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Abstract

I study the problem of allocating objects among agents without using money.
Agents can receive several objects and have dichotomous preferences, mean-
ing that they either consider objects to be acceptable or not. In this setup,
the egalitarian solution is more appealing than the competitive equilibrium
with equal incomes because it is Lorenz dominant, unique in utilities, and
group strategy-proof. Moreover, it can be adapted to satisfy a new fairness
axiom that arises naturally in this context. Both solutions are disjoint.
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1. Introduction

An assignment problem is the allocation problem where scarce objects are
to be allocated among several agents without using monetary transfers. As-
signment problems include the allocation of senators to committees, courses
to students, or job interviews to applicants. In this paper, I study assign-
ment problems in which each agent can receive more than one object, but
at most one unit of each, and several identical units are available of each
object. These are called multi-unit assignment problems. They include the
three examples previously discussed. A U.S. senator on average participates
in four committees,3 a student can take many courses during a semester, and
a job candidate can schedule many interviews. However, senators cannot
have more than one seat on each committee, students cannot take a course
twice for credit, and applicants cannot be interviewed more than once for the
same position.

For such multi-unit assignment problems, we would like to have a system-
atic procedure to decide fairly which agents should get which objects which,
at the same time, does not offer incentives to coalitions of agents to lie about
their true preferences. My contribution is to propose an egalitarian solution
that achieves this purpose for multi-unit assignment problems in the dichoto-
mous preference domain, in which objects are either considered acceptable
or not, and in which agents are indifferent between all objects that they find
acceptable.

The egalitarian solution is based on the well-known leximin principle. In
the domain of dichotomous preferences, it performs better than the compet-
itive equilibrium with equal incomes, a solution used in similar assignment
models on larger preference domains (Hylland and Zeckhauser, 1979; Bud-
ish, 2011; Reny, 2017), and which has been successfully applied to allocate
courses in business schools (Budish et al., 2017). By better, I mean that,
unlike the competitive equilibrium with equal incomes, the egalitarian solu-
tion is Lorenz dominant, unique in utilities, and impossible to manipulate by
groups.

Lorenz dominance is “a ranking generally accepted as the unambiguous
arbiter of inequality comparison” (Foster and Ok, 1999) and is “widely ac-
cepted as embodying a set of minimal ethical judgements that should be made”

3Source: “The many roles of a Member of Congress”, Indiana University Center on

Representative Government.
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(Dutta and Ray, 1989). Given two vectors of size n, the first Lorenz domi-
nates the second if, when arranged in ascending order, the sum of the first
k ≤ n elements of the first is always greater than or equal to the sum of
the k first elements of the second. A utility profile is Lorenz dominant if
it Lorenz dominates any other feasible utility profile. In our setup, the fact
that a utility profile is Lorenz dominant implies that it uniquely maximizes
any strictly concave utility function representing agents’ preferences and is,
therefore, a strong fairness property.

Uniqueness of the solution (in the utility profile obtained) is also a desir-
able property, for it gives a clear recommendation of how the resources should
be split. A multi-valued solution leaves the schedule designer with the com-
plicated task of selecting a particular division among those suggested by the
solution, thus raising the opportunity of rightful complaints by some agents
who may argue that other allocations were recommended by the solution
that were more beneficial to them.

It is equally interesting that the egalitarian solution is group strategy-
proof, implying that coalitions of agents can never profit from misrepresenting
their availability. On the contrary, the competitive solution is manipulable by
groups in this setup, as in many others. Yet, it is remarkable that even in our
small dichotomous preference domain, where the possibilities to misreport
are very limited, the pseudo-market solution can still be manipulated by
coalitions of agents.

The fact that the egalitarian solution satisfies these three desirable prop-
erties is a strong argument for recommending its use whenever agents have
dichotomous preferences, instead of the competitive equilibrium with equal
incomes.

The dichotomous preference domain is admittedly simple, and is not suit-
able to model some multi-unit assignment problems in which agents may
consider objects as complements, such as the allocation of courses to stu-
dents. However, this setup is helpful to represent scheduling problems (see
for example the tennis allocation problem in Maher, 2016), in which agents
are either compatible or incompatible with each object and want to maxi-
mize the number of objects they obtain, or for the aforementioned problems
of assigning job interviews to candidates or seats for performances to the
public, among others.

Moreover, focusing on this particular domain of preferences will be helpful
to show the properties of the egalitarian solution, while, at the same time, it
will make the problem complicated enough to identify why the competitive
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equilibrium with equal incomes fails to be unique and group strategy-proof.
The reason behind its non-uniqueness is that for some objects, the number
of identical copies available of them (their supply) equals their total demand.
I call these objects perfect. Although there is no doubt on how perfect ob-
jects should be allocated, the question of how to price them becomes tricky.
Because their demand always equals their supply, they can have a zero com-
petitive price. However, they could also have a positive price, hence reducing
the available budget of those agents who buy them.

Perfect objects are also why the competitive solution is not group strategy-
proof. A coalition of agents can agree to misrepresent their preferences so to
make a set of objects perfect. This allows those objects to have a lower price
(even a zero price), hence allowing agents to increase their budget, and, con-
sequently, their share of other over-demanded objects. Manipulating agents
benefit unambiguously, meaning that every competitive equilibrium of the
allocation problem with misrepresented preferences yields a weakly better
allocation than the unique competitive equilibrium of the original problem.

More generally, perfect objects also raise the issue of how they should af-
fect the final allocation. Some allocation procedures can be decomposed into
the allocation of perfect and over-demanded objects, meaning that the share
of over-demanded objects that agents obtain is independent of their demand
for perfect objects. I call this property independence of perfect objects. This
is a desirable property in scenarios where agents can claim that perfect ob-
jects belong unambiguously to them, and the number of perfect objects they
obtain should not diminish their shares of over-demanded objects. Although
the egalitarian solution does not satisfy this requirement, we can construct
a refined egalitarian solution that does and that is also Lorenz dominant for
the assignment problem with over-demanded objects only. However, inde-
pendence of perfect objects comes at a price: the refined egalitarian solution
is not group strategy-proof.

