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Abstract—The problem of estimating the Kullback-Leibler
divergence D(P‖Q) between two unknown distributions P and
Q is studied, under the assumption that the alphabet size k of the
distributions can scale to infinity. The estimation is based on m
independent samples drawn from P and n independent samples
drawn from Q. It is first shown that there does not exist any
consistent estimator that guarantees asymptotically small worst-
case quadratic risk over the set of all pairs of distributions. A
restricted set that contains pairs of distributions, with density
ratio bounded by a function f(k) is further considered. An
augmented plug-in estimator is proposed, and its worst-case
quadratic risk is shown to be within a constant factor of
( k
m

+ kf(k)
n

)2 + log2 f(k)
m

+ f(k)
n

, if m and n exceed a constant
factor of k and kf(k), respectively. Moreover, the minimax
quadratic risk is characterized to be within a constant factor
of ( k

m log k
+ kf(k)

n log k
)2 + log2 f(k)

m
+ f(k)

n
, if m and n exceed a

constant factor of k/ log(k) and kf(k)/ log k, respectively. The
lower bound on the minimax quadratic risk is characterized by
employing a generalized Le Cam’s method. A minimax optimal
estimator is then constructed by employing both the polynomial
approximation and the plug-in approaches.

I. INTRODUCTION

As an important quantity in information theory, the
Kullback-Leibler (KL) divergence between two distributions
has a wide range of applications in various domains. For
example, KL divergence can be used as a similarity measure in
nonparametric outlier detection [2], multimedia classification
[3], [4], text classification [5], and the two-sample problem [6].
In these contexts, it is often desired to estimate KL divergence
efficiently based on available data samples. This paper studies
such a problem.

Consider the estimation of KL divergence between two
probability distributions P and Q defined as

D(P‖Q) =

k∑
i=1

Pi log
Pi
Qi
, (1)
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where P and Q are supported on a common alphabet set [k] ,
{1, . . . , k}, and P is absolutely continuous with respect to Q,
i.e., if Qi = 0, Pi = 0, for i ∈ [k]. We use Mk to denote the
collection of all such pairs of distributions.

Suppose P and Q are unknown, and that m independent
and identically distributed (i.i.d.) samples X1, . . . , Xm

drawn from P and n i.i.d. samples Y1, . . . , Yn drawn
from Q are available for estimation. The sufficient statistics
for estimating D(P‖Q) are the histograms of the samples
M , (M1, . . . ,Mk) and N , (N1, . . . , Nk), where

Mj =

m∑
i=1

1{Xi=j} and Nj =

n∑
i=1

1{Yi=j} (2)

record the numbers of occurrences of j ∈ [k] in samples drawn
from P and Q, respectively. Then M ∼ Multinomial (m,P )
and N ∼ Multinomial (n,Q). An estimator D̂ of D(P‖Q)
is then a function of the histograms M and N , denoted by
D̂(M,N).

We adopt the following worst-case quadratic risk to measure
the performance of estimators of the KL divergence:

R(D̂, k,m, n) , sup
(P,Q)∈Mk

E
[(
D̂(M,N)−D(P‖Q)

)2]
. (3)

We further define the minimax quadratic risk as:

R∗(k,m, n) , inf
D̂
R(D̂, k,m, n). (4)

In this paper, we are interested in the large-alphabet regime
with k → ∞. Furthermore, the number m and n of samples
are functions of k, which are allowed to scale with k to infinity.

Definition 1. A sequence of estimators D̂, indexed by k, is
said to be consistent under sample complexity m(k) and n(k)
if

lim
k→∞

R(D̂, k,m, n) = 0. (5)

We are also interested in the following set:

Mk,f(k)

=
{

(P,Q) : |P | = |Q| = k,
Pi
Qi
≤ f(k), ∀i ∈ [k]

}
, (6)

which contains distributions (P,Q) with density ratio bounded
by f(k).

We define the worst-case quadratic risk over Mk,f(k) as

R(D̂, k,m, n, f(k))

, sup
(P,Q)∈Mk,f(k)

E
[(
D̂(M,N)−D(P‖Q)

)2]
, (7)
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and define the corresponding minimax quadratic risk as

R∗(k,m, n, f(k)) , inf
D̂
R(D̂, k,m, n, f(k)). (8)

A. Notations
We adopt the following notation to express asymptotic

scaling of quantities with n: f(n) . g(n) represents that
there exists a constant c s.t. f(n) ≤ cg(n); f(n) & g(n)
represents that there exists a constant c s.t. f(n) ≥ cg(n);
f(n) � g(n) when f(n) & g(n) and f(n) . g(n) hold
simultaneously; f(n) � g(n) represents that for all c > 0,
there exists n0 > 0 s.t. for all n > n0, |f(n)| ≥ c|g(n)|; and
f(n)� g(n) represents that for all c > 0, there exists n0 > 0
s.t. for all n > n0, |f(n)| ≤ cg(n).

B. Comparison to Related Problems
Several estimators of KL divergence when P and Q are

continuous have been proposed and shown to be consistent.
The estimator proposed in [7] is based on data-dependent
partition on the densities, the estimator proposed in [8] is based
on a K-nearest neighbor approach, and the estimator developed
in [9] utilizes a kernel-based approach for estimating the
density ratio. A more general problem of estimating the f -
divergence was studied in [10], where an estimator based on
a weighted ensemble of plug-in estimators was proposed to
trade bias with variance. All of these approaches exploit the
smoothness of continuous densities or density ratios, which
guarantees that samples falling into a certain neighborhood
can be used to estimate the local density or density ratio
accurately. However, such a smoothness property does not hold
for discrete distributions, whose probabilities over adjacent
point masses can vary significantly. In fact, an example is
provided in [7] to show that the estimation of KL divergence
can be difficult even for continuous distributions if the density
has sharp dips.

Estimation of KL divergence when the distributions P and
Q are discrete has been studied in [11]–[13] for the regime
with fixed alphabet size k and large sample sizes m and n.
Such a regime is very different from the large-alphabet regime
in which we are interested, with k scaling to infinity. Clearly,
as k increases, the scaling of the sample sizes m and n must be
fast enough with respect to k in order to guarantee consistent
estimation.

In the large-alphabet regime, KL divergence estimation is
closely related to entropy estimation with a large alphabet
recently studied in [14]–[20]. Compared to entropy estima-
tion, KL divergence estimation has one more dimension of
uncertainty, that is regarding the distribution Q. Some distri-
butions Q can contain very small point masses that contribute
significantly to the value of divergence, but are difficult to
estimate because samples of these point masses occur rarely.
In particular, such distributions dominate the risk in (3), and
make the construction of consistent estimators challenging.

C. Summary of Main Results
We summarize our main results in the following three

theorems, more details are given respectively in Sections II,
III and IV.

Our first result, based on Le Cam’s two-point method [21],
is that there is no consistent estimator of KL divergence over
the distribution set Mk.

Theorem 1. For any m,n ∈ N, and k ≥ 2, R∗(k,m, n) is
infinite. Therefore, there does not exist any consistent estimator
of KL divergence over the set Mk.

The intuition behind this result is that the set Mk contains
distributions Q, that have arbitrarily small components that
contribute significantly to KL divergence but require arbitrarily
large number of samples to estimate accurately. However, in
practical applications, it is reasonable to assume that the ratio
of P to Q is bounded, so that the KL divergence D(P‖Q)
is bounded. Thus, we further focus on the set Mk,f(k) given
in (6) that contains distribution pairs (P,Q) with their density
ratio bounded by f(k).

Remark 1. Consider the Rényi divergence of order α between
distributions P and Q, which is defined as

Dα(P‖Q) ,
1

α− 1
log
( k∑
i=1

pαi
qα−1
i

)
. (9)

Then the KL divergence is equivalent to the Rényi divergence
of order one. Moreover, the bounded density ratio condition
is equivalent to the following upper bound on the Rényi
divergence of order infinity,

D∞(P‖Q) = log sup
i∈[k]

Pi
Qi
≤ log f(k). (10)

It is shown in [22] that Dα is non-decreasing for α > 1,
i.e., D(P‖Q) ≤ Dα(P‖Q) ≤ D∞(P‖Q). This implies that
the conditions on any order α of the Rényi divergence can be
used to bound the KL divergence as long as α > 1. For the
sake of simplicity and convenience, we adopt the density ratio
bound in this paper.

We construct an augmented plug-in estimator D̂A−plug−in,
defined in (16), and characterize its worst-case quadratic risk
over the set Mk,f(k) in the following theorem.

Theorem 2. For any k ∈ N, m ≥ k and n ≥ 10kf(k), the
worst-case quadratic risk of the augmented plug-in estimator
defined in (16) over the set Mk,f(k) satisfies

R(D̂A−plug−in, k,m, n, f(k))

�
(
kf(k)

n
+
k

m

)2

+
log2 f(k)

m
+
f(k)

n
. (11)

The upper bound is derived by evaluating the bias and
variance of the estimator separately. In order to prove the
term

(kf(k)
n + k

m

)2
in the lower bound, we analyze the

bias of the estimator and construct different pairs of “worst-
case” distributions, respectively, for the cases where the bias
caused by insufficient samples from P or the bias caused by
insufficient samples from Q dominates. The terms log2 f(k)

m and
f(k)
n in the lower bound are due to the variance and follow

from the minimax lower bound given by Le Cam’s two-point
method with a judiciously chosen pair of distributions.
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Theorem 2 implies that the augmented plug-in estimator is
consistent over Mk,f(k) if and only if

m� k ∨ log2 f(k) and n� kf(k). (12)

Thus, the number of samples m and n should be larger than
the alphabet size k for the plug-in estimator to be consistent.
This naturally inspires the question of whether the plug-in
estimator achieves the minimax risk, and if not, what estimator
is minimax optimal and what is the corresponding minimax
risk.

We show that the augmented plug-in estimator is not
minimax optimal, and that the minimax optimality can be
achieved by an estimator that employs both the polynomial
approximation and plug-in approaches, and the following
theorem characterizes the minimax risk.

Theorem 3. If m & k
log k , n & kf(k)

log k , f(k) ≥ log2 k, logm .

log k and log2 n . k1−ε, where ε is any positive constant, then
the minimax risk satisfies

R∗(k,m,n, f(k))

�
(

k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
. (13)

The key idea in the construction of the minimax optimal
estimator is the application of a polynomial approximation to
reduce the bias in the regime where the bias of the plug-in
estimator is large. Compared to entropy estimation [17], [19],
the challenge here is that the KL divergence is a function
of two variables, for which a joint polynomial approximation
is difficult to derive. We solve this problem by employing
separate polynomial approximations for functions involving P
and Q as well as judiciously using the density ratio constraint
to bound the estimation error. The proof of the lower bound on
the minimax risk is based on a generalized Le Cam’s method
involving two composite hypotheses, as in the case of entropy
estimation [17]. But the challenge here that requires special
technical treatment is the construction of prior distributions
for (P,Q) that satisfy the bounded density ratio constraint.

We note that the first term
(

k
m log k + kf(k)

n log k

)2
in (13)

captures the squared bias, and the remaining terms correspond
to the variance. If we compare the worst-case quadratic risk
for the augmented plug-in estimator in (11) with the minimax
risk in (13), there is a log k factor rate improvement in the
bias.

Theorem 3 directly implies that in order to estimate the KL
divergence over the setMk,f(k) with vanishing mean squared
error, the sufficient and necessary conditions on the sample
complexity are given by

m�
(

log2 f(k) ∨ k

log k

)
, and n� kf(k)

log k
. (14)

The comparison of (12) with (14) shows that the augmented
plug-in estimator is strictly sub-optimal.

While our results are proved under a ratio upper bound
constraint f(k), under certain upper bounds on m and n, and
by taking a worst case over (P,Q), we make the following
(non-rigorous) observation that is implied by our results, by
disregarding the aforementioned assumptions to some extent.

If Q is known to be the uniform distribution (and hence
f(k) ≤ k), then D(P‖Q) =

∑
Pi logPi − log k, and the KL

divergence estimation problem (without taking the worst case
over Q) reduces to the problem of estimating the entropy of
distribution P . More specifically, letting n =∞ and f(k) ≤ k
in (13) directly yields

(
k

m log k

)2
+ log2 k

m , which is the same
as the minimax risk for entropy estimation [17], [19].

We note that after our initial conference submission was
accepted by ISIT 2016 and during our preparation of this full
version of the work, an independent study of the same problem
of KL divergence estimation was posted on arXiv [23].

A comparison between our results and the results in [23]
shows that the constraints for the minimax rate to hold in The-
orem 3 are weaker than those in [23]. On the other hand, our
estimator requires the knowledge of k to determine whether
to use polynomial approximation or the plug-in approach,
whereas the estimator proposed in [23] based on the same
idea does not require such knowledge. Our estimator also
requires the knowledge of f(k) to keep the estimate between 0
and log f(k) in order to simplify the theoretical analysis, but
our experiments demonstrate that desirable performance can
be achieved even without such a step (and correspondingly
without exploiting f(k)). However, in practice, the knowledge
of k is typically useful to determine the number of samples
that should be taken in order to achieve a certain level of
estimation accuracy. In situations without the knowledge of k,
the estimator in [18] has the advantage of being independent
from k and performs well adaptively.

II. NO CONSISTENT ESTIMATOR OVERMk

Theorem 1 states that the minimax risk over the set Mk is
unbounded for arbitrary alphabet size k and m and n samples,
which suggests that there is no consistent estimator for the
minimax risk over Mk.

This result follows from Le Cam’s two-point method [21]:
If two pairs of distributions (P (1), Q(1)) and (P (2), Q(2))
are sufficiently close such that it is impossible to reliably
distinguish between them using m samples from P and n
samples from Q with error probability less than some con-
stant, then any estimator suffers a quadratic risk proportional
to the squared difference between the divergence values,
(D(P (1)‖Q(1))−D(P (2)‖Q(2)))2.

We next give examples to illustrate how the distributions
used in Le Cam’s two-point method can be constructed.

For the case k = 2, we let P (1) = P (2) = ( 1
2 ,

1
2 ),

Q(1) = (e−s, 1 − e−s) and Q(2) = ( 1
2s , 1 −

1
2s ), where

s > 0. For any n ∈ N, we choose s sufficiently large
such that D(Q(1)‖Q(2)) < 1

n . Thus, the error probability for
distinguishing Q(1) and Q(2) with n samples is greater than a
constant. However, D(P (1)‖Q(1)) � s and D(P (2)‖Q(2)) �
log s. Hence, the minimax risk, which is lower bounded by the
difference of the above divergences, can be made arbitrarily
large by letting s → ∞. This example demonstrates that two
pairs of distributions (P (1), Q(1)) and (P (2), Q(2)) can be very
close so that the data samples are almost indistinguishable, but
the KL divergences D(P (1)‖Q(1)) and D(P (2)‖Q(2)) can still
be far away.
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For the case with k > 2, the distributions can be constructed
based on the same idea by distributing one of the mass in
the above (P (1), Q(1)) and (P (2), Q(2)) uniformly on the
remaining k − 1 bins. Thus, it is impossible to estimate the
KL divergence accurately over the setMk under the minimax
setting.

III. AUGMENTED PLUG-IN ESTIMATOR OVERMk,f(k)

Since there does not exist any consistent estimator of
KL divergence over the set Mk, we study KL divergence
estimators over the set Mk,f(k).

