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Stein’s method for measuring convergence to a continuous target
distribution relies on an operator characterizing the target and Stein
factor bounds on the solutions of an associated differential equation.
While such operators and bounds are readily available for a diversity
of univariate targets, few multivariate targets have been analyzed. We
introduce a new class of characterizing operators based on Itô diffu-
sions and develop explicit multivariate Stein factor bounds for any
target with a fast-coupling Itô diffusion. As example applications, we
develop computable and convergence-determining diffusion Stein dis-
crepancies for log-concave, heavy-tailed, and multimodal targets and
use these quality measures to select the hyperparameters of biased
Markov chain Monte Carlo (MCMC) samplers, compare random and
deterministic quadrature rules, and quantify bias-variance tradeoffs
in approximate MCMC. Our results establish a near-linear relation-
ship between diffusion Stein discrepancies and Wasserstein distances,
improving upon past work even for strongly log-concave targets. The
exposed relationship between Stein factors and Markov process cou-
pling may be of independent interest.

1. Introduction. In Bayesian inference and maximum likelihood esti-
mation [33], it is common to encounter complex target distributions with
unknown normalizing constants and intractable expectations. Traditional
Markov chain Monte Carlo (MCMC) methods [7] contend with such targets
by generating consistent sample estimates of the intractable expectations. A
recent alternative approach [see, e.g., 94, 1, 52] is to employ biased MCMC
procedures that sacrifice consistency to improve the speed of sampling. The
argument is compelling: the reduction in Monte Carlo variance from more
rapid sampling can outweigh the bias incurred and yield more accurate es-
timates overall. However, the extra degree of freedom poses new challenges
for selecting samplers and their tuning parameters, as traditional MCMC
diagnostics, like effective sample size and asymptotic variance, pooled and
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within-chain variance measures, and mean and trace plots [7], do not detect
sample bias. As a result, new computable quality measures are needed to
compare how well potentially biased samplers approximate their targets.

To address this issue, Gorham and Mackey [36] introduced a computable
quality measure based on Stein’s method, the Langevin Stein discrepancy,
and Mackey and Gorham [63] proved that this discrepancy measure deter-
mines convergence for a family of strongly log-concave target distributions.
Our first contribution is to show that the Langevin Stein discrepancy in fact
determines convergence for all smooth, distantly dissipative target distribu-
tions by explicitly lower and upper bounding the Langevin Stein discrepancy
by standard Wasserstein distances. Distant dissipativity is a substantial re-
laxation of log concavity that covers a variety of common non-log concave
targets like Gaussian mixtures and robust Student’s t regression posteriors.
This contribution greatly extends the range of applicability of the Langevin
Stein discrepancy.

Because heavy-tailed distributions are never distantly dissipative, as a
second contribution, we extend the computable Stein discrepancy framework
of [36] to accommodate heavy-tailed target distributions by introducing a
new class of multivariate Stein operators based on general Itô diffusions.
These operators can be used as drop-in replacements for the commonly used
Langevin operator in applications. As a third contribution, we establish a
near linear relationship between the introduced diffusion Stein discrepancies
and Wasserstein distances, improving upon past analyses even in the case
of strongly log concave targets.

Our primary contribution underlies these three advances. By relating
Stein’s method to Markov process coupling rates in Section 3, we prove
that every sufficiently fast coupling Itô diffusion gives rise to explicit, uni-
form multivariate Stein factor bounds on the derivatives of Stein equation
solutions. Stein factor bounds are central to Stein’s method of measuring
distributional convergence, and while a wealth of bounds are available for
univariate targets (see, e.g., [88, 11, 12] for explicit bounds or [55] for a recent
review), Stein factors for continuous multivariate distributions have largely
been relegated to Gaussian [5, 38, 79, 10, 66, 68, 30], Dirichlet [29], and
strongly log-concave [63] target distributions. Our approach, which exposes
a general relationship between Stein factors and Markov process coupling
times, extends the reach of Stein’s method to the stationary distributions of
all fast coupling Itô diffusions.

In Section 4, we provide examples of practically checkable sufficient condi-
tions for fast coupling and illustrate the process of verifying these conditions
for canonical log-concave, heavy-tailed, and multimodal targets. Section 5
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describes a practical algorithm for computing diffusion Stein discrepancies
using a geometric spanner and linear programming. In Section 6, we com-
plement the principal theoretical contributions of this work with several
simple numerical examples illustrating how diffusion Stein discrepancies can
be deployed in practice. In particular, we use our discrepancies to select
the hyperparameters of biased samplers, compare random and determinis-
tic quadrature rules, and quantify bias-variance tradeoffs in approximate
Markov chain Monte Carlo. A discussion of related and future work follows
in Section 7, and all proofs are deferred to the appendices.

Notation For r ∈ [1,∞], let ‖·‖r denote the `r norm on Rd. We will use
‖·‖ as a generic norm on Rd satisfying ‖·‖ ≥ ‖·‖2 and define the associated
dual norms, ‖v‖∗ , supu∈Rd:‖u‖=1 〈u, v〉 for vectors v ∈ Rd and ‖W‖∗ ,

supu∈Rd:‖u‖=1 ‖Wu‖∗ for matrices W ∈ Rd×d. Let ej be the j-th standard

basis vector, ∇j be the partial derivative ∂
∂xj

, and λmin(·) and λmax(·) be the

smallest and largest eigenvalues of a symmetric matrix. For any real vector
v and tensor T , let ‖v‖op , ‖v‖2 and ‖T‖op , sup‖u‖2=1 ‖T [u]‖op. For each
sufficiently differentiable vector- or matrix-valued function g, we define the
bound M0(g) , supx∈Rd ‖g(x)‖op and the k-th order Hölder coefficients

Mk(g) , supx,y∈Rd,x 6=y
‖∇dke−1g(x)−∇dke−1g(y)‖op

‖x−y‖{k}2

for k > 0,

where {k} , k − dk − 1e and ∇0 is the identity operator. For each differen-
tiable matrix-valued function a, we let 〈∇, a(x)〉 =

∑
j ej

∑
k∇kajk(x) rep-

resent the divergence operator applied to each row of a and define the Lips-
chitz coefficients Fk(a) , supx∈Rd,‖v1‖2=1,...,‖vk‖2=1 ‖∇ka(x)[v1, . . . , vk]‖F for
‖·‖F the Frobenius norm. Finally, when the domain and range of a function
f can be inferred from context, we write f ∈ Ck to indicate that f has k
continuous derivatives.

2. Measuring sample quality. Consider a target probability distribu-
tion P with finite mean, continuously differentiable density p, and support
on all of Rd. We will name the set of all such distributions P1. We as-
sume that p can be evaluated up to its normalizing constant but that exact
expectations under P are unattainable for most functions of interest. We
will therefore use a weighted sample, represented as a discrete distribution
Qn =

∑n
i=1 q(xi)δxi , to approximate intractable expectations EP [h(Z)] with

tractable sample estimates EQn [h(X)] =
∑n

i=1 q(xi)h(xi). Here, the support
of Qn is a collection of distinct sample points x1, . . . , xn ∈ Rd, and the weight
q(xi) associated with each point is governed by a probability mass function
q. We assume nothing about the process generating the sample points, so
they may be the product of any random or deterministic mechanism.
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Our ultimate goal is to develop a computable quality measure suitable
for comparing any two samples approximating the same target distribution.
More precisely, we seek to quantify how well EQn approximates EP in a
manner that, at the very least, (i) indicates when a sample sequence is
converging to P , (ii) identifies when a sample sequence is not converging
to P , and (iii) is computationally tractable. A natural starting point is to
consider the maximum error incurred by the sample approximation over a
class of scalar test functions H,

dH(Qn, P ) , sup
h∈H
|EP [h(Z)]− EQn [h(X)]|.(1)

When H is convergence determining, the measure (1) is an integral probabil-
ity metric (IPM) [67], and dH(Qn, P ) converges to zero only if the sample
sequence (Qn)n≥1 converges in distribution to P .

While a variety of standard probability metrics are representable as IPMs
[67], the intractability of integration under P precludes us from computing
most of these candidate quality measures. Recently, Gorham and Mackey
[36] sidestepped this issue by constructing a class of test functions h known
a priori to have zero mean under P . Their resulting quality measure – the
Langevin graph Stein discrepancy – satisfied our computability and conver-
gence detection requirements (Desiderata (i) and (iii)) and detected sample
sequence non-convergence (Desideratum (ii)) for strongly log concave tar-
gets with bounded third and fourth derivatives [63]. In the next section we
will greatly extend the reach of the Stein discrepancy approach to measur-
ing sample quality by introducing a diverse family of practical operators for
generating mean zero functions under P and establishing broad conditions
under which the resulting Stein discrepancies detect non-convergence. We
begin by reviewing the principles of Stein’s method that underlie the Stein
discrepancy.

3. Stein’s method. In the early 1970s, Charles Stein [87] introduced
a powerful three-step approach to upper-bounding a reference IPM dH:

1. First, identify an operator T that maps input functions1 g : Rd → Rd
in a domain G into mean-zero functions under P , i.e.,

EP [(T g)(Z)] = 0 for all g ∈ G.
1Real-valued g are also common, but Rd-valued g are more convenient for our purposes.
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The operator T and its domain G define the Stein discrepancy [36],

S(Qn, T ,G) , sup
g∈G
|EQn [(T g)(X)]|

= sup
g∈G
|EQn [(T g)(X)]− EP [(T g)(Z)]| = dT G(Qn, P ),(2)

a quality measure which takes the form of an integral probability met-
ric while avoiding explicit integration under P .

2. Next, prove that, for each test function h in the reference class H, the
Stein equation

h(x)− EP [h(Z)] = (T gh)(x)(3)

admits a solution gh ∈ G. This step ensures that the reference metric
dH lower bounds the Stein discrepancy (Desideratum (ii)) and, in
practice, can be carried out simultaneously for large classes of target
distributions.

3. Finally, use whatever means necessary to upper bound the Stein dis-
crepancy and thereby establish convergence to zero under appropriate
conditions (Desideratum (i)). Our general result, Proposition 8, suf-
fices for this purpose.

While Stein’s method is traditionally used as analytical tool to establish
rates of distributional convergence, we aim, following [36], to develop the
method into a practical computational tool for measuring the quality of a
sample. We begin by assessing the convergence properties of a broad class
of Stein operators derived from Itô diffusions. Our efforts will culminate in
Section 5, where we show how to explicitly compute the Stein discrepancy (2)
given any sample measure Qn and appropriate choices of T and G.

3.1. Identifying a Stein operator. To identify an operator T that gener-
ates mean-zero functions under P , we will appeal to the elegant and widely
applicable generator method construction of Barbour [4, 5] and Götze [38].
These authors note that if (Zt)t≥0 is a Feller process with invariant measure
P , then the infinitesimal generator A of the process, defined pointwise by

(Au)(x) = lim
t→0

(E[u(Zt) | Z0 = x]− u(x))/t(4)

satisfies EP [(Au)(Z)] = 0 under very mild restrictions on u and A. Gorham
and Mackey [36] developed a Langevin Stein operator based on the generator
a specific Markov process – the Langevin diffusion described in (D1). Here,
we will consider a broader class of continuous Markov processes known as
Itô diffusions.
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Definition 1 (Itô diffusion [72, Def. 7.1.1]). A (time-homogeneous) Itô
diffusion with starting point x ∈ Rd, Lipschitz drift coefficient b : Rd → Rd,
and Lipschitz diffusion coefficient σ : Rd → Rd×m is a stochastic process
(Zt,x)t≥0 solving the Itô stochastic differential equation

dZt,x = b(Zt,x) dt+ σ(Zt,x) dWt with Z0,x = x ∈ Rd,(5)

where (Wt)t≥0 is an m-dimensional Wiener process.

As the next theorem, distilled from [62, Thm. 2] and [75, Sec. 4.6], shows,
it is straightforward to construct Itô diffusions with a given invariant mea-
sure P (see also [50, 47]).

Theorem 2 ([62, Thm. 2] and [75, Sec. 4.6]). Fix an Itô diffusion with
C1 drift and diffusion coefficients b and σ, and define its covariance coeffi-
cient a(x) , σ(x)σ(x)>. P ∈ P1 is an invariant measure of this diffusion if
and only if b(x) = 1

2
1

p(x)〈∇, p(x)a(x)〉+f(x) for a non-reversible component

f ∈ C1 satisfying 〈∇, p(x)f(x)〉 = 0 for all x ∈ Rd. If f is P -integrable, then

b(x) = 1
2

1
p(x)〈∇, p(x)(a(x) + c(x))〉(6)

for c a differentiable P -integrable skew-symmetric d×d matrix–valued func-
tion termed the stream coefficient [16, 54]. In this case, for all u ∈ C2 ∩
dom(A), the infinitesimal generator (4) of the diffusion takes the form

(Au)(x) = 1
2

1
p(x)〈∇, p(x)(a(x) + c(x))∇u(x)〉.2(7)

Remarks. Theorem 2 does not require Lipschitz assumptions on b or
σ. An example of a non-reversible component which is not P -integrable is
f(x) = v/p(x) for any constant vector v ∈ Rd. Prominent examples of P -
targeted diffusions include

(D1) the (overdamped) Langevin diffusion (also known as the Brownian or
Smoluchowski dynamics) [75, Secs. 6.5 and 4.5], where a ≡ I and c ≡ 0;

(D2) the preconditioned Langevin diffusion [89], where c ≡ 0 and a ≡ σσ>

for a constant diffusion coefficient σ ∈ Rd×m ;

2We have chosen an atypical form for the infinitesimal generator in (7), as it will give
rise to a first-order differential operator (8) with more desirable properties. One can check,
for instance, that the first order operator (T g)(x) = 2〈b(x), g(x)〉+ 〈a(x),∇g(x)〉 derived
from the standard form of the generator, (Au)(x) = 〈b(x),∇u(x)〉+ 1

2
〈a(x),∇2u(x)〉, fails

to satisfy Proposition 3 whenever the non-reversible component f(x) 6≡ 0.
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(D3) the Riemannian Langevin diffusion [50, 83, 34], where c ≡ 0 and a is
not constant;

(D4) the non-reversible preconditioned Langevin diffusion [see, e.g., 62, 20,
80], where a ≡ σσ> for σ ∈ Rd×m constant and c not identically 0;

(D5) and the second-order or underdamped Langevin diffusion [44], where
we target the joint distribution P ⊗N (0, I) on R2d with

a ≡ 2

(
0 0
0 I

)
and c ≡ 2

(
0 −I
I 0

)
.

We will present detailed examples making use of these diffusion classes in
Sections 4 and 6.

Theorem 2 forms the basis for our Stein operator of choice, the diffusion
Stein operator T , defined by substituting g for 1

2∇u in the generator (7):

(T g)(x) = 1
p(x)〈∇, p(x)(a(x) + c(x))g(x)〉.(8)

T is an appropriate choice for our setting as it depends on P only through
∇ log p and is therefore computable even when the normalizing constant of
p is unavailable. One suitable domain for T is the classical Stein set [36] of
1-bounded functions with 1-bounded, 1-Lipschitz derivatives:

G‖·‖ ,
{
g : Rd → Rd

∣∣∣∣ sup
x 6=y∈Rd

max
(
‖g(x)‖∗, ‖∇g(x)‖∗, ‖∇g(x)−∇g(y)‖∗

‖x−y‖

)
≤ 1

}
.