1.1. Related Literature

Our theoretical model is closely related to two existing problems in the
literature:

1. Single-unit random assignment with dichotomous preferences by Bogomol-
naia and Moulin (2004), henceforth BM04. Our model generalizes theirs in
that agents can get more than one object. They study the egalitarian and the
equal income competitive solution. They show that the egalitarian solution
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is Lorenz dominant and can always be supported by competitive prices. Be-
cause the competitive solution is Lorenz dominant, the competitive solution
can easily be computed as the maximization of the Nash product of agents’
utilities. They also prove that the egalitarian solution is group strategy-proof.

Roth et al. (2005) show that the egalitarian solution is also Lorenz dominant
in assignment problems on arbitrary graphs that are not necessarily bipartite.
They use dichotomous preferences to model whether a person is compatible
or not with a particular organ for transplantation. In their words, “the
experience of American surgeons suggests that preferences over kidneys can
be well approximated as 0 - 1, i.e. that patients and surgeons should be more
or less indifferent among kidneys from healthy donors that are blood type and
immunologically compatible with the patient”.

Assignment on the dichotomous domain of preferences has been further stud-
ied by Bogomolnaia et al. (2005), Katta and Sethuraman (2006), and Bou-
veret and Lang (2008).

2. The course allocation problem (CAP) described by Brams and Kilgour
(2001); Budish (2011); Budish and Cantillon (2012); Kominers et al. (2010);
Krishna and Ünver (2008); and Sönmez and Ünver (2010), with some impor-
tant differences. First, in CAP, students may have arbitrary preferences over
the set of objects, which are considerably more complex than those I study
in this paper. However, reporting combinatorial preferences is unfeasible for
even few alternatives, and, in practice, combinatorial mechanisms never al-
low agents to fully report such preferences, not only because such revelation
would be complicated, but also because agents may not know their prefer-
ences in such detail. Consequently, a new strand of theory has focused on
allocation mechanisms with simpler preferences (Bogomolnaia et al., 2017;
Bouveret and Lemâıtre, 2016), which are used successfully in modern allo-
cation platforms in real life, such as Spliddit.com (Goldman and Procaccia,
2015). Although the dichotomous preference domain is smaller than those
considered in CAP, it is not contained in any of those because CAP rules out
indifferences.

Furthermore, Budish (2011) only considers deterministic assignments. I in-
stead study randomized assignments: in practice, many allocation mecha-
nisms use some degree of randomization to achieve a higher degree of fair-
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1.2. Summary of Results

I define the egalitarian and the constrained competitive solution. The
egalitarian one is Lorenz dominant in the set of efficient utility profiles (The-
orem 1), while the competitive one exists (Theorem 2) but is multi-valued
(Example 1). The egalitarian solution is group strategy-proof, but the com-
petitive one is not (Theorem 3). Both solutions are disjoint (Example 2),
which is a stark difference between this model and BM04. As a consequence,
the classical result stating that the competitive solution can be computed as
the maximizer of the Nash product of utilities no longer holds: a result known
as the Eisenberg-Gale program. Its failure is important not only because it
leaves us with no known algorithm for computing competitive equilibria, but
also because the Eisenberg-Gale program is a rather robust result that applies
to a large class of utility functions beyond the linear case (Vazirani, 2007)
and to the division of objects and bads (Bogomolnaia et al., 2017). The fact
that the competitive solution is not unique is also interesting, as a unique
utility profile is always obtained in Fisher markets (which is itself another
consequence of solving the Eisenberg-Gale convex program, see Theorem 5.1
in Vazirani, 2007).

I show that the egalitarian solution is not independent of perfect objects,
and propose a refined egalitarian solution that achieves this property, while at
the same time being Lorenz dominant for the assignment of over-demanded
objects (Lemma 5). This refined solution, while appealing, violates group
strategy-proofness, unlike the classical egalitarian solution (Example 3).

This paper is structured as follows. Sections 2 and 3 formalize the model
and the solutions I consider, respectively. Section 4 analyzes the solutions’
manipulation by groups, whereas Section 5 introduces the property of inde-
pendence of perfect objects. Section 6 concludes the paper. I defer all proofs
to the Appendix.

4Randomization is used to assign both permanent visas and housing subsidies in the
US, or school places in the UK. Sources: “A one in a million chance at a better life”,
The Guardian, 2/5/2017, “Why does random chance decide who gets housing subsidies?”,
NPR, 3/5/2016, and “School admissions: is a lottery a fairer system?”, The Guardian,
14/3/2017.
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2. Model

I consider the allocation of m objects (each with possibly several copies
of itself) to n agents. Up to qk copies of object k ∈ M can be assigned to
the set of agents N . I refer to the integer vector q = (q1, . . . , qm) as objects’
capacities.

Agents’ preferences over objects are given by a m × n binary matrix R.
Each entry rik = 1 if agent i finds object k acceptable and 0 otherwise.5

Slightly abusing the notation, RiM (resp. RNk) denotes both the i-th row
(resp. k-th column) of R and the set of objects (resp. agents) for which
rik = 1. For notational simplicity, I assume |RNk| ≥ qk for each object k.

A random assignment matrix (RAM) for an MAP (R, q) is an m×n
matrix satisfying the following conditions ∀i ∈ N, k ∈M

Feasibility

{

0 ≤ zik ≤ 1
∑

k∈M zik ≤ qk
(1)

Individual Rationality
{

zik > 0 only if rik = 1 (2)

An RAM’s entries indicate with which probability each agent obtains
one unit of each object. The feasibility conditions ensure that no agent
obtains more than one unit of each object, and that the total number of
units assigned of each object is less than its capacity. Similarly, individual
rationality guarantees that each agent only obtains shares from acceptable
objects. Throughout the paper, I only consider assignments satisfying these
two properties. As before, the notation ZiM (resp. ZNk) denotes both the
i-th row (resp. k-th column) of Z and the set of objects (resp. players) for
which zik = 1. F(R, q) denotes the set of all RAMs for the MAP (R, q).
The matching size ν(R, q) =

∑

k∈M qk of an MAP represents the maximum
number of object units that can be assigned.