The “plug-in” approach is a natural way to estimate the KL
divergence, namely, first estimate the distributions and then
substitute these estimates into the divergence function. This
leads to the following plug-in estimator, i.e., the empirical
divergence

D̂plug−in(M,N) = D(P̂‖Q̂), (15)

where P̂ = (P̂1, . . . , P̂k) and Q̂ = (Q̂1, . . . , Q̂k) denote
the empirical distributions with P̂i = Mi

m and Q̂i = Ni
n ,

respectively, for i = 1, · · · , k.
Unlike the entropy estimation problem, where the plug-in

estimator Ĥplug−in is asymptotically efficient in the “fixed P ,
large n” regime, the direct plug-in estimator D̂plug−in in (15)
of KL divergence has an infinite bias. This is because of the
non-zero probability of Nj = 0 and Mj 6= 0, for some j ∈ [k],
which leads to infinite D̂plug−in.

We can get around the above issue associated with the direct
plug-in estimator as follows. We first add a fraction of a sample
to each mass point of Q, and then normalize and take Q̂′i =
Ni+c
n+kc as an estimate of Qi, where c is a constant. We refer to
Q̂′i as the add-constant estimator [24] of Q. Clearly, Q̂′i is non-
zero for all i. We therefore propose the following “augmented
plug-in” estimator based on Q̂′i

D̂A−plug−in(M,N) =

k∑
i=1

Mi

m
log

Mi/m

(Ni + c)/(n+ kc)
. (16)

Theorem 2 characterizes the worst-case quadratic risk of the
augmented plug-in estimator overMk,f(k). The proof of The-
orem 2 involves the following two propositions, which provide
upper and lower bounds on R(D̂A−plug−in, k,m, n, f(k)),
respectively.

Proposition 1. For all k ∈ N,

R(D̂A−plug−in, k,m, n, f(k))

.

(
kf(k)

n
+
k

m

)2

+
log2 f(k)

m
+
f(k)

n
. (17)

Outline of Proof. The proof consists of separately bounding
the bias and variance of the augmented plug-in estimator. The
details are provided in Appendix A.

It can be seen that in the risk bound (17), the first term
captures the squared bias, and the remaining terms correspond
to the variance.

Proposition 2. For all k ∈ N, m ≥ k, n ≥ 10kf(k), f(k) ≥
10, and c ∈ [ 2

3 ,
5
4 ],

R(D̂A−plug−in, k,m, n, f(k))

&

(
k

m
+
kf(k)

n

)2

+
log2 f(k)

m
+
f(k)

n
. (18)

Outline of Proof. We provide the basic idea of the proof here
with the details provided in Appendix B.

We first derive the terms corresponding to the squared bias
in the lower bound by choosing two different pairs of worst-
case distributions. Note that the bias of the augmented plug-
in estimator can be decomposed into: (1) the bias due to
estimating

∑k
i=1 Pi logPi; and (2) the bias due to estimating∑k

i=1−Pi logQi. Since x log x is a convex function, we can
show that the first bias term is always positive. But the
second bias term can be negative, so that the two bias terms
may cancel out partially or even fully. Thus, to derive the
minimax lower bound, we first determine which bias term
dominates, and then construct a pair of distributions such
that the dominant bias term is either lower bounded by some
positive terms or upper bounded by negative terms.

Case I: If k
m ≥ (1 + ε) ckf(k)

5n , for some ε > 0, which
implies that the number of samples drawn from P is rela-
tively smaller than the number of samples drawn from Q,
the first bias term dominates. Setting P to be uniform and
Q =

(
10

kf(k) , · · · ,
10

kf(k) , 1− 10(k−1)
kf(k)

)
, it can be shown that

the bias is lower bounded by k
m + kf(k)

n in the order sense.
Case II: If k

m < (1 + ε) ckf(k)
5n , which implies that the

number of samples drawn from P is relatively larger than
the number of samples drawn from Q, the second bias term
dominates. Setting P =

( f(k)
4n , · · · ,

f(k)
4n , 1 −

(k−1)f(k)
4n

)
, and

Q =
(

1
4n , · · · ,

1
4n , 1−

k−1
4n

)
, it can be shown that the bias is

upper bounded by −
(
k
m + kf(k)

n

)
in the order sense.

The proof of the terms corresponding to the variance in
the lower bound can be done using the minimax lower bound
given by Le Cam’s two-point method.

IV. MINIMAX QUADRATIC RISK OVERMk,f(k)

Our third main result Theorem 3 characterizes the minimax
quadratic risk (within a constant factor) of estimating KL
divergence over Mk,f(k). In this section, we describe ideas
and central arguments to show this theorem with detailed
proofs relegated to the appendix.

A. Poisson Sampling

The sufficient statistics for estimating D(P‖Q) are the
histograms of the samples M = (M1, . . . ,Mk) and N =
(N1, . . . , Nk), and M and N are multinomial distributed.
However, the histograms are not independent across different
bins, which is hard to analyze. In this subsection, we introduce
the Poisson sampling technique to handle the dependency of
the multinomial distribution across different bins, as in [17]
for entropy estimation. Such a technique is used in our proofs
to develop the lower and upper bounds on the minimax risk
in Sections IV-B and IV-C.
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In Poisson sampling, we replace the deterministic sample
sizes m and n with Poisson random variables m′ ∼ Poi(m)
with mean m and n′ ∼ Poi(n) with mean n, respectively.
Under this model, we draw m′ and n′ i.i.d. samples from P
and Q, respectively. The sufficient statistics Mi ∼ Poi(nPi)
and Ni ∼ Poi(nQi) are then independent across different bins,
which significantly simplifies the analysis.

Analogous to the minimax risk (8), we define its counterpart
under the Poisson sampling model as

R̃∗(k,m, n, f(k))

, inf
D̂

sup
(P,Q)∈Mk,f(k)

E
[(
D̂(M,N)−D(P‖Q)

)2]
, (19)

where the expectation is taken over Mi ∼ Poi(nPi) and
Ni ∼ Poi(nQi) for i ∈ [k]. Since the Poisson sample sizes are
concentrated near their means m and n with high probability,
the minimax risk under Poisson sampling is close to that with
fixed sample sizes as stated in the following lemma.

Lemma 1. There exists a constant b > 1
4 such that

R̃∗(k, 2m, 2n, f(k))− e−bm log2 f(k)− e−bn log2 f(k)

≤ R∗(k,m, n, f(k)) ≤ 4R̃∗(k,m/2, n/2, f(k)). (20)

Proof. See Appendix C.

Thus, in order to show Theorem 3, it suffices to bound
the Poisson risk R̃∗(k,m, n, f(k)). In Section IV-B, a lower
bound on the minimax risk with deterministic sample size is
derived, and in Section IV-C, an upper bound on the minimax
risk with Poisson sampling is derived, which further yields an
upper bound on the minimax risk with deterministic sample
size. It can be shown that the upper and lower bounds match
each other (up to a constant factor).

B. Minimax Lower Bound

In this subsection, we develop the following lower bound
on the minimax risk for the estimation of KL divergence over
the set Mk,f(k).

Proposition 3. If m & k
log k , n & kf(k)

log k , f(k) ≥ log2 k and
log2 n . k,

R∗(k,m, n, f(k))

&

(
k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
. (21)

Outline of Proof. We describe the main idea in the develop-
ment of the lower bound, with the detailed proof provided in
Appendix D.

To show Proposition 3, it suffices to show that the minimax
risk is lower bounded separately by each individual terms in
(21) in the order sense. The proof for the last two terms
requires the Le Cam’s two-point method, and the proof for
the first term requires more general method, as we outline in
the following.

Le Cam’s two-point method: The last two terms in the
lower bound correspond to the variance of the estimator.

The bound R∗(k,m, n, f(k)) & log2 f(k)
m can be shown by

setting

P (1) =
( 1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
, (22)

P (2) =
( 1− ε
3(k − 1)

, . . . ,
1− ε

3(k − 1)
,
2 + ε

3

)
, (23)

Q(1) = Q(2)

=
( 1

3(k − 1)f(k)
, . . . ,

1

3(k − 1)f(k)
, 1− 1

3f(k)

)
, (24)

where ε = 1√
m

.

The bound R∗(k,m, n, f(k)) & f(k)
n can be shown by

choosing

P (1) = P (2) =
( 1

3(k − 1)
, 0, . . . ,

1

3(k − 1)
, 0,

5

6

)
, (25)

Q(1) =
( 1

2(k − 1)f(k)
, . . . ,

1

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (26)

Q(2) =
( 1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, . . . ,

1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (27)

where ε =
√

f(k)
n .

Generalized Le Cam’s method: In order to show
R∗(k,m, n, f(k)) &

(
k

m log k + kf(k)
n log k

)2

, it suffices to show

that R∗(k,m, n, f(k)) &
(

k
m log k

)2

and R∗(k,m, n, f(k)) &(
kf(k)
n log k

)2

. These two lower bounds can be shown by applying
a generalized Le Cam’s method, which involves the following
two composite hypotheses [21]:

H0 : D(P‖Q) ≤ t versus H1 : D(P‖Q) ≥ t+ d.

Le Cam’s two-point approach is a special case of this gener-
alized method. If no test can distinguish H0 and H1 reliably,
then we obtain a lower bound on the quadratic risk with order
d2. Furthermore, the optimal probability of error for composite
hypothesis testing is equivalent to the Bayesian risk under the
least favorable priors. Our goal here is to construct two prior
distributions on (P,Q) (respectively for two hypotheses), such
that the two corresponding divergence values are separated (by
d), but the error probability of distinguishing between the two
hypotheses is large. However, it is difficult to design joint
prior distributions on (P,Q) that satisfy all the above desired
property. In order to simplify this procedure, we set one of
the distributions P and Q to be known. Then the minimax
risk when both P and Q are unknown is lower bounded by
the minimax risk with only either P or Q being unknown. In
this way, we only need to design priors on one distribution,
which can be shown to be sufficient for the proof of the lower
bound.

As shown in [17], the strategy which chooses two random
variables with moments matching up to a certain degree
ensures the impossibility to test in the minimax entropy
estimation problem. The minimax lower bound is then ob-
tained by maximizing the expected separation d subject to the
moment matching condition. For our KL divergence estimation
problem, this approach also yields the optimal minimax lower
bound, but the challenge here that requires special technical
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treatment is the construction of prior distributions for (P,Q)
that satisfy the bounded density ratio constraint.

In order to show R∗(k,m, n, f(k)) &
(

k
m log k

)2

, we set
Q to be the uniform distribution and assume it is known.
Therefore, the estimation of D(P‖Q) reduces to the estimation
of
∑k
i=1 Pi logPi, which is the minus entropy of P . Following

steps similar to those in [17], we can obtain the desired result.
In order to show R∗(k,m, n, f(k)) &

( kf(k)
n log k

)2
, we set

P =
( f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
, (28)

and assume P is known. Therefore, the estimation of D(P‖Q)
reduces to the estimation of

∑k
i=1 Pi logQi. We then properly

design priors on Q and apply the generalized Le Cam’s method
to obtain the desired result.

We note that the proof of Proposition 3 may be strengthened
by designing jointly distributed priors on (P,Q), instead of
treating them separately. This may help to relax or remove
the conditions f(k) ≥ log2 k and log2 n . k in Proposition 3.

C. Minimax Upper Bound via Optimal Estimator

Comparing the lower bound in Proposition 3 with the upper
bound in Proposition 1 that characterizes an upper bound
on the risk for the augmented plug-in estimator, it is clear
that there is a difference of a log k factor in the bias terms,
which implies that the augmented plug-in estimator is not
minimax optimal. A promising approach to fill in this gap is
to design an improved estimator. Entropy estimation [17], [19]
suggests the idea to incorporate a polynomial approximation
into the estimator in order to reduce the bias with price of
the variance. In this subsection, we construct an estimator
using this approach, and characterize an upper bound on the
minimax risk in Proposition 4.

The KL divergence D(P‖Q) can be written as

D(P‖Q) =

k∑
i=1

Pi logPi −
k∑
i=1

Pi logQi. (29)

The first term equals the minus entropy of P , and the minimax
optimal entropy estimator (denoted by D̂1) in [17] can be
applied to estimate it. The major challenge in estimating
D(P‖Q) arises due to the second term. We overcome the
challenge by using a polynomial approximation to reduce
the bias when Qi is small. Under Poisson sampling model,
unbiased estimators can be constructed for any polynomials of
Pi and Qi. Thus, if we approximate Pi logQi by polynomials,
and then construct unbiased estimator for the polynomials,
the bias of estimating Pi logQi is reduced to the error in the
approximation of Pi logQi using polynomials.

A natural idea is to construct polynomial approximation
for |Pi logQi| in two dimensions, exploiting the fact that
|Pi logQi| is bounded by f(k) in the order sense. The authors
of [23] also discuss the idea of a two-dimensional polynomial
approximation. However, it is challenging to find the explicit
form of the two-dimensional polynomial approximation for
estimating KL divergence as shown in [25]. However, for
some problems it is still worth exploring the two-dimensional

approximation directly, as shown in [26], where no one-
dimensional approximation can achieve the minimax rate.

On the other hand, a one-dimensional polynomial approxi-
mation of logQi also appears challenging to develop. First of
all, the function log x on interval (0, 1] is not bounded due to
the singularity point at x = 0. Hence, the approximation of
log x when x is near the point x = 0 is inaccurate. Secondly,
such an approach implicitly ignores the fact that Pi

Qi
≤ f(k),

which implies that when Qi is small, the value of Pi should
also be small.

Another approach is to rewrite the function Pi logQi as
( PiQi )Qi logQi, and then estimate Pi

Qi
and Qi logQi separately.

Although the function Qi logQi can be approximated using
polynomial approximation and then estimated accurately (see
[27, Section 7.5.4] and [17]), it is difficult to find a good
estimator for Pi

Qi
.

Motivated by those unsuccessful approaches, we design
our estimator as follows. We rewrite Pi logQi as Pi Qi logQi

Qi
.

When Qi is small, we construct a polynomial approximation
µL(Qi) for Qi logQi, which does not contain a zero-degree
term. Then, µL(Qi)

Qi
is also a polynomial, which can be used to

approximate logQi. Thus, an unbiased estimator for µL(Qi)
Qi

is constructed. Note that the error in the approximation of
logQi using µL(Qi)

Qi
is not bounded, which implies that the

bias of using unbiased estimator of µL(Qi)
Qi

to estimate logQi
is not bounded. However, we can show that the bias of
estimating Pi logQi is bounded, which is due to the density
ratio constraint f(k). The fact that when Qi is small, Pi is
also small helps to reduce the bias. In the following, we will
introduce how we construct our estimator in detail.

By Lemma 1, we apply Poisson sampling to simplify the
analysis. We first draw m′1 ∼Poi(m), and m′2 ∼Poi(m), and
then draw m′1 and m′2 i.i.d. samples from distribution P , where
we use M = (M1, . . . ,Mk) and M ′ = (M ′1, . . . ,M

′
k) to

denote the histograms of m′1 samples and m′2 samples, respec-
tively. We then use these samples to estimate

∑k
i=1 Pi logPi

following the entropy estimator proposed in [17]. Next, we
draw n′1 ∼Poi(n) and n′2 ∼Poi(n) independently. We then
draw n′1 and n′2 i.i.d. samples from distribution Q, where we
use N = (N1, . . . , Nk) and N ′ = (N ′1, . . . , N

′
k) to denote the

histograms of n′1 samples and n′2 samples, respectively. We
note that Ni∼Poi(nQi), and N ′i∼Poi(nQi).

We then focus on the estimation of
∑k
i=1 Pi logQi. If

Qi ∈ [0, c1 log k
n ], we construct a polynomial approximation

for the function Pi logQi and further estimate the polynomial
function. And if Qi ∈ [ c1 log k

n , 1], we use the bias-corrected
augmented plug-in estimator. We use N ′ to determine whether
to use polynomial estimator or plug-in estimator, and use
N to estimate

∑k
i=1 Pi logQi. Intuitively, if N ′i is large,

then Qi is more likely to be large, and vice versa. Based
on the generation scheme, N and N ′ are independent. Such
independence significantly simplifies the analysis.

