)) ep.
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Let us restrict the variables 1, . .., x, of the relation p” to DY), The obtained relation we de-

note by e. In the same way as in case 1 we define a strategy EM, ..., E®) fore(xy, ..., 20, 21,. .., %)
and a reduction £+ such that Eg(f) = Dg) for every ¢ and j. Then we apply the inductive
assumption for € and a strategy EM, ... E®) to get a tuple in €T, This contradicts our
assumption that (QMW(zy,...,2,))*) is empty. O

8.5 Existence of a bridge

In this subsection we explain how to get a bridge from a rectangular relation and to compose
bridges appearing in the instance.

Lemma 8.14. Suppose p C Ay x --- X A, is a subdirect relation, the first and the last
variables of p are rectangular, there exist (by,as,...,a,),(a1,...,a,_1,b,) € p such that
(ay,as,...,a,) ¢ p. Then there exists a bridge 6 from Con(p,1) to Con(p,n) such that
d(z,x,y,y) is equal to the projection of p onto the first and the last variables.

Proof. The required bridge can be defined by

O(x1, 9, y1,Yy2) = Izo... Fzn1 p(T1, 22, -y Zn1,91) A p(T2, 205 - oy 201, Y2)-
L]

Theorem 8.15. Suppose © is a cycle-consistent connected formula such that every constraint
relation is a critical rectangular relation. Then for every constraints C, C" with the correspond-
ing variables x,x’ there exists a bridge § from Con(C,z) to Con(C’, x) such that é(x,z,y,y)
contains all pairs of elements linked in ©. Moreover, if Con(C"”,z") # LinkedCon(©, 2") for
some constraint C" € © and a variable x”, then 0(x,x,y,y) contains all pairs of elements
linked in ©', where ©' is obtained from © by replacement of every constraint relation by its
cover.

Proof. Since C' and C’ are connected, there exists a path zoC121Cs2y ... Cy_12;_1C}z;, where
=z z=1,C=C,C;=C" and C; and C;, are adjacent in z; for every i.

By Lemma , every relation defined by Con(Cy, x) for some Cy and xq is an irreducible
congruence. Suppose o; is an optimal bridge from Con(Cj, z;) to Con(Cii1, 2;), 6; is a bridge
from Con(C;, z;—1) to Con(C}, z;) from Lemma for every i. Then we compose all bridges
together and define a new bridge 0 (uo, ug, vt, v;) by

Fug Fuf Ty 30 - Ty Ty Fve 1 Fup ) 1 (uo, ug, v1, VA
t—1

/\(0i<vi’ U;: Uy, U;) A 5i+1(ui7 U;, Vit1, U;-}-l))‘ (5)
i=1

Since © is cycle-consistent, if # = 2’ then J is a reflexive bridge from Con(C, z) to Con(C’, x).
Thus we proved that any two constraints with a common variable are adjacent.

Since the instance O is cycle-consistent, there exists a path in © starting at = and ending at
2’ that connects any pair of elements linked in ©. Since every pair of constraints with common
variable are adjacent, we can assume that the above path z0C121Cs25 ... Cy_12;_1C} 2, satisfies
this property. Then it is easy to check that d(z,x,y,y) contains all pairs of elements linked
in ©.

To prove the remaining part of the theorem, assume that Con(C”, z”) # LinkedCon(©, ")
for some constraint C” € © and a variable z”. For any bridge p, by p we denote binary relation
defined by p(z, z,y,y). First, observe that any bridge p from oy to o9 defined by Lemma m
satisfies one of the following properties:
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1. Con(p,1) = o1 and Con(p,2) = o,
2. Con(p, 1) 2 oy and Con(p,2) 2 o9.

Similarly, one of the above properties holds for any reflexive bridge. Thus, every bridge in
satisfies one of the above properties.

By the first part of the theorem Opt(Con(C”,z")) 2 Con(C”,z"). It is not hard to see
that if we join bridges together as in (b)) and at least one of the bridges satisfies property 2
then the obtained bridge satisfies property 2. We may assume that any path goes through
the variable x”, which guarantees that every bridge we obtain satisfies property 2. Thus, we
showed that Opt(Con(Cp, x)) 2 Con(Cy, xg) for any constraint Cy € © and any variable z
in it.

To complete the proof, notice that the composition of bridges §; and o; in gives a bridge
pi such that p;(z,x,y,y) contains the projection of the cover of C; onto the variables z;_; and
2. ]

Corollary 8.15.1. Suppose © s a cycle-consistent connected formula such that every con-
straint relation is a critical rectangular relation. Then for every constraints C,C" with a
common variable x there exists a bridge § from Con(C,z) to Con(C’, x) such that §(x,z,y,y)
contains the relation LinkedCon(©, x).

8.6 Growing population divides into colonies.

In this section we prove a theorem that clarifies the inductive strategy used in the proof of
Theorem [9.8] To simplify explanation we decided to avoid our usual terminology. Instead, we
argue in terms of organisms, reproduction, and friendship.

We consider a set X whose elements we call organisms. At every moment some organisms
give a birth to new organisms, as a result we get a sequence of organisms X; C X, C X5 C ...,
where X; C X and |X;| < oo for every i. Note that every organism has only one parent.

Every organism has a characteristic that we call strength, that is a mapping £ : X —
{1,2,...,S}. Also we have a binary reflexive symmetric relation F' on the set X, which we
call friendship. For an organism x by BirthDate(z) we denote the minimal ¢ such that x € X;.
A sequence of organisms 1, ..., x, such that z; is a friend of z;,, for every i is called a path.

Theorem 8.16. Suppose X1, Xo, X3,..., &, and F satisfy the following conditions:
1. A child is always weaker than its parent. Ify is the parent of x, then {(y) > &(x).

2. Older friends are parents’s friends. If BirthDate(y) < BirthDate(x) and z is a
friend of y, then the parent of x is a friend of y. Also a child and its parent can be
friends.

3. Friends’s kids can be friends. If BirthDate(z) = BirthDate(y) and x is a friend of
y, then the parents of x and y are friends.

4. No one can have infinitely many friends. |{y € X | (z,y) € F}| < oo for every
r e X.

5. Reproduction never stops. ||J, X;| = oc.

Then there exists N such that Xy can be divided into two nonempty disjoint sets X}y and X}
such that no friendship between X}, and X7};.
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Proof. Choose a maximal strength s such that we have infinitely many organisms of strength
s. Then infinitely many of them have the same parent, hence, there exists a parent reproducing
infinitely many times.

