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How Much Traffic is Searching for Parking? Simulating Curbside Parking as
a Network of Finite Capacity Queues

Chase Dowling, Tanner Fiez, Lillian Ratliff, and Baosen Zhang

Abstract— With the increasing availability of transaction data
collected by digital parking meters, paid curbside parking can
be advantageously modeled as a network of interdependent
queues. In this article we introduce methods for analyzing a
special class of networks of finite capacity queues, where tasks
arrive from an exogenous source, join the queue if there is an
available server or are rejected and move to another queue
in search of service according to the network topology. Such
networks can be useful for modeling curbside parking since
queues in the network perform the same function and drivers
searching for an available server are under combinatorial
constraints and jockeying is not instantaneous. Further, we
provide a motivating example for such networks of finite
capacity queues in the context of drivers searching for parking
in the neighborhood of Belltown in Seattle, Washington, USA.
Lastly, since the stationary distribution of such networks used
to model parking are difficult to satisfactorily characterize, we
also introduce a simulation tool for the purpose of testing the
assumptions made to estimate interesting performance metrics.
Our results suggest that a Markovian relaxation of the problem
when solving for the mean rate metrics is comparable to
deterministic service times reflective of a driver’s tendency to
park for the maximum allowable time.

I. INTRODUCTION

Since the advent of digital parking meters, cities have
stockpiled a growing record of parking transaction data
within their CBD. Transaction data provides engineers with
a means of estimating the arrival rate of drivers which
attains the observed occupancy level. We can combine this
rate information with a queue-theoretic model of downtown
parking, necessitating an evaluation of sufficient conditions
as well as assumptions made when solving for the station-
ary distribution. Consider a block-face of curbside parking
spaces (see Fig[l): this represents a finite capacity queue
with no buffer. Drivers that arrive in search of parking that
find all spaces occupied must move onto an adjacent block-
face. This search dynamic driven by the rate of drivers turned
away from a full block-face is representative of the impact
of drivers searching for parking, and hence curb-side parking
impact on through-traffic.

This model has been recently introduced in [1], but a
number of assumptions are made. The primary contributions
of this work are 1) sufficient conditions for the number users
in such a system not growing unboundedly, 2) simulated
analysis of rates of convergence to an apparent steady-state,
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Fig. 1: A block-face of curbside parking represented as a
finite capacity queue.

and 3) simulating a real-world network of curbside parking
to evaluate these assumptions.

The rest of this paper is organized as follows: we provide
background, notational preliminaries, and information about
our simulator architecture in Sec. [[I} state our results on
sufficient conditions (Sec. [[II), and steady-state convergence
rates (Sec. [[II-D). In Sec. we set up our use case
example: providing information on data sources (Sec.
and simulation results (Sec. [[V-C)). We make our concluding
remarks in Sec. [V]

II. BACKGROUND

Canonical queueing networks like Jackson [2] or (in
general) BCMP networks [3] operate under a regime where
tasks join the network at some queue, are served, and then
move onto the next queue according to the network topology
or exit according to some probability. Characterized by mild
conditions on the distributions of their arrival and service
rates, the state spaces of BCMP networks are seperable,
greatly improving the tractability of their analysis.

We consider a new service regime where a network of
queues has some exogenous arrival process and if a task
arrives at a queue without an available server, the task
searches according to a network topology, but requirements
for separability via the BCMP theorem are not met (e.g.,
general instead of negative exponential service time distri-
butions) due to physical drivers in a system. Once the task
is served at a single queue somewhere in the network, it
immediately exits the network after service.

Parking in the core business districts (CBD) of cities is
naturally amenable to analysis via such networks of finite
capacity queues with the growing availability of parking
transaction data: parking queue tasks are vehicles in need
of a space to park and servers are those spaces. Service
time distributions can be characterized by the length of paid



parking time. And the finite capacity of curbside and garage
or lot parking is all too apparent to the individual driver in
search of a space when supply is scarce. Further, in trans-
portation literature, cruising for parking also results from
drivers searching for an available curbside parking space to
avoid garage prices [4]. In the aggregate this behavior creates
potentially significant congestion [5], but city planners have
until recently lacked high resolution (block-face by block-
face, per hour) models of such costs [6]. Congestion caused
by drivers cruising for parking is non-trivial, historically
cited as composing up to 30% of through-traffic [7], [8].

Supposing vehicles enter a network of parking queues in
an effort to find a space, park, and then exit the network
after some amount of time, queueing networks with seperable
state-spaces may not be suited to describing the state space
of these parking queues; this is supported by evidence of the
probabilistic dependence of adjacent block-faces of curbside
parking [9] (i.e. a block-face of curbside parking that is full
is unlikely to be adjacent to an empty block-face), in addition
to a number of other factors we will describe. We are able
to address this, however, through the use of some relaxing
assumptions and we verify these assumptions via simulation.
The purpose of this paper is to investigate the validity of
these assumptions.

A. Related Work: Queueing Theory

BCMP networks with finite queueing capacities have been
analyzed by incorporating some blocking probability at each
queue, or by allowing tasks to be dropped once the capacity
of the queue is reached [10], [11]. In some contexts like
parking, this may be an unreasonable assumption. Consider
the case of parking spaces in a CBD: drivers can neither a) be
held in place by some blocking protocol or b) disappear from
the network while in search of a parking space either curbside
or garage. A vehicle, or queue task, constantly impacts the
performance of the system.