We let L = bc0 log kc, where c0 is a constant to be
determined later, and denote the degree-L best polynomial
approximation of the function x log x over the interval [0, 1] as∑L
j=0 ajx

j . We further scale the interval [0, 1] to [0, c1 log k
n ].

Then we have the best polynomial approximation of the
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function x log x over the interval [0, c1 log k
n ] as follows:

γL(x) =

L∑
j=0

ajn
j−1

(c1 log k)j−1
xj −

(
log

n

c1 log k

)
x. (30)

Following the result in [27, Section 7.5.4], the error in approx-
imating x log x by γL(x) over the interval [0, c1 log k

n ] can be
upper bounded as follows:

sup
x∈[0,

c1 log k
n ]

|γL(x)− x log x| . 1

n log k
. (31)

Therefore, we have |γL(0)− 0 log 0| . 1
n log k , which implies

that the zero-degree term in γL(x) satisfies:

a0c1 log k

n
.

1

n log k
. (32)

Now, subtracting the zero-degree term from γL(x) in (30)
yields the following polynomial:

µL(x) , γL(x)− a0c1 log k

n

=

L∑
j=1

ajn
j−1

(c1 log k)j−1
xj −

(
log

n

c1 log k

)
x. (33)

The error in approximating x log x by µL(x) over the interval
[0, c1 log k

n ] can also be upper bounded by 1
n log k , because

sup
x∈[0,

c1 log k
n ]

|µL(x)− x log x|

= sup
x∈[0,

c1 log k
n ]

∣∣∣∣γL(x)− x log x− a0c1 log k

n

∣∣∣∣
≤ sup
x∈[0,

c1 log k
n ]

|γL(x)− x log x|+
∣∣∣∣a0c1 log k

n

∣∣∣∣
.

1

n log k
. (34)

The bound in (34) implies that although µL(x) is not the
best polynomial approximation of x log x, the error in the
approximation by µL(x) has the same order as that by γL(x).
Compared to γL(x), there is no zero-degree term in µL(x),
and hence µL(x)

x is a valid polynomial approximation of log x.
Although the approximation error of log x using µL(x)

x is
unbounded, the error in the approximation of Pi logQi using
Pi

µL(Qi)
Qi

can be bounded. More importantly, by the way
in which we constructed µL(x), Pi

µL(Qi)
Qi

is a polynomial
function of Pi and Qi, for which an unbiased estimator can
be constructed. More specifically, the error in using Pi

µL(Qi)
Qi

to approximate Pi logQi can be bounded as follows:∣∣∣∣PiµL(Qi)

Qi
− Pi logQi

∣∣∣∣ =
Pi
Qi
|µL(Qi)−Qi logQi|

.
f(k)

n log k
, (35)

for Qi ∈ [0, c1 log k
n ]. We further define the factorial moment

of x by (x)j , x!
(x−j)! . If X ∼Poi(λ), E[(X)j ] = λj . Based

on this fact, we construct an unbiased estimator for µL(Qi)
Qi

as
follows:

gL(Ni) =

L∑
j=1

aj
(c1 log k)j−1

(Ni)j−1 − log
n

c1 log k
. (36)

We then construct our estimator for
∑k
i=1 Pi logQi as

follows:

D̂2 =

k∑
i=1

(Mi

m
gL(Ni)1{N ′i≤c2 log k}

+
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
1{N ′i>c2 log k}

)
.

(37)

Note that we set c = 1 for the bias-corrected augmented plug-
in estimator used here, and we do not normalize the estimate of
Qi. When we normalize with n+ k instead of n, the estimate
differs by at most log(1 + k/n) < k/n, which requires a
different bias correction term. For the purpose of convenience,
we do not normalize Qi.

For the term
∑k
i=1 Pi logPi in D(P‖Q), we use the mini-

max optimal entropy estimator proposed in [17]. We note that
γL(x) is the best polynomial approximation of the function
x log x. And an unbiased estimator of γL(x) is as follows:

g′L(Mi) =
1

m

L′∑
j=1

aj
(c′1 log k)j−1

(Mi)j −
(

log
m

c′1 log k

)
Mi.

(38)

Based on g′L(Mi), the estimator D̂1 for
∑k
i=1 Pi logPi is

constructed as follows:

D̂1 =

k∑
i=1

(
g′L(Mi)1{M ′i≤c′2 log k}

+
(Mi

m
log

Mi

m
− 1

2m

)
1{M ′i>c′2 log k}

)
. (39)

Combining the estimator D̂1 in (39) for
∑k
i=1 Pi logPi and

the estimator D̂2 in (37) for
∑k
i=1 Pi logQi, we obtain the

estimator D̃opt for KL divergence D(P‖Q) as

D̃opt = D̂1 − D̂2. (40)

Due to the density ratio constraint, we can show that 0 ≤
D(P‖Q) ≤ log f(k). We therefore construct an estimator
D̂opt as follows:

D̂opt = D̃opt ∨ 0 ∧ log f(k). (41)

The following proposition characterizes an upper bound on
the worse-case quadratic risk of D̂opt.

Proposition 4. If log2 n . k1−ε, where ε is any positive
constant, and logm ≤ C log k for some constant C, then there
exists c0, c1 and c2 depending on C only, such that

R̃(D̂opt,k,m, n, f(k))

.

(
k

m log k
+
kf(k)

n log k

)2

+
log2 f(k)

m
+
f(k)

n
. (42)

Proof. See Appendix E.
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It is clear that the upper bound in Proposition 4 matches
the lower bound in Proposition 3 (up to a constant factor),
and thus the constructed estimator is minimax optimal, and
the minimax risk in Theorem 3 is established.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical results to demon-
strate the performance of our estimators, and compare our
augmented plug-in estimator, minimax optimal estimator with
a number of other KL divergence estimators. 1

To implement the minimax optimal estimator, we first
compute the coefficients of the best polynomial approximation
by applying the Remez algorithm [28]. In our experiments,
we replace the N ′i and M ′i in (37) and (39) with Ni and
Mi, which means we use all the samples for both selecting
estimators (polynomial or plug-in) and estimation. We choose
the constants c0, c1 and c2 following ideas in [19]. More
specifically, we set c0 = 1.2, c2 ∈ [0.05, 0.2] and c1 = 2c2.

We compare the performance of the following five estima-
tors: 1) our augmented plug-in estimator (BZLV A-plugin)
in (16), with c = 1; 2) our minimax optimal estimator
(BZLV opt) in (40); 3) Han, Jiao and Weissman’s modified
plug-in estimator (HJW M-plugin) in [23] ; 4) Han, Jiao
and Weissman’s minimax optimal estimator (HJW opt) [23];
5) Zhang and Grabchak’s estimator (ZG) in [11] which is
constructed for fix-alphabet size setting.

Note that the term f(k) in the minimax optimal estimator
(41) serves to keep the estimate between 0 and log f(k), which
benefits the theoretical analysis. The BZLV opt estimator in
the simulation refers to the one defined in (40), which does
not require the knowledge of f(k), but only the knowledge of
k.

We first compare the performance of the five estimators
under the traditional setting in which we set k = 104 and let
m and n change. We choose two types of distributions (P,Q).
The first type is given by P =

(
1
k ,

1
k , · · · ,

1
k

)
, Q =(

1
kf(k) , · · · ,

1
kf(k) , 1 − k−1

kf(k)

)
, where f(k) = 5. For this

pair of (P,Q), the density ratio is f(k) for all but one of the
bins, which is in a sense the worst case for the KL divergence
estimation problem. We let m range from 103 to 106 and
set n = 3f(k)m. The second type is given by (P,Q) =
(Zipf(1),Zipf(0.8)) and (P,Q) = (Zipf(1),Zipf(0.6)). The
Zipf distribution is a discrete distribution that is commonly
used in linguistics, insurance, and the modeling of rare events.
If P = Zipf(α), then Pi = i−α∑k

j=1 j
−α , for i ∈ [k]. We let

m range from 103 to 106 and set n = 0.5f(k)m, where
f(k) is computed for these two pairs of Zipf distributions,
respectively.

In Fig. 1, we plot the root mean square errors (RMSE)
of the five estimators as a function of the sample size m
for these three pairs of distributions. It is clear from the
figure that our minimax optimal estimator (BZLV opt) and
the HJW minimax optimal estimator (HJW opt) outperform
the other three approaches. Such a performance improvement

1The implementation of our estimator is available at
https://github.com/buyuheng/Minimax-KL-divergence-estimator.

(a) P =
(
1
k
, 1

k
, · · · , 1

k

)
, Q =

(
1

kf(k)
, · · · , 1

kf(k)
, 1− k−1

kf(k)

)
.

(b) P = Zipf(1), Q = Zipf(0.8).

(c) P = Zipf(1), Q = Zipf(0.6).

Fig. 1. Comparison of five estimators under traditional setting with k = 104,
m ranging from 103 to 106 and n � f(k)m.



9

(a) P =
(
1
k
, 1

k
, · · · , 1

k

)
, Q =

(
1

kf(k)
, · · · , 1

kf(k)
, 1− k−1

kf(k)

)
.

(b) P = Zipf(1), Q = Zipf(0.8).

(c) P = Zipf(1), Q = Zipf(0.6).

Fig. 2. Comparison of five estimators under large-alphabet setting with k

ranging from 103 to 106, m = 2k
log k

and n =
kf(k)
log k

.

is significant especially when the sample size is small. Fur-
thermore, our augmented plug-in estimator (BZLV A-plugin)
has a much better performance than the HJW modified plug-
in estimator (HJW M-plugin), because the bias of estimating∑k
i=1 Pi logPi and the bias of estimating

∑k
i=1 Pi logQi may

cancel each other out by the design of our augmented plug-in
estimator. Furthermore, the RMSEs of all the five estimators
converge to zero when the number of samples are sufficiently
large.

We next compare the performance of the five estimators
under the large-alphabet setting, in which we let k range from
103 to 106, and set m = 2k

log k and n = kf(k)
log k . We use the same

three pairs of distributions as in the previous setting. In Fig. 2,
we plot the RMSEs of the five estimators as a function of k.
It is clear from the figure that our minimax optimal estimator
(BZLV opt) and the HJW minimax optimal estimator (HJW
opt) have very small estimation errors, which is consistent with
our theoretical results of the minimax risk bound. However,
the RMSEs of the other three approaches increase with k,
which implies that m = 2k

log k , n = kf(k)
log k are insufficient for

those estimators.
We also observe that our minimax optimal estimator (BZLV

opt) and the HJW minimax optimal estimator (HJW opt)
achieve almost equally good performance in all experiments.
This is to be expected, because the difference between the
two estimators is mainly captured by the threshold between
the use of the polynomial approximation and the use of the
plug-in estimator, i.e., BZLV opt exploits the knowledge of
k to set the threshold, whereas HJW opt sets the threshold
adaptively without using the information about k. In fact, for
typical sample sizes in the experiments, such thresholds in two
estimators are not very different.

VI. CONCLUSION

In this paper, we studied the estimation of KL divergence
between large-alphabet distributions. We showed that there
exists no consistent estimator for KL divergence under the
worst-case quadratic risk over all distribution pairs. We then
studied a more practical set of distribution pairs with bounded
density ratio. We proposed an augmented plug-in estimator,
and characterized the worst-case quadratic risk of such an
estimator. We further designed a minimax optimal estimator by
employing a polynomial approximation along with the plug-
in approach, and established the optimal minimax rate. We
anticipate that the designed KL divergence estimator can be
used in various application contexts including classification,
anomaly detection, community clustering, and nonparametric
hypothesis testing.
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APPENDIX A
PROOF OF PROPOSITION 1

The quadratic risk can be decomposed into the sum of
square of the bias and the variance as follows:

E
[
(D̂A−plug−in(M,N)−D(P‖Q))2

]
=
(
E
[
D̂A−plug−in(M,N)−D(P‖Q)

])2

+ Var
[
D̂A−plug−in(M,N)

]
.

We bound the bias and the variance in the following two
subsections, respectively.

A. Bounds on the Bias

The bias of the augmented plug-in estimator can be written
as ∣∣∣E[D̂A−plug−in(M,N)−D(P‖Q)

]∣∣∣
=

∣∣∣∣∣E
[

k∑
i=1

(Mi

m
log

Mi/m

(Ni + c)/(n+ kc)
− Pi log

Pi
Qi

)]∣∣∣∣∣
≤

∣∣∣∣∣E
[

k∑
i=1

(Mi

m
log

Mi

m
− Pi logPi

)]∣∣∣∣∣
+

∣∣∣∣∣E
[

k∑
i=1

(
Pi log

(n+ kc)Qi
Ni + c

)]∣∣∣∣∣ . (43)

The first term in (43) is the bias of the plug-in estimator
for entropy estimation, which can be bounded as in [14]:∣∣∣∣∣E

[
k∑
i=1

(Mi

m
log

Mi

m
− Pi logPi

)]∣∣∣∣∣
≤ log

(
1 +

k − 1

m

)
<

k

m
. (44)

Next, we lower bound the second term in (43) as follows:

E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]

= −
k∑
i=1

PiE
[
log
(

1 +
Ni + c− (n+ kc)Qi

(n+ kc)Qi

)]
(a)

≥ −
k∑
i=1

PiE
[
Ni + c− (n+ kc)Qi

(n+ kc)Qi

]

=

k∑
i=1

Pi
kc

n+ kc
−

k∑
i=1

Pi
c

(n+ kc)Qi

≥ −ckf(k)

n
, (45)

where (a) is due to the fact that log(1 + x) ≤ x.

Then, we need to find an upper bound for the second term
in (43), which can be rewritten as,

E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]

=

k∑
i=1

Pi

(
log
(
Qi +

c

n

)
− E

[
log

Ni + c

n

])
︸ ︷︷ ︸

A1

+

k∑
i=1

Pi log
(n+ kc)Qi
nQi + c︸ ︷︷ ︸

A2

. (46)

The term A1 can be upper bounded as follows:

A1 =

k∑
i=1

Pi

(
log(Qi +

c

n
)− E log(

Ni + c

n
)

)
(a)

≤
k∑
i=1

f(k)

((
Qi +

c

n

)
log
(
Qi +

c

n

)
−
(
Qi +

c

n

)
E
[

log
Ni + c

n

])
≤f(k)

k∑
i=1

((
Qi +

c

n

)
log
(
Qi +

c

n

)
− E

[Ni + c

n
log

Ni + c

n

]
+

∣∣∣∣E[(Nin −Qi) log
Ni + c

n

]∣∣∣∣ )
(b)
=f(k)

k∑
i=1

(
E
[Ni + c

n
log

nQi + c

Ni + c

]
+

∣∣∣∣E[(Nin −Qi) log
Ni + c

n

]∣∣∣∣ )
≤f(k)

n+ kc

n
E
[ k∑
i=1

Ni + c

n+ kc
log

(Ni + c)/(n+ kc)

(nQi + c)/(n+ kc)

]
+ f(k)

k∑
i=1

∣∣∣∣E[(Nin −Qi) log
Ni + c

n

]∣∣∣∣ , (47)

where (a) follows from the assumption Pi ≤ f(k)Qi and
E
[

log Ni+c
n

]
≤ log

(
Qi + c

n

)
, and (b) is due to the fact

E[Ni] = nQi.