Several random assignments can have the same corresponding RAM. The-
orem 1 in Budish et al. (2013) implies6 that

Lemma 1. Any RAM can be decomposed into a convex combination of binary
RAMs, and can thus be implemented.

5Depending on the application we have in mind, R can also be understood to represent
allocation or physical constraints.

6The implication follows because the set of feasibility constraints is a hierarchy.
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I assume that agents are indifferent between objects that they find ac-
ceptable, and that they want to maximize the number of acceptable objects
they obtain. The canonical utility function representing those preferences is

ui(Z) =
∑

k∈M

zik (3)

for an arbitrary agent i. This function is clearly not unique but it is
convenient to work with. The preference relation represented by this function
is a complete order over all RAMs, and implies that an RAM Z is Pareto
optimal for an MAP (R, q) if and only if

∑

i∈N

∑

k∈M zik = ν(R, q). The set
of efficient utility profiles U(R, q) can be described as

U(R, q) = {U ∈ Rn | ∃Z ∈ F(R, q) : Ui =
∑

k∈M

zik, ∀i ∈ N} (4)

I do not distinguish between ex-ante and ex-post efficiency because in
the dichotomous preference domain they coincide. This equivalence occurs
because the sum of utilities is constant in all efficient assignments.7 In our
setup, efficiency simply requires that no object is wasted.

A welfarist solution is a mapping Φ from (R, q) to a set of efficient
utility profiles in U(R, q), and hence, it only focuses on the expected number
of objects received by an agent and not on the exact probability distribu-
tion over deterministic assignments. Whenever a solution is single-valued I
instead use the notation φ.

2.1. Perfect Objects and Perfect Extensions

We can partition the corresponding set of objects M into two subsets
P(R, q) and O(R, q), which are called perfect and over-demanded, re-
spectively. The set of perfect objects is defined as

P(R, q) = {k ∈M : |RNk| = qk} (5)

The vectors qP(R,q) and qO(R,q) denote the capacities of perfect and over-
demanded goods, respectively.

7Ex-ante and ex-post efficiency are equivalent in assignment problems with dichotomous
preferences (BM04, Roth et al., 2005).
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Given a MAP (R, q), a perfect extension for agent i represents adding
an arbitrarily perfect object k′ that agent i finds acceptable. Formally, a
perfect extension for agent i in a MAP (R, q) is a pair ([RRNk′ ], q) where
[RRNk′] denotes the n × (m + 1) juxtaposition of the two matrices and
q = (q1, . . . , qm, |RNk′ |).

3. Three Efficient Solutions

3.1. The Egalitarian Solution

An intuitive solution equalizes agents’ utilities as much as possible re-
specting efficiency and individual rationality: this is the well-known leximin
solution. I refer to it as the Egalitarian Solution (ES), proposed the-
oretically by BM04, and applied to the exchange of live donor kidneys for
transplant by Roth et al. (2005) and Yılmaz (2011).

To define it formally, let ≻l be the well-known lexicographic order.8 For
each U ∈ Rn, let γ(U) ∈ Rn be the vector containing the same elements as U
but sorted in ascending order, i.e. γ1(U) ≤ . . . ≤ γn(U). The leximin order
≻LM is defined by U ≻LM U ′ if and only if γ(U) ≻l γ(U ′). The ES is defined
by

φES(R, q) = argmax
≻LM

U(R, q) (6)

The ES satisfies a strong fairness notion called Lorenz dominance,
defined as follows. Define the order ≻ld on Rn so that for any two vectors U
and U ′, U ≻ld U ′ only if

∑t

i=1 Ui ≥
∑t

i=1 U
′
i ∀t ≤ n, with strict inequality

for some t. We say that U Lorenz dominates U ′, written U ≻LD U ′, if
γ(U) ≻ld γ(U ′). A vector U ∈ U(R, q) is Lorenz dominant for aN MAP
(R, q) if it Lorenz dominates any other vector in U(R, q).

Lorenz dominance is a partial order in U(R, q) and therefore a Lorenz
dominant utility profile need not exist. Nevertheless, the ES solution is
Lorenz dominant.

Theorem 1. The ES solution is Lorenz dominant in the set of efficient utility
profiles.

I prove Theorem 1 using Theorem 3 in Dutta and Ray (1989), which states
that the core of every supermodular cooperative game has a Lorenz dominant

8So that for any two vectors U,U ′ ∈ Rn, U ≻l U ′ only if Ut > U ′

t for some integer
t ≤ n, and Up = U ′

p for any positive integer p < t.
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element. I postpone the construction of the corresponding cooperative game
to the Appendix.

3.2. The Constrained Competitive Equilibrium with Equal Incomes

A second solution, which is substantially more complicated, requires to
balance the supply and demand for goods when agents are endowed with
equal budgets. These equal budgets are often normalized to one currency
unit, a normalization that I also use. This solution is known as the Compet-
itive Equilibrium with Equal Incomes (CEEI) (Varian, 1974; Hylland
and Zeckhauser, 1979). In MAPs, each agent can consume at most one unit
of each object, hence having particular constraints on their consumption set
that play a major role. I use the term Constrained Competitive Equilib-
rium (CCE, still with equal incomes) from now on to make this distinction
obvious.

The CCE solution is different from the CEEI as defined in Hylland and
Zeckhauser (1979) in that they impose no constraints in the objects to be
consumed: in our case agents never partially consume objects that have dif-
ferent prices, see Table 1 in their paper. This difference justifies the different
terminology of CCE.