Intuitively, the queuing regime we are interested in is more
akin to jockeying than current research in networks of finite
capacity queues. In typical jockeying problems, tasks switch
between queues or servers based on a jockeying strategy (e.g.
probabilistic or rule-based strategies) with the motivation, in
practice, being a shorter sojourn time [12]. In our motivating
case, drivers are forced to search between queues until an
available server is found but in a combinatorially constrained
fashion—drivers may only search a limited set of block-faces
with each trial based on the connectivity of the network.

B. Related Work: Parking

Canonical models for parking tend to assume a degree of
homogeneity [13], [4], [14], but this limitation was largely
a function of the availability of data on curbside parking
occupancy: namely the proportion of spaces in use at any
given time. This data has traditionally be collected by man-
ually [7], [15], but the introduction of digital parking meters
has provided researchers with an opportunity to increase
the spatial and temporal resolution of CBD parking models.
Indeed, a growing body of work is beginning to make use

of parking transaction data as a means to estimate curbside
parking occupancy [16], [9] in addition to investigating price
elasticity of demand [17]. In [1], a queueing network model
designed specifically to take advantage of these new sources
of data is initially introduced, relating occupancy to price,
but a number of assumptions are made.

Queues are not new to traffic engineers: queues have
been used to analyze the flow of traffic along a roadway
[18] or through a signalized intersection [19]. In an at-
tempt to capture the parking-congestion relationship, several
approaches based on queuing theory have been previously
introduced [20], [21], [22], [23], [24], [6] where roads (or
segments), parking spaces, or both are modeled as queues.

Previous applications of queuing theory to curbside park-
ing have been focused on investigating the short-term im-
pact on through-traffic or an intersection due to drivers
maneuvering into a parking space [23], [25]. To be clear,
this work is interested in longer, steady-state analysis of
curbside parking resource performance and its impact on
expected traffic volumes; long-term performance metrics like
occupancy drive policy decisions like price and maximum
parking time. Steady-state analysis of garage or lot parking
modeled as queues has also recently begun to appear, but
these are treated as a single queue with many servers [26],
and congestion resulting from finite supply is not considered.

C. Preliminaries

A queue, or a vertex ¢ € V is characterized by an
exogenous arrival rate \;, a service rate u;, the number
of servers k;, and maximum number of tasks in the queue
n;. We assume that the exogenous arrival process is Pois-
son (independent between queues) and the services times
are generally IID like conventional M /GI/- /- queues [27],
however, unlike conventional queueing networks or even
traditional finite capacity queue networks where tasks are
buffered or blocked at or by individual queues, the network
edges themselves form queues with some pre-determined
travel (service) time. For simplicity, we assume network
edge queues are infinite server, first-come first-served (FCFS)
queues with fixed travel time since most of our application
focus area of Belltown is made up of uncongested side
streets. More realistic queue models reflective of the traffic
state could be used. At each node that is reached by a task,
tasks assess whether a server is available or continue to
search.

The key difference between the proposed queue network
and conventional networks—such as a Jackson network [28]—
is that tasks proceed to other queues after they are rejected
rather than served. Since the rejection of a queue with
Poisson arrivals and exponential service times is not Poisson,
characterizing the stationary distribution of this network of
queues is difficult because the distribution of total arrival rate
itself to any vertex queue is unknown. Further, the service
rates at these queues are generally distributed, failing to meet
criteria for separability according to the BCMP theorem.
As will be clear in our application, negative exponentially
distributed service times at each finite capacity queue is



likely too strong an assumption (see Fig.[/b|for a distribution
of paid parking transaction times).

In Kendall’s notation, M/GI/k/n queues have Poisson
arrival, generally distributed but independent service times
(M for exponential, D for deterministic), k servers and n —
k, n > k, spaces available for tasks to queue. First we’ll
examine networks of such queues in a uniform, symmetric
network. We’ll then extrapolate this result to trees. Lastly
we’ll consider the analysis of general networks, focusing on
the M/M/k/k and M/D/k/k service regimes.

1) Stationary Distribution of a Single M /M /k/k Queue:
Here we introduce how a single queue with exponential
service times with finite servers can be analyzed given
occupancy data, calling on this later in the paper extending
the analysis to a network of queues. To help avoid confusion
between exogenous arrivals (from outside of the network,
denoted by \) and endogenous arrivals (rate of rejection
from neighboring queues, denoted by x), we use y = A+«
as the total arrival rate to a queue. Suppose the service
rate (inverse length of parking time) of each server is %1
and there are k servers (k parking spots) in total. Let m; be
the stationary probability that ¢ servers are busy (¢ cars are
parked), fori = 0,...,k.Let ™ = [mg ...my]. For this single
queue, we can explicitly write down its stationary probability
distribution via the transition rate matrix:

—y Y 0 0
poo—(pt+y) oy 0
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and 7r is the unique solution to
Q=0 (D

such that > m; = 1. Let p =
tions [27],
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where my = [Z?:o ’j’,—j]*l. Using Little’s Law, the occupancy

u, or the proportion of busy servers at any given time can

be expressed as,
k
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Little’s Law does not depend on the distributions of the
service time and arrival process; as we’ve used it in Eqn. (3),
we merely need to be able to estimate the probability the
block-face is full. .

Note that (1 — mo%;) is the probability that at least one
space is available. Consider, if drivers are unable to wait for
an available server at a particular block, in order to obtain
occupancies approaching 100%, cars would need to arrive
at an infinite rate in order to immediately replace vehicles
exiting service.

—ku

A block-face queue is therefore rejecting incoming ve-
hicles at a rate of y - m;. The difficulty therein lies with
estimating these total arrival rates, because no two adjacent
block-faces are independent as long as travel time between
queues is finite.