The first term in (47) is the expectation of the KL divergence
between the smoothed empirical distribution and the true
distribution. It was shown in [14] that the KL divergence
between two distributions p and q can be upper bounded by
the χ2 divergence, i.e.,

D(p‖q) ≤ log(1 + χ2(p, q)) ≤ χ2(p, q), (48)

where χ2(p, q) is defined as χ2(p, q) ,
∑k
i=1

(pi−qi)2
qi

. Ap-



11

plying this result to the first term in (47), we obtain

E
[ k∑
i=1

Ni + c

n+ kc
log

(Ni + c)/(n+ kc)

(nQi + c)/(n+ kc)

]
≤

k∑
i=1

E
[
(Ni − nQi)2

]
(n+ kc)(nQi + c)

=

k∑
i=1

nQi(1−Qi)
(n+ kc)(nQi + c)

≤ k − 1

n+ kc
. (49)

For the second term in (47), by the fact E[Ni] = nQi and
the Cauchy-Schwartz inequality, we obtain∣∣∣∣E[(Nin −Qi) log

Ni + c

n

]∣∣∣∣2
=

∣∣∣∣E[(Nin −Qi)( log
Ni + c

n
− E

[
log

Ni + c

n

])]∣∣∣∣2
≤ Qi

n
Var
[

log
Ni + c

n

]
.

1

n2
. (50)

The last step above follows because

Var
[

log
Ni + c

n

]
≤ E

[(
log

Ni + c

nQi + c

)2
]

= E
[(

log
Ni + c

nQi + c

)2

1{Ni≥
nQi
2 }

]
+ E

[(
log

Ni + c

nQi + c

)2

1{Ni<
nQi
2 }

]
(a)

≤ sup
ξ≥nQi2

1

(ξ + c)2
E
[
(Ni − nQi)2

]
+ sup
ξ≥0

1

(ξ + c)2
E
[
(Ni − nQi)21{Ni<

nQi
2 }

]
≤ 4

n2Q2
i

nQi(1−Qi) +
n2Q2

i

c2
P
(
Ni <

nQi
2

)
(b)

≤ 4

nQi
+
n2Q2

i

c2
e−nQi/8

(c)

.
1

nQi
. (51)

where (a) is due to the mean value theorem; (b) uses the
Chernoff bound of Binomial distribution; (c) is due to the fact
that x3e−

x
8 is upper bounded by some constant for x > 0.

Thus, substituting the bounds in (49) and (50) into (47), we
obtain

A1 .
kf(k)

n
. (52)

Furthermore, the term A2 can be upper bounded by,

A2 =

k∑
i=1

Pi log
(

1 +
(kQi − 1)c

nQi + c

)
≤

k∑
i=1

Pi
(kQi)c

nQi + c

≤ ckf(k)

n
. (53)

Combining (45), (52) and (53), we obtain the following
upper bound for the second term in the bias,

∣∣∣∣∣E
(

k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

)∣∣∣∣∣ . kf(k)

n
. (54)

Hence, ∣∣∣∣E(D̂A−plug−in(M,N)−D(P‖Q)

)∣∣∣∣
.

k

m
+
kf(k)

n
. (55)

B. Bounds on the Variance

The variance of the augmented plug-in estimator can be
upper bounded by

Var
[
D̂A−plug−in(M,N)

]
=

k∑
i=1

E
[(Mi

m
log

Mi/m

(Ni + c)/(n+ kc)

− E
[Mi

m
log

Mi/m

(Ni + c)/(n+ kc)

])2
]

≤
k∑
i=1

E
[(Mi

m
log

Mi/m

(Ni + c)/(n+ kc)

− Pi log
Pi

(nQi + c)/(n+ kc)

)2
]

≤ 3

k∑
i=1

E
[(Mi

m

(
log

Mi

m
− logPi

))2
]

︸ ︷︷ ︸
V

(1)
i

+ 3

k∑
i=1

E
[(Mi

m

(
log

Ni + c

n+ kc
− log

nQi + c

n+ kc

))2
]

︸ ︷︷ ︸
V

(2)
i

+ 3

k∑
i=1

E
[((Mi

m
− Pi

)
log

Pi
(nQi + c)/(n+ kc)

)2
]

︸ ︷︷ ︸
V

(3)
i

.

(56)

We first split V (1)
i into two parts,

V
(1)
i =E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi≤mPi}

]

+ E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi>mPi}

]
,

(57)
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where the first term can be upper bounded by using the mean
value theorem,

E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi≤mPi}

]

≤ E

[
M2
i

m2
sup

ξ≥Mi/m

1

ξ2

(Mi

m
− Pi

)2

1{Mi≤mPi}

]

≤ E
[(Mi

m
− Pi

)2
]

=
Pi(1− Pi)

m
. (58)

For the second part, applying the mean value theorem, we
have

E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi>mPi}

]

≤ E

[
M2
i

m2
sup
ξ≥Pi

1

ξ2

(Mi

m
− Pi

)2

1{Mi>mPi}

]

≤ 1

m2P 2
i

E
[(
Mi

(Mi

m
− Pi

))2
]

=
Pi(1− Pi)

m
− 7Pi(1− Pi)

m2
+ 5

1− Pi
m2

+
12Pi − 7

m3
+

1

m3Pi

≤ Pi
m

+
5

m2
+

12Pi
m3

+
1

m3Pi
. (59)

If Pi ≥ 1
m , we have

E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi>mPi,mPi≥1}

]
.
Pi
m

+
1

m2
. (60)

If Pi < 1
m , a more careful bound can be derived as follows:

E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi>mPi,mPi<1}

]

=

m∑
j=1

(
m

j

)
(1− Pi)m−jP ji

j2

m2
log2 j

mPi
· 1{Pi< 1

m}

=

m∑
j=1

(mPi)
j

j!

m!(1− Pi)m−j

mj(m− j)!
j2

m2
log2 j

mPi
· 1{Pi< 1

m}

≤
m∑
j=1

(mPi)
j

j!

j2

m2
log2 j

mPi
· 1{Pi< 1

m}
, (61)

where the last step follows from the facts that m!
mj(m−j)! ≤ 1

and (1− Pi)m−j ≤ 1. Note that mPi < 1,

sup
mPi≤1

(mPi)
j

j!

j2

m2
log2 j

mPi

≤ 2 sup
mPi≤1

(mPi)
j

j!

j2

m2
(log2 j + log2mPi)

≤ 2 log2 j

j!

j2

m2
+ 2 sup

mPi≤1

mPi log2mPi
j!

j2

m2

≤ 2(log2 j + 1)

j!

j2

m2
, (62)

where we use the fact that xj log2 x < x log2 x < 1, for
x ∈ (0, 1). Hence,

E

[(
Mi

m

(
log

Mi

m
− logPi

))2

1{Mi>mPi,mPi<1}

]

≤ 2

m2

∞∑
j=1

j2(log2 j + 1)

j!
<

22

m2
. (63)

The last step above follows because the infinite sum converges
to ∞∑

j=1

j2(log2 j + 1)

j!
≈ 10.24 < 11. (64)

Combining (58), (60) and (63), we upper bound V (1)
i as

V
(1)
i .

Pi
m

+
1

m2
. (65)

We next proceed to bound V (2)
i , which can be written as

V
(2)
i =E

[M2
i

m2

]
E
[(

log
Ni + c

nQi + c

)2
]

=

(
Pi(1− Pi)

m
+ P 2

i

)
E
[(

log
Ni + c

nQi + c

)2
]
. (66)

Using the result in (51), V (2)
i can be upper bounded by

V
(2)
i .

(
Pi
m

+ P 2
i

)
1

nQi
.
f(k)

n

( 1

m
+ Pi

)
. (67)

We further derive the following bound on V (3)
i

V
(3)
i ≤ Pi

m
log2 Pi(n+ kc)

nQi + c

=
Pi
m

(
log

Pi
Qi

+ log
Qi(n+ kc)

nQi + c

)2

≤ 2Pi
m

log2 Pi
Qi

+
2Pi
m

log2 Qi(n+ kc)

nQi + c
. (68)

The first term in (68) can be upper bounded by

2Pi
m

log2 Pi
Qi

=
2

m

(
Pi log2 Pi

Qi
1{ 1

f(k)
≤ Pi
Qi
≤f(k)}

+Qi
Pi
Qi

log2 Pi
Qi

1{ PiQi≤
1

f(k)
}

)
.
Pi log2 f(k)

m
+
Qi
m
, (69)

where the last inequality follows because x log2 x is bounded
by a constant on the interval [0, 1/f(k)].

We bound the second term in (68) by splitting it into two
parts,

2Pi
m

log2 Qi(n+ kc)

nQi + c

=
2Pi
m

(
log2 Qi(n+ kc)

nQi + c

)
1{Qi> 1

k }

+
2Pi
m

(
log2 nQi + c

Qi(n+ kc)

)
1{Qi≤ 1

k }
. (70)
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The first term in (70) can be bounded as follows,

2Pi
m

(
log2 Qi(n+ kc)

nQi + c

)
1{Qi> 1

k }

=
2Pi
m

log2

(
1 +

(kQi − 1)c

nQi + c

)
1{Qi> 1

k }

≤ 2Pi
m

(
kQic

nQi + c

)2

.
k2Pi
mn2

. (71)

The second term in (70) requires more delicate analysis. We
first bound it as

2Pi
m

(
log2 nQi + c

Qi(n+ kc)

)
1{Qi≤ 1

k }

≤ 2f(k)

m
Qi

(
log2 n+ c/Qi

n+ kc

)
1{Qi≤ 1

k }
. (72)

Consider the function h(q) = q log2 n+c/q
n+kc , for q ∈ [0, 1

k ]. It
can be shown that the maximizer q∗ of h(q) on the interval
[0, 1

k ] satisfies

log
n+ c/q∗

n+ kc
=

2c

nq∗ + c
.

Then,

2Pi
m

(
log2 nQi + c

Qi(n+ kc)

)
1{Qi≤ 1

k }

≤ 2f(k)

m
q∗

4c2

(nq∗ + c)2
.
f(k)

mn
, (73)

where the last inequality follows because q∗

(nq∗+c)2 ≤
1

4cn , for
q∗ ∈ [0, 1

k ].
Combining (69), (71) and (73), V (3)

i is upper bounded by

V
(3)
i .

Pi log2 f(k)

m
+
Qi
m

+
k2Pi
mn2

+
f(k)

mn
. (74)

A combination of the upper bounds on V (1)
i , V (2)

i and V (3)
i

yields

Var
[
D̂A−plug−in(M,N)

]
≤ 3

k∑
i=1

V
(1)
i + 3

k∑
i=1

V
(2)
i + 3

k∑
i=1

V
(3)
i

.
k∑
i=1

(
Pi
m

+
1

m2
+
f(k)

n

( 1

m
+ Pi

)
+
Pi log2 f(k)

m
+
Qi
m

+
k2Pi
mn2

+
f(k)

mn

)
.

k2

m2
+
kf(k)

mn
+

k2

mn2
+
f(k)

n
+

log2 f(k)

m
. (75)

Note that the terms kf(k)
nm and k2

mn2 in the variance can be
further upper bounded as follows

kf(k)

mn
≤ k

m

kf(k)

n
≤
(
k

m
+
kf(k)

n

)2

,

k2

mn2
≤ k

m

1

n

kf(k)

n
≤
(
k

m
+
kf(k)

n

)2

. (76)

Combining (55), (75) and (76), we obtain the following up-
per bound on the worst-case quadratic risk for the augmented
plug-in estimator:

R(D̂A−plug−in,k,m, n, f(k))

.

(
k

m
+
kf(k)

n

)2

+
log2 f(k)

m
+
f(k)

n
. (77)

APPENDIX B
PROOF OF PROPOSITION 2

In this section, we derive the lower bound on the worst-case
quadratic risk of the augmented plug-in estimator over the set
Mk,f(k). We first prove the lower bound terms corresponding
to the squared bias by choosing two different pairs of worst-
case distributions. We then prove the lower bound terms
corresponding to the variance using the minimax lower bound
given by Le Cam’s two-point method.

A. Bounds on the Terms Corresponding to the Squared Bias

It can be shown that the mean square error is lower bounded
by the squared bias given as follows:

E
[(
D̂A−plug−in(M,N)−D(P‖Q)

)2]
≥
(
E
[
D̂A−plug−in(M,N)−D(P‖Q)

])2

. (78)

We first decompose the bias into two parts:

E[D̂A−plug−in(M,N)−D(P‖Q)]

= E

[
k∑
i=1

(Mi

m
log

Mi

m
− Pi logPi

)]

+ E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]
. (79)

The first term in (79) is the bias of the plug-in entropy
estimator. As shown in [17] and [14], the worst-case quadratic
risk of the first term can be bounded as follows if m ≥ k holds,

E

[
k∑
i=1

(Mi

m
log

Mi

m
− Pi logPi

)]
≥ k

2m
, (80)

if P is the uniform distribution,

E

[
k∑
i=1

(Mi

m
log

Mi

m
− Pi logPi

)]
≤ log

(
1 +

k − 1

m

)
,

(81)

for any P .
In the proof of Proposition 1, (45), (47) and (53) show that

the second term in (79) can be bounded by

− ckf(k)

n
≤ E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]
.
kf(k)

n
. (82)

Note that the bias of the augmented plug-in estimator can be
decomposed into: 1) the bias due to estimating

∑k
i=1 Pi logPi;

and 2) the bias due to estimating
∑k
i=1−Pi logQi. As shown

above, the first bias term is always positive, but the second bias
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term can be negative. Hence, the two bias terms may cancel
out partially or even fully. Thus, to prove the minimax lower
bound, we first determine which bias term dominates, and
then construct a pair of distributions such that the dominant
bias term is either lower bounded by positive terms or upper
bounded by negative terms.

We recall (46), and rewrite it here for convenience.

E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]

=

k∑
i=1

Pi

(
log
(
Qi +

c

n

)
− E

[
log

Ni + c

n

])
︸ ︷︷ ︸

A1

+

k∑
i=1

Pi log
(n+ kc)Qi
nQi + c︸ ︷︷ ︸

A2

We next derive tighter bounds for the terms A1 and A2 using
two different pairs of worst-case distributions by considering
the following two cases.

Case I: If k
m > (1 + ε) ckf(k)

5n , where ε > 0 is a constant,
and which implies that the number of samples drawn from P
is relatively smaller than the number of samples drawn from
Q, then the first bias term dominates. To obtain a tight lower
bound on the second term in (79), we choose the following
(P,Q):

P =

(
1

k
,

1

k
, · · · , 1

k

)
,

Q =

(
10

kf(k)
, · · · , 10

kf(k)
, 1− 10(k − 1)

kf(k)

)
. (83)

It can be verified that P and Q are distributions and satisfy
the density ratio constraint, if f(k) ≥ 10. For this (P,Q) pair,
A1 can be lower bounded by

A1 =

k∑
i=1

PiE
[

log
nQi + c

Ni + c

]
= −

k∑
i=1

PiE
[

log
(

1 +
Ni − nQi
nQi + c

)]
≥ −

k∑
i=1

Pi
E[Ni]− nQi
nQi + c

= 0. (84)

Due to log(1 + x) ≥ x
1+x , we lower bound A2 by

A2 ≥
k∑
i=1

Pi
(kQi − 1)c

(n+ kc)Qi

≥
k−1∑
i=1

Pi
(kQi − 1)c

(n+ kc)Qi

≥
k−1∑
i=1

−Pi
c

(n+ kc)Qi

= − (k − 1)f(k)c

10(n+ kc)
. (85)

Thus, for the (P,Q) pair in (83), we have

E

[
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

]

= A1 +A2 ≥ −
c(k − 1)f(k)

10(n+ kc)
≥ −ckf(k)

10n
. (86)

Note that for the (P,Q) in (83), P is an uniform distribution.
Thus, we combine the bound (80) with (86), and obtain

E[D̂A−plug−in(M,N)−D(P‖Q)]

≥ k

2m
− ckf(k)

10n
≥ εk

2(1 + ε)m
, (87)

where the last step follows from the assumption

k

m
> (1 + ε)

ckf(k)

5n
, ε > 0. (88)

Thus,

E[D̂A−plug−in(M,N)−D(P‖Q)] &
k

m
� k
m

+
kf(k)

n
, (89)

where the last step holds under condition (88).
Case II: If k

m ≤ (1 + ε) ckf(k)
5n , which implies that the

number of samples drawn from P is relatively larger than the
number of samples drawn from Q, then the second bias term
dominates. We choose the following (P,Q):

P =

(
f(k)

4n
, · · · , f(k)

4n
, 1− (k − 1)f(k)

4n

)
,

Q =

(
1

4n
, · · · , 1

4n
, 1− k − 1

4n

)
. (90)

By the assumption that n ≥ 10kf(k), it can be verified that P
and Q are distributions and satisfy the density ratio constraint.
For this (P,Q) pair, A1 can be upper bounded using the
following lemma.