For every x and a strength s by KIDs(x, s) we denote all children y of = such that there
exists a path from = to y with all the variables in the path stronger than s. We consider the
maximal sy such that KIDs(z, s¢) is infinite for some variable z. Note that this implies that
x is stronger than sg + 1.

By Y we denote the set of all organisms y such that there exists a path from x to y with
all the variables in the path stronger than sy 4+ 1. Note that Y includes x. Let us show that
Y is finite. Assume the opposite. Let s be the maximal strength such that we have infinitely
many organisms of this strength in Y. We consider all the parents of organisms from Y with
strength s. It is not hard to see that all of them are also from Y. Since parents are stronger
than children, we can have only finitely many of them. Therefore, there exists an organism
z with infinitely many children from Y, which means that KIDs(z, so + 1) is infinite. This
contradicts the maximality of sy and proves that Y is finite.

Let ¢t be the moment such that all friends of organisms from Y get new friends before .
Consider an organism y from KIDs(z, sg) with BirthDate(y) > ¢. Choose a path from z to
Y in XpirthDate(y) With all organisms stronger than sy. We consider the last organism u in the
path such that BirthDate(u) < BirthDate(y). Considering the moment BirthDate(y) — 1 we
can show that there exists a path from x to v with all organisms but u stronger than sg + 1.
Since u cannot get a new friend after the moment ¢ we get a contradiction with the fact that
u gets a new friend at the moment BirthDate(y). O

9 Proof of the Main Theorems

9.1 Existence of a next reduction

Lemma 9.1. Suppose D, DM D) s q strategy for a cycle-consistent CSP instance ©,
D) s a reduction of ©).

1. If there exists a 1-consistent reduction contained in D7) and DY is mazimal among
such reductions, then for every variable y of © there exists a tree-formula Y, € Coverings(©)

such that Y7 (y) defines DS,
2. Otherwise, there exists a tree-formula ¥ € Coverings(©) such that Y7 has no solutions.

Proof. The proof is based on the constraint propagation procedure. We consider the instance
O0). We start with an empty set T, for every y.

Then we introduce the recursive algorithm that gives a correct tree-formula T, for every
variable y. If at some step the obtained instance is 1-consistent, then we are done. Otherwise,
we consider a constraint C' that breaks 1-consistency. Then the current restrictions of the
variables zi,...,z in the constraint C' = p(z;...,z) implies a stronger restriction of some
variable z; and the corresponding domain DS). Then we change the tree-formula Y ,, describing
the reduction of the variable z; in the following way T,, ;= C AT, A---AT,,.

Note that we have to be careful with all the variables appearing in different T, to avoid
collisions. Every time we join T, and T, together we rename the variables so that they do
not have common variables.

Obviously, this procedure either gives a maximal 1-consistent CSP instance whose domains
are defined by tree-formulas T, for every y, or it gives a contradiction, that is, a tree-formula
that defines an empty-set, which can be taken as 1. O]
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Theorem 9.2. Suppose D DM . D) is a strategy for a cycle-consistent CSP instance
O.

o [f DY has a binary absorbing set B then there exists a 1-consistent absorbing reduction
DG+ of OO with DI C B.

o [f D has a center B then there exists a 1-consistent central reduction D+ of ©F)
with DY) C B.

o [f D(s) has no bmary absorption and center for every y but there exists a proper PC

subuniverse B in D for some x, then there exists a 1-consistent PC reduction DY
of ©) with D™ C B.

absorbing set, or minimal PC subuniverse. Let us reduce the domain D to B. By Lemmal(9.1}
either we get a contradiction, or we get a 1-consistent reduction. We consider two cases. If we
get a contradiction, then we consider the tree-formula T from Lemma 9.1} First, we consider
the minimal set of variables {x1,...,7;} from T whose parent is 2 such that T (zy,..., x;)
does not have tuples in B*. Since © is 1-consistent, k > 2. If B is a binary absorbing set, then
we get a contradiction with Lemma[7.5] For other cases with k = 2 we get a contradiction from
Corollary 8.12.1] If £ > 3 and B is a center then we get a contradiction with Lemma [7.9.3] If
k > 3 and B is a PC subuniverse then we get a contradiction with Corollary [7.11.2]

Thus, by Lemma , we have a 1-consistent reduction D(T) of ©®) such that for every vari-

able y the new domain DéT) can be defined by a tree-formula T,. By Corollaries , ,

7.11.1}, for every y the domain Dg(,T) is a center, a binary absorbing set, or a PC subuniverse,
correspondingly. O

Proof. Without loss of generality we assume that B is a minimal center, minimal binai

Theorem 9.3. Suppose D© DM . D) is a strateqy for a cycle-consistent CSP instance
©, DN is a nonlinear 1-consistent reduction. Then there exists a minimal 1-consistent re-
duction DY of the same type such that D:(CSH) C Dg) for every variable x.

Proof. Let us consider a mimmal by inclusion 1- con51stent reduction DY of ©©) such that
DG has the same type as D(T) and pitY C DLV for every variable z.
Assume that for some z the domain Dg **1 is not a minimal center /binary absorbing set/PC

subuniverse. Then choose a minimal center/binary absorbing set/PC subuniverse B of DY

contained in D™, We consider the reduction D) of ©®) such that D) = B , Dg(f) = DZ(JSH)
if y # z. Since DZSSH) is a minimal by inclusion reduction, Lemma implies that there
exists a tree-formula T € Coverings(©) such that T(*) has no solutions. Again, we consider
a minimal set of variables {z1, .. zk} from T whose parent is z such that YC+D (2, ..., 2)
does not have tuples in B*. Since DZ ) is 1-consistent and B C D (s+1) , we have k > 2. If B
is a binary absorbing set, then we get a contradiction with Lemma - If B is a center and
k = 2, then we get a contradiction from Corollary If k > 3 and B is a center then
we get a contradiction with Lemma [7.9.3] It remains to consider the case when B is a PC
subuniverse. Choose a minimal set of variables y;,...,y; from T whose parent is not z such
that (Y®) (z1,..., 26,91, .., %)) does not have tuples with the first k elements from B. If
t =0 and k = 2 then we get a contradiction with Corollary If t + % > 3 then we get a
contradiction with Corollary [7.11.2] O