Definition 1. A CCE for an MAP (R, q) is a pair of an RAM Z∗ and a non-
negative price vector p∗ such that, ∀i ∈ N , agents maximize their utilities

Z∗

iM ∈ arg max
ZiM∈βi(p∗)

ui(ZiM) (7)

where βi(p) is the budget set defined as βi(p) = {ZiM |
∑

k∈M zik ≤
|RiM | : p · ZiM ≤ 1}, and the market clears, so that

Z∗ ∈ F(R, q) (8)

As we shall see in Theorem 2, the set of CCE is never empty but may be
large. The optimality conditions of CCE imply

k /∈ P(R, q) =⇒ p∗k > 0 (9)

z∗ik, z
∗

ik′ ∈ (0, 1) =⇒ p∗k = p∗k′ (10)

[p∗k < p∗k′] ∧ [0 < z∗ik′ ] =⇒ z∗ik = 1 (11)
∑

k

z∗ik < |RiM | =⇒
∑

k

p∗k · z
∗

ik = 1 (12)
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These are the equivalent of the Fisher equations in our model, see Brainard
and Scarf (2005). Condition (9) allows a zero price only for perfect objects,
while expression (10) forces the same marginal benefit for every object that
agents obtain partially but not fully.

The CCE is in general multivalued. Given an MAP, I denote the set of
pairs (Z∗, p∗) as C(R, q). The CCE solution is defined by

ΦCCE(R, q) = {u(Z ′) | ∃ p′ : (Z ′, p′) ∈ C(R, q)} (13)

3.3. The Naive Egalitarian per Object

Finally, a naive and most intuitive solution (that I use as a benchmark
only) breaks up the allocation problem into m sub-problems of assigning qk
units of object k into RNk, distributing an equal share of object k among all
agents who find it acceptable. I call this solution Egalitarian Per Object
(EPO). Given an MAP (R, q), the EPO solution assigns to each agent

φEPO
i (R, q) =

∑

k∈M

rik ·
qk

|RNk|
(14)

In the dichotomous preference domain, EPO is equivalent to the well-
known random priority mechanism, also known as random serial dictator-
ship.9 I do not consider EPO to be an appropriate solution for MAPs because
it ignores the interaction between the m assignment problems corresponding
to each object. EPO also fails the following basic fairness property: if n− 1
agents get at least one object, the n-th agent also gets at least one object;
see Example 1 for an illustration.

One could also consider other solutions discussed in the literature, in
particular the probabilistic serial rule, defined by Bogomolnaia and Moulin
(2001). I do not consider this solution for two reasons. First, the probabilistic
serial rule is appealing in scenarios where different notions of efficiency do not
coincide. This is not the case for MAPs. Second, it was originally defined for
assignment problems with strict preferences. Even though Katta and Sethu-
raman (2006) extend the probabilistic serial rule to allow for indifferences,
their extension is only defined for single-unit assignment problems.

9EPO would not be efficient in a more general domain of preferences. The equivalence
with random priority would also disappear.
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3.4. Two Examples Showing that All Solutions Differ

Example 1 (Multivalued CCE differs from EPO). Table 1 shows the dif-
ferent outcomes that our three solutions produce for a problem with n = 6,
m = 3, and (R, q) given in subtable 1a. The CCE utilities are written in
brackets in subtable 1b because there are CCE that support utility profiles
between (2.4, 1.4, 1) and (2.25, 2, 1) with 0 ≤ pγ ≤ 4

9
. This multiplicity is

interesting: the competitive solution is always unique in the corresponding
utility profile in Fisher markets and also in the more general Eisenberg-Gale
markets (Jain and Vazirani, 2010, p.87). It is also problematic, as there is
no obvious selection from the CCE.

Table 1: Example 1

N\M α β γ Total
a : d 1 1 1 3
e 1 1 0 2
f 1 0 0 1
Total 6 5 4

q 4 4 4

(a) Corresponding R matrix.

N ES CCE EPO
a:d 2.25 [2.25 - 2.4] 2.47
e 2 [1.4 - 2] 1.47
f 1 1 0.67

(b) Utility profiles for each solution.

Any CCE in example 1 gives one unit of object α to agent f . This
implies that there are no CCE prices that support the EPO outcome and
thus is a strong argument against this solution, as competitive equilibria are
considered “essentially the description of perfect justice” (Arnsperger, 1994),
and the base of Dworkin’s “equality of resources” (Dworkin, 1981). The EPO
solution is therefore not ideal, as expected. But interestingly, the ES solution
can also produce outcomes that cannot be supported as a CCE.

Example 2 (ES differs from CCE). I show this using a MAP with n = 9,
m = 6, and (R, q) given in subtable 2a. Note that in the single-unit case
(Theorem 1 in BM04), the ES is always supported by competitive prices.

If the ES solution (2, 2.5, 2.5, 3.25) could be supported as a CCE, then
pα = pγ = pδ = pǫ = pζ because agents f :i obtain those objects with positive
probability but do not exhaust them. Furthermore, agents d:i must spend
their whole budget, implying prices pα = 4

13
and pβ = 10

13
. However, at such

prices, the ES utility for agents a:c is unaffordable.
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Table 2: Example 2.

N\M α β γ, δ ǫ, ζ Total
a : c 1 1 0 0 2
d 0 1 1 0 3
e 0 1 0 1 3
f : i 1 0 1 1 5
Total 7 5 5 5

q 4 4 4 4

(a) Corresponding R matrix.

α β γ, δ ǫ, ζ Total
1 0.97 0 0 1.97
0 0.54 1 0 2.54
0 0.54 0 1 2.54
0.25 0 0.75 0.75 3.25

(b) Corresponding Z∗ (CCE).