Lemma 2. [29, Equation 10.3.4] If f is twice continuously
differentiable, then for X ∼ B(n, x)

∣∣f(x)− E[f(X/n)]
∣∣ ≤ ‖f ′′‖∞x(1− x)

2n
, x ∈ [0, 1].

Let f(x) = log(x+ c
n ), and g(x) = x log(x+ c

n ). It can be
shown that ‖f (2)‖∞ = n2

c2 and ‖g(2)‖∞ = 2n
c . Hence,

∣∣∣∣log
(
x+

c

n

)
− E

[
log

X + c

n

]∣∣∣∣ ≤ nx(1− x)

2c2
, (91)∣∣∣∣x log

(
x+

c

n

)
− E

[X
n

log
X + c

n

]∣∣∣∣ ≤ x(1− x)

c
. (92)
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Thus, A1 can be upper bounded by

A1 =

k−1∑
i=1

Pi

(
log
(
Qi +

c

n

)
− E

[
log

Ni + c

n

])
+ Pk

(
log
(
Qk +

c

n

)
− E

[
log

Nk + c

n

])
(a)

≤
k−1∑
i=1

Pi

∣∣∣∣log
(
Qi +

c

n

)
− E

[
log

Ni + c

n

]∣∣∣∣
+

∣∣∣∣Qk log
(
Qk +

c

n

)
−QkE

[
log

Nk + c

n

]∣∣∣∣
(b)

≤
k−1∑
i=1

Pi
nQi(1−Qi)

2c2

+

∣∣∣∣Qk log
(
Qk +

c

n

)
− E

[Nk
n

log
Nk + c

n

]∣∣∣∣
+

∣∣∣∣E[(Nkn −Qk) log
Nk + c

n

]∣∣∣∣
(c)

≤ (k − 1)f(k)

32c2n
+
Qk(1−Qk)

c

+

∣∣∣∣E[(Nkn −Qk) log
Nk + c

n

]∣∣∣∣
≤kf(k)

32c2n
+

k

4cn
+

∣∣∣∣E[(Nkn −Qk) log
Nk + c

n

]∣∣∣∣ , (93)

where (a) is due to the fact Pk ≤ Qk for the (P,Q) given in
(90); and (b) and (c) follow from (91) and (92), respectively.

The last term in (93) can be further bounded by using steps
similar to those in (50) and (51) as follows:

∣∣∣∣E[(Nkn −Qk) log
Nk + c

n

]∣∣∣∣2
=

∣∣∣∣E [(Nkn −Qk)( log
Nk + c

n
− E

[
log

Nk + c

n

])]∣∣∣∣2
(a)

≤ Qk(1−Qk)

n
Var
[

log
Nk + c

n

]
(b)

≤ Qk(1−Qk)

n

(
4

nQk
+
n2Q2

k

c2
e−nQk/8

)
(c)

≤ Qk(1−Qk)

n

(
4

nQk
+

4

c2nQk

)
≤ (1 +

1

c2
)
k

n3
, (94)

where (a) follows from the Cauchy-Schwartz inequality; (b)
follows from (51); and (c) follows because x3e−x/8 < 4 for
x > 100, nQk = n− k−1

4 , and n ≥ 10kf(k).

Combining (93) and (94), we have

A1 ≤
kf(k)

32c2n
+

k

4cn
+ (

1

c
+ 1)

√
k

n3/2
. (95)

We next bound A2 as follows,

A2 =
(k − 1)f(k)

4n
log

1 + kc/n

1 + 4c

+

(
1− (k − 1)f(k)

4n

)
log

n+ kc

n+ 4cn/(4n− k + 1)
(a)

≤ (k − 1)f(k)

4n
log

1 + c/10

1 + 4c
+ log

n+ kc

n+ 4cn/(4n− k + 1)
(b)

≤ (k − 1)f(k)

4n
log

1 + c/10

1 + 4c
+
kc− 4cn/(4n− k + 1)

n+ 4cn/(4n− k + 1)

≤kf(k)

4n
log

1 + c/10

1 + 4c
+
kc

n
, (96)

where (a) is due to the assumption n ≥ 10kf(k); and (b)
follows because log(1 + x) ≤ x.

Thus, for the (P,Q) pair in (90), we have

E

(
k∑
i=1

Pi log
(n+ kc)Qi
Ni + c

)

≤ kf(k)

n

(1

4
log

1 + c/10

1 + 4c
+

1

32c2

+
c+ 1/(4c)

f(k)
+
c+ 1

c

1√
nkf(k)

)
. (97)

Since 1√
nk

converges to zero as n and k go to infinity, we
omit it in the following analysis.

For the distribution pair in (90), we combine (81) and (97),
and obtain

E[D̂A−plug−in(M,N)−D(P‖Q)]

≤ k

m
+
kf(k)

n

(
1

4
log

1 + c/10

1 + 4c
+

1

32c2
+
c+ 1/(4c)

f(k)

)
.

(98)

Note that under the assumption n ≥ 10kf(k) and f(k) ≥ 10,
we can always find ε > 0, such that

(1− ε)
(

1

4
log

1 + 4c

1 + c/10
− 1

32c2
− c+ 1/(4c)

f(k)

)
> (1 + ε)

c

5
≥ k/m

kf(k)/n
(99)

holds for all 2
3 ≤ c ≤ 5

4 . Then, the worst-case bias of the
augmented plug-in estimator for the (P,Q) in (90) is upper
bounded by

E[D̂A−plug−in(M,N)−D(P‖Q)]

≤ −
(

1

4
log

1 + 4c

1 + c/10
− 1

32c2
− c+ 1/(4c)

f(k)

)
εkf(k)

n

. −kf(k)

n
�− kf(k)

n
− k

m
, (100)

where the last step holds under condition (99).
Following (89) and (100), we conclude that

R(D̂A−plug−in, k,m, n, f(k))

= sup
(P,Q)∈Mk,f(k)

E[(D̂A−plug−in(M,N)−D(P‖Q))2]

&

(
kf(k)

n
+
k

m

)2

. (101)
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B. Bounds on the Terms Corresponding to the Variance

1) Proof of R(D̂A−plug−in, k,m, n, f(k)) & log2 f(k)
m : We

use the minimax risk as a lower bound on the worst-case
quadratic risk for the augmented plug-in estimator. To this
end, we apply Le Cam’s two-point method. We first construct
two pairs of distributions as follows:

P (1) =
( 1

3(k − 1)
, . . . ,

1

3(k − 1)
,
2

3

)
, (102)

P (2) =
( 1− ε
3(k − 1)

, . . . ,
1− ε

3(k − 1)
,
2 + ε

3

)
, (103)

Q(1) = Q(2)

=
( 1

3(k − 1)f(k)
, . . . ,

1

3(k − 1)f(k)
, 1− 1

3f(k)

)
, (104)

The above distributions satisfy:

D(P (1)‖Q(1)) =
1

3
log f(k) +

2

3
log

2f(k)

3f(k)− 1
, (105)

D(P (2)‖Q(2)) =
1− ε

3
log(1− ε)f(k) +

2 + ε

3
log

(2 + ε)f(k)

3f(k)− 1
,

(106)

D(P (1)‖P (2)) =
1

3
log

1

1− ε
+

2

3
log

2

2 + ε
. (107)

We set ε = 1√
m

, and obtain

D(P (1)‖P (2))

=
1

3
log
(

1 +
ε

1− ε

)
+

2

3
log
(

1− ε

2 + ε

)
≤ ε

3(1− ε)
− 2

3

ε

2 + ε

=
ε2

(1− ε)(2 + ε)
≤ 1

m
. (108)

Furthermore,

D(P (1)‖Q(1))−D(P (2)‖Q(2))

=
1

3
log

1

1− ε
+
ε

3
log(1− ε)f(k)

+
2

3
log

2

2 + ε
− ε

3
log

2 + ε

3− 1
f(k)

=
1

3
log

1

1− ε
4

(2 + ε)2
− ε

3
log

2 + ε

(1− ε)(3f(k)− 1)
, (109)

which implies that(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
& ε2 log2 2

(3f(k)− 1)
� log2 f(k)

m
, (110)

as m → ∞. Now applying Le Cam’s two-point method, we
obtain

R(D̂A−plug−in, k,m, n, f(k))

≥ R∗(k,m, n, f(k))

≥ 1

16

(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
exp

(
−mD(P (1)‖P (2))

)
&

log2 f(k)

m
. (111)

2) Proof of R(D̂A−plug−in, k,m, n, f(k)) & f(k)
n : We

construct two pairs of distributions as follows:

P (1) = P (2) =
( 1

3(k − 1)
, 0, . . . ,

1

3(k − 1)
, 0,

5

6

)
, (112)

Q(1) =
( 1

2(k − 1)f(k)
, . . . ,

1

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (113)

Q(2) =
( 1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, . . . ,

1− ε
2(k − 1)f(k)

,
1 + ε

2(k − 1)f(k)
, 1− 1

2f(k)

)
, (114)

It can be verified that if ε < 1
3 , then the density ratio is

bounded by 2f(k)
3(1−ε) ≤ f(k). We set ε =

√
f(k)
n . The above

distributions satisfy:

D(Q(1)‖Q(2)) =
1

4f(k)
log

1

1 + ε
+

1

4f(k)
log

1

1− ε
, (115)

D(P (1)‖Q(1))−D(P (2)‖Q(2))

=
1

6
log(1− ε) ≤ − ε

6
. (116)

Due to ε =
√

f(k)
n , it can be shown that

D(Q(1)‖Q(2)) =
1

4f(k)
log(1 +

ε2

1− ε2
)

≤ 1

4f(k)

ε2

1− ε2
<

ε2

f(k)
=

1

n
. (117)

We apply Le Cam’s two-point method, and obtain

R∗(k,m, n, f(k))

≥ 1

16

(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
· exp

(
−mD(P (1)‖P (2))− nD(Q(1)‖Q(2))

)
& (D(P (1)‖Q(1))−D(P (2)‖Q(2)))2 & ε2

=
f(k)

n
. (118)

APPENDIX C
PROOF OF LEMMA 1

We prove the inequality (20) that connects the minimax risk
(8) under the deterministic sample size to the risk (19) under
the Poisson sampling model. We first prove the left hand side
of (20). Recall that 0 ≤ R∗(k,m, n, f(k)) ≤ log2 f(k) and
R∗(k,m, n, f(k)) is decreasing with m,n. Therefore,

R̃∗(k, 2m, 2n, f(k))

=
∑
i≥0

∑
j≥0

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

=
∑

i≥m+1

∑
j≥n+1

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

+
∑
i≥0

n∑
j=0

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

+

m∑
i=0

∑
j≥n+1

R∗(k, i, j, f(k))Poi(2m, i)Poi(2n, i)

≤ R∗(k,m, n, f(k)) + e−(1−log 2)n log2 f(k)

+ e−(1−log 2)m log2 f(k), (119)
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where the last inequality follows from the Chernoff bound
P[Poi(2n) ≤ n] ≤ exp(−(1 − log 2)n). We then prove the
right hand side of (20). By the minimax theorem,

R∗(k,m, n, f(k)) = sup
π

inf
D̂

E[(D̂(M,N)−D(P‖Q))2],

(120)
where π ranges over all probability distribution pairs on
Mk,f(k) and the expectation is over (P,Q) ∼ π.

Fix a prior π and an arbitrary sequence of estimators
{D̂m,n} indexed by the sample sizes m and n. It is
unclear whether the sequence of Batesian risks αm,n =
E[(D̂m,n(M,N)−D(P‖Q))2] with respect to π is decreasing
in m or n. However, we can define {α̃i,j} as

α̃0,0 = α0,0, α̃i,j = αi,j ∧ αi−1,j ∧ αi,j−1. (121)

Further define,

D̃m,n(M,N) ,


D̂m,n(M,N), if α̃m,n = αm,n;
D̂m−1,n(M,N), if α̃m,n = αm−1,n;
D̂m,n−1(M,N), if α̃m,n = αm,n−1.

(122)
Then for m′ ∼ Poi(m/2) and n′ ∼ Poi(n/2), and (P,Q) ∼
π, we have

E
[(
D̂m′,n′(M

′, N ′)−D(P‖Q)
)2]

=
∑
i≥0

∑
j≥0

E
[(
D̂i,j(M

′, N ′)−D(P‖Q)
)2]

Poi(
m

2
, i)Poi(

n

2
, j)

≥
∑
i≥0

∑
j≥0

E
[(
D̃i,j(M,N)−D(P‖Q)

)2]
Poi(

m

2
, i)Poi(

n

2
, j)

≥
m∑
i=0

n∑
j=0

E
[(
D̃i,j(M,N)−D(P‖Q)

)2]
Poi(

m

2
, i)Poi(

n

2
, j)

(a)

≥ 1

4
E
[(
D̃m,n(M,N)−D(P‖Q)

)2]
, (123)

where (a) is due to the Markov’s inequality: P[Poi(n/2) ≥
n] ≤ 1

2 . If we take infimum of the left hand side over D̂m,n,
then take supremum of both sides over π, and use the Batesian
risk as a lower bound on the minimax risk, then we can show
that

R̃∗(k,
m

2
,
n

2
, f(k)) ≥ 1

4
R∗(k,m, n, f(k)). (124)

APPENDIX D
PROOF OF PROPOSITION 3

A. Bounds Using Le Cam’s Two-Point Method

1) Proof of R∗(k,m, n, f(k)) & log2 f(k)
m : Following the

same steps in Appendix B-B1, we can show

R∗(k,m, n, f(k)) &
(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
&

log2 f(k)

m
. (125)

2) Proof of R∗(k,m, n, f(k)) & f(k)
n : Following the same

steps in Appendix B-B2, we can show

R∗(k,m, n, f(k)) &
(
D(P (1)‖Q(1))−D(P (2)‖Q(2))

)2
&
f(k)

n
. (126)

B. Bounds Using Generalized Le Cam’s Method

1) Proof of R∗(k,m, n, f(k)) & ( k
m log k )2: Let Q(0)

denote the uniform distribution. The minimax risk is lower
bounded as follows:

R∗(k,m, n, f(k))

= inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2]

≥ inf
D̂

sup
(P,Q(0))∈Mk,f(k)

E[(D̂(M,Q(0))−D(P‖Q(0)))2]

, R∗(k,m,Q(0), f(k)). (127)

If Q = Q(0) is known, then estimating the KL divergence
between P and Q(0) is equivalent to estimating the entropy of
P , because

D(P‖Q(0)) =

k∑
i=1

(
Pi logPi + Pi log

1

Q
(0)
i

)
=−H(P ) + log k. (128)

Hence, R∗(k,m,Q(0), f(k)) is equivalent to the following
minimax risk of estimating the entropy of distribution P with
Pi ≤ f(k)

k for i ∈ [k] such that the ratio between P and Q(0)

is upper bounded by f(k).