Theorem 9.4. Suppose D'T) is a 1-consistent PC reduction for a cycle-consistent irreducible
CSP instance ©, © is not linked and not fragmented. Then there exists a minimal strat-
eqgy DO DO . D) for © such that the solution set of O is subdirect, the reductions
D® .. DO are nonlinear, D C DLV for every variable x.
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Proof. Since © is not linked, there exists a maximal congruence o, on D, for a variable x of
© such that LinkedCon(O, z) C g,. Choose an equivalence class DY of 0, with a nonempty

(T)

intersection with D, ’. For every variable y by @:E,l) we denote the set of all elements of D,

linked to an element of DV, Since © is irreducible, the solution set of O™ is subdirect. If
D, /o, is a PC algebra, then D) is a PC reduction, otherwise, D(!) is a linear reduction.
We build the remaining part of the strategy in the following way. Suppose we already
have D© DM D® where the reductlons D®_ .. D® are absorbing or central. If there
exists a blnary absorptlon or a center on D for some y, then by Theorems 9 . . 3| we can
find the next minimal 1-consistent absorbing or central reduction D**1).
Suppose there is no a binary absorption and a center on D() for every y. Put D
D(T) N D for every variable y. First, let us show that D( is a PC subuniverse of D for
every Varlable y. Consider a maximal congruence o on D, suoh that D, /o is a PC algebra It
D 1s a PC reduction, then Lemmanlmphes that either ¢(M) has just one equivalence class,

or D / oW is isomorphic to D, /o. Since the reductions D, ... D® are absorbing or central

and D" /o) has no binary absorption and center, D{ ™ / o+ is isomorphic to DY /o for

every i € {1,...,t—1}. Thus, we can prove that either o has just one equivalence class, or
Dg(,t) Jo) is a PC algebra, which means that D) is a PC reduction.

Then we apply Lemma|9.1]to find a 1-consistent reduction smaller than D™, If we cannot
find it, then there exists a tree—formula T such that T™) has no solutions. Choose a minimal
set of variables y1, ..., yx from Y such that (YO (yy,...,yx)) ) is empty. If k > 3 then we get
a contradiction with Corollary [7.11.2]

Suppose k£ = 2. Let I} be the subuniverse of D,, defined by F YO (g, 0) Ayr € D(
Then there exists a maximal PC congruence 6 on D,, and an equivalence class E of § Such
that Dg) C Fand FNE = @. It is easy to check that Fy/6®") contains more than one
element. Since the reductions D@, ..., D® are absorbing or central and D,,/d has no binary
absorption and center, Fj,;/60* is isomorphic to F;/6® for every i € {0,1,...,t —1}. This
contradicts the fact that F; N E = .

This contradiction proves that there exists a l-consistent reduction D smaller than
D) such that for every variable y the new domain Dl(,A) can be defined by a tree-formula T,
By Corollary , for every y the domain D@(,A) is a PC subuniverse. It remains to apply
Theorem to find a minimal reduction D**Y smaller than D?(JA), put s =t + 1, and finish
the strategy. O

9.2 Existence of a linked connected component

In this subsection we prove that all constraints in a crucial instance have the parallelogram
property, show that we can always find a linked connected component with required properties,
prove that we cannot loose the only solution while applying a minimal nonlinear reduction.

Theorem 9.5. Suppose DO, ... D®) is a minimal strateqy for a cycle-consistent irreducible
OSP instance ©, the constraint p(xy, ..., x,) is crucial in D). Then p is a critical relation
with the parallelogram property.

Theorem 9.6. Suppose D, ... D® is a minimal strategy for a cycle-consistent irreducible
CSP instance ©, Y(x1,...,xy,) is a subconstraint of ©, the solution set of T is subdirect,
Var(T) = {x1, ..., Tp, U1, - .., g},

Q — Ty17 Yk,V15y.-,Ut /\ TykJrl: Yn,Ut41,-.-,V2¢ /\ Tyl,~--»yn7’U2t+1,~~~,U3t
L1ye-yTh,ULye-, Ut Th41yTm,ULy..., Ut Z1ye- 3T, UL 505Ut ?
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the domains of the variables x;,y; are the same for every j € {1,...,n}, the domains of the
variables w;, v;, Vyyi, Vorq are the same for every i € {1,...,t}, 0©) has no solutions. Then
(©\ ) UQ has no solutions in D).

Theorem 9.7. Suppose D D) is a minimal stmtegy for a cycle-consistent irreducible CSP

instance ©, QW (zq, .. asn) is a subconstraint of O the solution set of Q1) is subdirect, ©\Q
has a solution in DY, © has no solutions in D ). Then there exist formulas €y,...,$; €
Coverings(2) such that (@ \Q)UQU--- Uy has no solutions in DY and le)(xl, ce sy T)

defines a subdirect key relation with the pamllelogmm property for every t.

Theorem 9.8. Suppose DY is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance ©, © is crucial in DY) and not connected. Then there exists an
instance ©' € ExpCov(0) that is crucial in DY) and contains a linked connected component
whose solution set is not subdirect.

Theorem 9.9. Suppose DU is a minimal 1-consistent nonlinear reduction of a cycle-consistent
irreducible CSP instance ©. If © has a solution then it has a solution in D™,

To prove these theorems we need to introduce a partial order on on the reductions (domain
sets). Suppose we have two domain sets D7) and D). We say that D™ < D(T) if for every

D;f) one of the following conditions hold

1. there exists a variable z such that Dg(f) = D",
2. there exists a variable x such that DZ(,L) - Dg); there does not exist a variable z such
that D) = DY

We say that D& < DD if D) < DM and DT ¢ DM Tt is not hard to see that the
relation < is transitive and there does not exist an infinite descending chain of reductions.

We prove theorems of this subsectlon simultaneously by the induction on the size of the
reductions (domain sets). Let D) be a domain set. Assume that Theorems [9.7 E . 9.8, and 9.9
hold if D < D™ and Theorems ﬂ and m hold if D®) < D(L) Let us prove Theorems 0.7},
| and [9.9] for D — p) , and Theorems [9.5) and [9.6] for D) = D).

Theorem . Suppose DO .. D®) is a minimal strategy for a cycle-consistent irreducible
CSP instance ©, the constraint p(zy,...,x,) is crucial in D). Then p is a critical relation
with the parallelogram property.

Proof. Since p(z1,...,x,) is crucial, p is a critical relation. Let ©’ be obtained from © by
replacement of p(xq,...,z,) by all weaker constraints. By Lemma , ©’ is cycle-consistent
and irreducible.