The fact that ES and CCE do not coincide is interesting: in the non
constrained context, the competitive solution can be computed by maximiz-
ing the Nash product, solving what is known as the Eisenberg-Gale program
(Eisenberg, 1961; Eisenberg and Gale, 1959; Chipman, 1974, see chapter 7 in
Moulin, 2003 for a textbook treatment). That the competitive solution can-
not be computed solving the Eisenberg-Gale program implies that we lack an
algorithm for computing the competitive equilibrium, which can be a hard
task (Uzawa, 1962; Othman et al., 2010, 2014). The Eisenberg-Gale program
is otherwise a rather robust result since it extends to a large family of utility
functions beyond the linear case (Jain and Vazirani, 2010), as well as to the
mixed division of objects and bads (Bogomolnaia et al., 2017).

The multiplicity of the competitive solution and its non-equivalence with
the egalitarian outcome justify the new terminology of CCE. For any MAP,
the set of CCE is non-empty, a result I prove in the Appendix using a stan-
dard fixed point argument. I summarize these findings in Theorem 2.

Theorem 2. The ES solution is well-defined and single-valued, and the CCE
solution exists. Their intersection can be empty.

3.5. Minimal Fairness Guarantees

It is easy to see that both the ES and CCE solutions achieve minimal
fairness guarantees that exist in the literature: namely equal treatment of
equals and envy-freeness. A solution φ treats equals equally if, for any
MAP (R, q) that has agents i and j such that RiM = RjM , φi(R, q) =
φj(R, q). A solution φ is envy-free if, for any MAP (R, q) with agents i and
j such that RiM ⊆ RjM , φi(R, q) ≤ φj(R, q). Clearly, envy-freeness implies
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an equal treatment of equals. For the multi-valued CCE, both properties
hold for any selection from it.

Lemma 2. ES and CCE are envy-free, and hence treat equals equally.

I postpone an easy proof. There is no efficient solution that is strongly
envy-free, i.e. that for any MAP (R, q) with agents i and j such that |RiM | <
|RjM |, φi(R, q) ≤ φj(R, q), see Theorem 1 in Ortega (2016).10

4. Manipulation by Groups

I consider agents’ manipulation in the direct revelation mechanism asso-
ciated with each solution. For this purpose, we need to know exactly how
objects are assigned and not just the total utility that each agent receives.
A detailed solution ψ maps every MAP (R, q) into an RAM Z ∈ F(R, q),
specifying which share of each object is allocated to each agent, whereas a
welfarist solution φ maps every MAP into a utility profile U ∈ U(R, q) and
only tells us the expected number of objects received by each agent. Every
detailed solution ψ projects onto the welfarist solution φ(R, q) = u(ψ(R, q)).
The direct revelation mechanism associated with a detailed solution ψ is
such that all agents reveal their preferences RiM , and then ψ is applied to
the corresponding MAP (R, q), implementing the RAM ψ(R, q) = Z.

I assume that agent i with the true preferences RiM can only misrepresent
her preferences by understating the number of objects that she finds accept-
able, i.e. by declaring a preference profile R′

iM ⊂ RiM (we then say that R′
iM

is IR for RiM). I use this assumption for two reasons. The first is theoretical:
I have not specified the disutility that the consumption of an undesirable
object brings to an agent, as I have only focused on individually rational
assignments. I would need to specify such disutility to analyze the manipu-
lation of a solution by exaggerating the set of acceptable objects. The second
reason is that such an assumption has already been imposed in the study of
scheduling problems (e.g. Koutsoupias, 2014). In many scheduling problems
motivating MAPs, cancelling consumption could be strongly punished by the
central clearinghouse, particularly when other agents’ consumption depends
on other agents fully exhausting their bundles (no double tennis match can
be made with only 3 out of 4 players).

10In other applications such as cake-cutting with arbitrary preferences, the egalitarian
allocation is not envy-free (Lemma 6.7 in Segal-Halevi and Sziklai, 2017).
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A detailed solution ψ is group strategy-proof if for every MAP (R, q)
and every coalition S ⊂ N , ∄ R′ satisfying i) R′

jM = RjM ∀j /∈ S, and ii)
R′

SM is IR for RSM , such that

∀i ∈ S, ui(ψ(R
′, q)) ≥ ui(ψ(R, q)) (15)

with strict inequality for at least one agent in S. A welfarist solution φ
is group strategy-proof if every detailed solution ψ projecting onto φ is
group strategy-proof.

BM04 show that no deterministic solutions is group strategy-proof when
agents can obtain at most one object. Deterministic solutions include priority
ones, i.e. those in which agents choose sequentially their most preferred
available bundle according to some pre-specified order. The reason is that
the agent with the highest priority could change his report and still receive
one acceptable alternative, leaving his utility unchanged and, at the same
time, benefiting an agent with low priority: a property known as bossiness.

The argument does not extend to MAPs. Because agents can obtain
multiple objects, the agent with higher priority can belong to a manipulat-
ing coalition only by claiming fewer objects. But since she has the highest
priority, it is immediate that such manipulation would always give her strictly
less utility, so she cannot be in the coalition. The same argument applies to
all remaining agents and, consequently,

Lemma 3. Any deterministic priority solution is group strategy-proof.

The previous Lemma shows that group strategy-proofness is relatively
easy to achieve for MAPs in the dichotomous domain, in fact I show below
that the ES solution is also group strategy-proof. Is CCE also group strategy-
proof? There are two extensions of our group strategy-proofness definition
to set valued solutions.

The first requires that for every MAP (R, q), there is no equilibrium of
the manipulated MAP (R′, q) that is weakly better than every equilibria of
the original problem (R, q), for every member of the manipulating coalition
S. A stronger extension is that there is at least one equilibrium of (R, q)
which yields a weakly higher utility than some equilibrium of (R′, q), with
strict inequality for at least one member of the deviating coalition S. It
turns out that CCE violates both conditions. The reason is that a group
can coordinate to make several objects perfect, thus allowing those objects
to have a zero price.
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Theorem 3. ES is group strategy-proof but CCE is not.

I postpone the proof of ES being group strategy-proof to the Appendix,
but I show that CCE is unambiguously manipulable by groups below.