D. Simulator Architecture

Our simulator is written in Python and is freely available
to download and test at github.com/cpatdowling/
net—queueﬂ Requirements and basic instructions, as well
as data and relevant parameters used in this paper are
included in the repository. The simulator constructs a net-
work of block-face (drivers in service/parked) and street
(drivers moving from one block-face to the next) queues
linked according to the true street topology. Our simulator
is validated against occupancy data provided by the Seattle
Department of Transportation (SDOT).

In line with our model design the simulator treats streets
and block-faces individually: once a driver reaches the end
of their drive time on a street, they “immediately check”
the entire block-face they’ve arrived at for availability. If no
parking is available, the driver chooses a new destination
uniformly at random (though more realistic search strategies
can be applied [30]) based on the block-faces currently
accessible to them according to the street topology, joining a
street queue with some driving service time associated with
it.

he input parameters of our simulator include: nolist-
sep,noitemsep

) Network Topology. For every block-face in Belltown,

Y there will be any number of block-faces a driver can
reach using only legal maneuvers on one- and two-way
streets, excluding legal U-turnﬂ

2) Service Rate: The inter-service time dictates how
long cars will spend parked on a block-face. Fig.
illustrates the distribution of paid parking times across
Belltown, between block-faces set for 2 and 4 hour
maximum parking times. In simulation, this distri-
bution can be set as exponential, deterministic, or
uniquely determined by the distribution of paid trans-
action times exhibited at the block-face level. At this
point we have no reliable data on the frequency of
illegally parked vehicles that have either paid, or
overstayed, and further we have no means of measuring
how early drivers typically leave before their paid time
expires. In our initial simulations, we assume everyone
parks legally and early/late departures balance out;
the latter assumption is not unfounded and studied at
length in [16].

3) Number of Servers: The number of parking spaces,
or the number of servers in the block-face queue,
are extracted directly from data for each block-face,
ranging in values according to Fig. In our data, it

lour experiments utilize GNU Parallel [29].

20ur data and roadway maps currently provide no principled. The
simulator is given a map of block-face connectivity transcribed from Google
Maps
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is sometimes the case that there may be higher than
100% occupancy at any given block-face as a result
of factors described in Sec. [V-Al In these cases we
assume that occupancy is 100% with respect to the
estimated number of spaces, and not with respect to
the number of vehicles currently in service.

4) Exogenous Arrival Rate: The simulator accepts a
mean parameter for an exponential random inter-arrival
time distribution, simulating vehicles arriving at a
specific block-face to begin their search for parking.
If a space is available at the block-face they originally
arrive at, the driver accepts the first space without
contributing to congestion.

5) Drive Time: Drivers arrive at a block-face and de-
termine if any spaces are available. If no spaces are
available, a drive time is specified to determine how
long it takes drivers to reach the next adjacent block-
face in their search.

Important output values of our simulator include: noitem-
sep,nolistsep

1) Traffic due to Parking (rate of rejections): Traffic
due to drivers searching for parking can be measured
as the total number of rejections at a particular block-
face (or road, if search strategy is non-uniform) or as
rejections per unit time.

2) Average Wait: The amount of time a driver spends
looking for parking, as a function of drive time be-
tween each block-face a driver is rejected from until
they find parking.

3) Occupancy: The resulting occupancy measures the
average number of servers or spaces along a block-
face in use at any given time. This value is compared
against true occupancy data to ensure the simulator is
providing accurate estimates of congestion and sojourn
times.

III. RESULTS

Here we provide some analytical results on networks of
finite capacity queues.

Each vertex in the network is a finite-capacity, multi-server
queue. The queues are connected as vertices on a directed
graph. We use conventional notations G = (V, E) to describe
this digraph. Assumptions regarding connectivity are made
accordingly in our results. Each vertex ¢ has some exogenous
arrival rate \; and service time p;. When a task is rejected
from a queue at vertex i, it transits along edge (7, j), where
J is connected to ¢, denoted j ~ i. .

For simplicity, we consider this edge to be an infinite
server queue with a fixed travel time d shared across all
edges. As we will see, if a travel time is not imposed along
tasks transiting between (i, j) then the combinatorial search
constraints modeled by the connectivity of the graph is ill-
defined.

To gain some intuition into how this system behaves, we
first state a lemma.

Definition 1: A network of finite capacity queues “com-
municate” if a queue at vertex ¢ is reachable by a task from
queue j,Vi,j € V.

Lemma 1: Given travel time d > 0, and all queues in the
network G communicate, if

ZAi < Zui, 4)

for M;/GI;/k;/k; queues, then the number of tasks in the
system does not grow unboundedly.

Proof: Since each vertex queue has finite capacity, we
only need to show that the number of tasks in the infinite
capacity edge queues does not grow unboundedly.

Let d = § be arbitrarily small. Since the network commu-
nicates, the cover time (the expected number of steps before
a task reaches every vertex in the graph) is upper bounded by
O(n?3) [31] in the number of vertices n. The total, worst-case
travel time to traverse the network € = §O(n?).