R∗(k,m,Q(0), f(k)) = inf
Ĥ

sup
P :Pi≤ f(k)k

E[(Ĥ(M)−H(P ))2].

(129)

If m & k
log k , as shown in [17], the minimax lower bound for

estimating entropy is given by

inf
Ĥ

sup
P

E[(Ĥ(M)−H(P ))2] & (
k

m log k
)2. (130)

The supremum is achieved for Pi ≤ log2 k
k . Comparing this

result to (129), if f(k) ≥ log2 k, then

log2 k

k
≤ f(k)

k
. (131)

Thus, we can use the minimax lower bound of entropy
estimation as the lower bound for divergence estimation on
Mk,f(k),

R∗(k,m, n, f(k)) & R∗(k,m,Q(0), f(k)) & (
k

m log k
)2.

(132)

2) Proof of R∗(k,m, n, f(k)) & ( kf(k)
n log k )2: Since n &

kf(k)
log k , we assume that n ≥ C′kf(k)

log k . If C ′ ≥ 1, we set
P = P (0), where

P (0) =

(
f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
. (133)

Then, we have 0 ≤ 1− (k−1)f(k)
n log k ≤ 1. Hence, P (0) is a well-

defined probability distribution. If C ′ < 1, we set P (0) as
follows:

P (0) =

(
C ′f(k)

n log k
, . . . ,

C ′f(k)

n log k
, 1− C ′(k − 1)f(k)

n log k

)
.

(134)
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which is also a well defined probability distribution. In the
following, we focus on the case that C ′ ≥ 1. And the results
can be easily generalized to the case when C ′ < 1.

If P = P (0) given in (133) and is known, then estimating
the KL divergence between P and Q is equivalent to estimat-
ing the following function:

D(P (0)‖Q) =

k−1∑
i=1

f(k)

n log k
log

f(k)
n log k

Qi

+ (1− (k − 1)f(k)

n log k
) log

1− (k−1)f(k)
n log k

Qk
,

(135)

which is further equivalent to estimating
k−1∑
i=1

f(k)

n log k
log

1

Qi
+ (1− (k − 1)f(k)

n log k
) log

1

Qk
. (136)

We further consider the following subset of Mk,f(k):

Nk,f(k) , {(P (0), Q) ∈Mk,f(k) :

1

n log k
≤Qi ≤

c4 log k

n
,∀ i ∈ [k − 1]}, (137)

where c4 is a constant defined later.
The minimax risk can be lower bounded as follows:

R∗(k,m, n, f(k))

= inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2]

≥ inf
D̂

sup
(P (0),Q)∈Nk,f(k)

E[(D̂(P (0), N)−D(P (0)‖Q))2]

, R∗N (k, P (0), n, f(k)). (138)

For 0 < ε < 1, we introduce the following set of
approximate probability vectors:

Nk,f(k)(ε) , {(P (0),Q) : Q ∈Rk+, |
k∑
i=1

Qi − 1| ≤ ε,

1

n log k
≤ Qi ≤

c4 log k

n
,∀i ∈ [k − 1]}. (139)

Note that Q is not a distribution. Furthermore, the set
Nk,f(k)(ε) reduces to Nk,f(k) if ε = 0.

We further consider the minimax quadratic risk (138) under
Poisson sampling on the set Nk,f(k)(ε) as follows:

R̃∗N (k, P (0), n, f(k), ε)

= inf
D̂

sup
(P (0),Q)∈Nk,f(k)(ε)

E[(D̂(P (0), N)−D(P (0),Q))2],

(140)

where Ni ∼ Poi(nQi), for i ∈ [k]. The risk (140) is connected
to the risk (138) for multinomial sampling by the following
lemma.

Lemma 3. For any k, n ∈ N and ε < 1/3,

R∗N (k, P (0),
n

2
, f(k)) ≥1

2
R̃∗N (k, P (0), n, f(k), ε)

− log2 f(k) exp (− n

50
)− log2(1 + ε).

(141)

Proof. See Appendix D-B3.

For (P (0),Q) ∈ Nk,f(k)(ε), we then apply the generalized
Le Cam’s method which involves two composite hypotheses
as follows:

H0 : D(P (0)‖Q) ≤ t versus

H1 : D(P (0)‖Q) ≥ t+
(k − 1)f(k)

n log k
d. (142)

In the following we construct tractable prior distributions. Let
V and V ′ be two R+ valued random variables defined on
the interval [ 1

n log k ,
c4 log k
n ] and have equal mean E(V ) =

E(V ′) = α. We construct two random vectors

Q = (V1, . . . , Vk−1, 1− (k − 1)α),

Q′ = (V ′1 , . . . , V
′
k−1, 1− (k − 1)α) (143)

consisting of k − 1 i.i.d. copies of V and V ′ and a determin-
istic term 1 − (k − 1)α, respectively. It can be verified that
(P (0),Q), (P (0),Q′) ∈ Nk,f(k)(ε) satisfy the density ratio
constraint. Then the averaged divergences are separated by
the distance of

|E[D(P (0)‖Q)]− E[D(P (0)‖Q′)]|

=
(k − 1)f(k)

n log k
|E[log V ]− E[log V ′]|. (144)

Thus, if we construct V and V ′ such that

|E[log V ]− E[log V ′]| ≥ d, (145)

then the constructions in (143) satisfy (142), serving as the
two composite hypotheses which are separated.

By such a construction, we have the following lemma via
the generalized Le Cam’s method:

Lemma 4. Let V and V ′ be random variables such that V ,
V ′ ∈ [ 1

n log k ,
c4 log k
n ], E[V ] = E[V ′] = α, and |E[log V ] −

E[log V ′]| ≥ d. Then,

R̃∗N (k, P
(0), n, f(k), ε)

≥
( (k−1)f(k)d

n log k
)2

32

(
1− 2(k − 1)c24 log

2 k

n2ε2
− 32(logn+ log log k)2

(k − 1)d2

− kTV(E[Poi(nV )],E[Poi(nV ′)])
)
, (146)

where TV(P,Q) = 1
2

∑k
i=1 |Pi − Qi| denotes the total

variation between two distributions.

Proof. See Appendix D-B4.

To establish the impossibility of hypothesis testing between
V and V ′, we also have the following lemma which provides
an upper bound on the total variation of the two mixture
Poisson distributions.

Lemma 5. [17, Lemma 3] Let V and V ′ be random variables
on [ 1

n log k ,
c4 log k
n ]. If E[V j ] = E[V ′j ] for j = 1, . . . , L, and

L > 2c4 log k
n , then,

TV (E[Poi(nV )],E[Poi(nV ′)])

≤ 2 exp

(
−
(L

2
log

L

2ec4 log k
− 2c4 log k

))
∧ 1.

(147)
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What remains is to construct V and V ′ to maximize d =
|E[log V ′] − E[log V ]|, subject to the constraints in Lemma
5. Consider the following optimization problem over random
variables X and X ′.

E∗ = maxE[logX]− E[logX ′]

s.t. E[Xj ] = E[X ′j ], j = 1, . . . , L

X,X ′ ∈ [
1

c4 log2 k
, 1]. (148)

As shown in Appendix E in [17], the maximum E∗ is equal to
twice the error in approximating log x by a polynomial with
degree L:

E∗ = 2EL(log, [
1

c4 log2 k
, 1]). (149)

The following lemma provides a lower bound on the error in
the approximation of log x by a polynomial with degree L
over [L−2, 1].

Lemma 6. [17, Lemma 4] There exist universal positive
constants c, c′, L0 such that for any L > L0,

EbcLc(log, [L−2, 1]) > c′. (150)

Let X and X ′ be the maximizer of (148). We let
V = c4 log k

n X and V ′ = c4 log k
n X ′, such that V, V ′ ∈

[ 1
n log k ,

c4 log k
n ]. Then it can be shown that

E[log V ]− E[log V ′] = E∗, (151)

where V and V ′ match up to L-th moment. We choose the
value of d to be E∗.

Hence, we set L = bc log kc. Then from Lemma 6, d =
E∗ > 2c′. We further assume that log2 n ≤ c5k, set c4 and c5
such that 2c24 + 8c5

c′2 < 1 and c
2 log c

2ec4
− 2c4 > 2. Then from

Lemma 4 and Lemma 3, with ε =
√
k log k
n , the minimax risk

is lower bounded as follows:

R∗(k,m, n, f(k)) ≥R∗N (k, P (0), n, f(k))

&(
kf(k)

n log k
)2. (152)

3) Proof of Lemma 3: Fix δ > 0 and (P (0), Q) ∈
Nk,f(k)(0). Let D̂(P (0), n) be a near optimal minimax es-
timator for D(P (0)‖Q) with n samples such that

sup
(P (0),Q)∈Nk,f(k)(0)

E[(D̂(P (0), n)−D(P (0)‖Q))2]

≤δ +R∗N (k, P (0), n, f(k)). (153)

For any (P (0),Q) ∈ Nk,f(k)(ε), Q is approximately a distri-
bution. We normalize Q to be a probability distribution, i.e.,

Q∑k
i=1 Qi

, and then we have,

D(P (0)‖Q) =

k∑
i=1

P0,i log
P0,i

Qi

=− log

k∑
i=1

Qi +D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

)
. (154)

Fix distributions (P (0),Q) ∈ Nk,f(k)(ε). Let N =
(N1, . . . , Nk), and Ni ∼Poi(nQi). And define n′ =

∑
Ni ∼

Poi(n
∑

Qi). We set an estimator under the Poisson sampling
by

D̃(P (0), N) = D̂(P (0), n′). (155)

By the triangle inequality, we obtain

1

2

(
D̃(P (0), N)−D(P (0)‖Q)

)2
≤

(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+

(
D
(
P (0)

∥∥∥ Q∑k
i=1 Qi

)
−D(P (0)‖Q)

)2

=

(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+ (log

k∑
i=1

Qi)
2

≤

(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2

+ log2(1 + ε).

(156)

Since n′ =
∑
Ni ∼Poi(n

∑
Qi), we can show that

E

[(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2]

=

∞∑
j=1

E

[(
D̂(P (0), j)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2∣∣∣∣n′ = j

]
P(n′ = j)

≤
∞∑
j=1

R∗N (k, P
(0), j, f(k))P(n′ = j) + δ. (157)

We note that for fixed k, R∗N (k, P (0), j, f(k)) is a
monotone decreasing function with respect to n. We also
have R∗N (k, P (0), j, f(k)) ≤ log2 f(k), because for any
(P (0),Q) ∈ Nk,f(k)(0), D(P (0)‖Q) ≤ log f(k). Furthermore,
since n′ ∼ Poi(n

∑
Qi), and |

∑
Qi− 1| ≤ ε ≤ 1/3, we have

P (n′ > n
2 ) ≤ e− n

50 . Hence, we obtain

E

[(
D̃(P (0), N)−D

(
P (0)

∥∥∥ Q∑k
i=1 Qi

))2
]

≤
∞∑
j=1

R∗N (k, P (0), j, f(k))P(n′ = j) + δ

=

n/2∑
j=1

R∗N (k, P (0), j, f(k))P(n′ = j)

+

∞∑
j=n

2 +1

R∗N (k, P (0), j, f(k))P(n′ = j) + δ

≤ R∗N (k, P (0),
n

2
, f(k)) + (log2 f(k))P (n′ >

n

2
) + δ

≤ R∗N (k, P (0),
n

2
, f(k)) + log2 f(k)e−

n
50 + δ. (158)

Combining (156) and (158) completes the proof because δ can
be arbitrarily small.
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4) Proof of Lemma 4: We construct the following pairs of
(P,Q) and (P ′,Q′):

P = P ′ = P (0) =

(
f(k)

n log k
, . . . ,

f(k)

n log k
, 1− (k − 1)f(k)

n log k

)
,

(159)
Q = (V1, . . . , Vk−1, 1− (k − 1)α) , (160)

Q′ =
(
V ′1 , . . . , V

′
k−1, 1− (k − 1)α

)
. (161)

We further define the following events:

E ,

{ ∣∣∣∣∣
k−1∑
i=1

Vi − (k − 1)α

∣∣∣∣∣ ≤ε,
|D(P‖Q)− E(D(P‖Q))| ≤ d(k − 1)f(k)

4n log k

}
, (162)

E′ ,

{ ∣∣∣∣∣
k−1∑
i=1

V ′i − (k − 1)α

∣∣∣∣∣ ≤ε,
|D(P ′‖Q′)− E(D(P ′‖Q′))| ≤ d(k − 1)f(k)

4n log k

}
. (163)

By union bound and Chebyshev’s inequality, we have

P (EC) ≤ (k − 1)Var(V )

ε2
+

16(k − 1)Var( f(k)
n log k log Vi)

( (k−1)f(k)
n log k d)2

≤ c24(k − 1) log2 k

ε2n2
+

16 log2(n log k)

(k − 1)d2
. (164)

Similarly, we have

P (E′C) ≤ c24(k − 1) log2 k

ε2n2
+

16 log2(n log k)

(k − 1)d2
. (165)

Now, we define two priors on the set Nk,f(k)(ε) by the
following conditional distributions:

π = PV |E and π′ = PV ′|E′ . (166)

Hence, given π and π′ as prior distributions, recall the as-
sumption |E[log V ]− E[log V ′]| ≥ d, we have

|D(P‖Q)−D(P ′‖Q′)| ≥ d(k − 1)f(k)

2n log k
. (167)

Now, we consider the total variation of observations under
π and π′. The observations are Poisson distributed: Ni ∼
Poi(nQi) and N ′i ∼ Poi(nQ′i). By the triangle inequality, we
have

TV(PN |E , PN ′|E′)

≤ TV(PN |E , PN ) + TV(PN , PN ′) + TV(PN ′ , PN ′|E′)

= P (EC) + P (E′C) + TV(PN , PN ′)

≤ 2c24(k − 1) log2 k

ε2n2
+

32 log2(n log k)

(k − 1)d2
+ TV(PN , PN ′).

(168)

From the fact that total variation of product distribution can
be upper bounded by the summation of individual ones we
obtain,

TV(PN , PN ′) ≤
k−1∑
i=1

TV(E(Poi(nVi)),E(Poi(nV ′i ))),

= kTV (E(Poi(nV )),E(Poi(nV ′))) . (169)

Applying the generalized Le Cam’s method [21], and combin-
ing (168) and (169) completes the proof.

