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Abstract

We consider Non-Homogeneous Hidden Markov Models (NHHMMs) for forecasting uni-
variate time series. We introduce two state NHHMMs where the time series are modeled
via different predictive regression models for each state. Also, the time-varying transition
probabilities depend on exogenous variables through a logistic function. In a hidden Markov
setting, inference for logistic regression coefficients becomes complicated and in some cases
impossible due to convergence issues. To address this problem, we use a new latent variable
scheme, that utilizes the Pólya-Gamma class of distributions, introduced by Polson et al.
(2013). Given an available set of predictors, we allow for model uncertainty regarding the
predictors that affect the series both linearly – in the mean – and non-linearly – in the
transition matrix. Predictor selection and inference on the model parameters are based on a
MCMC scheme with reversible jump steps. Single-step and multiple-steps-ahead predictions
are obtained based on the most probable model, median probability model or a Bayesian
Model Averaging (BMA) approach. Simulation experiments, as well as an empirical study
on real financial data, illustrate the performance of our algorithm in various setups, in terms
of mixing properties, model selection and predictive ability.

Keywords: Non Homogeneous Hidden Markov Models; Model selection; Bayesian model averag-
ing; Forecasting; Pólya-Gamma Data Augmentation, Continuous Ranked Probability Score

1 Introduction
This paper follows and extends the work of Meligkotsidou and Dellaportas (2011) by constructing
a broad class of discrete-time, finite state-space, Non-Homogeneous Hidden Markov Models
(NHHMMs) that can be used for modeling and predicting univariate time-series. We introduce a
two-states NHHMM where the time series are modeled via different predictive regression models
for each state, whereas the transition probabilities are modeled via logistic regressions. Given
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an available set of predictors we allow for model uncertainty, regarding the predictors that affect
the series both linearly, that is directly in the mean regressions, and non-linearly, that is in the
transition matrix.

Discrete-time finite state-space Homogeneous Hidden Markov models (HHMMs) have been
extensively studied and widely used to model stochastic processes consisting of an observed
process and a latent (hidden) sequence of states which is assumed to affect the observation se-
quence, see for example Cappé et al. (2005) and Billio et al. (1999). We refer to Scott (2002)
and Rydén (2008) for a review of a Bayesian approach of HHMMs. Bayesian inference, using
Markov chain Monte Carlo (MCMC) techniques, has enhanced the applicability of HHMMs and
has led to the construction of more complex model specifications including NHHMMs. Initially
Diebold et al. (1994) studied the two-state Gaussian NHMMs where the time varying tran-
sition probabilities were modeled via logistic functions and their approach was based on the
Expectation-Maximization algorithm (EM). Filardo and Gordon (1998) adopted a Bayesian per-
spective to overcome technical and calculation issues of classical approaches. Since then, various
Bayesian methods have been proposed in the literature. For example Spezia (2006) modeled
the time-varying transition probabilities via a logistic function depending on exogenous variables
and performed model selection based on the Bayes factor. In the same spirit, Meligkotsidou and
Dellaportas (2011) considered a m-stage NHMM and assumed that the elements of the transition
matrix are linked through exogenous variables with a multinomial logistic link whereas the ob-
served process conditional on the unobserved process follows an autoregressive process of order
p.

This paper considers inference and variable selection for predictive NHHMMs which exploit
a set of available predictors by allowing them to affect the transition probabilities and/or the
state-specific predictive regressions. We perform Bayesian inference for the proposed models
based on MCMC. Our MCMC scheme aims at overcoming difficulties and solving convergence
issues arising with existing MCMC algorithms, thus offering an improved inferential procedure
for estimation and variable selection in NHHMMs. We exploit the missing data representation
of hidden Markov models and construct an MCMC algorithm based on data augmentation,
consisting of several steps. First, the latent sequence of states is sampled via the Scaled Forward-
Backward algorithm (Scott, 2002), which is a modification of the Forward-Backward algorithm
of Baum et al. (1970) who used it to implement the classical EM algorithm. Then we simulate
the parameters of the mean predictive regression model for each stage, via Gibbs sampling step
and following Meligkotsidou and Dellaportas (2011) we use a logistic regression representation
of the transition probabilities. Using the data augmentation scheme of Holmes and Held (2006)
as Meligkotsidou and Dellaportas (2011), may result in serious convergence issues, especially
in cases that there exists model uncertainty. Frühwirth-Schnatter and Frühwirth (2010) give a
detailed comparison between various methods for dealing with binary and multinomial logit data
and argue about the efficiency of Holmes and Held (2006) data augmentation scheme. Exploring
various options, to deal with this problem we decided to use the Pólya-Gamma data augmentation
scheme of Polson et al. (2013) which has a significantly improved performance. The recent work
of Holsclaw et al. (2017) confirms that using Pólya-Gamma data augmentation to parametrize the
transition probabilities, the algorithm mixes well and gives adequate estimates of the parameters.
Finally, we account for model uncertainty by using the well-known model selection method of
Green (1995), the reversible jump algorithm. We perform a couple of reversible jump steps
within our algorithm since we allow for different covariates affecting the mean equation and the
transition probabilities.