Indeed, our next proposition, proved in Section A, shows that, on this do-
main, the diffusion Stein operator generates mean-zero functions under P .

Proposition 3. If T is the diffusion Stein operator (8) for P ∈ P1 with
a, c ∈ C1 and a, c, b (6) P -integrable, then EP [(T g)(Z)] = 0 for all g ∈ G‖·‖.

Together, T and G‖·‖ give rise to the classical diffusion Stein discrepancy
S(Qn, T ,G‖·‖), our primary object of study in Sections 3.2 and 3.3.

3.2. Lower bounding the diffusion Stein discrepancy. To establish that
the classical diffusion Stein discrepancy detects non-convergence (Desidera-
tum (ii)), we will lower bound the discrepancy in terms of the L1 Wasser-
stein distance, dW‖·‖2 , a standard reference IPM generated by

H =W‖·‖2 , {h : Rd → R | supx 6=y∈Rd |h(x)− h(y)| ≤ ‖x− y‖2}.
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The first step is to show that, for each h ∈ W‖·‖2 , the solution gh to the
Stein equation (3) with diffusion Stein operator (8) has low-order derivatives
uniformly bounded by target-specific constants called Stein factors.

Explicit Langevin diffusion (D1) Stein factor bounds are readily available
for a wide variety of univariate targets3 (see, e.g., [88, 11, 12] for explicit
bounds or [55] for a recent review). In contrast, in the multivariate setting,
efforts to establish Stein factors have focused on Gaussian [5, 38, 79, 10,
66, 68, 30], Dirichlet [29], and strongly log-concave [63] targets with pre-
conditioned Langevin (D2) operators. To extend the reach of the literature,
we will derive multivariate Stein factors for targets with fast-coupling Itô
diffusions. Our measure of coupling speed is the Wasserstein decay rate.

Definition 4 (Wasserstein decay rate). Let (Pt)t≥0 be the transition
semigroup of an Itô diffusion (Zt,x)t≥0 defined via

(Ptf)(x) , E[f(Zt,x)] for all measurable f , x ∈ Rd, and t ≥ 0.

For any non-increasing integrable function r : R≥0 → R, we say that (Pt)t≥0

has Wasserstein decay rate r if

dW‖·‖2 (δxPt, δyPt) ≤ r(t) dW‖·‖2 (δx, δy) for all x, y ∈ Rd and t ≥ 0,(9)

where δxPt denotes the distribution of Zt,x.

Our next result, proved in Section B, shows that the smoothness of a
solution gh to a Stein equation is controlled by the rate of Wasserstein de-
cay and hence by how quickly two diffusions with distinct starting points
couple. The Stein factor bounds on the derivatives of uh and gh may be of
independent interest for establishing rates of distributional convergence.

Theorem 5 (Stein factors from Wasserstein decay). Fix any Lipschitz
h. If an Itô diffusion has invariant measure P ∈ P1, transition semigroup
(Pt)t≥0, Wasserstein decay rate r, and infinitesimal generator A (4), then

uh ,
∫∞

0 EP [h(Z)]− Pth dt(10)

is twice continuously differentiable and satisfies

M1(uh) ≤M1(h)
∫∞

0 r(t) dt and h− EP [h(Z)] = Auh.

Hence, gh , 1
2∇uh solves the Stein equation (3) with diffusion Stein opera-

tor (8) whenever A has the form (7). If the drift and diffusion coefficients

3The Langevin operator recovers Stein’s density method operator [88] when d = 1.
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b and σ have locally Lipschitz second derivatives and a right inverse σ−1(x)
for each x ∈ Rd and h ∈ C2 with bounded second derivatives, then

(11) M2(uh) ≤M1(h)(β1 + β2),

where

β1 = r(0)(2M0(σ−1) + r(0)M1(σ)M0(σ−1) + r(0)
√
α), and

β2 = r(0)(eγ2M0(σ−1) + eγ2M1(σ)M0(σ−1) + 2
3e
γ4
√
α)
∫∞

0 r(t) dt

for γρ , ρM1(b) + ρ2−2ρ
2 M1(σ)2 + ρ

2F1(σ)2, α , M2(b)2

2M1(b)+4M1(σ)2 + 2F2(σ)2.

If, additionally, ∇3b and ∇3σ are locally Lipschitz and h ∈ C3 with bounded
third derivatives, then, for all ι ∈ (0, 1),

M3−ι(uh) ≤M1(h) 1
K

(
1
ι +

∫∞
0 r(t) dt

)
(12)

for K > 0 a constant depending only on M1:3(σ),M1:3(b), M0(σ−1), and r.

A first consequence of Theorem 5, proved in Section D, concerns Stein
operators (8) with constant covariance and stream matrices a and c. In this
setting, fast Wasserstein decay implies that the diffusion Stein discrepancy
converges to zero only if the Wasserstein distance does (Desideratum (ii)).

Theorem 6 (Stein discrepancy lower bound: constant a and c). Con-
sider an Itô diffusion with diffusion Stein operator T (8) for P ∈ P1,
Wasserstein decay rate r, constant covariance and stream matrices a and
c, and Lipschitz drift b(x) = 1

2(a+ c)∇ log p(x). If sr ,
∫∞

0 r(t) dt, then

dW‖·‖2 (Qn, P )(13)

≤ 3sr max
(
S(Qn, T ,G‖·‖), 3

√
S(Qn, T ,G‖·‖)

√
2E[‖G‖2]2(2M1(b) + 1

sr
)2
)
,

where G ∈ Rd is a standard normal vector and M1(b) ≤ 1
2‖a+ c‖opM2(log p).

Theorem 6 in fact provides an explicit upper bound on the Wasserstein
distance in terms of the Stein discrepancy and the Wasserstein decay rate.
Under additional smoothness assumptions on the coefficients, the explicit
relationship between Stein discrepancy and Wasserstein distance can be im-
proved and extended to diffusions with non-constant diffusion coefficient, as
our next result, proved in Section E, shows.
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Theorem 7 (Stein discrepancy lower bound: non-constant a and c).
Consider an Itô diffusion for P ∈ P1 with diffusion Stein operator T (8),
Wasserstein decay rate r, and Lipschitz drift and diffusion coefficients b (6)
and σ with locally Lipschitz second derivatives. If sr ,

∫∞
0 r(t) dt, then

dW‖·‖2 (Qn, P )

≤ 2 max

(
S(Qn, T ,G‖·‖) max(sr, β1 + β2),

√
S(Qn, T ,G‖·‖)

√
2/π(β1 + β2)ζ

)
,

for β1, β2 defined in Theorem 5 and

ζ , E[‖G‖2](1 + 2M1(b)sr +M∗1 (m)(β1 + β2))

where G ∈ Rd is a standard normal vector, m , a + c, and M∗1 (m) ,
supx 6=y ‖m(x)−m(y)‖∗op/‖x− y‖2.

If, additionally, ∇3b and ∇3σ are locally Lipschitz, then, for all ι ∈ (0, 1),

dW‖·‖2 (Qn, P )

≤ 2 max
(
S(Qn, T ,G‖·‖) max(sr, β1 + β2), ζιS(Qn, T ,G‖·‖)

1
1+ι ( 1+ιsr

Kζ/
√
d
)

1
1+ι

)
,

for K > 0 a constant depending only on M1:3(σ),M1:3(b), M0(σ−1), and r.

In Section 4, we will present practically checkable conditions implying fast
Wasserstein decay and discuss both broad families and specific diffusion-
target pairings covered by this theory.

3.3. Upper bounding the diffusion Stein discrepancy. In upper bounding
the Stein discrepancy, one classically aims to establish rates of convergence to
P for specific sequences (Qn)∞n=1. Since our interest is in explicitly computing
Stein discrepancies for arbitrary sample sequences, our general upper bound
in Proposition 8 serves principally to provide sufficient conditions under
which the classical diffusion Stein discrepancy converges to zero.

Proposition 8 (Stein discrepancy upper bound). Let T be the diffusion
Stein operator (8) for P ∈ P1. If m , a+ c and b (6) are P -integrable,

S(Qn, T ,G‖·‖) ≤ inf
X∼Qn,Z∼P

(E[2‖b(X)− b(Z)‖+ ‖m(X)−m(Z)‖]

+ E[(2‖b(Z)‖+ ‖m(Z)‖) min(‖X − Z‖, 2)])

≤ Ws,‖·‖(Qn, P )(2M
‖·‖
1 (b) +M

‖·‖
1 (m))

+Ws,‖·‖(Qn, P )t 21−t E[(2‖b(Z)‖+ ‖m(Z)‖)s/(s−t)](s−t)/s
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for any s ≥ 1 and t ∈ (0, 1], whereWs,‖·‖(Qn, P ) , infX∼Qn,Z∼P E[‖X − Z‖s]1/s
represents the Ls Wasserstein distance.

This result, proved in Section F, complements the Wasserstein distance
lower bounds of Section 3.2 and implies that, for Lipschitz and sufficiently
integrable m and b, the diffusion Stein discrepancy converges to zero when-
ever Qn converges to P in Wasserstein distance.

3.4. Extension to non-uniform Stein sets. For any c1, c2, c3 > 0, our
analyses and algorithms readily accommodate the non-uniform Stein set

Gc1:3

‖·‖ ,

{
g : Rd → Rd

∣∣∣∣ sup
x 6=y∈Rd

max
(
‖g(x)‖∗
c1

, ‖∇g(x)‖∗
c2

, ‖∇g(x)−∇g(y)‖∗
c3‖x−y‖

)
≤ 1

}
.

This added flexibility can be valuable when tight upper bounds on a refer-
ence IPM, like the Wasserstein distance, are available for a particular choice
of Stein factors (c1, c2, c3). When such Stein factors are unknown or diffi-
cult to compute, we recommend the parameter-free classical Stein set and
graph Stein set of the sequel as practical defaults, since the classical Stein
discrepancy is strongly equivalent to any non-uniform Stein discrepancy:

Proposition 9 (Equivalence of non-uniform Stein discrepancies). For
any c1, c2, c3 > 0,

min(c1, c2, c3)S(Qn, T ,G‖·‖) ≤ S(Qn, T ,Gc1:3

‖·‖ ) ≤ max(c1, c2, c3)S(Qn, T ,G‖·‖).

Remark. The short proof follows exactly as in [36, Prop. 4].

4. Sufficient conditions for Wasserstein decay. Since the Stein dis-
crepancy lower bounds of Section 3 depend on the Wasserstein decay (9) of
the chosen diffusion, we next provide examples of practically checkable suffi-
cient conditions for Wasserstein decay and illustrate the process of verifying
these conditions for a selection of diffusion-target pairings. These pedagog-
ical examples serve to succinctly illustrate the process of verifying our as-
sumptions and do not represent the full scope of applicability.

4.1. Uniform dissipativity. It is well known [see, e.g., 8, Eq. 7] that
the Langevin diffusion (D1) enjoys exponential Wasserstein decay when-
ever log p is k-strongly log concave, i.e., when the drift b = 1

2∇ log p satisfies

〈b(x)− b(y), x− y〉 ≤ −k
2‖x− y‖

2
2 for k > 0. An analogous uniform dissipa-

tivity condition gives explicit exponential decay for a generic Itô diffusion:
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Theorem 10 (Wasserstein decay: uniform dissipativity). Fix k > 0 and
G � 0, and let ‖w‖2G , 〈w,Gw〉, for any vector or matrix w ∈ Rd×d′ , d′ ≥ 1.
An Itô diffusion with drift and diffusion coefficients b and σ satisfying

2〈b(x)− b(y), G(x− y)〉+ ‖σ(x)− σ(y)‖2G ≤ −k‖x− y‖2G for all x, y ∈ Rd

has Wasserstein decay rate (9) r(t) = e−kt/2
√
λmax(G)/λmin(G).

Remark. Theorem 10 holds even when the drift b is not Lipschitz.

Hence, if the drift b of an Itô diffusion is −k/2-one-sided Lipschitz, i.e.,

2〈b(x)− b(y), G(x− y)〉 ≤ −k‖x− y‖2G for all x, y ∈ Rd(14)

and some G � 0, and the diffusion coefficient σ is
√
k′-Lipschitz, that is,

‖σ(x)− σ(y)‖2G ≤ k′‖x− y‖2G for all x, y ∈ Rd,

then, whenever k′ < k, the diffusion exhibits exponential Wasserstein decay.
with rate e−(k−k′)t/2√λmax(G)/λmin(G). The proof of Theorem 10 in Section G
relies on a synchronous coupling of Itô diffusions and mimics [8, Sec. 1].

Example 1 (Bayesian logistic regression with Gaussian prior). A one-
sided Lipschitz drift arises naturally in the setting of Bayesian logistic regres-
sion [32], a canonical model of binary outcomes y ∈ {−1, 1} given measured
covariates v ∈ Rd. Consider the log density of a Bayesian logistic regression
posterior based on a dataset of L observations (vl, yl) and a N (µ,Σ) prior:

log p(β) = − 1
2‖Σ

−1/2(β − µ)‖22︸ ︷︷ ︸
multivariate Gaussian prior

−
∑L

l=1 log(1 + exp(−yl〈vl, β〉))︸ ︷︷ ︸
logistic regression likelihood

+ const.

Here, our inferential target is the unobserved parameter vector β ∈ Rd. Since

−Σ−1 < ∇2 log p(β) = −Σ−1−
∑L

l=1
eyl〈vl,β〉

(1+eyl〈vl,β〉)2
vlv
>
l < −Σ−1−1

4

∑L
l=1 vlv

>
l ,

the P -targeted preconditioned Langevin diffusion (D2) drift b(β) = 1
2Σ∇ log p(β)

satisfies (14) with k = 1 and G = Σ−1 and M1(b) ≤ 1
2‖I + 1

4Σ
∑L

l=1 vlv
>
l ‖op.

Hence, the diffusion enjoys geometric Wasserstein decay (Theorem 10) and
a Wasserstein lower bound on the Stein discrepancy (Theorem 6).

Example 2 (Bayesian Huber regression with Gaussian prior). Huber’s
least favorable distribution provides a robust error model for the regression of
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a continuous response y ∈ R onto a vector of measured covariates v ∈ Rd [45].
Given L observations (vl, yl) and a N (µ,Σ) prior on an unknown parameter
vector β ∈ Rd, the Bayesian Huber regression log posterior takes the form

log p(β) = − 1
2‖Σ

−1/2(β − µ)‖22︸ ︷︷ ︸
multivariate Gaussian prior

−
∑L

l=1 ρc(yl − 〈vl, β〉)︸ ︷︷ ︸
Huber’s least favorable likelihood

+ const.

where ρc(r) , 1
2r

2I[|r| ≤ c] + c(|r| − 1
2c)I[|r| > c] for fixed c > 0. Since

ρ′c(r) = min(max(r,−c), c) is 1-Lipschitz and convex, and the Hessian of
the log prior is −Σ−1, the P -targeted preconditioned Langevin diffusion
(D2) drift b(β) = 1

2Σ∇ log p(β) satisfies (14) with k = 1 and G = Σ−1

and M1(b) ≤ 1
2‖I + Σ

∑L
l=1 vlv

>
l ‖op. This is again sufficient for exponential

Wasserstein decay and a Wasserstein lower bound on the Stein discrepancy.