For small ¢, the queue network G becomes a bulk infinite
capacity queue M /GI/)", k;/oo, where the total arrival
rate A is the sum of Poisson processes parameterized by
rates \;. Since,

A<Z,ui &)

then by standard conditions [32], this bulk queue
M/GI/ Y, k;/oo is stable, and therefore the number of
tasks in the system do not grow unboundedly. [ ]

In other words, service capacity is greater than the total
exogenous arrival rate. We can further intuit the implications
of this lemma. Consider a two-node finite capacity queue
network with arbitrarily short travel times. During periods
in which both queues are busy, new exogenous arrivals
are rejected and traverse back and forth between the two
queues asymptotically quickly at a rate proportional to 1/2d.
Lemma(T|does not imply that the rate of rejection—a primary
quantity of interest—from a queue in the network is bounded.
The observation that rejection rates grow asymptotically is
valuable in the context of our application in Sec.

A. Two-node network

We can attempt to solve for the stationary distribution
of a completely connected, two-node network with a single
server at each queue (see Fig. [2). This infinite state space
for the single server case is represented in Fig. Since
the exact stationary distribution of the network is difficult to
characterize, we instead turn to understanding the behavior
of the mean performance metrics of the network.

If we define the rate as the number of vehicles that passes
through a point over a unit period of time, then at steady
state, the input rate and output rate of a road has to be the
same. The output never more than the input since edges in
the network do not have exogenous arrivals, and if the output
is less than the input vehicles are queued up in the road. This
allows us to restrict our vision the state-space described by
the root node in Fig. [3| and relax the problem to a Markovian
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setting. This network can then be represented by the rate
transition matrix @ as,

—(A1 4+ X2 + 212 + 221) AL+ @12 A2 + @21
w1 —(p1 + A2+ z21) 0
2 0 —(p2 + A1+ z12)
0 2 M1

(©)
The stationary probabilities 7 are the solution to,

7Q = 0. 7)

Define P, = 7w + m and P, = w9 + w3 to be the
probabilities that queues 1 and 2 in the network are full.
Suppose both roads have the same travel time d, and let W}
and W5 be the sojourn time of a vehicle that enters node 1
and node 2 first, respectively. We have

Wy = PHd + Wy) (8a)
Wy = Py (d + W), (8b)
and solving we observe that,
Pi(1+ P Py (1 + P,
W, = 1(1+ Py) _ »(1+ Py) )
1-— P1P2 1— P1P2

and the mean sojourn time assuming equal arrival probability
is 1/2(W1 + Wg)

In the symmetrical case with \; = Ay = A, 1 = po = 4,
we can explicitly calculate 7r. Normalizing such that A = 1,
and assuming p > 1 for stability, we have

_ | (p=1)2 -1 -1 1
= B0 agl oasl L (10)
and 1o = T = ﬁ, with sojourn time —#-d.

B. Symmetric networks

Many urban centers have fairly uniform street topologies
where the streets from a regular graph. In this section we
make the assumption that the queueing network is entirely
uniform: the topology is a d-regular graph, all block-faces
have the same number of servers with the same service rate
u, and they have the same exogenous arrival rate .

In this regular queue network, each queue will have equal
stationary distributions in the steady state, therefore we only
need to look at a single queue as representative of the state
space of the entire network. Let = be the average rate of
rejection of a queue to one of its neighbors, and dx be the
total rejection to all of its neighbors. Let y = A + dx be the
total arrival rate to a queue, where A is the exogenous arrivals
and dx are the rejections from its neighboring queues. We
have the conservation equation,

(1)

dx = ymy,

where 7y, is the probability that all k& severs are busy.
Combined with stationary distribution of (I)) we have the
following equations:

w@Q =0
Smo=1 (12)
dz = (A + dx)
We can write (TT) as,
0 il
A2 + 21 yi)\zzlf‘ Piy (13)
AL+ z12 =0 4!

_\Qfﬂei*e”}é)— % The equation in (I3) is a polynomial in y.
The next lemma states that there exists a unique solution to
y (and thus x) as long as the queues are stable:

Lemma 2: 1If 0 < A < pk, then (i) there is a unique and
positive solution to y in (T3) and (ii) the solution is greater
than A. In addition, the rejection rate x is also unique and
positive.

The result is obtained by observing there is a single sign
change in the sequence of coefficients in the polynomial (13)
and applying Descartes’ rule of signs. A complete proof is
available in [1]. This result states that as long as the total
arrivals are less then the service rate times the number of
spaces, we can explicitly find the rejection rates and the
stationary probabilities by solving a polynomial equation.

C. Irregular networks

The totally uniform assumption does not pertain to our
application, hence the need to test via simulation. But
given occupancy data we show that the rotal exogenous and
endogenous arrivals to a queue can still be solved for and



used to estimate the traffic caused by drivers searching for
parking. This time, for some fotal incoming rejection rate
x, letting y = A 4+ x, we can estimate the endogenous
proportion of incoming arrivals as the sum of the outgoing
fractional rejection rates of adjacent queues. This decoupling
assumption we make in order to model an irregular network
like Belltown is tested via simulation in Sec.

Assuming the queueing network reaches steady state, from
the perspective of a single queue in solving [3| for my gives

k k
mol ¢ Y (14)
k! Y
where wu is the occupancy level and p = % Rearranging
terms yields a polynomial in y,
k )
1 [i—uk] 4
0=y = [ a3
i=0

Again, we can characterize the solutions to (T3]

Lemma 3: If v € [0,1) and k is a positive integer, then
has a unique real, positive root.

The result is obtained by application of Descartes’ rule of
signs. A complete proof is available in [1]. The analysis of
irregular networks is central to our application in Sec.

This root need not be bounded, hence the restriction of
the values of w to the interval [0,1). In order to achieve
a 100% occupancy, implying the probability of being full
is 1, vehicles would need to arrive constantly (y = 00),
immediately taking the place of any vehicle that leaves upon
completion of service.