Assume that |D | = 1 for every variable x. Since the reduction D) is 1-consistent, we
get a solution, which contradicts the fact that © has no solutions in D),

If we have a binary absor ption, or a center, or a proper PC subuniverse on some domain
DY) then by Theorems 3} there exists a minimal nonlinear reduction D¢V for ©. By
Lemma E, 8.2, ©) is cycle- conswtent and irreducible. Hence, by Theorem - 9.9/©’ has a solution
in DC+Y . Hence, p(x1,...,,) is crucial in D). By the inductive assumption p has the
parallelogram property.

It remains to consider the case when ConLin(Dg(f)) is proper for every x such that |D | > 1.
Let o be a solution of ©" in D®). Let the projection of o onto the variables z1,...,z, be

(ay,...,ap).
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Assume that p does not have the parallelogram property. Without loss of generality we
can assume that there exist ¢q,...,¢, and dy, ..., d, such that

(€1, s ChyChaty -5 Cn) & P,
(1, Clydpyry -, dp) € p,
(dyy. .. di,Cry1y- .- Cn) € p,
(dus . dydiss, - dy) € p.

Put

Py, xn) = Fyr . e p(TL, o Ty Y1y - -+ Yr)A
p(yh oy Yk Tkt 1, - - - ,.Tn) A p(y17 o Yk Yk, - - - 7y’fb>

Obviously, p € p' and p' € T, therefore (ay,...,a,) € p/. Hence, there exist by,...,b, such
that

(ala"°7akabk+1a"'7bn) €p7
(bl,...,bk,akﬂ,...,an) cp,
(bl,...,bk,bk+1,...,bn) € p.

By Lemma | there exists a tuple (eq,...,e,) € p such that (a;,e;) € COHLID(D ) for
every i. It is easy to see that ©0) factorized by COI’ILIH(D( )) for every x has a solution
corresponding to . By Lemma [7.15.1) the minimal linear reduction corresponding to this
solution is 1-consistent. We denote this reduction by D&+ Since ©’ has a solution in D&+Y,
p(x1,...,2,) is crucial in DGYYD. We get a longer minimal strategy with smaller D+,
hence by the inductive assumption the relation p is a critical relation with the parallelogram
property. ]

Theorem . Suppose DO, ... D®) is a minimal strategy for a cycle-consistent irreducible
COSP instance ©, Y(x1,...,x,) is a subconstraint of ©, the solution set of T is subdirect,
Var(T) = {x1, ..., Tp, U1, .., g},

Q Tyh Yk, ﬂ}t /\Tyk+1, Yn,yVt41,-. 7’U2t/\Tyla~~-»ynﬂ)2t+1y~~~7v3t

Lk UL .- Tha41yTm,ULy..., Ut L1ye- 3T, UL 505Ut ?
the domains of the variables x;,y; are the same for every j € {1,...,n}, the domains of the
variables u;, vy, Vi, Vorys are the same for every i € {1,...,t}, ©©) has no solutions. Then

(©\ T)UQ has no solutions in D).

Proof. Put ©' = (©\ T)US. Assume that ©' has a solution in D®. Then we build a sequence
of reductions D@ DY D@ which is a strategy for T and a minimal strategy for
(O\T)UN)®. Also we want ©’ to have a solution in D@ and the solution set of TV to
be subdirect for every j € {s,...,q}.

We will prove that we can make this sequence longer while |D | > 1 for some 7. Assume
that ]Dxi | =1 for every i. Since D®), DGHD D) is a strategy for ©, © has a solution in
D@ which contradicts the fact that © has no solutions in D).

If we have a binary abso tion, or a center, or a proper PC congruence on some domain
D? then by Theorems |9 3| there exists a minimal 1-consistent nonlinear reduction D(@+1)
for © U ). By Lemma [8.2] @’ (q) is cycle-consistent and irreducible. By Theorem ©’ has a
solution in DY and T has a solution in DY By Lemma the solution set of Y@+ ig
subdirect. Thus, we made the sequence longer.
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It remains to consider the case when ConLin(Déq)) is proper for every x such that \D;E;q)| > 1.

Let o be a solution of © in D®. For all variables z but wuq,...,u, let Dg(gqﬂ) be equal to
the equivalence class of ConLin(Dg(Cq)) corresponding to the solution a. Let the projection of
o onto the variables zy,...,z, be (a1,...,a,). Suppose T (x1,...,z,) defines the relation
p. Since « is a solution of ©') there exist by, ..., b, such that

(a1, ... a0k, by, .., b,) € p,
(b1, bk, Gy, - - - ap) € p,
(bl,...,bk,karl,...,bn) € p.

By Lemma there exists a tuple (dy, .. .,d,) € p such that (a;, d;) € ConLin(D'?) for
every i. Therefore, (Y®) (21, ..., x,))@* is not empty. Let us show that (Y@ (1, ..., xz,))@+Y
is not empty. Assume the opposite. Let j > s be the minimal number such that the relation
defined by (YU (2y,...,2,)) 9" is empty. If the reduction DU*V is not linear, we get a
contradiction with Theorem | If the reduction DUHY ig linear then it follows from the
construction (see below) that (YU*V(zy,..., 2,)) Y is not empty. Thus, we can prove that
(Y@ (zy,...,2,)) ) is not empty.

Let p’ be obtained from Y(zy,..., 7y, u1,...,u;) by restricting the variables 1, ..., 2, to
D)) Let Dngfl) be the projection of p’ onto w;. By Corollary |7.15.1} the reduction Dla+h)
is a 1-consistent linear reduction. Thus, we get a longer strategy such that ©@+) has a
solution. O

Theorem . Suppose D D) is a minimal strategy for a cycle-consistent irreducible CSP
instance ©, QW (x1, ... x,) is a subconstraint of O | the solution set of QY is subdirect, ©\
has a solution in DY, © has no solutions in DY, Then there exist formulas Qy, ..., €
Coverings(§2) such that (©\ Q)UQ, U---UQ; has no solutions in DY and le)(xl, ey Tp)
defines a subdirect key relation with the parallelogram property for every i.

Proof. Let ¥ be the set of all constraints defined by T®(zy, ..., x,) where T € Coverings(2).
It is easy to see that we can find ¥y C ¥ such that the instance (@M \ Q) U 2y has no
solutions, but if we replace any constraint of ¥y by all weaker constraints from ¥ then we get
an instance with a solution.