4.2. Distant dissipativity, constant σ. When the diffusion coefficient σ is
constant with a , 1

2σσ
> invertible, Eberle [22] showed that a distant dissipa-

tivity condition is sufficient for exponential Wasserstein decay. Specifically,
if we define a one-sided Lipschitz constant conditioned on a distance r > 0,

−κ(r) = sup{2(b(x)− b(y))>a−1(x− y)/r2 : (x− y)>a−1(x− y) = r2},

then [22, Cor. 2] establishes exponential Wasserstein decay whenever κ is
continuous with lim infr→∞ κ(r) > 0 and

∫ 1
0 rκ(r)−dr <∞. For a Lipschitz

drift, this holds whenever b is dissipative at large distances, that is, whenever,
for some k > 0, we have κ(r) ≥ k for all r sufficiently large [22, Lem. 1].

Example 3 (Gaussian mixture with common covariance). Consider an
m-component mixture density p(x) =

∑m
j=1wjφj(x), where the component

weights wj ≥ 0 sum to one and φj is the density of aN (µj ,Σ) distribution on
Rd. Fix any x, y ∈ Rd. If ‖Σ−1/2(x− y)‖2 = r, the P -targeted preconditioned
Langevin diffusion (D2) with drift b(z) = 1

2a∇ log p(z) and a = Σ satisfies

2(b(x)− b(y))>a−1(x− y) = (∇ log p(x)−∇ log p(y))>(x− y)

= −r2 + 〈Σ−1/2(µ(x)− µ(y)),Σ−1/2(x− y)〉 ≤ −r2 + r∆,

by Cauchy-Schwarz and Jensen’s inequality, for ∆ , supj,k ‖Σ−1/2(µj − µk)‖2,

µ(x) ,
∑m

j=1 πj(x)µj , and πj(x) , wjφj(x)
p(x) . Moreover, by the mean value

theorem, Cauchy-Schwarz, and Jensen’s inequality, we have, for each v ∈ Rd,

2〈Σ−1/2(b(x)− b(y)), v〉 = 〈Σ−1/2(∇µ(z)− I)(x− y), v〉
= 〈(Σ−1/2S(z)Σ−1/2 − I)Σ−1/2(x− y), v〉 ≤ ‖v‖2‖Σ−1/2(x− y)‖2 L,
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for some z ∈ Rd, S(x) , 1
2

∑m
j=1

∑m
k=1 πj(x)πk(x)(µj − µk)(µj − µk)>, and

L , supj,k |1 − ‖Σ−1/2(µj − µk)‖22/2|. Hence, b is Lipschitz, and κ(r) ≥ 1
2

when r > 2∆, so our diffusion enjoys exponential Wasserstein decay [22,
Lem. 1] and a Stein discrepancy upper bound on the Wasserstein distance.

4.3. Distant dissipativity, non-constant σ. Using a combination of syn-
chronous and reflection couplings, Wang [93, Thm. 2.6] showed that diffu-
sions satisfying a distant dissipativity condition exhibit exponential Wasser-
stein decay, even when the diffusion coefficient σ is non-constant. In Sec-
tion H, we combine the coupling strategy of [93, Thm. 2.6] with the ap-
proach of [22] for diffusions with constant σ to obtain the following explicit
Wasserstein decay rate for distantly dissipative diffusions with bounded σ−1.

Theorem 11 (Wasserstein decay: distant dissipativity). Let (Pt)t≥0 be
the transition semigroup of an Itô diffusion with drift and diffusion coeffi-
cients b and σ. Define the truncated diffusion coefficient

σ0(x) = (σ(x)σ(x)> − λ2
0I)1/2 for some λ0 ∈ [0, 1/M0(σ−1)]

and the distance-conditional dissipativity function

κ(r) = inf{ − 2α(〈b(x)− b(y), x− y〉+ 1
2‖σ0(x)− σ0(y)‖2F(15)

− 1
2‖(σ0(x)− σ0(y))>(x− y)‖22/r2)/r2 : ‖x− y‖2 = r}

for some

m0 ≤ inf
x 6=y

‖(σ0(x)−σ0(y))>(x−y)‖2
‖x−y‖2 and α , 1/(λ2

0 +m2
0/4).

If the constants

R0 = inf{R ≥ 0 : κ(r) ≥ 0, ∀ r ≥ R},
R1 = inf{R ≥ R0 : κ(r)R(R−R0) ≥ 8, ∀ r ≥ R},

satisfy R0 ≤ R1 <∞ then, for all x, y ∈ Rd and t ≥ 0,

dW‖·‖2 (δxPt, δyPt) ≤ 2ϕ(R0)−1e−ct dW‖·‖2 (δx, δy)(16)

where

ϕ(r) = e−
1
4

∫ r
0 sκ(s)− ds and 1

c = α
∫ R1

0

∫ s
0 exp(1

4

∫ s
t uκ(u)− du) dt ds.

Remark. Theorem 11 holds even when the drift b is not Lipschitz.
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The Wasserstein decay rate (16) in Theorem 11 has a simple form when
the diffusion is dissipative at large distances and κ is bounded below. These
rates follow exactly as in [22, Lem. 1].

Corollary 12. Under the conditions of Theorem 11, suppose that

κ(r) ≥ −L for r ≤ R and κ(r) ≥ K for r > R

for R,L ≥ 0 and K > 0. If LR2
0 ≤ 8 then

α−1c−1 ≤ e−1
2 R2 + e

√
8K−1R + 4K−1 ≤ 3e

2 max(R2, 8K−1),

and if LR2
0 ≥ 8 then

α−1c−1 ≤ 8
√

2πR−1L−1/2(L−1 +K−1) exp
(
LR2

8

)
+ 32R−2K−2.

Example 4 (Multivariate Student’s t regression with pseudo-Huber prior).
The multivariate Student’s t distribution is also commonly employed as a
robust error model for the linear regression of continuous responses y ∈ RL
onto measured covariates V ∈ RL×d [95, 56]. Under a pseudo-Huber prior
[43], a Bayesian multivariate Student’s t regression posterior takes the form

p(β) ∝ exp(δ2(1−
√

1 + ‖β/δ‖22))︸ ︷︷ ︸
pseudo-Huber prior

(1 + 1
ν (y − V β)>Σ−1(y − V β))−(ν+L)/2︸ ︷︷ ︸

multivariate Student’s t likelihood

for fixed δ, ν > 0 and Σ � 0. Introduce the shorthand ψλ(r) , 2
√

1 + r2/δ2−
λ2 for each λ ∈ [0,

√
2) and ξ(β) , 1 + 1

ν (y − V β)>Σ−1(y − V β). Since

∇ log p(β) = −2β/ψ0(‖β‖2) + (1 + ν
L)V >Σ−1(y − V β)/ξ(β)

is bounded, no P -targeted preconditioned Langevin diffusion (D2) will sat-
isfy the distant dissipativity conditions of Section 4.2. However, we will
show that whenever V >V � 0, the Riemannian Langevin diffusion (D3) with
σ(β) =

√
ψ0(‖β‖2)I ∈ Rd×d, a(β) = 1

2ψ0(‖β‖2)I, and b(β) = a(β)∇ log p(β)+
〈∇, a(β)〉 satisfies the Wasserstein decay preconditions of Corollary 12.

Indeed, fix any λ0 ∈ (0, 1/M0(σ−1)) = (0,
√

2). Since M1(
√
ψλ) ≤ 1

δ
√

2−λ2
,

M1(ψλ) ≤ 2
δ , and M2(ψλ) ≤ 2

δ2 , σ0, σ, a, and ∇a are all Lipschitz. The drift
b is also Lipschitz, since ∇ log p and the product of a(β) and

∇2 log p(β) = −2I/ψ0(‖β‖2) + 8ββ>/(δ2ψ3
0(‖β‖2))

+
(
1 + ν

L

)
(2V >Σ−1(y − V β)(y − V β)>Σ−1V /ξ2(β)− V >Σ−1V /ξ(β)).
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are bounded. Hence, κ (15) is bounded below. Moreover, the the Hölder
continuity of x 7→

√
x, Cauchy-Schwarz, and the triangle inequality imply

κ(r) ≥ inf
‖β−β′‖2=r

2α
r2 (〈b(β′)− b(β), β − β′〉 − d−1

2 |
√
ψλ0(‖β‖2)−

√
ψλ0(‖β′‖2)|2)

≥ 2α− 2α
r (d−1

δ +M1(ψ0) + supβ (1 + ν
L)ψ0(‖β‖2)‖V >Σ−1(y − V β)‖2/ξ(β))

≥ 2α− 2α
r

(
d+1
δ + sups (1 + ν

L)
2(1+s/δ)(‖V >Σ−1y‖2+s‖V >Σ−1V ‖op)

1+ 1
ν

max(0,s/‖(V >Σ−1V )−1‖op−‖Σ−1y‖2)2

)
.

Letting ζ represent the supremum in the final inequality, we see that κ(r) ≥
α = 1/λ2

0 whenever r ≥ 2(d+1
δ +ζ). Hence, Corollary 12 delivers exponential

Wasserstein decay. A Wasserstein lower bound on the Stein discrepancy
now follows from Theorem 7, since M2(

√
ψ0) ≤ 1√

2δ2 , M3(ψ0) ≤ 96
25
√

5δ3 , and

a(β)∇2 log p(β) is Lipschitz, and hence M2(σ) and M2(b) are bounded.

5. Computing Stein discrepancies. In this section, we introduce a
computationally tractable Stein discrepancy that inherits the favorable con-
vergence properties established in Sections 3 and 4. We will directly port
the spanner discrepancy methodology developed and detailed in [36] and
use our new diffusion operators as drop-in replacements for the overdamped
Langevin operators advocated in [36]. While we only explicitly discuss tar-
get distributions supported on all of Rd, constrained domains of the form
(α1, β1)× · · · × (αd, βd) where −∞ ≤ αi < βi ≤ ∞ for all 1 ≤ i ≤ d can be
handled by introducing boundary constraints as in [36, Section 4.4].

5.1. Spanner Stein discrepancies. For any sample Qn, Stein operator T ,
and Stein set G, the Stein discrepancy S(Qn, T ,G) is recovered by solving
an optimization problem over functions g ∈ G. For example, if we write
m , a + c and b(x) , 1

2
1

p(x)〈∇, p(x)m(x)〉, the classical diffusion Stein
discrepancy is the value

S(Qn, T ,G‖·‖) = supg
∑n

i=1q(xi)(2〈b(xi), g(xi)〉+ 〈m(xi),∇g(xi)〉)

s.t. max(‖g(x)‖∗, ‖∇g(x)‖∗, ‖∇g(x)−∇g(y)‖∗
‖x−y‖ ) ≤ 1, ∀x, y ∈ Rd.

For all Stein sets, the diffusion Stein discrepancy objective is linear in g and
only queries g and ∇g at the n sample points underlying Qn. However, the
classical Stein set G‖·‖ constrains g at all points in its domain, resulting in
an infinite-dimensional optimization problem.4

4When d = 1, the problem reduces to a finite-dimensional convex quadratically con-
strained quadratic program with linear objective as in [36, Thm. 9].
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To obtain a finite-dimensional problem that is both convergence-determining
and straightforward to optimize, we will make use of the graph Stein sets of
[36]. For a given graph G = (V,E) with V = supp(Qn), the graph Stein set,

G‖·‖,Qn,G =
{
g : max(‖g(v)‖∗, ‖∇g(v)‖∗, ‖g(x)−g(y)‖∗

‖x−y‖ , ‖∇g(x)−∇g(y)‖∗
‖x−y‖ ) ≤ 1,

‖g(x)−g(y)−∇g(x)(x−y)‖∗
1
2
‖x−y‖2 ≤ 1, ‖g(x)−g(y)−∇g(y)(x−y)‖∗

1
2
‖x−y‖2 ≤ 1, ∀(x, y) ∈ E, v ∈ V

}
,

imposes boundedness constraints only at sample points and smoothness con-
straints only at pairs of sample points enumerated in the edge set E. The
graph is termed a t-spanner [14, 76] if each edge (x, y) ∈ E is assigned
the weight ‖x− y‖, and, for all x′ 6= y′ ∈ V , there exists a path between
x′ and y′ in the graph with total path weight no greater than t‖x′ − y′‖.
Remarkably, for any linear Stein operator T , a spanner Stein discrepancy
S(Qn, T ,G‖·‖,Qn,Gt) based on a t-spanner Gt is equivalent to the classical
Stein discrepancy in the following strong sense, implying Desiderata (i) and
(ii).

Proposition 13 (Equivalence of classical and spanner Stein discrepan-
cies). If Gt = (supp(Qn), E) is a t-spanner for t ≥ 1, then

S(Qn, T ,G‖·‖) ≤ S(Qn, T ,G‖·‖,Qn,Gt) ≤ κdt
2 S(Qn, T ,G‖·‖)

where κd is independent of (Qn, P, T , Gt) and depends only on d and ‖·‖.

Remark. The proof relies on the Whitney-Glaeser extension theorem [85,
Thm. 1.4] of Glaeser [35] and follows exactly as in [36, Prop. 5 and 6].

When d = 1, a t-spanner with exactly n−1 edges is obtained in O(n log n)
time for all t ≥ 1 by introducing edges just between sample points that
are adjacent in sorted order. More generally, if ‖·‖ is an `p norm, one can
construct a 2-spanner with O(κ′dn) edges in O(κ′dn log(n)) expected time
where κ′d is a constant that depends only on the norm ‖·‖ and the dimension
d [42]. Hence, a spanner Stein discrepancy can be computed by solving a
finite-dimensional convex optimization problem with a linear objective, O(n)
variables, and O(κ′dn) convex constraints, making it an appealing choice for
a computable quality measure (Desideratum (iii)).