Example 3 (CCE not group strategy-proof). Let n = 7, m = 4, and (R, q)
given by Table 3.

Table 3: Example 3.

N\M α β γ δ ΦCCE

aaa 1 1 1 1 2.5
bbb 1 1 1 1 2.5
ccc 1 1 1 1 2.5
d 1 0 1 1 2.5
e 1 1 0 1 2.5
f 1 1 1 0 2.5
g 1 0 0 0 1
Total 7 5 5 5

q 4 4 4 4

(a) True preferences R.

α β γ δ ΦCCE

1 0 1 1 [2.5 - 2.57]
1 1 0 1 [2.5 - 2.57]
1 1 0 0 [2.5 - 2.57]
1 0 1 1 [2.5 - 2.57]
1 1 0 1 [2.5 - 2.57]
1 1 1 0 [2.5 - 2.57]
1 0 0 0 [0.57 - 1]
Total 7 4 4

q 4 4 4

(b) Misreport R′ for S = {a, b, c}.

Consider the coalition S = {a, b, c}. When agents submit their real pref-
erences, there exists a unique CCE that supports the ES solution: agents
a, b, and c obtain 2.5 expected objects. By changing their report each for
a different object, as in subtable 3b, they make objects β, γ and δ perfect,
consequently enlarging the set of CCE solutions, which includes utilities that
are always weakly above 2.5 and up to 2.57. By misrepresenting and creating
artificially perfect objects, they allow those to be priced at 0, weakly increas-
ing the number of expected objects received in any competitive equilibria of
(R′, q), at the expense of agents with limited acceptable objects, in this case
g.

I do not discuss strategy-proofness (manipulation by individuals on their
own) since it is immediate that ES and CCE (and EPO) are strategy-proof.
For CCE, we can construct a selection of it that is strategy-proof, since
reducing the total demand for an object either reduces its price, relatively
increasing the price of other objects, or leaves its price unchanged.
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Efficiency, fairness, and non-manipulability are standard goals in the de-
sign of resource allocation mechanisms. Before concluding, I discuss a new
goal that arises naturally for MAPs.

5. Independence of Perfect Objects

Some solutions do not depend on the number of perfect objects desired
by an agent. If an agent finds a new perfect object to be acceptable, we could
expect that she would always receive one extra expected unit. This is what
our following property captures.

A solution φ is independent of perfect objects (IPO) if, for every
MAP, every i ∈ N and for any of its perfect extensions ([R RNk′], q),

φi(R, q) + 1 = φi([R RNk′ ], q) (16)

IPO is a desirable property for two reasons. First, perfect objects belong
unambiguously to agents who find them acceptable, so they can argue that
they should obtain them fully, irrespective of the share they obtain from
over-demanded objects. Second, if the clearinghouse used a solution that was
not IPO, the set of agents who find perfect objects acceptable could avoid
reporting their demand for perfect objects and obtain them fully outside the
centralized mechanism, a real concern for scheduling applications in which
agents may organize teamwork activities on their own.

CCE (partially) satisfies this requirement.11

Lemma 4. Although ES is not IPO, there exists a selection of CCE that
satisfies IPO.

Lemma 4 highlights that CCE can always assign a zero price to all perfect
objects: this is how we construct the selection of CCE that satisfies IPO. But
it may also assign a zero price to some perfect objects only, or to no perfect
object at all. The designer has a high flexibility choosing the equilibrium
prices.

The selection problem extends to Budish (2011) competitive mechanism
for CAP in which students reveal their preferences to a centralized clear-
inghouse which announces a corresponding equilibrium allocation. Budish

11EPO also satisfies IPO. Once more, EPO performs very poorly with respect to fairness
considerations so I do not analyze it further.
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argues that this mechanism is transparent, meaning that students can ver-
ify that the allocation is an equilibrium. But the mechanism can be “ma-
nipulated from the inside”, selectively assigning zero prices to hand-picked
courses, while at the same time rightly arguing that it produces a competitive
allocation.

If IPO must be achieved (a decision depending on the context and the
designer’s objectives), we would like to have a solution that, at the same
time, avoids the multiplicity problem of the CCE, while being envy-free and
as fair as possible. Such solution exists: we call it the refined egalitarian
solution (ES*). To define it, we use the partition of M into P(R, q) and
O(R, q), and split the original MAP (R, q) into two independent problems
(RNP(R,q), qP(R,q)) and (RNO(R,q), qO(R,q)), which correspond to the indepen-
dent MAPs with perfect and over-demanded objects, respectively. ES* is
given by

φES∗

i (R, q) = φES(RNO(R,q), qO(R,q)) +
∣

∣RiP(R,q)

∣

∣ (17)

ES* takes the egalitarian solution for the MAP with over-demanded ob-
jects only, and adds the number of perfect objects in which a player is avail-
able. ES* is close to a suggestion in Budish (2011). Noting that some courses
may be in excess supply, he proposes to run the allocation mechanism only
on the set of over-demanded courses: “if some courses are known to be in
substantial excess supply, we can reformulate the problem as one of allocating
only the potential scarce courses”. ES* does exactly that. It also satisfies
several desiderata.

Lemma 5. The ES* solution is well-defined and single-valued, efficient, IPO,
envy-free, and Lorenz dominant for the problem (RNO(R,q), q).

It is immediate that ES* is single-valued, efficient and IPO. The remaining
properties are straightforward modifications of the proofs of Lemmas 1 and
2 and Theorem 1. Unfortunately, the properties in Lemma 5 come at a cost:
ES* is not group strategy-proof.12 ES* can be manipulated by groups
reducing their availability so to make some objects perfect. Therefore, the
members of the manipulating coalition obtain those objects fully, while also
obtaining an egalitarian fraction of the remaining over-demanded problem.