Let 3o = {C4,...,Ci}. It is easy to see that for every ¢ we can find a tuple a; such that
C; is maximal without «o; in X. Otherwise, we take a maximal constraint without « in ¥ for
every a ¢ C;, and replace C; by all such constraints. Obviously, the instance does not get a
solution after the replacement.

By Corollary B.5.1, C; is a key constraint for every i. Therefore we get a sequence of
formulas ,...,€, € Coverings(Q) that define constraints Ci,...,C, in DM, We choose
variables in the formulas so that the only common variables of €,... Q; are zq,...,x,. It
follows from Theorem that C; has the parallelogram property for every 1. O

To prove the next theorem we define several transformations of a CSP instance ©.

Transformation 7}(©): make the instance crucial in D). Using Remark (1} we
replace constraints by all weaker constraints until we get a CSP instance that is crucial in
DM After that we remove all isolated variables, that is, the variables that do not appear in
any constraint.

Below we assume that the instance © is crucial in D™, which by Theorem means that
every constraint in © has the parallelogram property.

Transformation 75(0,C}, Cy, x): split two constraints with a common variable.
Assume that two constraints C'; and Cy have common variable . Let €2; be the set of all
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constraints C' € © such that Con(C,z) = Con(C;, z) for ¢ € {1,2}. Let Qg be the set of all
constraints C' € © \ (€; Uy) containing z. Put o; = Con(C;, x) for ¢ € {1,2}. We transform
our instance in the following way.

1. We remove all constraints with x.

2. Choose 2 new variables z; and x,.

3. Add all constraints from € twice (with x; and z5 instead of x).
4. Add all constraints from 2; with z; instead of z.

5. Add all constraints from 25 with x5 instead of x.

6. Add the constraints o} (z1,z2) and oj(z1, xa).

Lemma 9.10. Suppose DY is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance ©, © is crucial in DY, C, and Cy are constraints of © with a
common variable x, Cy and Cy are not adjacent in x. Then the instance To(0,C1, Cy, x) has
no solutions in DW.

Proof. Let ©' = T5(0, C1, Cy, x), 0 be the intersection of all congruences from Con (g, x).

Assume that ©’ has a solution in D). Suppose (z1,23) = (a1,as) in this solution. Put
T = o1(z1,2) A 02(xe,2) A o(xe,x). It is not hard to see that © A T has no solutions in
DO (otherwise we could take this solution as a solution to 6(1)). We apply Theorem
to the subconstraint Y(z1,z5). Then Y(zq,x2) can be replaced by a sequence of formulas
Qy,...,80; € Coverings(2). Assume that le)(ajl,m) defines a relation p;. It is easy to see
that every p; is a reflexive relation with the parallelogram property, that is a congruence on
Dg(cll) . If the reduction D™ is nonlinear then by w; we denote the relation defined by Q;(x1, ).
If the reduction D™ is linear then by w; we denote the relation defined by (21, x5, u;) from
Lemma . We know from Lemma and Lemma that Con(w;, 1) = Con(p;, 1) and
Con(w;, 2)) = Con(p;, 2).

Case 1. Assume that p; # agl) for every 4, then Con(w;,1) D o7*. Hence p; 2 (07%)") for
every i. Then we may put x; = a; and & = x5 = ay to get a solution for © AT in DWW which
contradicts our assumption.

Case 2. Assume that p; = agl) for some i. Since (ay,as) € (01*)M \ o1 and Con(w;, 1)) =
Con(p;, 1), we have Con(w;, 1) 2 01*. Hence Con(w;,1) = ;. Suppose DU is a nonlinear
reduction. Y(z1,zs) contains oo N o, and therefore oo No C Con(w;, 1) = 7. In the same way
we can show that oy No C 0y. Since, (a1, as) € 0\ 01, by Lemma C1 and (5 are adjacent
in x, which contradicts our assumptions. Similarly, if DM is a linear reduction, oo N o N
ConLin(D,) € Con(w;, 1) = 01, 01 No N ConLin(D,) C 09, (a1,as) € (o N ConLin(D,)) \ oy,
and Lemma [8.4] gives a contradiction. O

For a 2 C © by MinVar(2, ©) we denote the set of all variables z such that Con(C,z) is
minimal in Con(0, z) for some C' € (.

Transformation 73(0,(2) for a connected component . Let MinVar(§2,0) =
{x1,...,2s}. Let us define the new instance in the following way.

1. Choose new variables ', ..., z..
2. Replace the variables z1,...,z,in © \ Q by z,... 2.,

3. Add a copy of 2 with all the variables 1, . .., zs replaced by 2, . . ., 2, and all constraints
replaced by their covers.

39



Lemma 9.11. Suppose DU is a proper minimal 1-consistent reduction of a cycle-consistent ir-
reducible CSP instance ©, © is crucial in DU, Q is a connected component of ©, LinkedCon((2, y) =
Con(C,y) for every variable y and every constraint C' € Q with y, MinVar(2, ©) # Var(Q).
Then the instance T3(©,Q) has no solutions in D).

Proof. By € we denote the copy of Q we introduce in item 3 of the definition. Since all
constraints of ) are rectangular and critical, they are also essential. Therefore, if the arity of
the constraint C is greater than 2, then by Lemma[8.14] Con(C,y) C LinkedCon(€2, y), which
means that every constraint in €2 is binary. We can imagine that we factorize all the variables
x; by the only congruence in Con(€2, ;). In this case, every constraint relation from €2 can be
viewed as the equality relation and the cover of every constraint relation becomes the minimal
binary relation containing the equality relation. It is not hard to see that any congruence in
Con(© \ Q, x;) factorized by the only congruence in Con({2,z;) contains this binary relation,
which means that every congruence in Con(© \ 2, z;) contains LinkedCon (', z}).
Assume that T3(©, Q) has a solution in D) with

(x1, . xe, @y, wh) = (b, ..., bg, b, D).
Since (b;, b)) € LinkedCon(€?, z}) for every i, we can assign
(1, xg, @y, o ) = (b, ..., bs, by, ... D).

to get a solution of ©() (the remaining variables take on the same values). This contradiction
proves that T3(0, ) has no solutions in D™, O

Transformation 7,(0,,u) for a connected component 2 and a variable u. Let
MinVar(Q2, ©) = {x1,...,zs}. Let us define the new instance in the following way.

1. Choose new variables z, ..., x..
2. Rename the variables 1, ..., x5 by 2],...,2% in ©\ .
3. Add the covers of all constraints from Q with zi,..., 2 instead of z1, ..., ;.