5.2. Decoupled linear programs. Moreover, if we choose the norm ‖·‖ =
‖·‖1, the graph Stein discrepancy optimization problem decouples into d
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Algorithm 1 Spanner diffusion Stein discrepancy, S(Qn, T ,G‖·‖1,Qn,G2
)

input: sample Qn, target score ∇ log p, covariance coefficient a, stream coefficient c
G2 ← 2-spanner of V = supp(Qn)
for j = 1 to d do (in parallel)

τj ← Optimal value of j-th coordinate linear program (17) with graph G2

return
∑d
j=1 τj

independent linear programs (LPs) that can be solved in parallel using off-
the-shelf solvers. Indeed, for any G = (supp(Qn), E), S(Qn, T ,G‖·‖1,Qn,G)
equals ∑d

j=1 sup
ψj∈Rn,Ψj∈Rd×n

∑n
i=1q(xi)(2bj(xi)ψji +

∑d
k=1mjk(xi)Ψjki)(17)

s.t. ‖ψj‖∞ ≤ 1, ‖Ψj‖∞ ≤ 1, and for all i 6= l, (xi, xl) ∈ E

max
( |ψji−ψjl|
‖xi−xl‖1 ,

‖Ψj(ei−ek)‖∞
‖xi−xl‖1 ,

|ψji−ψjl−〈Ψjei,xi−xl〉|
1
2
‖xi−xl‖21

,
|ψji−ψjl−〈Ψjei,xl−xi〉|

1
2
‖xi−xl‖21

)
≤ 1,

where ψji and Ψjki represent the values gj(xi) and ∇kgj(xi) respectively.
Therefore, our recommended quality measure is the 2-spanner diffusion Stein
discrepancy with ‖·‖ = ‖·‖1. Its computation is summarized in Algorithm 1.
An efficient implementation of the spanner diffusion Stein discrepancy, in-
tegrated with 11 linear program solver options, is publicly available via our
Julia package.5

6. Numerical illustrations. In this section, we complement the prin-
cipal theoretical contributions of this work with several simple numerical il-
lustrations demonstrating how diffusion Stein discrepancies can be deployed
in practice. We will use our proposed quality measures to select hyperpa-
rameters for biased samplers, to quantify a bias-variance trade-off for ap-
proximate MCMC, and to compare deterministic and random quadrature
rules. In each case, we choose experimental settings in which a notion of sur-
rogate ground truth is available for external validation. We solve all linear
programs using Julia for Mathematical Programming [60] with the Gurobi
6.0.4 solver [73] and use the C++ greedy spanner implementation of Bouts
et al. [6] to compute our 2-spanners. Our timings were obtained on a single
core of an Intel Xeon CPU E5-2650 v2 @ 2.60GHz. Code reconstructing all
experiments is available on the Julia package site.5

6.1. A simple example. We first present a simple example to illustrate
several Stein discrepancy properties. For a Gaussian mixture target P (Ex-

ample 3) with p(x) ∝ e−
1
2

(x−∆
2

)2
+ e−

1
2

(x+ ∆
2

)2
and ∆ > 0, we simulate one

5https://jgorham.github.io/SteinDiscrepancy.jl/

https://jgorham.github.io/SteinDiscrepancy.jl/
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Fig 1: Stein discrepancy for normal mixture target P with ∆ mode separation (Section 6.1).

i.i.d. sequence of sample points from P and a second i.i.d. sequence from
N (−∆

2 , 1), which represents only one component of P . For various mode
separations ∆, Figure 1 shows that the Langevin spanner Stein discrepancy
(D1) applied to the first n Gaussian mixture sample points decreases to zero
at a n−1/2 rate, while the discrepancy applied to the single mode sequence
stays bounded away from zero. However, Figure 1 also indicates that larger
sample sizes are needed to distinguish between the mixture and single mode
sample sequences when ∆ is large. This accords with our theory (see Exam-
ple 3, Corollary 12, and Theorem 6), which implies that both the Langevin
diffusion Wasserstein decay rate and the bound relating Stein to Wasserstein
degrade as the mixture mode separation ∆ increases.

6.2. Selecting sampler hyperparameters. Stochastic Gradient Riemannian
Langevin Dynamics (SGRLD) [74] with a constant step size ε is an approx-
imate MCMC procedure designed to accelerate posterior inference. Unlike
asymptotically correct MCMC algorithms, SGRLD has a stationary distri-
bution that deviates increasingly from its target P as its step size ε grows.
On the other hand, if ε is too small, SGRLD fails to explore the sample
space sufficiently quickly. Hence, an appropriate setting of ε is paramount
for accurate inference.

To demonstrate the value of diffusion Stein discrepancies for hyperpa-
rameter selection, we analyzed a biometric dataset of L = 202 athletes
from the Australian Institute of Sport that was previously the focus of a
heavy-tailed regression analysis [86]. In the notation of Example 4, we used
SGRLD to conduct a Bayesian multivariate Student’s t regression (ν = 10,
Σ = I) of athlete lean body mass onto red blood count, white blood count,
plasma ferritin concentration, and a constant regressor of value 1/

√
L with

a pseudo-Huber prior (δ = 0.1) on the unknown parameter vector β ∈ R4.
After standardizing the output variable and non-constant regressors and

initializing each chain with an approximate posterior mode found by L-
BFGS started at the origin, we ran SGRLD with minibatch size 30, metric
G(β) = 1/(2

√
1 + ‖β/δ‖22)I, and a variety of step sizes ε to produce sam-
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Fig 2: Step size selection, stochastic gradient Riemannian Langevin dynamics (Section 6.2).

ple sequences of length 200, 000 thinned to length 2, 000. We then selected
the step size that delivered the highest quality sample – either the maxi-
mum effective sample size (ESS, a popular MCMC mixing diagnostic based
on asymptotic variance [7]) or the minimum Riemannian Langevin spanner
Stein discrepancy with a(β) = G−1(β). The longest discrepancy computa-
tion consumed 6s for spanner construction and 65s to solve a coordinate
optimization problem. As a surrogate measure of ground truth, we also gen-
erated a sample Q∗ of size 2×108 from the Metropolis-adjusted Riemannian
Langevin Algorithm (MARLA) [34] with metric G and compute the median
bivariate marginal Wasserstein distance dW‖·‖1 between each SGRLD sample
and Q∗ thinned to 5, 000 points [40].

Figure 2a shows that ESS, which does not account for stationary dis-
tribution bias, selects the largest step size available, ε = 10−2. As seen in
Figure 2b, this choice results in samples that are greatly overdispersed when



21

compared with the ground truth MARLA sample Q∗. At the other extreme,
the selection ε = 10−7 produces greatly underdispersed samples due to slow
mixing. The Stein discrepancy chooses an intermediate value, ε = 10−4. The
same value minimizes the surrogate ground truth Wasserstein measure and
produces samples that most closely resemble the Q∗ in Figure 2b.

6.3. Quantifying a bias-variance trade-off. Approximate random walk
Metropolis-Hastings (ARWMH) [52] with tolerance parameter ε is a biased
MCMC procedure that accelerates posterior inference by approximating the
standard MH correction. Qualitatively, a smaller setting of ε produces a
more faithful approximation of the MH correction and less bias between
the chain’s stationary distribution and the target distribution of interest.
A larger setting of ε leads to faster sampling and a more rapid reduction
of Monte Carlo variance, as fewer datapoint likelihoods are computed per
sampling step. We will quantify this bias-variance trade-off as a function of
sampling time using the Langevin spanner Stein discrepancy.

In the notation of Example 2, we conduct a Bayesian Huber regression
analysis (c = 1) of the log radon levels in 1, 190 Minnesota households [31]
as a function of the log amount of uranium in the county, an indicator of
whether the radon reading was performed in a basement, and an intercept
term. A N (0, I) prior is placed on the coefficient vector β. We run ARWMH
with minibatch size 5 and two settings of the tolerance threshold ε (0.1 and
0.2) for 107 likelihood evaluations, discard the sample points from the first
105 evaluations, and thin the remaining points to sequences of length 1, 000.
Figure 3 displays the Langevin spanner Stein discrepancy applied to the first
n points in each sequence as a function of the likelihood evaluation count,
which serves as a proxy for sampling time. As expected, the higher tolerance
sample (ε = 0.2) is of higher Stein quality for a small computational budget
but is eventually overtaken by the ε = 0.1 sample with smaller asymptotic
bias. The longest discrepancy computation consumed 0.8s for the spanner
and 20.1s for a coordinate LP.

To provide external support for the Stein discrepancy quantification, we
generate a Metropolis-adjusted Langevin chain [82] of length 108 as a surro-
gate Q∗ for the target P and display several measures of expectation error
between X ∼ Qn and Z ∼ Q∗ in Figure 3: the normalized predictive error
maxl |E[〈X − Z, vl/‖vl‖∞〉]| for vl the l-th datapoint covariate vector, the

mean error
maxj |E[Xj−Zj ]|
maxj |EQ∗ [Zj ]| , and the second moment error

maxj,k |E[XjXk−ZjZk]|
maxj,k |EQ∗ [ZjZk]| .

We see that the Stein discrepancy provides comparable results without the
need for an additional surrogate chain.
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Fig 3: Bias-variance trade-off curves for approximate random walk MH (Section 6.3).

6.4. Comparing quadrature rules. Stein discrepancies can also measure
the quality of deterministic sample sequences designed to improve upon
Monte Carlo sampling. For the Gaussian mixture target of Section 6.1,
Figure 4 compares the median quality of 50 sample sequences generated
from four quadrature rules recently studied in [53, Sec. 4.1]: i.i.d. sampling
from P , Quasi-Monte Carlo (QMC) sampling using a deterministic quasir-
andom number generator, Frank-Wolfe (FW) kernel herding [13, 3], and
fully-corrective Frank-Wolfe (FCFW) kernel herding [53]. The quality judg-
ments of the Langevin spanner Stein discrepancy (D1) closely mimic those of
the L1 Wasserstein distance dW‖·‖ , which is computable for simple univariate
targets [91]. Each Stein discrepancy was computed in under 0.03s.

Under both diagnostics and as previously observed in other metrics [53],
the i.i.d. samples are typically of lower median quality than their deter-
ministic counterparts. More suprisingly and in contrast to past work fo-
cused on very smooth function classes [53], FCFW underperforms FW and
QMC in our diagnostics for larger sample sizes. Apparently FCFW, which
is heavily optimized for smooth function integration, has sacrificed approx-
imation quality for less smooth test functions. For example, Figure 4 shows
that QMC offers a better quadrature estimate than FCFW for h1(x) =
max{0, 1−minj∈{1,2} |x−µj |}, a 1-Lipschitz approximation to the indicator
of being within one standard deviation of a mode.

In addition to providing a sample quality score, the Stein discrepancy op-
timization problem produces an optimal Stein function g∗ and an associated
test function h∗ = T g∗ that is mean zero under P and best distinguishes
the sample Qn from the target P . Figure 4 gives examples of these maxi-
mally discriminatve functions h∗ for a target mode separation of ∆ = 5 and
length 200 sequences from each quadrature rule. We also display the asso-
ciated sample histograms with overlaid target density. The optimal FCFW
function reflects the jagged nature of the FCFW histogram.
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Fig 4: Left: Quadrature rule quality comparison for Gaussian mixture targets P with
mode separation ∆ (Section 6.4). Right: (Top) Sample histograms with p overlaid (∆ = 5,
n = 200). (Bottom) Optimal discriminating test functions h∗ = T g∗ from Stein program.

7. Connections and conclusions. We developed quality measures
suitable for comparing the fidelity of arbitrary “off-target” sample sequences
by generating infinite collections of known target expectations.

Alternative quality measures. The score statistic of Fan et al. [25] and the
Gibbs sampler convergence criteria of Zellner and Min [96] account for some
sample biases but sacrifice differentiating power by exploiting only a finite
number of known target expectations. For example, when P = N (0, 1), the
score statistic [25] cannot differentiate two samples with the same means and
variances. Maximum mean discrepancies (MMDs) over characteristic repro-
ducing kernel Hilbert spaces [39] do detect arbitrary distributional biases but
are only computable when the chosen kernel functions can be integrated un-
der the target. In practice, one often approximates MMD using a sample
from the target, but this requires a separate trustworthy sample from P .

While we have focused on the graph and classical Stein sets of [36], our
diffusion Stein operators can also be paired with the reproducing kernel
Hilbert space unit balls advocated in [70, 69, 15, 59, 37] to form tractable
kernel diffusion Stein discrepancies. We have also restricted our attention
to Stein operators arising from diffusion generators. These take the form
(T g)(x) = 1

p(x)〈∇, p(x)m(x)g(x)〉 with m = a+ c for a(x) positive semidef-

inite and c(x) skew-symmetric. More generally, if the matrix m possesses
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eigenvalues having a negative real part, then the resulting operator need
not correspond to a diffusion process. Such operators fall into the class of
pseudo-Fokker Planck operators which have been studied in the context of
quantum optics [81]. As noted in [18, 19] it is possible to obtain correspond-
ing stochastic dynamics in an extended state space by introducing complex-
valued noise terms; these operators may merit further study in future work.

Alternative inferential tasks. While our chief motivation is sample quality
measurement, our work is also directly applicable to a variety of inferential
tasks that currently rely on the Langevin operator introduced by [36, 71], in-
cluding control variate design [71, 69], one sample hypothesis testing [15, 59],
variational inference [58, 78], and importance sampling [57]. The Stein fac-
tor bounds of Theorem 5 can also be used, in the manner of [65, 48, 41], to
characterize the error of numerical discretizations of diffusions. These works
convert bounds on the solutions of Poisson equations – Stein factors – into
central limit theorems for EQn [h(X)] − EP [h(Z)], confidence intervals for
EP [h(Z)], and mean-squared error bounds for the estimate EQn [h(X)]. Teh
et al. [90] and Vollmer et al. [92] extended these approaches to obtain error
estimates for approximate discretizations of the Langevin diffusion on Rd,
while, independently of our work, Huggins and Zou [46] established error
estimates for Itô diffusion approximations with biased drifts and constant
diffusion coefficients. By Theorem 5, their results also hold for Itô diffusions
with non-constant diffusion coefficients. Following the release of the present
paper and with the aim of analyzing discretization error for the overdamped
Langevin diffusion, Fang et al. [26, Thm. 3.1] derived multivariate Stein fac-
tor bounds for a class of strongly log-concave distributions. Our Theorem 5
with the choice ι = 1/ log(1/ε) provides Stein factors of the same form but
applies also to non-log-concave targets and more general diffusions.

Alternative targets. Our exposition has focused on the Wasserstein distance
dW‖·‖ , which is only defined for distributions with finite means. A parallel
development could be made for the Dudley metric [67] to target distributions
with undefined mean. The work of Cerrai [9] also suggests that the Lipschitz
condition on our drift and diffusion coefficients can be relaxed.

APPENDIX A: PROOF OF PROPOSITION 3

Fix any g ∈ G‖·‖ . Since g and ∇g are bounded and b, a, and c are P -

integrable, EP [(T g)(Z)] is finite. Define the ball Br = {x ∈ Rd : ‖x‖2 ≤ r}
with nr(z) the outward facing unit normal vector for each z on the boundary
∂Br. Since z 7→ p(z)(a(z) + c(z))g(z) is in C1, we may apply the dominated
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convergence theorem and then the divergence theorem to obtain

EP [(T g)(Z)] = lim
r→∞

∫
Br〈∇, p(z)(a(z) + c(z))g(z)〉 dz

= lim
r→∞

∫
∂Br〈nr(z), (a(z) + c(z))g(z)p(z)〉 dz.

Let f(r) = M0(g)
∫
∂Br ‖a(z) + c(z)‖op p(z) dz. Since g and nr are bounded,∫

∂Br〈nr(z), (a(z) + c(z))g(z)p(z)〉 dz ≤ f(r).

The coarea formula [2] and the integrability of a and c further imply that∫∞
0 f(r) dr =

∫
RdM0(g)‖a(z) + c(z)‖op p(z) dz <∞.

Hence, lim infr→∞ f(r) = 0, and therefore EP [(T g)(Z)] = 0.

APPENDIX B: PROOF OF THEOREM 5

Fix any x ∈ Rd and h ∈ W‖·‖2 with EP [h(Z)] = 0. Since the drift and dif-
fusion coefficients are Lipschitz, [51, Thm. 3.4] guarantees that the diffusion
(Zt,x)t≥0 is well-defined. Using the shorthand sr ,

∫∞
0 r(t) dt, we will show

that the posited function uh (10) exists and solves the Poisson equation

h = Auh(18)

with infinitesimal generator A, that uh is Lipschitz, that uh has a continu-
ous Hessian, that uh has a bounded and Hölder continuous Hessian under
additional smoothness assumptions.