D. Simulation of finite capacity queue networks

Strong results on the stationary distribution of the
M /GI/k/n queue are generally not known. As service times
tend not to be negative exponentially distributed, we can test
an the assumption that the network can indeed reach steady
state.

Motivated by the observation that parkers tend to park
for the maximum allowable time at a location (see Fig. ,
we simulate a regular network of 10, completely connected,
M/D/k/k queues where service time is deterministic and
compare this to an identical network of M /M /k/k queuesﬂ
Fig. @ illustrates the rates of convergence to an identical level
of occupancy at steady-state, where exponential service takes
a few time steps longer.

With 5 servers each with an average service time of 5, we
have an effective service rate 1 and the system is stable for
exogenous arrival rates below 1 by Lemmal[I](identical across
queues for a regular network). For exponential exogenous
interarrival times between 4.0 and 1.05 units time, we
compare the occupancy, probability the queue is full, and
resulting rejection rate between exponential and fixed service
times.

3Number of servers per queue: 5, average (or fixed) service times per
queue: 5 units time, exponential inter-arrival times: 2.0 units time and 1.2
units time for lower and higher occupancy cases respectively, transit times
0.1 units time

100 Comparison of convergence rates to steady state

QOccupancy percentage

—— Fixed service time
—— Exponential service time

0 25 50 75 100 125 150 175 200
Simulation time

Fig. 4: Rate of convergence to steady-state occupancy for a
10-node queue network

Based on Fig. 5] using a Markovian relaxation (assuming
negative exponential service time distributions) to solve for
metrics of interest in networks of queues with finite capacity
(e.g. occupancy, rate of task rejection), provides similar
results to a network under deterministic service times. The
largest observable difference in regular networks at steady
state appears to be the occupancy, as illustrated in Fig. [5a]
suggesting that probability mass across queue states for an
individual queue in the network is skewed towards the block-
face being full. Nevertheless, comparing the probability that
the block-face is full—the driving state for rejections to
occur—are most similar at lower arrival rates, diverging
slightly near saturating arrival rates. Rejection rates in sim-
ulated regular networks appear to be virtually identical (see
Fig. [5bl

With these empirical results, our model estimates of the
probability a block-face is full and the resulting rate of
drivers rejected using a Markovian service time solution may
not be unfounded for deterministic service rates, though more
work will be required to test a mixed service rate distribution
closer to the true distribution of paid parking times in Fig.

The remaining challenge then is to test the Markovian
relaxation achieves similar results to a fixed service time
regime in irregular networks. We do so on the network of
block-faces representing paid parking in Belltown in the next
section.

IV. APPLICATION

Searching for parking presents a challenging task in urban
districts around the world. Drivers in dense urban areas
frequently find that desirable parking close to their desti-
nation is unavailable or prohibitively expensive. As a result,
the act of cruising for parking can arise from any number
of situations: desirable parking near a destination being at
capacity, price differences between public curbside parking
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Fig. 5: (a) Occupancy (solid) and probability a queue in
the network is full (dashed) for increasing arrival rates in
a regular 10-node queue network (b) Rejection rate of tasks
are unable to find service at queues for increasing arrival
rates in a regular 10-node queue network

and private garage parkinéﬂ or simply a driver’s lack of
familiarity with their surroundings. Studies have suggested
that a majority of drivers spend anywhere between 3.5 to 14
minutes in a typical search [8]. These times quickly add up
to cause significant productivity losses in cities. For example,
a single 15 block district of Los Angeles services over 8,000
cars in day, which leads to 470 to 1870 hours of lost time
looking for parking [15].

We use paid parking transaction data provided by SDOT,
collected at digitial parking meters. These types of data are
becoming widely available in many cities around the United
States. Recent initiatives—LA Express Park in Los Ange-
les [34] and SFpark in San Francisco [35], for example—are
providing both city planners and researchers with a wealth
of new data. SFpark is a now concluded pilot study that
evaluated the effectiveness of spatially and temporally ad-

4The discrepancy between curbside parking and off-street parking can
be significant. For example, in some areas of Seattle, parking in a garage
costs upwards of $9/hour compared to the roughly $2/hour cost of on-street
parking [33]. In addition to price discrimination caused by time-dependent
fees, an entire day in a garage is approximately $30.
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Fig. 6: A map of all metered curbside parking in the CBD

of Seattle, Washington, USA. Belltown is in dark red along
the waterfront. Map data (©)2018 Google

justed pricing for on-street and off-street parkingﬂ Similarly,
LA Express Park is an ongoing program that utilizes smart
technologies and demand-based pricing to manage parking
in downtown LA.

A. Data

We utilize on-street paid parking transaction data collected
from March 1°%, 2016 through July 31°%, 2016 by the SDOT
to inform our model. The paid parking transaction data
includes both pay-station and pay-by-phone records at a
block-face level spatial granularity. In Belltown, there is a
total of 256 block-faces across the neighborhood each with a
number spaces range of one to 20 parking spaces (distributed
as Fig.[7a). Spaces are not demarcated, as parking is paid for
at a digital meter and a permit is displayed in the vehicle’s
passenger window. To estimate supply, SDOT divides the
length of the legal parking zone along the block-face into 25
foot sections.