4. For every i and every o € Con(© \ €2, z;) add the constraint o*(x;, z}).
5. If u = xp, then add the constraint oy,(xp, z},), where ¢ € Con(€2, ) and 5, = Opt(().
Note that we allow to put & instead of u.

Lemma 9.12. Suppose DW is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance ©, © is crucial in DY, Q is a connected component of ©, the solution
set of Q is subdirect, Q has a solution in DY), LinkedCon(€2,y) # Con(C,y) for some variable
y and some constraint C' € §, u € MinVar(Q,0) or u = @ and MinVar(£2,©) # Var(Q2).
Then the instance Ty(©,Q, u) has no solutions in D).

Proof. To prove this lemma we consider a different transformation defined as follows
"

1. Choose new variables 2, .... 2" and 27, ... z".
1 y Vs 1 sy Vg

2. Add a copy of 2 to © with all the variables zy,. ..,z replaced by 2/, ..., z.. The copy
we denote by .

3. Rename z1,...,z,in ©\ Q by =7, ... 7.
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4. For every i and every o € Con(© \ , x;) add a new variable y and add the constraints
o(x;,y) and o (7, y).

5. For every i and every o € Con(O \ 2, z;) add the constraint o*(z;, x7).
6. If u = xp, then add the constraint oy,(xp, 2),), where ¢ € Con(2, ) and 5, = Opt(().

It is easy to see that the obtained instance has no solutions in D). Then we replace constraints
from €’ containing at least one of the variables 2/, ...,z by their covers step by step. Thus,
in one step we replace just one constraint from 2. We consider two cases.

Assume that after all replacements we get an instance without solutions in DM, It is not
hard to see that any solution of T4(0, 2, u) gives a solution of this instance: if 2} = a in the
solution of T4(0,Q,u), then we put 2, = 2/ = y = a; in this instance for every ¢ and the
corresponding y’s. This completes this case.

Assume that after some replacement the instance gets a solution in DM, Suppose the
instance before this replacement is © and the corresponding constraint to be replaced is C.
Choose a variable z; € Var(C).

Let 0 = Con(C, z}), p be an optimal bridge from § to 6. Let us define a new bridge by

(U1, ug, ug, ug) = v 3vep(uy, ug, v1,v2) A p(us, ug, v1,v2) A p(ug, ug, us, ug) A 0 (us, uy).

It is not hard to see that p’ is still an optimal bridge.

Then we change ©’ in the following way. We add three new variables uy, us, x;”, replace x}
in C by z}”, add the constraint p/(x], ]", uy, us) and the constraint (uy, us). The new instance
we denote by ©”. Obviously, ©” has no solutions in D).

By T we denote all constraints of ©” containing z; for some j or z}". Suppose Var(2) \
MinVar(Q,0) = {z1,...,2,}. Let {y1,...,y} be the set of all variables of T except for
Z1y. 00y 20y Ty, Ty, Tp, U1, Up, and 7", Suppose that the variable x;; is the corresponding
variable and o; is the corresponding congruence for y; (see Step 4 of the transformation).

Consider a subconstraint Y (y1, ..., Y, Th, 21, - - -, 2n, U1, Ug). Since the solution set of 2 is
subdirect, by Lemma we know that the solution set of T is subdirect. Then by Theo-
rem we can find Ty,..., T, € Coverings(T) such that Tgl)(yl, e Yty Ty 2y e ey 2, U, U2)

defines a key relation p; with the parallelogram property for every 1.

Let us define a relation w; for every i € {1,...,v}. If D1 is a nonlinear reduction, it is
the relation defined by Y;(y1,...,Ys, T, 21, - - - Zn, U1, uz). If DD is a linear reduction, it is
the relation defined by Y.(y1,. .., Ye, Thy 21, -« 20, Us, U2, G1s - - -, Gr ), Where Y7 is the formula

from Lemma . We know from Lemmas and [8.6 that Con(w;, 1)) = Con(p;, j) for every
je{1,2,...,t+n+3}.

We know that if we remove the constraint d(uy,us) from ©” then we get a solution in
DW. Let

/ / 1 1
(X1, e, @y, a2, 2, U, Ug) =

/ / " "
(a1, .. a5,a), ... a5, 0], ... a5, dy, ... dyby, ... by, c1,Co)

in this solution. Choose k such that p; omits the tuple (dy,...,d;, ap, b1, ..., by, c1,c1). For
every j we put d; = a;;. It is easy to see that (dy,...,d;, an,b1,... ,bn, a1, 1) € pg.

We want to show that (a, a;, c1,¢1) € p'. We consider two cases.

Case 1. Suppose u = @ and n > 0. In this case q; and a; are linked in 2", where Q" is the
instance obtained from () by replacing every constraint by its cover. We apply Theorem [8.15
to get a bridge from ¢ to ¢ containing (a;, a;,aj,a;). Then we compose this bridge with the
bridge p’ to obtain a bridge from § to ¢ containing (a;, a;, ¢1, ¢1). Since the bridge p’ is optimal,
we have (a;,a;,c1,¢1) € p'.
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Case 2. Suppose u = x. We know that a; and ay, are linked in ©, @}, and a; are linked in
Q. where " is the instance obtained from € by replacing every constraint by its cover. We
apply Theorem to get a bridge from § to ¢ containing (a;, a;, ap, ap) and a bridge from
¢ to ¢ containing (aj}, a},, aj,a;). Then we compose these two bridges with the optimal bridge
from Step 6 and the bridge p’ to obtain a bridge from § to d containing (a;, a;, ¢1,¢1). Since
the bridge p is optimal, we have (a;, a;,¢1,¢1) € p'.

Therefore, (dy,...,d;, an,b1,...,bn,c1,¢1) € pr. Also, we know that p; is a key relation
with the parallelogram property and (dy, ..., d;, ap, b1, ..., by, c1,c2) € pg. For some j we have
(dj,d;) ¢ Con(py, j), hence (d;,d};) ¢ Con(wy,j). Since (dj,d;) € (o;%)1), the j-th variable
of wy, is rectangular and Con(wy, j) = 0;. Similarly, the last variable of pj is rectangular and
Con(wy,t+n + 3) = §. By Lemma there exists a bridge ¢; from ¢ to o;.

Suppose dp € Con(€2, z;;). Applying Theorem to €2, we get a bridge (, from Jy to .
Composing the bridges ¢; and ¢, we get a reflexive bridge from dy to o;. Hence dp and o; are
adjacent. This contradicts the fact that o; € Con(© \ Q, z;;).