APPENDIX E
PROOF OF PROPOSITION 4

We first denote

D1 ,
k∑
i=1

Pi logPi, D2 ,
k∑
i=1

Pi logQi. (170)

Hence, D(P‖Q) = D1 −D2. Recall that our estimator D̂opt

for D(P‖Q) is:

D̂opt = D̃opt ∨ 0 ∧ log f(k), (171)

where

D̃opt =D̂1 − D̂2, (172)

D̂1 =
k∑
i=1

(
g′L(Mi)1{M ′i≤c′2 log k}

+ (
Mi

m
log

Mi

m
− 1

2m
)1{M ′i>c′2 log k}

)
,

k∑
i=1

D̂1,i, (173)

D̂2 =

k∑
i=1

(
Mi

m
gL(Ni)1{N ′i≤c2 log k}

+
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
1{N ′i>c2 log k}

)
,

k∑
i=1

D̂2,i. (174)

We define the following sets:

E1,i , {N ′i ≤ c2 log k,Qi ≤
c1 log k

n
}, (175)

E2,i , {N ′i > c2 log k,Qi >
c3 log k

n
}, (176)

and

E′1,i , {M ′i ≤ c′2 log k, Pi ≤
c′1 log k

m
}, (177)

E′2,i , {M ′i > c′2 log k, Pi >
c′3 log k

m
}, (178)

where c1 > c2 > c3 and c′1 > c′2 > c′3. We further define the
following sets:

E1 ,
k⋂
i=1

E1,i, E2 ,
k⋂
i=1

E2,i, (179)

E′1 ,
k⋂
i=1

E′1,i, E′2 ,
k⋂
i=1

E′2,i, (180)

E , E1 ∪ E2, E′ , E′1 ∪ E′2, (181)

Ē , E ∩ E′ =

k⋂
i=1

(
(E1,i ∪ E2,i) ∩ (E′1,i ∪ E′2,i)

)
. (182)
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By union bound and Chernoff bound for Poisson distributions
[30, Theorem 5.4], we have

P(Ēc) =P
( k⋃
i=1

(E1,i ∪ E2,i)
c ∪ (E′1,i ∪ E′2,i)c

)
≤k
(
P
(
N ′i ≤ c2 log k,Qi >

c1 log k

n

)
+ P

(
N ′i > c2 log k,Qi ≤

c3 log k

n

)
+ P

(
M ′i ≤ c′2 log k, Pi >

c′1 log k

m

)
+ P

(
M ′i > c′2 log k, Pi ≤

c′3 log k

m

))
≤ 1

kc1−c2 log
ec1
c2
−1

+
1

kc3−c2 log
ec3
c2
−1

+
1

k
c′1−c′2 log

ec′1
c′2
−1

+
1

k
c′3−c′2 log

ec′3
c′2
−1
. (183)

Note that D̂opt, D(P‖Q) ∈ [0, log f(k)], and D̂opt = D̃opt ∨
0 ∧ log f(k). Therefore, we have

E[(D̂opt −D(P‖Q))2]

= E[(D̂opt −D(P‖Q))21{Ē} + (D̂opt −D(P‖Q))21{Ēc}]

≤ E[(D̃opt −D(P‖Q))21{Ē}] + log2 f(k)P (Ēc)

= E[(D̂1 − D̂2 −D1 +D2)21{Ē}] + log2 f(k)P (Ēc).
(184)

We choose constants c1, c2, c3, c
′
1, c
′
2, c
′
3 such that c1 −

c2 log ec1
c2
− 1 > C, c′1− c′2 log

ec′1
c′2
− 1 > C, c3− c2 log ec3

c2
−

1 > C, and c′3 − c′2 log
ec′3
c′2
− 1 > C. Then together with

logm ≤ C log k, we have

log2 f(k)P (Ēc) ≤ log2 f(k)

m
. (185)

Define the index sets I1, I2, I ′1 and I ′2 as follows:

I1 , {i : N ′i ≤ c2 log k,Qi ≤
c1 log k

n
},

I2 , {i : N ′i > c2 log k,Qi >
c3 log k

n
},

I ′1 , {i : M ′i ≤ c′2 log k, Pi ≤
c′1 log k

m
},

I ′2 , {i : M ′i > c′2 log k, Pi >
c′3 log k

m
}. (186)

Thus, we can upper bound E[(D̂1− D̂2−D1 +D2)21{Ē}]
as follows:

E[(D̂1 − D̂2 −D1 +D2)21{Ē}]

≤ E
[(
D̂1 − D̂2 −D1 +D2

)2
]

= E
[
E2
(
D̂1 − D̂2 −D1 +D2

∣∣∣I1, I2, I ′1, I ′2)
+ Var

(
D̂1 − D̂2

∣∣∣I1, I2, I ′1, I ′2)], (187)

where the last step follows from the conditional variance
formula. For the second term in (187),

Var
(
D̂1 − D̂2

∣∣∣I1, I2, I ′1, I ′2)
≤ 4Var

[ ∑
i∈I1∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣I1, I ′1]

+ 4Var
[ ∑
i∈I2∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣I2, I ′1]

+ 4Var
[ ∑
i∈I1∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣I1, I ′2]

+ 4Var
[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣I2, I ′2]. (188)

Furthermore, we define E1, E2 and E ′ as follows:

E1 ,
∑

i∈I1∩(I′1∪I′2)

(D̂2,i − Pi logQi), (189)

E2 ,
∑

i∈I2∩(I′1∪I′2)

(D̂2,i − Pi logQi), (190)

E ′ ,
∑

i∈(I1∪I2)∩(I′1∪I′2)

(D̂1,i − Pi logPi). (191)

Then, the first term in (187) can be bounded by

E2
(
D̂1 − D̂2 −D1 +D2

∣∣∣I1, I2, I ′1, I ′2)
= E2

(
E ′ − E1 − E2

∣∣∣I1, I2, I ′1, I ′2)
≤ 2E2

(
E ′|I1, I2, I ′1, I ′2

)
+ 2E2(E1 + E2|I1, I2, I ′1, I ′2)

≤ 2E2
(
E ′|I1, I2, I ′1, I ′2

)
+ 4E2[E1|I1, I ′1, I ′2] + 4E2[E2|I2, I ′1, I ′2].

(192)

Following steps similar to those in [17], it can be shown that

E2
(
E ′|I1, I2, I ′1, I ′2

)
.

k2

m2 log2 k
. (193)

Thus, in order to bound (187), we bound the four terms in
(188) and the last two terms in (192) one by one.

A. Bounds on the Variance

1) Bounds on Var
[∑

i∈I1∩I′1
(D̂1,i−D̂2,i)

∣∣∣I1, I ′1]: We first
show that

Var
[ ∑
i∈I1∩I′1

(D̂1,i − D̂2,i)

∣∣∣∣I1, I ′1]

≤ 2Var
[ ∑
i∈I1∩I′1

D̂1,i

∣∣∣∣I1, I ′1]+ 2Var
[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣I1, I ′1].
(194)

Following steps similar to those in [17], it can be shown that

Var
[ ∑
i∈I1∩I′1

D̂1,i

∣∣∣∣I1, I ′1] . k2

m2 log2 k
. (195)
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In order to bound Var[
∑
i∈I1∩I′1

D̂2,i|I1, I ′1], we bound
Var(Mi

m gL(Ni)) for each i ∈ I1∩I ′1. Due to the independence
between Mi and Ni, Mi

m is independent of gL(Ni). Hence,

Var
[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣I1, I ′1]
=

∑
i∈I1∩I′1

Var
(Mi

m
gL(Ni)

)
=

∑
i∈I1∩I′1

[(
Var(

Mi

m
) + E(

Mi

m
)2
)

Var
(
gL(Ni)

)
+ Var(

Mi

m
)
(
E
(
gL(Ni)

))2
]
. (196)

We note that Var(Mi

m ) = Pi
m , and E(Mi

m ) = Pi. We need to

upper bound Var(gL(Ni)) and
(
E
(
gL(Ni)

))2

, for i ∈ I1∩I ′1.

Recall that gL(Ni) =
∑L
j=1

aj
(c1 log k)j−1 (Ni)j−1− log n

c1 log k .
The following lemma from [17] is useful, which provides an
upper bound on the variance of (Ni)j .

Lemma 7. [17, Lemma 6] If X ∼Poi(λ) and (x)j = x!
(x−j)! ,

then the variance of (X)j is increasing in λ and

Var(X)j ≤ (λj)j

(
(2e)2

√
λj

π
√
λj
∨ 1

)
. (197)

Furthermore, the polynomial coefficients can be upper
bounded as |aj | ≤ 2e−123L [31]. Due to the fact that the
variance of the sum of random variables is upper bounded by
the square of the sum of the individual standard deviations,
we obtain

Var
(
gL(Ni)

)
= Var

( L∑
j=2

aj
(c1 log k)j−1

(Ni)j−1

)
≤
( L∑
j=2

aj
(c1 log k)j−1

√
Var
(
(Ni)j−1

))2

≤
( L∑
j=2

2e−123L

(c1 log k)j−1

√
Var
(
(Ni)j−1

))2

. (198)

By Lemma 7, we obtain

Var
(

(Ni)j−1

)
≤
(
c1 log k(j − 1)

)j−1
(

(2e)2
√
c1 log k(j−1)

π
√
c1 log k(j − 1)

∨ 1

)

≤ (c1c0 log2 k)j−1

(
(2e)2

√
c1c0 log2 k

π
√
c1c0 log2 k

∨ 1

)
. (199)

Substituting (199) into (198), we obtain

Var
(
gL(Ni)

)
≤L

L∑
j=2

( 2e−123L

(c1 log k)j−1

)2

Var
(

(Ni)j−1

)
. k2(c0 log 8+

√
c0c1 log 2e) log k. (200)

Furthermore, for i ∈ I1 ∩ I ′1, we bound
∣∣E(gL(Ni)

)∣∣ as
follows:∣∣∣E(gL(Ni)

)∣∣∣ =

∣∣∣∣∣∣
L∑
j=1

aj
(c1 log k)j−1

(nQi)
j−1 − log

n

c1 log k

∣∣∣∣∣∣
≤

L∑
j=1

2e−123L

(c1 log k)j−1
(c1 log k)j−1 + log

n

c1 log k

. kc0 log 8 log k + log n. (201)

So far, we have all the ingredients we need to bound
Var
(
Mi

m gL(Ni)
)
. Note that Pi ≤ f(k)Qi, and Qi ≤ c1 log k

n
for i ∈ I1. First, we derive the following bound:

Var(
Mi

m
)Var

(
gL(Ni)

)
.
f(k) log2 kk2(c0 log 8+

√
c0c1 log 2e)

mn

.
kf(k)

mn log2 k
, (202)

if 2(c0 log 8 +
√
c0c1 log 2e) < 1

2 .
Secondly, we derive

E(
Mi

m
)2Var

(
gL(Ni)

)
.
f2(k) log3 kk2(c0 log 8+

√
c0c1 log 2e)

n2

.
kf2(k)

n2 log2 k
, (203)

if 2(c0 log 8 +
√
c0c1 log 2e) < 1

2 .
Thirdly, we have

Var(
Mi

m
)
(
E
(
gL(Ni)

))2

.
f(k) log3 kk2c0 log 8

mn
+
f(k) log k log2 n

mn

.
kf(k)

mn log2 k
+
k1−εf(k) log k

mn

.
kf(k)

mn log2 k
, (204)

if 2c0 log 8 < 1
2 and log2 n . k1−ε.

Combining these three terms together, we obtain

Var
[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣∣I1, I ′1] . k2f(k)

mn log2 k
+
k2f2(k)

n2 log2 k
. (205)

Due to the fact that k2f(k)
mn log2 k

. k2f2(k)
n2 log2 k

+ k2

m2 log2 k
,

E
[

Var
[ ∑
i∈I1∩I′1

D̂2,i

∣∣∣I1, I ′1]] . f2(k)k2

n2 log2 k
+

k2

m2 log2 k
.

(206)

2) Bounds on Var
[∑

i∈I2∩I′1

(
D̂1,i − D̂2,i

)∣∣∣I2, I ′1]: Note

that for i ∈ I2 ∩ I ′1, Qi > c3 log k
n and Pi ≤ c′1 log k

m . Following
steps similar to those in [17], it can be shown that

Var
[ ∑
i∈I2∩I′1

D̂1,i

∣∣∣∣I2, I ′1] . k2

m2 log2 k
. (207)
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We further consider Var
[∑

i∈I2∩I′1
D̂2,i

]
. By the definition

of D̂2,i, for i ∈ I2 ∩ I ′1, we have D̂2,i = Mi

m

(
log Ni+1

n −
1

2(Ni+1)

)
. Therefore

Var
[ ∑
i∈I2∩I′1

D̂2,i

∣∣∣∣I2, I ′1]

=
∑

i∈I2∩I′1

Var
[
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)]

≤ 2
∑

i∈I2∩I′1

Var
[
Mi

m
log

Ni + 1

n

]

+ 2
∑

i∈I2∩I′1

Var
[
Mi

m

1

2(Ni + 1)

]
. (208)

The first term in (208) can be bounded as follows:

∑
i∈I2∩I′1

Var
[
Mi

m
log

Ni + 1

n

]

≤
∑

i∈I2∩I′1

E
[(Mi

m
log

Ni + 1

n
− Pi log

nQi + 1

n

)2
]

=
∑

i∈I2∩I′1

E
[(Mi

m
log

Ni + 1

n
− Mi

m
log

nQi + 1

n

+
Mi

m
log

nQi + 1

n
− Pi log

nQi + 1

n

)2
]

≤
∑

i∈I2∩I′1

2E
[(Mi

m

)2(
log

Ni + 1

n
− log

nQi + 1

n

)2
]

+
∑

i∈I2∩I′1

2E
[((Mi

m
− Pi

)
log

nQi + 1

n

)2
]
. (209)

Following similar steps as in (67) with c = 1, but for Poisson
distribution, for i ∈ I2 ∩ I ′1, Qi > c3 log k

n and Pi ≤ c′1 log k
m ,

we have the following bound on the first term in (209):

∑
i∈I2∩I′1

E
[(Mi

m

)2(
log

Ni + 1

n
− log

nQi + 1

n

)2
]

.
∑

i∈I2∩I′1

(Pi
m

+ P 2
i

) 1

nQi
.
f(k)

n
+

1

m
. (210)

We next bound the second term in (209) as follow,

∑
i∈I2∩I′1

E
[((Mi

m
− Pi

)
log

nQi + 1

n

)2
]

=
∑

i∈I2∩I′1

Pi
m

log2
(
Qi +

1

n

)

≤
∑

i∈I2∩I′1

Pi log2 Pi
f(k)

m

≤
∑

i∈I2∩I′1

2Pi(log2 Pi + log2 f(k))

m

(a)

≤
2k

c′1 log k
m log2(

c′1 log k
m )

m
+

2 log2 f(k)

m
(b)

.
k2

m2 log2 k
+

log2 f(k)

m
, (211)

where (a) is due to the facts that x log2 x is monotone
increasing when x is small and Pi ≤ c′1 log k

m , and (b) is due
to the assumption that logm . log k.

Substituting (211) and (210) into (209), we obtain

∑
i∈I2∩I′1

Var
[
Mi

m

(
log

Ni + 1

n

)]

.
k2

m2 log2 k
+

log2 f(k)

m
+
f(k)

n
. (212)

We then consider the second term in (208).

∑
i∈I2∩I′1

Var
[
Mi

m

( 1

2(Ni + 1)

)]

=
∑

i∈I2∩I′1

(
E2[

Mi

m
]Var[

1

2(Ni + 1)
]

+ Var[
Mi

m
]
(
E2[

1

2(Ni + 1)
] + Var[

1

2(Ni + 1)
]
))

. (213)

In order to bound (213), we bound each term as follows. Note
that Mi ∼Poi(mPi), and Ni ∼Poi(nQi). Therefore, E2[Mi

m ] =
P 2
i , Var[Mi

m ] = Pi
m , and

Var[
1

2(Ni + 1)
] + E2[

1

2(Ni + 1)
]

= E[
1

4(Ni + 1)2
]

≤ E[
1

(Ni + 1)(Ni + 2)
]

=

∞∑
i=0

1

(i+ 1)(i+ 2)

e−nQi(nQi)
i

i!

=

∞∑
i=0

1

(nQi)2

e−nQi(nQi)
i+2

(i+ 2)!

≤ 1

(nQi)2
. (214)
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Therefore, (213) can be further upper bounded as follows:∑
i∈I2∩I′1

Var
[
Mi

m

( 1

2(Ni + 1)

)]
≤

∑
i∈I2∩I′1

(
P 2
i +

Pi
m

) 1

(nQi)2

.
f(k)

n log k
+

1

m log2 k
.
f(k)

n
+

1

m
. (215)

Substituting (215) and (212) into (208), we obtain

Var

 ∑
i∈I2∩I′1

D̂2,i

∣∣∣∣I2, I ′1
 .

k2

m2 log2 k
+
f(k)

n
+

log2 f(k)

m
.