Paid parking is active from 8§ AM—8 PM, Monday through
Saturday. As an exception to this, there are a select number of
block-faces along downtown arterials in which no paid park-
ing is allowed during portions of the morning and evening
commutes to allow for more roadway capacity and for buses
to stop. The pricing model for each block-face includes four
separate rate intervals: 8 AM - 11 PM weekday, 11 AM-8
PM weekday, 8 AM-11 PM Saturday, and 11 AM-8 PM
Saturday. Prices range between $1.50 - $2.50 per hour. The

5The pilot study was conducted on approximately 25% of SF’s smart
meters and due to its success, the program will be rolled out across SF.
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time limit for paid parking is two or four hours depending on
location. From our data we observe that drivers typically park
for the maximum allotted time allowed whether the limit is
two or four hours (see Fig. [7b).

We measure occupancy by counting the number of spaces
paid for at each block-face at each minute. We then convert
the number of paid spots at each minute to a load which
is defined to be the number of spaces paid for at a block-
face divided by the supply of the block-face, as estimated by
SDOT. We then aggregate the loads to an hourly resolution
as hourly occupancy is a typical performance metric. These
loads do not give the true occupancy due to several categories
of vehicles which may park curbside for free (e.g., disabled
placard holders, government vehicles, car-sharing services).
Further, the load can be greater than 1; this is the result of 1)
cars leaving before their paid time is expired, and 2) SDOT’s
estimated 25 feet of parking space per vehicle being too large
for small compact cars and motorcycles.

B. Model solution for rejection rates from occupancy data

The procedure for determining rejection rates from oc-
cupancy data in Belltown is described at length in [1] and
our code and data are available in our GitHub repository.
In short, using Eqn. (T3) and occupancy measures at each
block-face, we solve for the arrival rates that attain those
occupancy levels. We solve for the probability that the block-
face is full in the Markovian service case, and use this to

estimate the rate at which drivers are rejected. We simulate
to compare these model estimates to rejection rates achieved
with both exponential and fixed service times parameterized
by the mean paid parking time at each block-face.

Amongst the strongest assumptions we make is that the
exogenous arrival process to the network is Poisson. We can
test the validity of this assumption by looking at the inter-
transaction times at block-faces across the network. These
arrivals would constitute a subset of the total arrivals to the
block-face as the arrival rate of drivers who were able to
find parking. Fig. [§] illustrates an example exponential fit of
inter-transaction times at a block-face within the Belltown
network.
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Fig. 8: Exponential distribution of inter-transaction times at
a block-face in Belltown over the course of January to June
2016.

A second key assumption in our application is that neigh-
boring block-faces see similar levels of occupancy, and a
growing body of work continues to justify this assumption
that block-faces are spatially dependent upon one another
[9]. In intuitive terms, it is unreasonable to expect that an
0% occupancy block-face is immediately adjacent to a block-
face that has larger than 90% occupancy over some extended
time period.

We can evaluate this assumption by simulating such a
network of finite capacity queues with arrival rate parameters
learned from occupancy data. We can then corroborate the
resulting 1) simulated occupancy level and 2) rejection rates
between block-faces.

C. Monte Carlo simulation of rate parameters

We simulate for each paid parking hour of each day the
average occupancy observed in the time range of March
1%t to July 30" to test the validity of our decoupling
assumption in irregular networks. We measure for both fixed
and exponential service times if 1) the exogenous arrival rates
estimated by our model achieve the occupancies that we see
in data and 2) the rejection rates of vehicles searching for
parking is comparable to model estimates.

Simulation parameters are set according to the number of
parking spaces, connectivity of the block-faces in Belltown,
median paid parking time per block, and the hourly exoge-
nous arrival rate estimated from occupancy by our above
model. We average the results (per-block occupancies and
rejection rates) of 100 simulations per day.
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pancy and hourly occupancy from data for all days and hours

We treat each hour as if it were in steady state for
much longer period of time, in order to obverse steady state
values like the arrival rate, rejection rate, and occupancies.
Therefore we allow the simulator to run over a much longer
time horizon—1000 minutes—rather than the single hour
that parameterizes its values.

1) Exponential service: Here we expressly look at ex-
ponential service times in simulation to investigate the error
incurred by solving for the rates that achieve the observed oc-
cupancy at each block-face individually. Fig.[0]is a histogram
of the differences between the simulated occupancy under
exponential service and the observed occupancy in data. We
achieve an average error of -5.3% and a standard deviation
of £22.3%.

We observe a negative mean likely due to our conservative
method of estimation of the total arrival rates to a block-
face. The queue network model yeilds an asymptotic rela-
tionship between occupancy and arrival rate y achieving that
occupancy. Because of the monotonocity of this relationship
[1], when finding the root of Eqn. (T3) our implementation
performs a brute force search in increasing y subject to a
tolerance parameter on the occupancy u. When estimating y
as a function of u we hard thresholded occupancy u at 99%.

Block-faces exhibiting the most error were consistent
across time and space, suggesting the model is efficient
for normal cases. Indeed, the top three outliers—block-faces
91, 185, and 19(ﬂ—sh0wed consistent discrepancy between
simulated and observed occupancy due to, we believe, the
following reasons: 1) block-face 91 (farthest east red block-
face along the waterfront in Fig. [I0) had the minimum mean
paid parking time of Q2 2016 in Belltown (48 minutes vs 109
minutes overall average, noting the strong tendency toward
paying for the maximum parking time as observed in Fig. [7b}
farthest west red block-face along the waterfront in Fig. [T0),
2) block-face 185 is on the boundary of an isolated section

6See github.com/cpatdowling/net-queue/data/
simulation/belltownsims/belltowndata/data_notes.txt
for additional information
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Fig. 10: Locations of average occupancy error between data
and simulation across weekdays, March — June 2016
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Fig. 11: Distribution of differences between simulated rejec-
tion rates and model estimated rejection rates from data for
all days and hours

of the network, connected to only one other block-face, and
3) block-face 196 is the only block-face in Belltown with 1
space of paid parking (see Fig. [Ta] farthest north red block
in Fig. [T0).