]

Theorem . Suppose DU is a proper minimal 1-consistent reduction of a cycle-consistent
irreducible CSP instance ©, O is crucial in DY and not connected. Then there exists an
instance ©' € ExpCov(0) that is crucial in D) and contains a linked connected component
whose solution set is not subdirect.

Proof. The proof is organized as follows. Using the transformations above we build a sequence
of instances 01,0y, ... such that ©;;; € ExpCov(0;). This sequence will be used to apply
Theorem [8.16¢ variables are viewed as organisms, constraints are viewed as a relationship
between variables.

First, we assign a characteristic to every variable. For a variable z of an instance ® let
2y be the set of all minimal congruences among the set Con(®, z). Then let {2y be the set of
all minimal congruences among the congruences of Con(®, z) that are not adjacent with the
congruences from §2;. Thus, we assign a pair (21, {s) to every variable x, which we denote
£(®, ).

Let us introduce a partial order on the set of all characteristics. For two sets of congruences
Q; and Q9 we write 0y < )y if for every o € 2 there exists § € {23 such that 6 C 0. We
write € < Qg if Q7 < Qy and Q5 € Q5.

We write (€24, 2) < (€, €25) if one of the following conditions hold

2.8 Oy = O and 2, < Q.
3 i Oy = O, Oy £ O, O £ D, (Q\ Opt(2)) < (2 \ Opt(E)).

To use Theorem [8.16] we extend a partial order < on characteristics to a linear order <
such that (21,Qs) < (91, €2%) implies (£21,€s) < (©},Q5). We say that a variable x of © is
weaker than a variable 2’ of ©" if £(0,z) < £(©’,2).

Second, if ©" € ExpCov(0) is connected then by Corollary any two constraints of
©’ with a common variable are adjacent. Since every constraint of © appears in ©’, © is also
connected. This contradiction proves that we cannot get a connected instance ©’.

We start with ©; = ©. Suppose we already defined ©;.

If there exist constraints C; and Cs having a common variable z such that C; and Cy are
not adjacent in z, Con(C4, x) and Con(Cs, ) are minimal congruences in Con(0, z), then put
Oir1 = T1(T5(0;,C1,Cy, z)). By Lemma , ©;11 has no solutions in DM, Note that ©,,,
is always different from ©;.
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Otherwise, we know that any two minimal congruences in Con(0, x) for every variable x
are adjacent. Since ©; is not connected and not fragmented, there exist a variable x and two
congruences in Con(©, x) that are not adjacent. Choose a connected component 2 containing
a minimal congruence of Con(0, z).

If Q is not linked, then irreducibility of © implies that the solution set of ) is subdirect.
If © is linked and the solution set of €2 is not subdirect, then the theorem is proved and we
stop the process. Thus, we assume that the solution set of €2 is subdirect.

Since ©; is crucial in D® and not connected, Q) has a solution. Since the solution
set of Q) is subdirect, Lemma implies that the solution set of QM) is also subdirect. Let
MinVar(Q2, ©;) = {z1, ..., x5}, Var(2) \ MinVar(€2,0;) = {z1, ..., zn}

Assume that n = 0 and LinkedCon(2, z;) C o for every j and every o € Con(0; \ €2, z;).
If there exist a constraint in 2 and a variable z such that Con(C, z) C LinkedCon(f2, z), then
we replace C' by its cover. Since ©; is crucial in DM, the new instance has a solution £ in
DM Let z be equal to c in . Since the solution set of Q) is subdirect, there exists a solution
v of QW) with z = ¢. Then we build a solution of @Z(»l) with the values for z; from v and the
values for the remaining variables from [, which gives us a contradiction.

Assume that Con(C,z) = LinkedCon(f2, z) for every constraint C' € € and every vari-
able z of C'. Since all constraints of ) are rectangular and critical, they are also essen-
tial. Therefore, if the arity of the constraint C is greater than 2, then by Lemma [8.14]
Con(C,y) € LinkedCon(f2,y), which means that every constraint in € is binary. We can
choose a constraint C' € ) with a variable z; that appears just once in {). Then we replace
the constraint C by its cover. Since ©; is crucial in D), the new instance has a solution 3 in
DW. Since Con(C, x;) S o for every o € Con(6; \ 2, z;), we can change the value of z; in 3
to get a solution of ©; in DM which gives us a contradiction.

Otherwise, suppose n > 0 and LinkedCon(2, z) = Con(C, z) for every variable z and every
constraint C' € Q with z. Then we put 0,41 = T1(73(6;,?)). By Lemma [0.11] ©,11 has no
solutions in D). Again, ©;,, is always different from ©;.

Otherwise, if n > 0, then we put 0,1 = T1(74(0;,Q, @)). If n = 0 and LinkedCon(2, z;,) €
o for some h and a congruence o € Con(© \ Q, xp,) then we put 6,1 = T1(74(0;,8, z)). By
Lemma , O;41 has no solutions in D). Again, ©,,, is always different from ©;.

It can be checked that we always define the instance ©,;;.

It remains to explain how we build a sequence for Theorem We consider the set of
all pairs (z,£(0;,x)) as the set of organisms. Two organisms are friends if they represent
the same variable, or if the corresponding variables ever appeared in one constraint. The
characteristic of every variable is considered as a strength. Then the set of organisms X;
corresponds to the set of all pairs (z,£(0;,z)) for j <.

It is not hard to see that any copy of any variable we generate is weaker than the original
variable, which guarantees condition 1 of the theorem. Similarly, we can check that all new
constraints satisfy conditions 2 and 3.

Every time we apply the transformation T, we replace a variable by two weaker variables.
Then, if our sequence of instances is infinite, we apply the transformations T3 and T} (at least
one of them) infinitely many times.

A variable z is called stable at the moment i if all congruence in Con(0;, z) are adjacent.
Note that if x is not stable at the moment 7 and a connected component €2 C ©; contains a
minimal congruence of Con(6;,z), then the transformations 75 and 7 make the variable z
weaker.