Existence of uh and solving the Poisson equation (18). Consider the set
L , (1 + ‖x‖22)C0(Rd) = {(1 + ‖x‖22)f : f ∈ C0(Rd)}, where C0(Rd) is the
set of continuous functions vanishing at infinity. Equipped with the norm
‖f‖L = supx∈Rd |f(x)|/(1 + ‖x‖22), the set L is a Banach space [84]. As
noted in [17], the space L can also be characterized as the closure of the set of
bounded continuous functions, Cb(Rd), in the set {f : Rd → R : ‖f‖L <∞}.
To discuss the well-posedness of the Poisson equation (18), we first show that
the transition semigroup of an Itô diffusion is strongly continuous on L.

Proposition 14. The transition semigroup (Pt)t≥0 of an Itô diffusion
with Lipschitz drift and diffusion coefficients is strongly continuous on L.

Proof. Fix any f ∈ L and x ∈ Rd. We first show that (Ptf)(x) converges
pointwise to f(x) as t → 0+. Since the associated Itô process (Zt,x)t≥0 is
almost surely pathwise continuous [51, Thm. 3.4] and f is continuous in a
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neighborhood of x, it follows that f(Zt,x)→ f(x) as t→ 0+, almost surely.
Moreover, [28, Sec. 5, Cor. 1.2] implies that

E
[
sup0≤t≤1 |f(Zt,x)|

]
≤ ‖f‖L(1 + E

[
sup0≤t≤1 ‖Zt,x‖22

]
) ≤ C‖f‖L(1 + ‖x‖22),

for some C > 0 depending only on M1(b) and M1(σ). The dominated con-
vergence theorem now yields the desired pointwise convergence.

To prove the strong continuity of (Pt)t≥0, it suffices, by [23, Thm. I.5.8, p.
40], to verify that (Pt)t≥0 is weakly continuous, i.e., that l(Ptf) → l(f), as
t→ 0+, for all elements l of the dual space L∗. To this end, fix any l ∈ L∗.
By the Riesz-Markov theorem for L [17, Theorem 2.4], there exists a finite
signed Radon measure µ such that

(19) l(f) =
∫
Rd f(x)µ(dx) and

∫
Rd(1 + ‖x‖22)|µ|(dx) = ‖l‖L∗ ,

for ‖·‖L∗ the dual norm. By Jensen’s inequality and [28, Sec. 5, Cor. 1.2],

∀t, ‖(Ptf)(x)‖2 ≤ E[|f(Zt,x)|] ≤ ‖f‖LE
[
1 + ‖Zt,x‖22

]
≤ C‖f‖L(1 + ‖x‖22).

Since 1 + ‖x‖22 is |µ|-integrable by (19), dominated convergence gives

limt→0+ l(Ptf) = limt→0+

∫
Rd(Ptf)(x)µ(dx) =

∫
Rd f(x)µ(dx) = l(f),

yielding the result.

Consider the infinitesimal generator A of the semigroup (Pt)t≥0 on L with

dom(A) =
{
f ∈ L : limt→0+

Ptf−f
t exists in the ‖·‖L norm

}
.

Since Pt is strongly continuous on L and h ∈ L, [24, Prop. 1.5] implies that

h− Pth = −A
∫ t

0 Psh ds = Auh,t for uh,t , −
∫ t

0 Psh ds.

The stationarity of P and the definitions of dW‖·‖2 and r imply that

‖Pth‖L ≤ supx∈Rd
EP [dW‖·‖2

(δxPt,δZPt)]

1+‖x‖22
≤ r(t) supx∈Rd

EP [‖x−Z‖2]
1+‖x‖22

,

and hence ‖Pth‖L → 0 as t → ∞, since P has a finite mean, and r(t) → 0
as t→∞ as r is integrable and monotonic. Arguing similarly,

‖uh,t − uh,t′‖L ≤ ‖
∫ t′
t EP [dW‖·‖2 (δxPs, δZPs)]ds‖L ≤ sup

x∈Rd
EP [‖x−Z‖2]

1+‖x‖22

∫ t′
t r(s) ds.

Thus, it follows that (uh,t)t>0 is a Cauchy sequence in L with limit uh =∫∞
0 Psh ds ∈ L. Thus, (h−Pth, uh,t)→ (h, uh) in the graph norm on L×L,

and since A is closed [24, Cor. 1.6], uh ∈ dom(A) and h = Auh.
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Remark. The choice of the Banach space is crucial for the argument
above. As noted in [64] and contrary to the claim in [5], the semigroup (Pt)t≥0

fails to be strongly continuous over the Banach space L̃ , (1 + ‖x‖22)Cb(Rd)
when (Zt,x)t≥0 is an Ornstein-Uhlenbeck process, i.e., a Langevin diffusion
(D1) with a multivariate Gaussian invariant measure.

Lipschitz continuity of uh. To demonstrate that uh is Lipschitz, we choose
an arbitrary v ∈ Rd, and apply the definition of the Wasserstein distance,
the assumed decay rate, and the integrability of r to obtain

‖uh(x+ v)− uh(x)‖2 ≤
∫∞

0 ‖E[h(Zt,x)− h(Zt,x+v)]‖2 dt
≤
∫∞

0 dW‖·‖(δxPt, δx+vPt) dt ≤ dW‖·‖(δx, δx+v) sr = ‖v‖2 sr <∞.

Continuity of ∇2uh. Since uh ∈ dom(A) is a continuous solution of the
Poisson equation (18), and since the infinitesimal generator agrees with the
characteristic operator of a diffusion when both are defined [72, p. 129],
Thm. 5.9 of [21] implies that uh ∈ C2.

Boundedness of ∇2uh. Instantiate the additional preconditions of (11), and
assume that M0(σ−1), F2(σ),M2(b) <∞, or else (11) is vacuous. Lemma 15,
established in Section C, shows that the semigroup Pth admits a bounded
continuous Hessian, which is integrable in t.

Lemma 15 (Semigroup Hessian estimate). Suppose that the drift and
diffusion coefficients b and σ of an Itô diffusion are Lipschitz with Lipschitz
gradients and locally Lipschitz second derivatives. If the transition semigroup
(Pt)t≥0 has Wasserstein decay rate r, and σ(x) has a right inverse σ−1(x)
for each x ∈ Rd, then, for all t > 0 and any f ∈ C2 with bounded first and
second derivatives, Ptf is twice continuously differentiable with

M1(Ptf) ≤M1(f)r(t) and(20)

M2(Ptf) ≤ inf
t0∈(0,t]

M1(f)r(t− t0)
√

1
t0
et0γ2M0(σ−1)(21)

+ M1(f)r(t− t0)r(0)et0γ2M1(σ)M0(σ−1)

+ M1(f)r(t− t0)
√
t0 r(0)et0γ4 2

3

√
α

for γρ , ρM1(b) + ρ2−2ρ
2 M1(σ)2 + ρ

2F1(σ)2, α , M2(b)2

2M1(b)+4M1(σ)2 + 2F2(σ)2.

The dominated convergence theorem now implies that the Hessian of uh
is obtained by differentiating twice under the integral sign. The advertised
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bound (11) on ∇2uh follows by replacing the infimum on the right-hand side
of the semigroup bound (21) with the selection t0 = min(t, 1), applying the
bound emin(t,1)γρ ≤ eγρ for each γρ and t, and integrating the result over t.

Hölder continuity of ∇2uh. Finally, instantiate the additional precondi-
tions of (12), and fix any ι ∈ (0, 1). The integral representation (10) of uh,
the dominated convergence theorem, and Jensen’s inequality imply

M1−ι(∇2uh) = M1−ι
(
−
∫∞

0 ∇
2Pth dt

)
≤
∫∞

0 M1−ι(∇2Pth) dt.

When t ≤ 1, a seminorm interpolation lemma (Lemma 19 in the supple-
ment), a semigroup third derivative estimate (Lemma 20 in the supple-
ment) with t0 = min(t, 1), and the semigroup second derivative estimate
of Lemma 15 with t0 = min(t, 1) imply

M1−ι(∇2Pth) ≤M1(h)2ιM0(∇2Pth)ιM1(∇2Pth)1−ι ≤M1(h)tι/2−1/K1

for some constant K1 > 0 depending only on M1:3(b),M1:3(σ),M0(σ−1), and

r. Thus
∫ 1

0 M1−ι(∇2Pth) dt ≤ 2M1(h)
K1ι

. For t > 1, Lemmas 19, 20, and 15 and
the integrability of r yield∫∞

1 M1−ι(∇2Pth) dt ≤M1(h) 2
K2

∫∞
1 r(t− 1) dt = M1(h) 2

K2
sr

for a constant K2 > 0 again depending only on M1:3(b),M1:3(σ),M0(σ−1),
and r. Combining these bounds and choosing K = min(K1,K2)/2 completes
the proof. An explicit constant K can be obtained by tracing constants
through the proof of Lemma 20.

APPENDIX C: PROOF OF LEMMA 15

Fix any x ∈ Rd and f : Rd → R in C2 with bounded first and sec-
ond derivatives, and let (Zt,x)t≥0 be an Itô diffusion solving the stochastic
differential equation (5) with starting point Z0,x = x, underlying Wiener
process (Wt)t≥0, and transition semigroup (Pt)t≥0. Our proof is divided into
five pieces establishing, for each t > 0, the Lipschitz continuity of Ptf , the
Lipschitz continuity of ∇Ptf , the continuity of ∇2Ptf , an initial bound on
∇2Ptf , and the infimal bound (21) on ∇2Ptf .

Lipschitz continuity of Ptf . The semigroup gradient bound (20) follows
from the Lipschitz continuity of f and the definitions of the Wasserstein
decay rate and the Wasserstein distance, as, for any y ∈ Rd and t ≥ 0,

(Ptf)(x)− (Ptf)(y) = E[f(Zt,x)− f(Zt,y)] ≤M1(f)dW‖·‖2 (δxPt, δyPt)

≤M1(f)r(t) dW‖·‖2 (δx, δy) = M1(f)r(t)‖x− y‖2.
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Lipschitz continuity of ∇Ptf . Fix any v, v′ ∈ Rd. Under our smoothness
assumptions on b and σ, [77, Theorem V.40] implies that (Zt,x)t≥0 is twice
continuously differentiable in x. The first directional derivative flow (Vt,v)t≥0

solves the first variation equation,

dVt,v = ∇b(Zt,x)Vt,v dt+∇σ(Zt,x)Vt,v dWt with V0,v = v,(22)

obtained by formally differentiating the equation (5) defining (Zt,x)t≥0 with
respect to x in the direction v. The second directional derivative flow (Ut,v,v′)t≥0

solves the second variation equation,

dUt,v,v′ = (∇b(Zt,x)Ut,v,v′ +∇2b(Zt,x)[Vt,v′ ]Vt,v) dt

+ (∇σ(Zt,x)Ut,v,v′ +∇2σ(Zt,x)[Vt,v′ ]Vt,v) dWt with U0,v,v′ = 0,(23)

obtained by differentiating (22) with respect to x in the direction v′.
Since f has bounded first and second derivatives, the dominated conver-

gence theorem implies that, for each t ≥ 0, Ptf is twice differentiable with

〈∇(Ptf)(x), v〉 = E[〈∇f(Zt,x), Vt,v〉] and

v′>∇2(Ptf)(x)v = E
[
V >t,v′∇2f(Zt,x)Vt,v + 〈∇f(Zt,x), Ut,v,v′〉

]
(24)

obtained by differentiating under the integral sign. Lemma 16, proved in
Section C.1, justifies the exchanges of derivative and expectation by ensuring
that the derivative flows have moments bounded uniformly in x.

Lemma 16 (Derivative flow bounds). Suppose that (Zt,x)t≥0 is an Itô
diffusion with starting point Z0,x = x ∈ Rd, driving Wiener process (Wt)t≥0,
and Lipschitz drift and diffusion coefficients b and σ with Lipschitz gradients
and locally Lipschitz second derivatives. If (Vt,v)t≥0 and (Ut,v,v′)t≥0 respec-
tively solve the stochastic differential equations (22) and (23) for v, v′ ∈ Rd,
then, for any ρ ≥ 2,

E[‖Vt,v‖ρ2] ≤ ‖v‖ρ2 e
tγρ and(25)

E
[
‖Ut,v,v′‖22

]
≤ α‖v‖22‖v′‖22tetγ4(26)

for γρ , ρM1(b)+ ρ2−2ρ
2 M1(σ)2+ ρ

2F1(σ)2 and α , M2(b)2

2M1(b)+4M1(σ)2 +2F2(σ)2.

Since ∇f and ∇2f are bounded, and (Vt,v)t≥0, (Vt,v′)t≥0, and (Ut,v,v′)t≥0

have second moments bounded uniformly in x by Lemma 16, the Hessian
formula (24) implies that∇2Ptf is bounded and hence that∇Ptf is Lipschitz
continuous for each t ≥ 0.
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Continuity of ∇2Ptf . Hereafter we assume that M0(σ−1) < ∞, as the
semigroup Hessian bound (21) is otherwise vacuous.

The Lipschitz continuity of f and the Itô diffusion moment bound of [51,
Thm. 3.4, part 4] together imply that

E
[
f(Zt,x)2

]
≤ E

[
(|f(x)|+ ‖Zt,x − x‖2M1(f))2

]
<∞

for all t ≥ 0. Since σ−1 is bounded, and ∇b and ∇σ are bounded and Lip-
schitz, [27, Prop. 3.2] gives the following Bismut-Elworthy-Li-type formula
for the directional derivative of Ptf for each t > 0:

〈∇(Ptf)(x), v〉 = 1
tE
[
f(Zt,x)

∫ t
0 〈σ
−1(Zs,x)Vs,v, dWs〉

]
,

By interchanging derivative and integral, the dominated convergence theo-
rem now delivers the Hessian expression

v′>∇2(Ptf)(x)v = E[J1,x + J2,x + J3,x] for(27)

J1,x , 1
t 〈∇f(Zt,x), Vt,v′〉

∫ t
0 〈σ
−1(Zs,x)Vs,v, dWs〉,

J2,x , 1
t f(Zt,x)

∫ t
0 〈∇σ

−1(Zs,x)[Vs,v′ ]Vs,v, dWs〉, and

J3,x , 1
t f(Zt,x)

∫ t
0 〈σ
−1(Zs,x)Us,v,v′ , dWs〉,

for each t > 0, provided that J1,x, J2,x, and J3,x are continuous in x. The
requisite continuity follows from the Lipschitz continuity of ∇f and f , the
boundedness of σ−1, ∇σ, and ∇2σ, and the controlled moment growth and
Hölder continuity of (Zt,x)t≥0, (Vt,v)t≥0, (Vt,v′)t≥0, and (Ut,v,v′)t≥0 as func-
tions of x [77, Theorem V.40]. The dominated convergence theorem further
implies that ∇2Ptf is continuous for each t > 0.

Initial bound on ∇2Ptf . Now, we fix any t > 0 and turn to bounding∇2Ptf
in terms of M1(f), by bounding the expectations of J1,x, J2,x, and J3,x of
(27) in turn.