Over all days, we observed an average of error of -0.19
vehicles per hour in rejection rates (between model estimate
and simulated) with a standard deviation of +4 vehicles per
hour across block-faces for which rejections were detectable
at rates less than the simulation time horizon (1000 minutes).
This would suggest that, according to simulation or average
model estimate of rejected vehicles circulating in Belltown
looking for parking is conservative. Fig. [[I] however, il-
lustrates the differences at all days and hours; the opposite
may be the case, having a median of 0.46 vehicles per hour.
Block-faces 0, 76, and 90 were consistently underestimated
by a wide margin (less than -15 vehicles per hour in some
cases), but for potential reasons less clear than error observed
in simulated occupancy. The maximum over-estimation was
roughly 5.7 vehicles per hour.
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github.com/cpatdowling/net-queue/data/simulation/belltownsims/belltowndata/data_notes.txt

Distribution of difference between simulated
and measured occupancy, Monday

250 W Exponential Service
Bm Fixed Service

=
s &g 8

Number of measurements

8

0 -
<100 -75 S50 25 0 25 50 IE)

Difference in Occupancy Percentage
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pancy and true occupancy data for Monday, all hours, for
both fixed and exponential service times

2) Fixed Service: For the fixed service case, we achieve
similar results. Here we make a direct comparison with
exponential service on a typical Monday during March —
June 2016, measuring again the simulated occupancy error
from the true measured occupancy, illustrated in Fig. [I2}
Across all days and times, we achieves a slightly lower, -
5.3% average error in occupancy and a standard deviation of
+21.2%, with an identical set of the top three outlier block-
faces in terms of error.

Critical to the utility of this network queue model is the
ability to estimate the rate at which vehicles are rejected
by a full block-face, as these are the vehicles contributing
to through-traffic cruising for an available space. Again,
restricting our comparison between exponential and fixed
service times to Monday, we again achieve similar results,
illustrated in Fig. [T3] The fixed service time simulation ex-
hibits a slightly higher mean rejection rate error on Monday
than exponential service (0.38 vehicles per hour vs 0.34
vehicles per hour); and again, outliers (maximum rate errors
of 3.26 (fixed service) and 3.28 (exponential service)) were
due to the same boundary case block-faces.

V. CONCLUSION

In sum, we have investigated a number of assumptions
necessary to model curbside parking as a network of finite
capacity queues, demonstrating a new model for urban
parking that considers spatial and temporal heterogeneity.
This model provides a means for city planners and traffic
engineers to analyze a network of curbside parking at a much
higher resolution that previously possible. These results help
provide a basis for future work designing and exploring new
parking scheduling and pricing regimes to minimize delays
caused by cruising for parking while leaving open a flexible
resource to drivers and businesses.

REFERENCES

[1] C. Dowling, T. Fiez, L. Ratliff, and B. Zhang, “Optimizing curbside
parking resources subject to congestion constraints,” in /EEE Confer-

Distribution of difference between simulated and
model estimated rejection rates per hour, Monday

10
Il FExponential Service
I Fixed Service
w 0.8
3
&
=
806
=}
B
Goa
=
[=]
[=%
3]
& 02
0.0 - -
-20 -15 -10 -5 0 5 10

Hourly rate

Fig. 13: Distribution of differences between simulated rejec-
tion rates and model estimated rejection rates from data for
Monday, all hours, for both fixed and exponential simulated
service times

ence on Decision & Control, including the Symposium on Adaptive
Processes, 2017.

[2] J. R. Jackson, “Jobshop-like queueing systems,” Management science,
vol. 50, no. 12_supplement, pp. 1796-1802, 2004.

[3] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of
customers,” Journal of the ACM (JACM), vol. 22, no. 2, pp. 248-260,
1975.

[4] R. Arnott, “Spatial competition between parking garages and down-
town parking policy,” Transport Policy, vol. 13, no. 6, pp. 458-469,

006.

[5] D. Shoup, The high cost of free parking. Planners Press, American
Planning Association, 2005, vol. 7.

[6] L. Ratliff, C. Dowling, E. Mazumdar, and B. Zhang, “To observe or not
to observe: Queuing game framework for urban parking,” in Proc. 55th
IEEE Conference on Decision and Control, 2016, pp. 5286-5291.

[7]1 E. Inci, “A review of the economics of parking,” Economics of
Transportation, vol. 4, no. 1, pp. 50-63, 2015.

[8] D. Shoup, “Cruising for parking,” Transport Policy, vol. 13, no. 6, pp.
479-486, 2006.

[9] T. Fiez, L. J. Ratliff, C. Dowling, and B. Zhang, “Data-driven spatio-
temporal modeling of parking demand,” in submitted to ACC, 2017.

[10] S. Balsamo, V. D. N. Persong, and P. Inverardi, “A review on queueing
network models with finite capacity queues for software architectures
performance prediction,” Performance Evaluation, vol. 51, no. 2-4, pp.
269-288, 2003.

[11] S. Balsamo, “Queueing networks with blocking: Analysis, solution
algorithms and properties,” in Network performance engineering.
Springer, 2011, pp. 233-257.

[12] E. Koenigsberg, “On jockeying in queues,” Management Science,
vol. 12, no. 5, pp. 412-436, 1966.