To guarantee condition 4, we choose a connected component {2 on every step so that the
following condition holds. For every variable x that is not stable at the moment ¢ a connected
component with a minimal congruence on x should be chosen at some moment j > ¢. This
means that every variable will be stable at some moment. It is not hard to check that a
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new “friend” of a stable variable z, which may appear in the transformations 75, T3, or Ty, is
weaker than the old “friend” of z. Moreover, if z gets a new “friend” we remove the constraint
containing the old “friend” and z. Thus, every variable can have only finitely many friends.
Since ©; is crucial in DM, it is not fragmented. We can check that ©; and ©,,; have at
least one common variable for every i. Therefore, the set of all organisms cannot be divided
into two disjoint sets. Thus, condition 5 of Theorem [8.16| cannot hold, which proves that the
process will stop at some ©; having a linked connected component whose solution set is not
subdirect. O]

Theorem . Suppose DM is a minimal 1-consistent nonlinear reduction of a cycle-consistent
irreducible CSP instance ©. If © has a solution then it has a solution in DM,

Proof. Assume the contrary. First, we consider the set of all minimal 1-consistent nonlinear
reductions of ©, which we denote by $i. Then we consider an instance ©' € ExpCov(0) with
the minimal positive number of reductions D(®) € 9 such that ©’ has no solutions in D(®).
Note that this transformation of © to ©’ can be omitted if D is not a PC reduction. Then
we weaken the instance © (replace any constraint by all weaker constraints) while we still
have a reduction D®) € 9 such that ©' has no solutions in D( . The obtained instance we
denote by ©”. As a result we know that for any reduction D) € 9% the instance ©” is either
crucial in D), or has a solution in D Choose a reduction D®) from fR.

Assume that ©” is not linked. If D is a PC reduction, then the statement follows from
Theorem and the inductive assumption. If DM is an absorbing or central reduction, then
we choose a variable z of ©” and an element ¢ € Dg(gl), and for every variable y by Dg) we
denote the set of all elements of Dy linked to ¢. Since ©” is irreducible, the solution set of
©"(1) is subdirect. Therefore e 1s 1rreduc1ble and Cycle consistent. It is not hard to see
that the reduction D™, defined by D D(T) N D ) for every variable y, is a 1-consistent
absorbing or central reductlon for ©” (T . By the inductive assumption, ©”") has a solution,
which completes this case.

Thus, we assume that ©” is linked. Then, by Theorem [9.5] every constraint in the obtained
instance has the parallelogram property. If ©” is not connected, then by Theorem [9.8] there
exists an instance T € ExpCov(0”) that is crucial in D(®) and contains a linked connected
component Q. If ©” is connected, then ©” is a linked connected component itself and we put
T=0Q=0"

Choose a variable x appearing in a constraint C' € 2. By Lemma , Con(C, z) is
irreducible. By Theorem [8.15.1] there exists a bridge § from Con(C, z) to Con(C, z) such that
d(x,x,y,y) is a full relation. By Corollary , there exists a relation ¢ C D, x D, X Z,
such that (z1,22,0) € ( & (21, 23) € Con(C, z) and pr; 5(¢) = Con(C, x)". Let us replace the
variable z of C'in Y by 2’ and add the constraint {(z, ', z). The obtained instance we denote
by Y'. By the assumption, Y has a solution with z = 0, and a solution in D) with z # 0.

If D(®) is an absorbing or central reduction, then by Corollaries [7.1.1] [7.6.1] the restriction
of all variable of Y’ but z to D(®) implies the corresponding restriction of the variable z. This
contradicts the fact that the domain of z is Z,,.

It remains to consider the case when D(A) is a PC reduction. By Theorems . . 9.3} for
every variable y and every PC subuniverse U of D, there exists a minimal 1-consistent PC

reduction DY) € % such that D(v U. Since Y’ has a solution in any reduction from R,
we conclude that for every variable y and every PC subuniverse U of D, the instance Y’ has
a solution with y € U. Hence, by Corollary |7 m the restriction of T’ to D) implies the
corresponding restriction of z, which contradicts the fact that the domain of z is Z,. O
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9.3 Theorems from Section 4

In this subsection we assume that variables of the instance © are x4, ..., x,, and the domain
of z; is D; for every i. The first two theorems are proved together.

Theorem 4.3 Suppose O is a cycle-consistent irreducible CSP instance, B is a binary ab-
sorbing set or a center of D;. Then © has a solution if and only if © has a solution with
X; € B.

Theorem [4.4. Suppose O is a cycle-consistent irreducible CSP instance, there does not exist
a binary absorbing subuniverse or a center on D; for every j, (D;;w)/o is a polynomially
complete algebra, E is an equivalence class of 0. Then © has a solution if and only if © has
a solution with ©; € F.

Proof. By Theorem [0.2] [0.3] there exists a smaller minimal 1-consistent reduction. By Theo-
rem [0.9] there exists a solution in this reduction. O

Theorem Suppose the following conditions hold:
1. © is a linked cycle-consistent irreducible CSP instance with domain set (D1, ..., Dy,);
2. there does not exist a binary absorbing subuniverse or a center on D; for every j;

3. if we replace every constraint of © by all weaker constraints then the obtained instance
has a solution with x; = b for every i and b € D;.

4. O is © factorized by the minimal linear congruences;
5. (D, ..., D) is a solution of ©r, and © is crucial in (DY,..., D).

Then there exists a constraint ((zi,, ..., xi,), p) in © and a subuniverse  of Dy, X - -xDi X Zy,
such that the projection of ( onto the first s coordinates is bigger than p but the projection of
CN(D;, x -+ x D;, x{0}) onto the first s coordinates is equal to p.

Proof. Assume the contrary. We denote the reduction (D}, ..., D!) by DU, By Theorem (9.5,
every constraint in © has the parallelogram property. If © is not connected, then by The-
orem , there exists an instance ©' € ExpCov(0) that is crucial in D) and contains a
linked connected component {2 such that the solution set of {2 is not subdirect. By condition
3), if the solution set of 2 is not subdirect then Q contains a constraint relation from ©.
If © is connected, then © is a linked connected component itself and we put 2 = ©. Let
((miy, ..., xi,),p) €  be a constraint such that p is a constraint relation from ©.

By Lemma , Con(p, 1) is an irreducible congruence. By Theorem there exists a
bridge § from Con(p, 1) to Con(p, 1) such that §(z, z, y, y) is a full relation. By Corollary[8.10.1]
there exists a relation £ C D;, x D;, X Z, such that (z1,x9,0) € £ < (21,22) € Con(p, 1) and
pry (&) = Con(p, 1)".

Put ((2i,, ..., 2, 2) = 3z}, p(a], Tip, ..., T3,) NE(24y, 25, 2). O
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