To control E[J1,x], we apply Cauchy-Schwarz, the Itô isometry [28, Eqs.
7.1 and 7.2], the derivative flow bound (25), and the fact esγ2 ≤ etγ2 for all
s ≤ t to obtain

E[J1,x] ≤ 1
t

√
E
[
〈∇f(Zt,x), Vt,v′〉2

]
E[(
∫ t

0 〈σ−1(Zs,x)Vs,v, dWs〉)2]

≤ 1
tM1(f)

√
E
[
‖Vt,v′‖22

] ∫ t
0 E
[
‖σ−1(Zs,x)Vs,v‖22

]
ds

≤ 1
tM1(f)M0(σ−1)

√
E
[
‖Vt,v′‖22

] ∫ t
0 E
[
‖Vs,v‖22

]
ds

≤ 1
tM1(f)M0(σ−1)‖v′‖2‖v‖2

√
etγ2

∫ t
0 e

sγ2 ds

≤
√

1
t e
tγ2M1(f)M0(σ−1)‖v′‖2‖v‖2,
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where we have adopted the definition of γρ given in Lemma 16.
To control E[J2,x], we will first rewrite the unbounded quantity f(Zt,x) in

terms of more manageable semigroup gradients. To this end, we note that,
since Pt−sf ∈ C2 for all s ∈ [0, t], we may apply Itô’s formula [28, Thm. 7.1]
to (s, x) 7→ Pt−sf(x) to obtain the identity

f(Zt,x) = (Ptf)(x) +
∫ t

0 〈∇(Pt−sf)(Zs,x), σ(Zs,x) dWs〉.(28)

Now we may rewrite E[J2,x] as

E[J2,x] = 1
tE
[
(Ptf)(x)

∫ t
0 〈∇σ

−1(Zs,x)[Vs,v′ ]Vs,v, dWs〉

+
∫ t

0 〈∇(Pt−sf)(Zs,x), σ(Zs,x) dWs〉
∫ t

0 〈∇σ
−1(Zs,x)[Vs,v′ ]Vs,v, dWs〉

]
= 1

tE
[∫ t

0 〈∇(Pt−sf)(Zs,x), σ(Zs,x)∇σ−1(Zs,x)[Vs,v′ ]Vs,v〉 ds
]

=− 1
tE
[∫ t

0 〈∇(Pt−sf)(Zs,x),∇σ(Zs,x)[Vs,v′ ]σ
−1(Zs,x)Vs,v〉 ds

]
,

where we have used Dynkin’s formula [28, Eq. 7.11], the Itô isometry, and
the chain rule,

(29) ∇σ−1(x)[v] = −σ−1(x)∇σ(x)[v]σ−1(x).

Finally, we bound E[J2,x] using Cauchy-Schwarz, the semigroup gradient
bound (20), the derivative flow bound (25), and the fact that s 7→ r(t−s)esγ2

is increasing:

E[J2,x] ≤ 1
tM1(σ)M0(σ−1)

∫ t
0 M1(Pt−sf)E

[
‖Vs,v′‖2‖Vs,v‖2

]
ds

≤ 1
tM1(σ)M0(σ−1)

∫ t
0 M1(Pt−sf)

√
E
[
‖Vs,v′‖22

]
E
[
‖Vs,v‖22

]
ds

≤ 1
tM1(σ)M0(σ−1)M1(f)‖v′‖2‖v‖2

∫ t
0 r(t− s)e

sγ2 ds

≤ r(0)etγ2M1(σ)M0(σ−1)M1(f)‖v′‖2‖v‖2.

To control E[J3,x], we again appeal to Dynkin’s formula and the Itô isom-
etry to obtain

E[J3,x] = 1
tE
[
(Ptf)(x)

∫ t
0 〈σ
−1(Zs,x)Us,v,v′ , dWs〉

+
∫ t

0 〈∇(Pt−sf)(Zs,x), σ(Zs,x) dWs〉
∫ t

0 〈σ
−1(Zs,x)Us,v,v′ , dWs〉

]
= E

[∫ t
0 〈∇(Pt−sf)(Zs,x), Us,v,v′〉 ds

]
,
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and we bound this expression using Cauchy-Schwarz, Jensen’s inequality,
the semigroup gradient bound (20), the second derivative flow bound (26),
and the fact that s 7→ r(t− s)esγ4 is increasing:

E[J3,x] ≤ 1
t

∫ t
0 M1(Pt−sf)E

[
‖Us,v,v′‖2

]
ds ≤ 1

t

∫ t
0 M1(Pt−sf)

√
E
[
‖Us,v,v′‖22

]
ds

≤ 1
tM1(f)

√
α‖v′‖2‖v‖2

∫ t
0 r(t− s)

√
sesγ4 ds

≤ 2
3

√
t r(0)etγ4M1(f)

√
α‖v′‖2‖v‖2,

where α is defined in Lemma 16. The advertised result (21) for t0 = t follows
by summing the bounds developed for E[J1,x],E[J2,x], and E[J3,x].

Infimal bound on ∇2Ptf . To obtain the infimum over t0 ∈ (0, t] in (21), we
adapt an argument of [9, Prop. 1.5.1]. Specifically, fix any t0 ∈ (0, t]. Our
work thus far shows that v′>∇2(Pt0 f̃)(x)v ≤ M1(f̃)ζ(t0) for a real-valued
function ζ and f̃ ∈ C2 with bounded first and second derivatives. Since we
now know that Pt−t0f ∈ C2 with bounded first and second derivatives, the
Markov property of the diffusion and the first derivative bound (20) yield

v′>∇2(Ptf)(x)v = v′>∇2(Pt0Pt−t0f)(x)v

≤M1(Pt−t0f)ζ(t0) ≤M1(f)r(t− t0)ζ(t0).

C.1. Proof of Lemma 16: Derivative flow bounds. Fix any ρ ≥ 2
and v ∈ Rd. Since Dynkin’s formula and Cauchy-Schwarz give

E[‖Vs,v‖ρ2] = ‖v‖ρ2 + E
[∫ t

0 ρ〈Vs,v‖Vs,v‖
ρ−2
2 ,∇b(Zs,x)Vs,v〉

+ ρ
2‖Vs,v‖

ρ−4
2 ((ρ− 2)‖V >s,v∇σ(Zs,x)[Vs,v]‖22 + ‖Vs,v‖22‖∇σ(Zs,x)[Vs,v]‖2F ) ds

]
≤ ‖v‖ρ2 +

∫ t
0 (ρM1(b) + ρ2−2ρ

2 M1(σ)2 + ρ
2F1(σ)2)E[‖Vs,v‖ρ2] ds,

the advertised result (25) follows from Grönwall’s inequality.
Now fix any v, v′ ∈ Rd, and define Ut , Ut,v,v′ . Dynkin’s formula and

multiple applications of Cauchy-Schwarz and Young’s inequality give

E
[
‖Ut‖22

]
= E

[∫ t
0 2〈Us,∇b(Zs,x)Us +∇2b(Zs,x)[Vs,v′ ]Vs,v〉

+ ‖∇σ(Zs,x)[Us] +∇2σ(Zs,x)[Vs,v′ ]Vs,v‖2F ds
]

≤ E
[∫ t

0 2‖Us‖22M1(b) + 2‖Us‖2‖Vs,v‖2‖Vs,v′‖2M2(b)

+ 2‖∇σ(Zs,x)[Us]‖2F + 2‖∇2σ(Zs,x)[Vs,v′ ]Vs,v‖2F ds
]

≤
∫ t

0 (2M1(b) + 2F1(σ)2 + ε)E
[
‖Us‖22

]
+ (M2(b)2/ε+ 2F2(σ)2)E

[
‖Vs,v‖22‖Vs,v′‖22

]
ds
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for any ε > 0. Letting γρ = ρM1(b) + ρ2−2ρ
2 M1(σ)2 + ρ

2F1(σ)2, we see that,
by Cauchy-Schwarz and our derivative flow bound (25),∫ t

0 E
[
‖Vs,v‖22‖Vs,v′‖22

]
ds ≤

∫ t
0

√
E
[
‖Vs,v‖42

]
E
[
‖Vs,v′‖42

]
ds

≤
∫ t

0 ‖v‖
2
2‖v′‖22 esγ4 ds = ‖v‖22‖v′‖22 e

tγ4−1
γ4

.

Hence, if we choose ε = γ4− (2M1(b) + 2F1(σ)2) and define α = M2(b)2/ε+
2F2(σ)2 we may write

E
[
‖Ut‖22

]
≤ α‖v‖22‖v′‖22 e

tγ4−1
γ4

+
∫ t

0 γ4E
[
‖Us‖22

]
ds.

Gronwall’s inequality now yields the result (26) via

E
[
‖Ut‖22

]
≤ α‖v‖22‖v′‖22

(
etγ4−1
γ4

+
∫ t

0
esγ4−1
γ4

γ4e
(t−s)γ4 ds

)
= α‖v‖22‖v′‖22tetγ4 .

APPENDIX D: PROOF OF THEOREM 6

We first derive the result for ‖·‖ = ‖·‖2. Without loss of generality, as-
sume h ∈ W‖·‖2 with EP [h(Z)] = 0. Our high-level strategy is to relate the
Wasserstein distance to the Stein discrepancy via the Stein equation (3) with
diffusion Stein operator T (8). Since the infinitesimal generator A (4) has
the form (7) by Theorem 2, Theorem 5 implies that there exists a contin-
uously differentiable solution gh to the the Stein equation h(x) = (T gh)(x)
satisfying M0(gh) ≤ srM1(h) ≤ sr. Since boundedness alone is insufficient
to declare that gh falls into a scaled copy of the classical Stein set G‖·‖ , we
will develop a smoothed version of the Stein solution with greater regularity.

Since a and c are constant, b(x) = 1
2(a+ c)∇ log p(x). Fix any s > 0 and

consider the convolution gh,s(x) , E[gh(x+ sG)]. If the smoothing level s is
small, the Lipschitz continuity of h implies that that (T gh,s)(x) provides a
close approximation to h(x) for each x ∈ Rd:

h(x) ≤ E[h(x+ sG)] +M1(h)sE[‖G‖2](30)

≤ E
[

1
p(x+sG)〈∇, p(x+ sG)(a+ c)gh(x+ sG)〉

]
+ sE[‖G‖2]

≤ 2E[〈b(x+ sG), gh(x+ sG)〉] + E[〈a+ c,∇gh(x+ sG)〉] + sE[‖G‖2]

≤ (T gh,s)(x) + sE[‖G‖2](1 + 2M1(b)M0(gh)).

Moreover, our next lemma, proved in Section D.1, shows that the smoothed
Stein solution admits a bounded Lipschitz gradient∇gh,s(x) = E[∇gh(x+ sG)].
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Lemma 17 (Smoothing by Gaussian convolution). Let G ∈ Rd be a
standard normal random vector, and fix s > 0. If f : Rd → R is bounded
and measurable, and fs(x) , E[f(x+ sG)], then

M0(fs) ≤M0(f), M1(fs) ≤
√

2
π
M0(f)
s , and M2(fs) ≤

√
2M0(f)

s2
.

If, additionally, f ∈ C1, then ∇fs(x) = E[∇f(x+ sG)].

Indeed, for each non-zero w ∈ Rd, we may apply Lemma 17 to the function
fw(x) , 〈w, gh(x)〉/‖w‖2 with convolution fw,s(x) = 〈w, gh,s(x)〉/‖w‖2 to
obtain the bounds

M0(gh,s) = supw 6=0M0(fw,s) ≤ supw 6=0M0(fw) = M0(gh) ≤ sr,

M1(gh,s) = supw 6=0M1(fw,s) ≤ supw 6=0

√
2
π
M1(fw)

s =
√

2
π
M1(fw)

s ≤
√

2
π
sr
s , and

M2(gh,s) = supw 6=0M2(fw,s) ≤ supw 6=0

√
2M2(fw)
s2

=
√

2M2(fw)
s2

≤
√

2 sr
s2

.

Hence, since our choice of h was arbitrary, and

κs , max
(

1, 1
s

√
2
π ,
√

2
s2

)
= max

(
1,
√

2
s2

)
≥ max(M0(gh,s),M1(gh,s),M2(gh,s))

sr
,

we may take expectation under Qn and supremum over h in (30) to reach

dW‖·‖2 (µ, ν) ≤ inf
s>0
S(Qn, T ,G‖·‖2)srκs + sE[‖G‖2](1 + 2M1(b)sr)

≤ max
(
S(Qn, T ,G‖·‖2)sr, η

)
+ 2η ≤ 3 max

(
S(Qn, T ,G‖·‖2)sr, η

)
,

where we define η = 3

√
S(Qn, T ,G‖·‖2)

√
2sr E[‖G‖2]2(1 + 2M1(b)sr)2 and

select s = 3

√
S(Qn, T ,G‖·‖2)2

√
2sr/(E[‖G‖2](1 + 2M1(b)sr)) to produce the

second inequality.
The generic norm result now follows from the assumed norm domination

property ‖·‖ ≥ ‖·‖2, which implies G‖·‖2 ⊆ G‖·‖ .

D.1. Proof of Lemma 17: Smoothing by Gaussian convolution.
The conclusion M0(fs) ≤ M0(f) follows from Hölder’s inequality. Now, fix
any x and non-zero v1, v2 ∈ Rd. Since fs = f ? φs, where φs ∈ C∞ is the
density of sG and ? is the convolution operator, Leibniz’s rule implies that

〈v1,∇fs(x)〉 = 〈v1, (f ?∇φs)(x)〉 = 1
s2

∫
f(x− y)〈v1, y〉φs(y)dy

≤ M0(f)
s2

∫
|〈v1, y〉|φs(y) dy =

√
2
π
M0(f)
s ‖v1‖2,
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as 〈v1, G〉/‖v1‖2 has a standard normal distribution. Leibniz’s rule also gives

∇2fs(x)[v1, v2] = (f ?∇2φs)(x)[v1, v2]

≤ M0(f)
s2

∫
Rd
∣∣〈v1, zz

>v2〉/s2 − 〈v1, v2〉
∣∣φs(z) dz

≤ M0(f)
s2

√∫
Rd |〈v1, zz>v2〉/s2 − 〈v1, v2〉|2φs(z) dz

= M0(f)
s2

√
〈v1, v2〉2 + ‖v1‖22‖v2‖22 ≤

√
2M0(f)
s2

‖v1‖2‖v2‖2,

where the last equality follows by Isserlis’ theorem. Finally, when f ∈ C1,
Leibniz’s rule gives ∇fs = ∇f ? φs.

APPENDIX E: PROOF OF THEOREM 7

We will derive each inequality for ‖·‖ = ‖·‖2; the generic norm results will
then follow from the property ‖·‖ ≥ ‖·‖2, which implies G‖·‖2 ⊆ G‖·‖ .

Fix any h ∈ H = {h : Rd → R | h ∈ C3,M1(h) ≤ 1,M2(h) <∞,M3(h) <
∞} with EP [h(Z)] = 0. We assume that M1(b), M2(b), M1(σ), F2(σ),
M∗1 (m), and M0(σ−1) are all finite, or else the results are vacuous. Our
high-level strategy is to relate the Wasserstein distance to the Stein dis-
crepancy via the Stein equation (3) with diffusion Stein operator T (8). By
Theorem 5, we know that there exists a Lipschitz solution gh to the the
Stein equation h(x) = (T gh)(x) satisfying M0(gh) ≤ srM1(h) ≤ sr and
M1(gh) ≤ βM1(h) ≤ β, for β , β1 + β2, where β1 and β2 are defined in
Theorem 5. Since a Lipschitz gradient is also needed to declare that gh falls
into a scaled copy of the classical Stein set G‖·‖ , we will develop a smoothed
version of the Stein solution with greater regularity.