[13] R. W. Douglas, “A parking model—the effect of supply on demand,”
The American Economist, vol. 19, no. 1, pp. 85-86, 1975.

[14] R. Arnott and J. Rowse, “Downtown parking in auto city,” Regional
Science and Urban Economics, vol. 39, no. 1, pp. 1-14, 2009.

[15] D. Shoup and H. Campbell, “Gone parkin’,” The New York
Times, March 29, 2007, [Online: http://www.nytimes.com/2007/03/
29/opinion/29shoup.html]]. [Online]. Available: http://www.nytimes.
com/2007/03/29/opinion/29shoup.html

[16] S. Yang and Z. S. Qian, “Turning meter transactions data into
occupancy and payment behavioral information for on-street parking,”
Transportation Research Part C: Emerging Technologies, vol. 78, pp.
165-182, 2017.

[17] G. Pierce and D. Shoup, “Getting the prices right: an evaluation of
pricing parking by demand in san francisco,” Journal of the American
Planning Association, vol. 79, no. 1, pp. 67-81, 2013.

[18] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and


http://www.nytimes.com/2007/03/29/opinion/29shoup.html
http://www.nytimes.com/2007/03/29/opinion/29shoup.html
http://www.nytimes.com/2007/03/29/opinion/29shoup.html
http://www.nytimes.com/2007/03/29/opinion/29shoup.html

(19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]
[32]

[33]

[34]

[35]

Y. Wang, “Review of road traffic control strategies,” Proceedings of
the IEEE, vol. 91, no. 12, pp. 2043-2067, 2003.

G. F. Newell, “Approximation methods for queues with application to
the fixed-cycle traffic light,” Siam Review, vol. 7, no. 2, pp. 223-240,
1965.

G. G. Bender and K. Y. Chang, “Simulating roadway and curbside
traffic at las vegas mccarran international airport,” IIE Solutions,
vol. 29, no. 11, pp. 26-32, 1997.

A. Klappenecker, H. Lee, and J. Welch, “Finding available parking
spaces made easy,” Ad Hoc Networks, vol. 12, pp. 243-249, 2014.
R. Arnott and J. Rowse, “Modeling parking,” J. Urban Economics,
vol. 45, no. 1, pp. 97-124, 1999.

A. Portilla, B. O. na, J. Berodia, and F. Diaz, “Using m/m/co queueing
model in on-street parking maneuvers,” J. Transportation Engineering,
vol. 135, no. 8, pp. 527-535, 2009.

R. Larson and K. Sasanuma, “Congestion pricing: A parking queue
model,” J. Industrial and Systems Engineering, vol. 4, no. 1, pp. 1-17,
2010.

J. Cao and M. Menendez, “Generalized effects of on-street parking
maneuvers on the performance of nearby signalized intersections,”
Transportation Research Record: Journal of the Transportation Re-
search Board, no. 2483, pp. 30-38, 2015.

M. Caliskan, A. Barthels, B. Scheuermann, and M. Mauve, “Predicting
parking lot occupancy in vehicular ad hoc networks,” in Vehicular
Technology Conference, 2007. VIC2007-Spring. IEEE 65th. 1EEE,
2007, pp. 277-281.

R. W. Wolff, Stochastic modeling and the theory of queues. Pearson
College Division, 1989.

J. Jackson, “Networks of waiting lines,” Operations Research, vol. 5,
no. 4, pp. 518-521, 1957.

O. Tange, “Gnu parallel - the command-line power tool,” USENIX,
vol. 36, no. 1, pp. 4247, 2011.

R. C. Hampshire, D. Jordon, O. Akinbola, K. Richardson, R. Wein-
berger, A. Millard-Ball, and J. Karlin-Resnik, “Analysis of parking
search behavior with video from naturalistic driving,” Transportation
Research Record: Journal of the Transportation Research Board, no.
2543, pp. 152-158, 2016.

L. Lovasz, “Random walks on graphs,” Combinatorics, Paul erdos is
eighty, vol. 2, no. 1-46, p. 4, 1993.

J. Kingman, “The first erlang centuryand the next,” Queueing Systems,
vol. 63, no. 1-4, p. 3, 2009.

Heffron Transportation Inc., “Downtown off-street parking
program: Supply and demand survey,” June 2014. [Online].
Available: http://www.seattle.gov/transportation/docs/Downtown%
200tf-Street%20Parking % 20Survey %20- % 20Final %20093014.pdf]

L. A. D. of Transportation (LA DOT), “La express park,”
http://www.laexpresspark.org/, 2017.

S. F. M. T. Agency, “Sfpark,” http://sfpark.org/, 2017.


http://www.seattle.gov/transportation/docs/Downtown%20Off-Street%20Parking%20Survey%20-%20Final%20093014.pdf
http://www.seattle.gov/transportation/docs/Downtown%20Off-Street%20Parking%20Survey%20-%20Final%20093014.pdf

	I Introduction
	II Background
	II-A Related Work: Queueing Theory
	II-B Related Work: Parking
	II-C Preliminaries
	II-C.1 Stationary Distribution of a Single M/M/k/k Queue

	II-D Simulator Architecture

	III Results
	III-A Two-node network
	III-B Symmetric networks
	III-C Irregular networks
	III-D Simulation of finite capacity queue networks

	IV Application
	IV-A Data
	IV-B Model solution for rejection rates from occupancy data
	IV-C Monte Carlo simulation of rate parameters
	IV-C.1 Exponential service
	IV-C.2 Fixed Service


	V Conclusion
	References