12For an example, use the MAP and manipulation R′ illustrated in Example 3.
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Group strategy-proofness and IPO are compatible. EPO satisfy them
both (plus envy-freeness and Pareto efficiency). However, its poor perfor-
mance with respect to fairness makes it inappropriate for the problems I
have considered in this paper, as argued in subsection 3.3.

6. Conclusion

For multi-unit assignment problems in the dichotomous preference do-
main, the egalitarian solution is single-valued, Lorenz dominant, and group
strategy-proof. For these reasons, I recommend its use as a solution instead
of the popular competitive equilibrium with equal incomes, which fails these
three desirable properties. If the market designer is interested in satisfy-
ing the property of independence of perfect objects, the refined egalitarian
solution becomes an appealing alternative.
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Appendix: Proofs

Theorem 1 The ES solution is Lorenz dominant in the set of efficient utility
profiles.

Proof. Fix a MAP (R, q). Consider the concave cooperative game (N, µ)
where µ : 2N → R is a function that assigns, to each subset of agents, the
maximum number of objects that they can obtain together. To formalize
this intuitive function, given a coalition S ⊂ N , let us partition the set of
objects M into M+(S) and M−(S), defined as

M+(S) = {k ∈M : |RSk| < qk} (18)

The function µ is given by

µ(S) =
∑

k∈M+(S)

∑

i∈S

rik +
∑

k∈M−(S)

qk (19)

This function is clearly submodular, i.e. for any two subsets T, S ⊂ N

µ(S) + µ(T ) ≥ µ(S ∪ T ) + µ(S ∩ T ) (20)

The “core from above” is defined as the following set of profiles

C(R, q) = {x ∈ Rn |
∑

i∈N

xi = ν(R, q) and ∄S ⊂ N :
∑

i∈S

xi > µ(S)} (21)

It follows from Theorem 3 in Dutta and Ray (1989) that the set C(R, q)
has a Lorenz dominant element and is the egalitarian solution. But by con-
struction of the “core from above”, U(R, q) ⊂ C(R, q), the ES solution is
also Lorenz dominant in the set of efficient utility profiles U(R, q).

Theorem 2 For generalized tennis problems, the ES solution is well-defined
and single-valued, and the CCE solution exists. Their intersection can be
empty.

Proof. Fix a MAP (R, q). Let p ∈ Rm
+ be an arbitrary price vector such that

p · c = n, and use the notation yi = RiM to denote the optimal consumption
bundle for agent i ∈ N , and yN = (|RN1| , . . . , |RNm|). Note that

p · yN ≥ p · q (22)
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Define the vector ~λ as

~λ(p) = (λ1, . . . , λn) = UNIF{p · yi;n} (23)

where UNIF denotes the uniform rationing rule: a mapping that gives
to every agent the money needed to buy her preferred schedule as long as
it is less than λ, chosen so that p · ~λ = n. Define the sets of satiated and
non-satiated agents

N0(p) = {i ∈ N | λi = p · yi} (24)

N+(p) = {i ∈ N | λi < p · yi} (25)

So that λi = λ ∀i ∈ N+. Define the demand correspondence di(p) as

di(p) = arg max
ZiM∈I(RiM )

{p · ZiM ≤ λi} (26)

where I(RiM ) denotes the set of individually rational assignments for
RiM . Note that di(p) = {yi} for every i ∈ N0(p), while for agents in N+(p),
any vector zi ∈ di(p) satisfies p · zi = λ. By Berge’s maximum theorem,
the demand correspondence is upper hemi-continuous and convex valued.
The excess demand correspondence for the whole society, which inherits the
properties of di, is given by

e(p) = dN(p)− q (27)

where dN(p) denotes the aggregate demand correspondence for each ob-
ject. Using the Gale-Nikaido-Debreu theorem (Theorem 7 in pp. 716-718 of
Debreu (1982)), we know that there exists both a price vector p∗ ∈ R+ and
an excess demand vector x∗ ∈ e(p∗) for which the following two conditions
are satisfied

x∗ = ~0 (28)

p∗ · x∗ = 0 (29)

Where Walras’ law in equation (29) holds by construction of ~λ and d.
Finally, ∀i ∈ N

Z∗

iM = di(p
∗) (30)

so that the corresponding Z∗ ∈ F(R, q) by equation (28), concluding the
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proof of existence of CCE. That ES is single-valued follows from Theorem 1.
I have shown in Example 3 that for some MAP there do not exist prices that
support the ES as a CCE.

Lemma 2 ES and CCE are envy-free, and hence treat equals equally.

Proof. For an arbitrary MAP, let φES(R, q) = (U1, . . . , Ui, Uj, . . . , Un), and
assume agent i is envious of j, which means that RjM ⊆ RiM and that there
exists a Pigou-Dalton transfer ǫ so that the utility profile U ′ = (U1, . . . , Ui +
ǫ, Uj−ǫ, . . . , Un) ∈ U(R, q). But U ′ Lorenz dominates φES(R, q), so φES(R, q)
was not the ES solution, a contradiction.

Any selection of the CCE solution is envy-free because of the standard
argument: if there is any agent who is envious, she could afford the schedule
of the agent she envies.

Theorem 3 ES is group strategy-proof but CCE is not.
I showed that CCE is not group strategy-proof in the main text. To show
that ES is group strategy-proof, I start with a few preliminaries. Let Z
denote the set of all feasible RAMs supporting the egalitarian solution, i.e.

Z = {Z ∈ F(R, q) | ∀i ∈ N :
∑

k∈M

zik = φES
i (R, q)} (31)

A rule is non-bossy if no agent can affect someone’s else allocation without
changing his own utility. This is, a solution φ is non-bossy if, for every MAP
(R, q), ∀i ∈ N , and any manipulation R′ such that 1) ∀j 6= i, RjM = R′

jM ,
and 2) R′

iM ( RiM , we have

φi(R, q) = φi(R
′, q) only if φ(R, q) = φ(R′, q) (32)

We prove a useful auxiliary Lemma below.