To this end, fix any s > 0 and consider the convolution gh,s(x) , E[gh(x+ sG)].
If the smoothing level s is small, the Lipschitz continuity of m and h implies
that (T gh,s)(x) closely approximates h(x) for each x ∈ Rd:

h(x) ≤ E[h(x+ sG)] +M1(h)sE[‖G‖2](31)

≤ 2E[〈b(x+ sG), gh(x+ sG)〉+ 〈m(x+ sG),∇gh(x+ sG)〉] + sE[‖G‖2]

≤ (T gh,s)(x) + sζ.

E.1. Proof of the first inequality. Moreover, by an argument mir-
roring that of Theorem 6, Lemma 17 shows that gh,s admits a Lipschitz
gradient ∇gh,s(x) = E[∇gh(x+ sG)] and satisfies the derivative bounds

M0(gh,s) ≤M0(gh) ≤ sr,(32)

M1(gh,s) = M0(∇gh,s) ≤M0(∇gh) ≤ β, and

M2(gh,s) = M1(∇gh,s) ≤
√

2
π
M0(∇gh)

s ≤
√

2
π
β
s .
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Hence, since H is dense in W‖·‖2 , and we may take expectation under Qn
and supremum over h in (31) to reach

dW‖·‖2 (µ, ν) ≤ inf
s>0
S(Qn, T ,G‖·‖2) max

(
sr, β,

√
2
π
β
s

)
+ sζ

≤ max(S(Qn, T ,G‖·‖2) max(sr, β), η) + η ≤ 2 max(S(Qn, T ,G‖·‖2) max(sr, β), η),

where η , s∗ζ for s∗ =
√
S(Qn, T ,G‖·‖2)

√
2/πβ/ζ.

E.2. Proof of the second inequality. Assume now that ∇3b and
∇3σ are bounded and locally Lipschitz. Fix any ι ∈ (0, 1). Lemma 17 and
an auxiliary smoothing lemma (Lemma 18 in the supplement) imply that

M2(gh,s) = M1(∇gh,s) ≤
√
dM1−ι(∇gh)

sι . This improved dependence on s will
allow us to establish a near-linear relationship between the Stein discrepancy
and the Wasserstein distance. By Theorem 5, M1−ι(∇gh) ≤ 1

K (1
ι + sr) for

K depending only on M1:3(σ),M1:3(b), M0(σ−1), and r. Hence, M2(gh,s) ≤
Cι/s

ι for Cι ,
√
d
K (1

ι + sr). Following the derivation in Section E.1 and

choosing s∗ =
(
ιCιS(Qn,T ,G‖·‖2 )

ζ

)
1
ι+1 and η , ζ

ι s
∗, we obtain

dW‖·‖2 (P,Qn) ≤ infs>0 S(Qn, T ,G‖·‖2) max(sr, β, Cιs
−ι) + sζ

≤max(S(Qn, T ,G‖·‖2) max(sr, β), η) + ηι ≤ 2 max(S(Qn, T ,G‖·‖2) max(sr, β), η).

APPENDIX F: PROOF OF PROPOSITION 8

Fix any g ∈ G‖·‖ . Since EP [(T g)(Z)] = 0 by Proposition 3, we may write

|EQn [(T g)(X)]| = |EQn [(T g)(X)]− EP [(T g)(Z)]|
= |2E[〈b(X)− b(Z), g(X)〉+ 〈b(Z), g(X)− g(Z)〉]

+ E[〈m(X)−m(Z),∇g(X)〉+ 〈m(Z),∇g(X)−∇g(Z)〉]|.(33)

for any coupling of X and Z. We obtain the first advertised inequality by re-
peatedly applying the Fenchel-Young inequality for dual norms, invoking the
boundedness and Lipschitz constraints on g and ∇g, and taking a supremum
over g ∈ G‖·‖ . The second inequality follows by invoking Jensen’s inequality,
the fact min(x, y) ≤ xty1−t for all x, y ≥ 0, Hölder’s inequality, and finally
the definition of Ws,‖·‖.

APPENDIX G: PROOF OF THEOREM 10

Fix any x, y ∈ Rd, and define two Itô diffusions solving dZt,x = b(Zt,x) dt+
σ(Zt,x) dWt with Z0,x = x and dZt,y = b(Zt,y) dt+σ(Zt,y) dWt with Z0,y = y,
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for (Wt)t≥0 a shared Wiener process. Applying Dynkin’s formula to the
function f(t, x) = ekt‖x‖2G for the difference process Zt,x − Zt,y yields

E[f(t, Zt,x − Zt,y)] = ‖x− y‖2G + E[
∫ t

0 ke
ks‖Zs,x − Zs,y‖2G ds]

+ E[
∫ t

0 e
ks
(
‖σ(Zs,x)− σ(Zs,y)‖2G + 2〈b(Zs,x)− b(Zs,y), G(Zs,x − Zs,y)〉

)
ds]

By the uniform dissipativity assumption, the right-hand side is at most
‖x− y‖2G = dW‖·‖G (δx, δy)

2. For the transition semigroup (Pt)t≥0,

E[f(t, Zt,x − Zt,y)] = ektE
[
‖Zt,x − Zt,y‖2G

]
≥ ektdW‖·‖G (δxPt, δyPt)

2,

by Cauchy-Schwarz. The result now follows from the fact that λmin(G1) ≤
‖z‖2G/‖z‖22 ≤ λmax(G1) for all z 6= 0.

APPENDIX H: PROOF OF THEOREM 11

As in the proof of [93, Thm. 2.6], we fix two arbitrary starting points
x, y ∈ Rd and define a pair of coupled Itô diffusions (Zt,x)t≥0 and (Zt,y)t≥0,
each with associated marginal semigroup (Pt)t≥0. Specifically, we set Z0,x =
x and Z0,y = y and let (Zt,x)t≥0 and (Zt,y)t≥0 solve the equations

dZt,x = b(Zt,x) dt+ σ0(Zt,x) dW ′t + λ0 dW
′′
t

dZt,y = b(Zt,y) dt+ σ0(Zt,y) dW
′
t + λ0

(
I − 2

Zt,x−Zt,y
‖Zt,x−Zt,y‖2

Zt,x−Z>t,y
‖Zt,x−Zt,y‖2

)
dW ′′t ,

where (W ′t)t≥0 is an m-dimensional Wiener process and (W ′′t )t≥0 is an inde-
pendent d-dimensional Wiener process.

Following the argument of Eberle [22, Sec. 4], we define the difference
process Yt = Zt,x − Zt,y, its norm rt = ‖Yt‖2, and the one-dimensional

Wiener process Wt =
∫ t

0 〈Ys/rs, dW
′′
s 〉, and apply the generalized Itô formula

[49, Thm. 22.5] to obtain the stochastic differential equations

d‖Yt‖22 = (2〈Yt, b(Zt,x)− b(Zt,y)〉+ ‖σ0(Zt,x)− σ0(Zt,y)‖2F + 4λ2
0) dt

+ 2〈Yt, (σ0(Zt,x)− σ0(Zt,y)) dW
′
t〉+ 4λ0‖Yt‖2 dWt

and

df(rt) = f ′(rt)/(rt)〈Yt, (σ0(Zt,x)− σ0(Zt,y)) dW
′
t〉+ 2λ0f

′(rt) dWt

+ (f ′′(rt)(2λ
2
0 + 1

2‖(σ0(Zt,x)− σ0(Zt,y))
>Yt‖22/r2

t )− 1
2αf

′(rt)κ(rt)rt) dt

for any concave increasing f : [0,∞) 7→ [0,∞) with absolutely continuous
derivative, f(0) = 0, and f ′(0) = 1. Since the drift term in the latter equation
is bounded above by

βt , (2/α)(f ′′(rt)− (1/4)f ′(rt)κ(rt)rt),

the argument of [22, p. 15] shows that the results of [22, Thm. 1 and Cor.
2] hold for our choice of α and κ.
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SUPPLEMENTARY APPENDIX I: SMOOTHING AND INTERPOLATION

We present in this section two essentially standard results on smoothing by convolution and
seminorm interpolation [see, e.g., 61, Ex. 1.1.8] which support the proof of Theorem 7. Throughout,
we let G ∈ Rd be a standard normal vector and φ ∈ C∞ be its probability density. For any s > 0
and function f : Rd → R we define

fs(x) , E[f(x+ sG)] = s−d
∫
f(y)φ

(x−y
s

)
dy.

The first result bounds the Lipschitz constant of fs in terms of the Hölder continuity of f .

Lemma 18 (Smoothing by convolution II). Fix ι ∈ (0, 1) and consider any f : Rd → R with
M1−ι(f) <∞. For all s > 0,

M1(fs) ≤ E
[
‖G‖2−2ι

2

]1/2
M1−ι(f)s−ι.

Proof. Fix any ‖v‖2 ≤ 1 and x ∈ Rd. Leibniz’s rule implies that

〈∇fs(x), v〉 = s−d−1
∫
f(y)〈∇φ

(x−y
s

)
, v〉 dy.

Because s−d
∫
∇〈φ(x−ys ), v〉 dy = 0 for any v ∈ Rd, we also have

|〈∇fs(x), v〉| = |s−d−1
∫
f(y)〈∇φ

(x−y
s

)
, v〉 dy| = |s−d−1

∫
[f(y)− f(x)]〈∇φ

(x−y
s

)
, v〉 dy|

= |s−d−1
∫

[f(x− z)− f(x)]〈∇φ
(
z
s

)
, v〉 dz|

≤ s−d−1
∫
M1−ι(f)‖z‖1−ι2 |〈∇φ

(
z
s

)
, v〉| dz

= M1−ι(f)s−ι
∫
‖ω‖1−ι2 |〈∇φ(ω), v〉| dω,

where we have used substitutions z , x − y and ω , z/s. Finally, as ∇φ(ω) = −ωφ(ω) for all
ω ∈ Rd, we can use the spherical symmetry of the standard normal and Cauchy-Schwarz to yield∫

‖ω‖1−ι2 |〈∇φ(ω), v〉| dω = E
[
‖G‖1−ι2 |〈G, v〉|

]
≤ E

[
‖G‖2−2ι

2

]1/2E[|〈G, v〉|2]1/2
= E

[
‖G‖2−2ι

2

]1/2E[G2
1

]1/2
= E

[
‖G‖2−2ι

2

]1/2
,

concluding the lemma.

The second result provides interpolation bounds for the Hölder seminorm Mk where k 6∈ N.

Lemma 19 (Seminorm interpolation). Let k > 0 and f ∈ Cdke(Rd). Then we have that

Mk(f) ≤ 21−{k}(Mdke−1(f)
)1−{k}(

Mdke(f)
){k}

.
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Proof. For m ∈ N, let Vm = {(v1, . . . , vm) : ‖vi‖2 ≤ 1 for each i ∈ {1, . . . ,m}}. Using the
fundamental theorem of calculus we obtain

supVdke−1

∣∣∣∇dke−1f(x)[v1, v2, . . . , vdke−1]−∇dke−1f(y)[v1, v2, . . . , vdke−1]
∣∣∣

= supVdke−1

∣∣∣ ∫ 1
0 ∇

dkef(x+ s(y − x))[v1, v2, . . . , vdke−1, y − x]ds
∣∣∣

≤ supVdke−1

∣∣∣ supz∇dkef(z)[v1, v2, . . . , vdke−1, y − x]
∣∣∣

≤ supz ‖∇dkef(z)‖op‖x− y‖2.

An application of the triangle inequality gives rise to

supVdke−1

∣∣∇dke−1f(x)[v1, v2, . . . , vdke−1]−∇dke−1f(y)[v1, v2, . . . , vdke−1]
∣∣ ≤ 2 supz ‖∇dke−1f(z)‖op.

There we obtain

Mk(f) = supx,y∈Rd;x 6=y
‖∇dke−1f(x)−∇dke−1f(y)‖op

‖x−y‖{k}2

≤ supx,y∈Rd;x 6=y
21−{k}(supz ‖∇dkef(z)‖op)

{k}
(supz ‖∇dke−1f(z)‖op)

1−{k}‖x−y‖{k}2

‖x−y‖{k}2

≤ 21−{k}(supz ‖∇dkef(z)‖op
){k}(

supz ‖∇dke−1f(z)‖op
)1−{k}

≤ 21−{k}(Mdke(f)
){k}(

Mdke−1(f)
)1−{k}

thus proving the statement.

SUPPLEMENTARY APPENDIX J: SEMIGROUP THIRD DERIVATIVE ESTIMATE

Lemma 20 (Semigroup third derivative estimate). Suppose that the drift and diffusion coeffi-
cients b and σ of an Itô diffusion have bounded, locally Lipschitz first, second, and third derivatives.
If the transition semigroup (Pt)t≥0 has Wasserstein decay rate r, σ(x) has a right inverse σ−1(x)
for each x ∈ Rd, and M0(σ−1) < ∞, then, for all t > 0 and any f ∈ C3 with bounded second and
third derivatives,

M3(Ptf) ≤ inft0∈(0,t]M1(f)r(t− t0) ct0 e
Ct0(34)

for constants c, C depending only on M1:3(σ),M1:3(b),M0(σ−1), and r.

Proof. Our proof closely follows that of Lemma 15 in Section C, and we will only highlight the
important differences. Throughout, c and C will represent arbitrary constants depending only on
M1:3(σ),M1:3(b),M0(σ−1), and r that may change from expression to expression.

Fix any v, v′, v′′ with unit Euclidean norms in Rd and, without loss of generality, fix any f : Rd → R
in C3 with bounded first, second, and third derivatives. Let (Zt,x)t≥0 be an Itô diffusion solving the
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stochastic differential equation (5) with starting point Z0,x = x, underlying Wiener process (Wt)t≥0,
and transition semigroup (Pt)t≥0. Under our smoothness assumptions on b and σ, [77, Theorem V.40]
implies that (Zt,x)t≥0 is thrice continuously differentiable in x with third directional derivative flow
(Yt,v,v′,v′′)t≥0 solving the third variation equation,

dYt,v,v′,v′′ = ∇b(Zt,x)Yt,v,v′,v′′ dt+∇2b(Zt,x)[Ut,v,v′ ]Vt,v′′ dt(35)

+∇3b(Zt,x)[Vt,v, Vt,v′ , Vt,v′′ ] dt+∇2b(Zt,x)[Ut,v′,v′′ ]Vt,v dt

+∇2b(Zt,x)[Ut,v,v′′ ]Vt,v′ dt

+∇σ(Zt,x)Yt,v,v′,v′′ dWt +∇2σ(Zt,x)[Ut,v,v′ ]Vt,v′′ dWt

+∇3σ(Zt,x)[Vt,v, Vt,v′ , Vt,v′′ ] dWt +∇2σ(Zt,x)[Ut,v′,v′′ ]Vt,v dWt

+∇2σ(Zt,x)[Ut,v,v′′ ]Vt,v′ dWt with Y0,v,v′,v′′ = 0,

obtained by differentiating (23) with respect to x in the direction v′′.
In a manner analogous to the derivation of (27) in proof of Lemma 15, we can derive an expression

for the third derivative of the semi-group,

∇3(Ptf)(x)[v, v′, v′′] = E
[∑

i,j Ji,j,x

]
for(36)

J1,1,x, 1
t 〈∇

2f(Zt,x)Vt,v′′ , Vt,v′〉
∫ t

0 〈σ
−1(Zs,x)Vs,v, dWs〉,

J1,2,x, 1
t 〈∇f(Zt,x), Ut,v′,v′′〉

∫ t
0 〈σ
−1(Zs,x)Vs,v, dWs〉,

J1,3,x, 1
t 〈∇f(Zt,x), Vt,v′〉

∫ t
0 〈∇σ

−1(Zs,x)[Vs,v′′ ]Vs,v, dWs〉,
J2,1x, 1

t 〈∇f(Zt,x), Vt,v′′〉
∫ t

0 〈∇σ
−1(Zs,x)[Vs,v′ ]Vs,v, dWs〉,

J2,2,x, 1
t f(Zt,x)

∫ t
0 〈∇

2σ−1(Zs,x)[Vs,v′′ ][Vs,v′ ]Vs,v, dWs〉,
J2,3,x, 1

t f(Zt,x)
∫ t

0 〈∇σ
−1(Zs,x)[Us,v′,v′′ ]Vs,v, dWs〉,

J2,4,x, 1
t f(Zt,x)

∫ t
0 〈∇σ

−1(Zs,x)[Vs,v′ ]Us,v,v′′ , dWs〉,
J3,1,x, 1

t 〈∇f(Zt,x), Vt,v′′〉
∫ t

0 〈σ
−1(Zs,x)Us,v,v′ , dWs〉,

J3,2,x, 1
t f(Zt,x)

∫ t
0 〈∇σ

−1(Zs,x)[Vs,v′′ ]Us,v,v′ , dWs〉,
J3,3,x, 1

t f(Zt,x)
∫ t

0 〈σ
−1(Zs,x)Ys,v,v′,v′′ , dWs〉.