(216)

Therefore,

Var
[ ∑
i∈I2∩I′1

(
D̂1,i − D̂2,i

)∣∣∣∣I2, I ′1]

.
k2

m2 log2 k
+
f(k)

n
+

log2 f(k)

m
. (217)

3) Bounds on Var
[∑

i∈I1∩I′2

(
D̂1,i−D̂2,i

)∣∣∣I1, I ′2]: We first

note that given i ∈ I1 ∩ I ′2, Pi >
c′3 log k
m , Qi ≤ c1 log k

n , and
Pi
Qi
≤ f(k). Hence, c′3 log k

m < Pi ≤ c1f(k) log k
n . Following

steps similar to those in [17], it can be shown that

Var
[ ∑
i∈I1∩I′2

D̂1,i

∣∣∣∣I1, I ′2]
≤ 4

m
+

12k

m2
+

4k

c′3m
2 log k

+
∑

i∈I1∩I′2

2Pi
m

log2 Pi. (218)

Consider the last term
∑
i∈I1∩I′2

2Pi
m log2 Pi in (218), under

the condition that c′3 log k
m < Pi ≤ c1f(k) log k

n . Then,∑
i∈I1∩I′2

Pi
m

log2 Pi ≤
∑

i∈I1∩I′2

c1f(k) log k

mn
log2 c

′
3 log k

m

≤ c1kf(k) log k

mn
log2 c

′
3 log k

m
(a)

.
kf(k) log k

mn
log2m

(b)

.
kf(k) log3 k

mn

.
k2f(k)

mn log2 k
(c)

.
f2(k)k2

n2 log2 k
+

k2

m2 log2 k
, (219)

where (a) is due to the assumption that m & k
log k , (b) is due

to the assumption that logm ≤ C log k, and (c) is due to the
fact that 2ab ≤ a2 + b2. Therefore, we obtain

Var

 ∑
i∈I1∩I′2

D̂1,i

∣∣∣∣I1, I ′2


.
log2 f(k)

m
+
f2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (220)

Following steps similar to those in Appendix E-A1, we can
show that

Var
[ ∑
i∈I1∩I′2

D̂2,i

∣∣∣∣I1, I ′2] . f2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (221)

Hence,

Var
[ ∑
i∈I1∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣I1, I ′2]

.
log2 f(k)

m
+
f2(k)k2

n2 log2 k
+

k2

m2 log2 k
. (222)

4) Bounds on Var
[∑

i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣I2, I ′2]: We

note that for i ∈ I2 ∩ I ′2, Pi >
c′3 log k
m , Qi > c3 log k

n , and

D̂1,i − D̂2,i

=
Mi

m
log

Mi

m
− 1

2m
− Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
.

(223)

It can be shown that

Var
[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣I2, I ′2]

≤ 2Var
[ ∑
i∈I2∩I′2

Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n

∣∣∣∣I2, I ′2]

+ 2Var
[ ∑
i∈I2∩I′2

Mi

m

1

2(Ni + 1)

∣∣∣∣I2, I ′2]. (224)

Following steps similar to those used in showing (215), we
bound the second term in (224) as follows:

Var
[ ∑
i∈I2∩I′2

Mi

m

1

2(Ni + 1)

∣∣∣∣I2, I ′2] . f(k)

n
+

1

m
. (225)

We next bound the first term in (224), recall the decompo-
sition in the proof of Proposition 1,

Var
[ ∑
i∈I2∩I′2

Mi

m
log

Mi

m
− Mi

m
log

Ni + 1

n

∣∣∣∣I2, I ′2]

≤
∑

i∈I2∩I′2

E

[(
Mi

m
log

Mi/m

(Ni + 1)/n
− Pi log

Pi
(nQi + 1)/n

)2
]

≤ 3
∑

i∈I2∩I′2

E

[(
Mi

m

(
log

Mi

m
− logPi

))2
]

+ 3
∑

i∈I2∩I′2

E

[(
Mi

m

(
log

Ni + 1

n
− log

nQi + 1

n

))2
]

+ 3
∑

i∈I2∩I′2

E

[((Mi

m
− Pi

)
log

Pi
(nQi + 1)/n

)2
]
.

(226)

The first and the second terms can be upper bounded by similar
steps as in (65) and (210) with c = 1, note that the Mi and
Ni are Poisson random variables.
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For the third term in (226), we derive the following bound:∑
i∈I2∩I′2

E
[((Mi

m
− Pi

)
log

Pi
Qi + 1/n

)2]

=
∑

i∈I2∩I′2

Pi
m

log2 Pi
Qi + 1/n

.
log2 f(k)

m
, (227)

where the last inequality is because

Pi log2 Pi
Qi + 1/n

= Pi

(
log

Pi
Qi + 1/n

)2

1{1≤ Pi
Qi+1/n

≤f(k)}

+ Pi

(
log

Pi
Qi + 1/n

)2

1{ Pi
Qi+1/n

≤1}

(a)

≤ Pi log2 f(k)

+
Qi(1 + c3/ log k)Pi
Qi(1 + c3/ log k)

(
log

Pi
Qi(1 + c3/ log k)

)2

(b)

. Pi log2 f(k) +Qi(1 + c3/ log k), (228)

where (a) follows from the condition Qi > c3 log k
n ; and (b) is

because the x log2 x is bounded by a constant on the interval
[0, 1].

Combining (65), (210) and (227), we obtain

Var
[ ∑
i∈I2∩I′2

(
D̂1,i − D̂2,i

)∣∣∣∣I2, I ′2]

.
k

m2
+

log2 f(k)

m
+
f(k)

n
. (229)

B. Bounds on the Bias:

Consider the E1 term in (192). Based on the definition of
the set I1, E1 can be written as follows:

E1 =
∑

i∈I1∩(I′1∪I′2)

(
Mi

m
gL(Ni)− Pi logQi

)
. (230)

For i ∈ I1 ∩ (I ′1 ∪ I ′2), we have 0 ≤ Qi ≤ c1 log k
n and∣∣∣Pi µL(Qi)

Qi
− Pi

Qi
Qi logQi

∣∣∣ . f(k)
n log k . Therefore,∣∣∣∣E[Mi

m
gL(Ni)− Pi logQi

∣∣∣I1, I ′1, I ′2]∣∣∣∣
=

∣∣∣∣PiµL(Qi)

Qi
− Pi logQi

∣∣∣∣ . f(k)

n log k
. (231)

Hence,
∣∣E[E1|I1, I ′1, I ′2]

∣∣ can be bounded as follows:∣∣E(E1|I1, I ′1, I ′2)
∣∣

≤
∑

i∈I1∩(I′1∪I′2)

∣∣∣∣E[Mi

m
gL(Ni)− Pi logQi

∣∣∣I1, I ′1, I ′2]∣∣∣∣
.

kf(k)

n log k
. (232)

Therefore,

E
[
E2
[
E1|I1, I ′1, I ′2

]]
.

k2f2(k)

n2 log2 k
. (233)

Now consider the E2 term in (192). Based on how we define
I2, E2 can be written as follows:

E2 =
∑

i∈I2∩(I′1∪I
′
2)

(
Mi

m

(
log

Ni + 1

n
− 1

2(Ni + 1)

)
− Pi logQi

)

=
∑

i∈I2∩(I′1∪I
′
2)

((Mi

m
− Pi

)
logQi

+
Mi

m
log

Ni + 1

nQi
− Pi

2(Ni + 1)

)
. (234)

Taking expectations on both sides, we obtain

E
[
E2
∣∣I2, I ′1, I ′2]

=
∑

i∈I2∩(I′1∪I′2)

E
[
Pi log

Ni + 1

nQi
− Pi

2(Ni + 1)

∣∣∣∣I1, I ′1, I ′2] .
(235)

Consider
∑
i∈I2∩(I′1∪I′2) E

[
Pi log Ni+1

nQi

∣∣∣I1, I ′1, I ′2]. Note that
for any x > 0,

log x ≤ (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3. (236)

Since Ni ∼Poi(nQi),

E
[
Pi log

Ni + 1

nQi

]
≤ PiE

[(Ni + 1

nQi
− 1
)
− 1

2

(Ni + 1

nQi
− 1
)2

+
1

3

(Ni + 1

nQi
− 1
)3]

= Pi

( 1

2nQi
+

5

6(nQi)2
+

1

3(nQi)3

)
. (237)

It can be shown that

E
[

Pi
2(Ni + 1)

]
=

Pi
2nQi

(1− e−nQi). (238)

Hence, we obtain

E
[
E2
∣∣I2, I ′1, I ′2]

≤
∑

i∈I2∩(I′1∪I′2)

Pi

( 1

2nQi
+

5

6(nQi)2
+

1

3(nQi)3

)
− Pi

2nQi
(1− e−nQi)

(a)

.
∑

i∈I2∩(I′1∪I′2)

Pi
n2Q2

i

.
kf(k)

n log k
. (239)

where (a) is due to the fact that xe−x is bounded by a constant
for x ≥ 0.

We further derive a lower bound on E
[
E2
∣∣I2, I ′1, I ′2]. For

any x ≥ 1
5 , it can be shown that

log x ≥ (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − (x− 1)4.

(240)
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Define the following event: Ai = { NinQi
> 1

5}. We then rewrite
E
[
E2
∣∣I2, I ′1, I ′2] as follows:

E
[
E2
∣∣I2, I ′1, I ′2]

=
∑

i∈I2∩(I′1∪I′2)

E
[
Pi log

Ni + 1

nQi
1{Ai}

+ Pi log
Ni + 1

nQi
1{Aci} −

Pi
2(Ni + 1)

∣∣∣∣I2, I ′1, I ′2]
≥

∑
i∈I2∩(I′1∪I′2)

E
[
Pi log

Ni + 1

nQi
1{Ai} −

Pi
2(Ni + 1)

∣∣∣∣I2, I ′1, I ′2]

−
∑

i∈I2∩(I′1∪I′2)

∣∣∣∣E [Pi log
Ni + 1

nQi
1{Aci}

∣∣∣∣I2, I ′1, I ′2]∣∣∣∣ .
(241)

Using (240), we obtain

E
[
Pi log

(Ni + 1

nQi

)
1{Ai}

∣∣∣∣I2, I ′1, I ′2]
≥ E

[
Pi

((Ni + 1

nQi
− 1
)
− 1

2

(Ni + 1

nQi
− 1
)2

+
1

3

(Ni + 1

nQi
− 1
)3 − (Ni + 1

nQi
− 1
)4)

1{Ai}

∣∣∣∣I2, I ′1, I ′2].
(242)

Note that

E
[(Ni + 1

nQi
− 1
)
1{Ai}

∣∣∣∣I2, I ′1, I ′2]
= E

[(Ni + 1

nQi
− 1
)∣∣∣∣I2, I ′1, I ′2]

− E
[(Ni + 1

nQi
− 1
)
1{Aci}

∣∣∣∣I2, I ′1, I ′2]
(a)

≥ E
[(Ni + 1

nQi
− 1
)∣∣∣∣I2, I ′1, I ′2]

=
1

nQi
, (243)

where (a) follows because (Ni+1
nQi

− 1)1{Aci} ≤ 0. Similarly,

E
[(Ni + 1

nQi
− 1
)3

1{Ai}

∣∣∣∣I2, I ′1, I ′2]
≥ E

[(Ni + 1

nQi
− 1
)3
]

=
4

(nQi)2
+

1

(nQi)3
. (244)

For the term E
[(

Ni+1
nQi

− 1
)2
∣∣∣∣I2, I ′1, I ′2], it can be shown that

E
[(Ni + 1

nQi
− 1
)2

1{Ai}

∣∣∣∣I2, I ′1, I ′2]
≤ E

[(Ni + 1

nQi
− 1
)2
∣∣∣∣I2, I ′1, I ′2]

=
1

nQi
+

1

(nQi)2
. (245)

Similarly, it can be shown that

E
[(Ni + 1

nQi
− 1
)4

1{Ai}

∣∣∣∣I2, I ′1, I ′2]
≤ E

[(Ni + 1

nQi
− 1
)4
∣∣∣∣I2, I ′1, I ′2]

=
1 + 3nQi
(nQi)3

+
10

(nQi)3
+

1

(nQi)4
. (246)

Combining these results together, we obtain

E
[
Pi log

(Ni + 1

nQi

)
1{Ai}

∣∣∣∣I2, I ′1, I ′2]
≥ Pi

2nQi
− 13Pi

6(nQi)2
− 32Pi

3(nQi)3
− Pi

(nQi)4
. (247)

From the previous results, we know that

E
[
− Pi

2(Ni + 1)

∣∣∣∣I2, I ′1, I ′2] = − Pi
2nQi

(1− e−nQi). (248)

Combining (247) and (248), it can be shown that∑
i∈I2∩(I′1∪I′2)

E
[
Pi log

(Ni + 1

nQi

)
1{Ai} −

Pi
2(Ni + 1)

∣∣∣∣I2, I ′1, I ′2]

≥
∑

i∈I2∩(I′1∪I′2)

(
Pi

2nQi
− 13Pi

6(nQi)2
− 32Pi

3(nQi)3

− Pi
(nQi)4

− Pi
2nQi

(1− e−nQi)
)

=
∑

i∈I2∩(I′1∪I′2)

(
− 13Pi

6(nQi)2
− 32Pi

3(nQi)3

− Pi
(nQi)4

+
Pi

2nQi
e−nQi

)
& − kf(k)

n log k
, (249)

where we use the facts that Pi
Qi
≤ f(k), nQi > c3 log k, and

xe−x is upper bounded by a constant for any value of x > 0.
For the E

[
Pi log Ni+1

nQi
1{Aci}

∣∣I2, I ′1, I ′2] term, it can be
shown that∑

i∈I2∩(I′1∪I′2)

∣∣∣∣E [Pi log
Ni + 1

nQi
1{Aci}

∣∣∣∣I2, I ′1, I ′2] ∣∣∣∣
(a)

≤
∑

i∈I2∩(I′1∪I′2)

Pi log(nQi)P (Aci )

(b)

≤
∑

i∈I2∩(I′1∪I′2)

Pi
(nQi)2

(nQi)
2 log(nQi)e

−(1− log(5e)
5 )nQi

(c)

.
kf(k)

n log k
. (250)

where (a) is due to the fact that Ni + 1 ≥ 1, and the fact that
Qi >

c3 log k
n , hence | log Ni+1

nQi
| ≤ log(nQi) for large k; (b) is

due to the Chernoff bound, where1− log(5e)
5 > 0; (c) is due to

the fact that x2 log xe−(1− log(5e)
5 )x is bounded by a constant

for x > 1, and the fact that nQi > c3 log k. Thus, (249) and
(250) yield

E
[
E2
∣∣I2, I ′1, I ′2] & − kf(k)

n log k
. (251)
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Combining (239) and (251), we obtain,∣∣E[E2∣∣I2, I ′1, I ′2]∣∣ . kf(k)

n log k
. (252)

For the constant c0, c1, c2 and c3,, note that logm ≤ C log k
for some constant C, we can choose c1 = 50(C + 1),
c2 = e−1c1, c3 = e−1c2, such that c1 − c2 log ec1

c2
− 1 > C,

c3 − c2 log ec3
c2
− 1 > C and c3(1−log 2)

2 + 1 − C > 0 hold
simultaneously. Also, we can choose c0 > 0 sufficiently
small, satisfying condition 2c0 log 8 < 1

2 and 2(c0 log 8 +√
c0c1 log 2e) < 1

2 . Thus, we show the existence of c0, c1
and c2.
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continuous distributions based on data-dependent partitions,” IEEE
Trans. Inform. Theory, vol. 51, no. 9, pp. 3064–3074, 2005.

[8] Q. Wang, S. R Kulkarni, and S. Verdú, “Divergence estimation for
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