Lemma 6. ES is non-bossy.

Proof. We proceed by way of contradiction. Let R′ be as specified in the pre-
vious definition. The manipulation may come from a reduction of availability
in three types of objects:

1. k ∈ O(R, q) and {k ∈M | ∃Z ∈ Z : zik = 0}, and hence there is a way
to implement the ES solution even when agent i misreported, so her change
in availability is inconsequential and all utilities remain the same, so agent i
cannot be bossy.
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2. k ∈ O(R, q) and {k ∈ M | ∀Z ∈ Z : zik > 0}, so clearly agent i’s
utility changes, so she cannot be bossy.

31. k ∈ P(R, q), but if agent i reduces the number of perfect goods, she
always reduces the utility she obtains (as I prove below), so her utility is not
constant and she cannot be bossy.

Now I prove that reducing the number of perfect objects in which agent i
is available always strictly reduces her utility. The certain loss of the perfect
object(s) must be exactly compensated by an increase of the shares she gets
from all over-demanded objects, which is constant in any Z ∈ Z. Agent i
was not getting full shares of those objects (as otherwise we obtain a con-
tradiction) so another agent(s) j must be obtaining shares for those objects,
implying φES

j (R, q) ≤ φES
i (R, q) (because otherwise the ES would give those

shares to agent i). Some of the shares obtained by agent j in φ(R, q) must
be transferred to agent i in φ(R′, q): this is a Pigou-Dalton transfer because
if agent i did not obtain a lower utility in the misrepresented problem then
he would not obtain the shares of j. Moreover,

φES
i (R, q)− 1 < φES

j (R, q) ≤ φES
i (R, q) (33)

as otherwise j does not transfer any shares to i when i reduces the number
of perfect objects. Let γ be the Pigou-Dalton transfer from j to i required
so that the utility of i is kept constant. We have

φES
i (R′, q) = φES

i (R, q)− 1 + γ = φES
j (R, q)− γ < φES

i (R, j) (34)

showing that indeed reducing the number of perfect objects always yields
lower utility, and thus concluding the proof that ES is non-bossy.

We are now ready to prove that ES is group strategy-proof. We will do
it by showing that nobody can join a manipulating coalition.

Proof. By way of contradiction, assume there exists a MAP (R, q), a coalition
S ( N , and a manipulation R′ such that, for all i ∈ S φES

i (R′, q) ≥ φES
i (R, q),

and for some j ∈ S φES
j (R′, q) > φES

j (R, q).
Let φES(R, q) = UES and order the agents such that UES

1 ≤ . . . ≤ UES
n .

We will show by induction on the order of agents the following property

i /∈ S (35)
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There are two cases in which an agent i can be in S. Case 1) either he
gets more utility, φES

i (R′, q) > φES
i (R, q), or case 2) he gets the same utility

but he changes his reported preferences to help another member of S. This
is ruled out by the non-bossiness of ES so we focus on case 1) only.

We prove it for i = 1 first, i.e. the agent with lowest utility. Agent 1 gets
a strictly higher number of objects with the new profile R′, which must come
from a set of objects K ⊆ O(R, q) from which he was not getting full shares
(K = {k ∈ M | ∃Z ∈ Z : 0 < zik < 1}), for which agents 2, . . . , t are also
available and UES

1 = UES
2 = . . . = UES

t . Those agents exhaust qk entirely; i.e.
∀k ∈ K, ∀Z ∈ Z,

∑t
1 zik = qk.

Let T = {1, . . . , t}∩S. For any preference matrix R′
TM that is individually

rational for RTM , the objects {k ∈ K | RNk 6= R′
Nk} become less over-

demanded for agents {1, . . . , t} \ T , and therefore the agents in T get less
objects as a whole. Therefore there must be at least one agent in T who is
worst off, and the coalition S is not viable. Therefore 1 /∈ S.

Now we assume that i /∈ S for agent i = h − 1 and we show it holds
for agent h. We must have that UES

h < |RhM |. We assume φES
1 (R, q)ES1 <

φES
h (R, q) as otherwise our argument for agent 1 works exactly the same.
If agent h ∈ S, it must be that there exists a manipulation R′ so that

φh(R
′, q) > φh(R, q). The increase in her utility must come from more object

shares on over-demanded objects which she was not getting fully, i.e. Kh =
{k ∈ M | ∃Z ∈ Z : 0 < zhk < 1}. Some of these objects are exhausted by
agents 1, . . . , h− 1. There is no way agent h could get more shares from any
of those objects because {1, . . . , h− 1} ∩ S = ∅ by our induction step.

Therefore, the increase must come from objects that are not exhausted by
{1, . . . , h− 1}. Those objects become less over-demanded for {h, . . . , n} \ S,
and therefore agents in S get less object shares as a whole. It follows that
there must be a agent in S who gets less utility, so coalition S is not viable.
Therefore h /∈ S, and this concludes the proof.

Lemma 4 Although ES is not IPO, there exists a selection of CCE that
satisfies IPO.

Proof. It is straightforward to show that ES is not IPO. Let n = 5,M =
{α}, q = 4, and R⊤ = [1 1 1 1 1]. φES

i (R, q) = 0.8 for any agent, but adding a
perfect object k′ with capacity 4 for any agent i changes φES

i ([RRNk′], (4, 4)) =
1.75 6= 2.

To show that there is a selection of ΦCCE that is IPO, let (Z∗, p∗) be a
CCE of (R, q) and ([RRNk′], q) be a perfect extension of (R, q) . Then fix
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p∗k′ = 0 and, for every i ∈ N let z∗ik′ = 1 if rik′ = 1, and 0 otherwise. The
pair ([Z∗ Z∗

Nk′], (p
∗
1, . . . , p

∗
n, 0)) is a CCE of the perfect extension ([RRNk′], q),

because everybody interested in the perfect object is able to afford it, and
the demand for k′ equals its supply, because the new object k′ is perfect.
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