We will bound each term Ji,j,x in (36) in turn.

J.1. The J1,·,x terms. We will provide a step-by-step calculation for the first term. By Cauchy-
Schwarz,

E[J1,1,x]= 1
tE
[
〈∇2f(Zt,x)Vt,v′′ , Vt,v′〉

∫ t
0 〈σ
−1(Zs,x)Vs,v, dWs〉

]
≤ 1

t

√
E
[
〈∇2f(Zt,x)Vt,v′′ , Vt,v′〉2

]
E[(
∫ t

0 〈σ−1(Zs,x)Vs,v, dWs〉)2].
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We use the derivative flow bounds of Lemma 16 to realize√
E
[
‖Vt,v′‖22‖Vt,v′′‖22

]
≤ 4

√
E‖Vt,v′‖42E‖Vt,v′′‖42 ≤ ‖v′‖2‖v′′‖2e

1
2
tγ4 .

Cauchy-Schwarz, the Itô isometry [28, Eqs. 7.1 and 7.2], and Lemma 16 now yield

E[J1,1,x] ≤ 1
tM2(f)

√
E
[
‖Vt,v′‖22‖Vt,v′′‖22

]
E
[∫ t

0 ‖σ−1(Zs,x)Vs,v‖22 ds
]

≤ 1
tM2(f)‖v′‖2‖v′′‖2‖v‖2e

1
2
tγ4M0(σ−1)

(
1
γ2

(eγ2t − 1)
) 1

2 ≤M2(f) c√
t
eCt.

Similar reasoning yields

E[J1,2,x]= E1
t 〈∇f(Zt,x), Ut,v′,v′′〉

∫ t
0 〈σ
−1(Zs,x)Vs,v, dWs〉

≤ 1
tM1(f)

√
te

1
4
tγ4M0(σ−1)

(
1
γ2

(eγ2t − 1)
) 1

2 ≤M1(f)ceCt

and using equation (29)

E[J1,3,x] ≤ 1
tM1(f)e

1
2
γ2t‖v′‖2

√
E
∫ t

0 M1(σ−1)2‖Vs,v‖22‖Vs,v′′‖22 ds

≤ 1
tM1(f)e

1
2
γ2t‖v′‖2M1(σ−1)‖v‖2‖v′′‖2

(∫ t
0 e

γ4sds
) 1

2

≤ t−
1
2M1(f)eγ2t/2‖v′‖2M0(σ−1)2M1(σ)‖v‖2‖v′′‖2eγ4t/2 ≤M1(f) c√

t
eCt.

J.2. The J2,·,x terms. The bound E[J2,1,x] ≤ M1(f) c√
t
eCt follows exactly as it did for J1,3,x.

To tackle the remaining J2,·,x terms, we will rewrite the unbounded quantity f(Zt,x) using (28). We
obtain the bound

EJ2,2,x= E1
t f(Zt,x)

∫ t
0 〈∇

2σ−1(Zs,x)[Vs,v′′ ][Vs,v′ ]Vs,v, dWs〉
= E1

t

∫ t
0 〈∇(Pt−sf)(Zs,x), σ(Zs,x) dWs〉.

∫ t
0 〈∇

2σ−1(Zs,x)[Vs,v′′ ][Vs,v′ ]Vs,v, dWs〉
= 1

tE
∫ t

0 〈∇(Pt−sf)(Zs,x), σ(Zs,x)∇2σ−1(Zs,x)[Vs,v′′ ][Vs,v′ ]Vs,v〉ds
≤ 1

tM1(f)r(0)
(
2M1(σ)2M0(σ−1)2 +M1(σ)M2(σ)M0(σ−1)

) ∫ t
0 E
[
‖Vs,v′′‖2‖Vs,v′‖2‖Vs,v′‖2

]
ds.

≤M1(f)r(0)
(
2M1(σ)2M0(σ−1)2 +M1(σ)M2(σ)M0(σ−1)

)
eγ3t‖v′′‖2‖v′‖2‖v‖2 ≤M1(f)ceCt,

where we used the chain rule expression

∇2σ−1(x)[v][v′] = −σ(x)−1
(
−∇σ(x)[v]σ(x)−1∇σ[v′](x)

−∇σ(x)[v′]σ(x)−1∇σ(x)[v]

−∇σ(x)[v′]σ(x)−1∇2σ(x)[v][v′]
)
σ(x)−1
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to rewrite σ(Zs,x)∇2σ−1(Zs,x). The next term satisfies

E[J2,3,x] = E1
t

∫ t
0 〈∇(Pt−sf)(Zs,x), σ(Zs,x) dWs〉

∫ t
0 〈∇σ

−1(Zs,x)[Us,v′,v′′ ]Vs,v, dWs〉
= E1

t

∫ t
0 〈∇(Pt−sf)(Zs,x), σ(Zs,x)∇σ−1(Zs,x)[Us,v′,v′′ ]Vs,v〉ds

≤ 1
tM1(f)M0(σ−1)M1(σ)r(x)

∫ t
0 E‖Us,v′,v′′‖‖Vs,v‖ds

≤M1(f)M0(σ−1)M1(σ)r(x)1
t

∫ t
0 ‖v‖‖v

′‖‖v′′‖(αseγ4s)
1
2 esγ2/2ds ≤M1(f)ceCt.

The term E[J2,4,x] can be bounded in the same way by swapping the roles of v and v′.

J.3. The J3,· terms. Cauchy-Schwarz and the Itô isometry [28, Eqs. 7.1 and 7.2] yield

E[J3,1,x] ≤ 1
tM1(f)M0(σ−1)

√
E
[
‖Vt,v′′‖22

]
E
[∫ t

0 ‖Us,v,v′‖
2
2 ds

]
≤ 1

tM1(f)M0(σ−1)e
1
2
tγ2

(
1
γ2

(eγ2t − 1)
) 1

2 ≤M1(f) c√
t
eCt.

The bound E[J3,2,x] ≤ ceCt follows exactly as it did for J2,3,x. Now we consider the last term

J3,3,x= 1
t f(Zt,x)

∫ t
0 〈σ
−1(Zs,x)Ys,v,v′,v′′ , dWs〉,

Using (28), we see that

E[J3,3,x] = 1
tE
∫ t

0 〈∇(Pt−sf)(Zs,x), Ys,v,v′,v′′〉ds ≤ 1
t

∫ t
0 M1(Pt−sf)E‖Ys,v,v′,v′′‖2ds

≤ 1
t

∫ t
0 M1(Pt−sf)

(
E‖Ys,v,v′,v′′‖22

) 1
2ds.

This final expression is bounded by M1(f)ceCt provided that E‖Ys,v,v′,v′′‖22 ≤ ceCs. We will establish
such a bound for the third directional derivative flow in Section J.5.

J.4. Semigroup third derivative bound. By combining the bounds for each Ji,j,x term,
adapting the argument of [9, Prop. 1.5.1], and invoking the semigroup gradient bound and Hessian
bound M2(Psf) ≤M1(f)r(s− s0) c′√

s0
eC
′s0 of Lemma 15, we obtain, for any t0 ∈ (0, t] and s0 = t0/2∥∥∇3Ptf [v, v′, v′′]

∥∥
op

=
∥∥∇3Pt0/2

(
Pt−t0/2f

)
[v, v′, v′′]

∥∥
op

(37)

≤ (M1(Pt−t0/2f) +M2(Pt−t0/2f))
c√
t0/2

eCt0/2

≤M1(f)(r(t− t0/2) + r(t− t0/2− s0)
c′
√
s0
eC
′s0)

c√
t0/2

eCt0/2.

≤M1(f)(r(t− t0/2) + r(t− t0)
c′√
t0/2

eC
′t0/2)

c√
t0/2

eCt0/2.



48 J. GORHAM, A.B. DUNCAN, S.J. VOLLMER, AND L. MACKEY

J.5. Third derivative flow bound. Introduce the shorthand (Yt)t≥0 for (Yt,v,v′,v′′)t≥0 solving

the third variation equation (35). Dynkin’s formula gives E‖Yt‖22 =
∫ t

0 T1 + T2 ds for

T1 , E2
〈
Ys,∇b(Zs,x)Ys +∇2b(Zs,x)[Us,v,v′ ]Vs,v′′ +∇3b(Zs,x)[Vs,v, Vs,v′ , Vs,v′′ ]

+∇2b(Zs,x)[Us,v′,v′′ ]Vs,v +∇2b(Zt,x)[Ut,v,v′′ ]Vt,v′
〉

T2 , E
∥∥∥∇σ(Zs,x)[Ys] +∇2σ(Zs,x)[Us,v,v′ ]Vs,v′′ +∇3σ(Zs,x)[Vs,v, Vs,v′ , Vs,v′′ ]

+∇2σ(Zs,x)[Us,v′,v′′ ]Vs,v +∇2σ(Zs,x)[Us,v,v′′ ]Vs,v′
∥∥∥2

F
.

We have by Cauchy-Schwarz and Young’s inequality

T1
2 ≤ E

(
‖Ys‖22M1(b) +M2(b)‖Ys‖2 ‖Us,v,v′‖2‖Vs,v′′‖2︸ ︷︷ ︸

+2 permutations

+M3(b)‖Ys‖2‖Vs,v‖2‖Vs,v′‖2‖Vs,v′′‖2
)

≤ E
(
‖Ys‖22

(
M1(b) +M2

2 (b) +M2
3 (b)

)
+M2

2 (b)‖Us,v,v′‖22‖Vs,v′′‖22︸ ︷︷ ︸
+2 permutations

+M3(b)2
(
‖Vs,v‖2‖Vs,v′‖2‖Vs,v′′‖2

)2)
and

T2
4 ≤ E‖Y2‖22

(
M1(σ)2 + ‖∇2σ‖2F3

+ ‖∇3σ‖2F3

)
+ ‖∇3σ‖2F3

E(‖Vs‖‖V ′s‖‖V ′′s ‖)
2 + ‖∇2σ‖2F3

E
[
‖Us,v,v′‖22‖Vs,v′′‖22

]︸ ︷︷ ︸
+2 permutations

.

Provided that we establish a bound of E‖Us,v,v′‖42 ≤ cteCt, we have that overall

E‖Yt‖22 ≤
∫ t

0 cE‖Ys‖
2
2ds+ ceCt.

We can conclude using Gronwall’s inequality that

E‖Yt‖22 ≤ ceCt.(38)

It remains to establish bounds on E‖Ut,v,v′‖ρ2 for ρ > 2. Recall that the second derivative flow
solves (23). Applying Ito’s formula to f(Ut,v,v′) = ‖Ut,v,v′‖ρ2, taking expectations, and introducing
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the shorthand Ut = Ut,v,v′ , we obtain

E[‖Ut‖ρ2] = ‖U0‖ρ2 + E
[ ∫ t

0 ρ〈Us‖Us,‖
ρ−2
2 ,∇b(Zs,x)Us +∇2b(Zs,x)[Vs,v′ ]Vs,v)〉

+ ρ
2‖Us‖

ρ−4
2 ((ρ− 2)‖U>s ∇σ(Zs,x)[Us,v] + U>s ∇2σ(Zs,x)[Vs,v′ ]Vs,v‖22

+ ‖Us,v‖22‖∇σ(Zs,x)[Us,] +∇2σ(Zs,x)[Vs,v′ ]Vs,v‖2F ) ds
]

≤‖U0‖ρ2 +
∫ t

0 ρM1(b)‖Us‖ρ2 + ρM2(b)‖Us‖ρ−1
2 ‖Vs‖2‖V ′s‖2

+ ρ2−ρ
2

(
M1(σ)2‖Us‖ρ2 +M2(σ)2‖Us‖ρ−2

2 ‖Vs‖2‖V ′s‖2
)

+ ρ
2

(
F1(σ)2‖Us‖ρ2 + F2(σ)2‖Us‖ρ−2

2 ‖Vs‖2‖V ′s‖2
)
ds

≤‖U0‖ρ2 +
∫ t

0 E[‖Us‖ρ2](ρM1(b) + (ρ− 1)M2(b) +M1(σ)2 ρ2−ρ
2 +M2(σ)2 (ρ−1)2

2 + F2(σ)ρ−1
2 )ds

+
∫ t

0

(
M2(b) + ρ−1

2 M2(σ)2 + 1
2

)
E[(‖Vs‖2‖V ′s‖2)ρ]ds

≤‖U0‖ρ2 +
∫ t

0 E[‖Us‖ρ2](ρM1(b) + (ρ− 1)M2(b) +M1(σ)2 ρ2−ρ
2 +M2(σ)2 (ρ−1)2

2 + F2(σ)ρ−1
2 )ds

+
∫ t

0

(
M2(b) + ρ−1

2 M2(σ)2 + 1
2

)
(‖v‖2‖v′‖2)ρeγ2ρsds

where we use that, by Young’s inequality,

‖Us‖ρ−1
2 ‖Vs‖2‖V ′s‖2 ≤

ρ−1
ρ ‖Us‖

ρ
2 + 1

ρ‖Vs‖
ρ
2‖V ′s‖

ρ
2,

and similarly

‖Us‖ρ−2
2 ‖Vs‖2‖V ′s‖2 ≤

ρ−2
ρ ‖Us‖

ρ
2 + 2

ρ‖Vs‖
ρ/2
2 ‖V ′s‖

ρ/2
2 .

Following the arguments of Section C.1, Grönwall’s inequality gives

E[‖Ut‖ρ2] ≤
(
M2(b) + ρ−1

2 M2(σ)2 + 1
2

)
(‖v‖2‖v′‖2)ρeγ2ρtt exp(γρt).
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