Regarding stochastic variable selection in the transition matrix of the NHHMM we are the
first to perform a reversible jump algorithm using the Pólya-Gamma data augmentation rep-
resentation for the logistic regression coefficients. Recently, Holsclaw et al. (2017) proposed a
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model similar to ours for modeling multivariate meteorological time series data. In that paper,
the hidden states are modeled via multinomial logistic regression affected by exogenous variables.
The authors use the BIC criterion for choosing the best model among some prefixed models.

Apart from developing a stable algorithm for inferring NHHMMs in the presence of model
uncertainty, another main goal of our work is to apply our model to forecasting real financial
data. Financial data sets are characterized by large volatilities due to high market uncertainties.
We argue that the logarithmic scoring rule for evaluating different models and their predictive
accuracy is not appropriate, since the data have multimodal and fat-tailed distributions. We
propose the use of Continuous Ranked Probability Score as a better alternative for assessing the
quality of forecasts as well as for validating the model performance.

The paper proceeds as follows. In Section 2 we briefly describe the proposed model and in
Section 3 we present analytically the Bayesian inference for this model, specifically for the model
with a fixed number of predictors (covariates), as well as for the model with unknown number of
predictors. Then, in Section 4, we present the forecasting criteria we used to asses the predictive
ability of our method. To check our methodology we performed extensive experiments with
simulated data. We provide in Section 5 some indicative case studies. We illustrate our results
regarding the variable selection and forecasting evaluation and we make comparisons with other
simpler models such as the Homogeneous Hidden Markov Model and the regression model with
autoregressive terms. Next, we apply our methodology in monthly realized volatility data set
(Section 6). Finally a summary of our work and possible extensions are discussed in ??.

2 The Non-Homogeneous Hidden Markov Model
In this section, we present the proposed Non-Homogeneous Hidden Markov Model (NHHMM)
for modeling univariate time series. Consider an observed random process {Yt} and a hidden
underlying process {Zt} which is a two-state non-homogeneous discrete-time Markov chain that
determines the states of the observed process. Let yt and zt be the realizations of the observed
random process {Yt} and of the hidden process {Zt}, respectively. We assume that at time t, yt
depends on the current state zt and not on the previous states. Consider also a set of available
predictors {Xt} with realization xt = (1, x1t, . . . , xK−1t) at time t. A subset of the predictors
X

(1)
t ⊆ {Xt} is used in the regression model for the observed process and a subset X(2)

t ⊆ {Xt}
is used to model/describe the dynamics of the time-varying transition probabilities. Thus, we
allow the covariates to affect the observed process {Yt} in a non-linear fashion.

In the case of a univariate random process {Yt}, the NHHMM can be written in the form

Yt = g(Zt) + εt

where g(Zt) = X
(1)
t−1BZt

, X
(1)
t−1 = (1, x(1)

1t−1, . . . , x
(1)
K−1t−1), BZt

= (b0Zt
, b1zt

, . . . bK−1Zt
)′ and

εt ∼ N (0, σ2
Zt

). We use N (µ, σ2) to denote the normal distribution with mean µ and variance
σ2. In a less formal way, if s represents the hidden states, the observed series given the unobserved
process has the form

Yt | Zt = s ∼ N (X(1)
t−1Bs, σ

2
s) , s = 1, 2

The dynamics of the unobserved process {Zt} can be described by the time-varying transition
probabilities, which depend on the predictors X(2)

t and are given by the following relationship

p
(t)
ij = exp(x(2)

t βij)∑m
l=1 exp(x(2)

t βil)
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where βij = (β0,ij , β1,ij . . . , βn−1,ij)′ is the vector of the logistic regression coefficients to be
estimated and x

(2)
t = (1, x(2)

1t , . . . , x
(2)
n−1t) is the set of covariates that affect the transition prob-

abilities. Note that for identifiability reasons we adopt the convention of setting, for each row
of the transition matrix, one of the βij ’s to be a vector of zeros. The unknown quantities of
the NHHMM are {θs =

(
Bs, σ

2
s

)
, βss, s = 1, 2}, that is the parameters in the mean predictive

regression equation and the parameters in the logistic regression equation for the transition
probabilities of the unobserved process {Zt}, t = 1, ..., T . Our model can easily be generalized
into an m-state NHHMM using almost the same methodology as the one that we describe.

3 Bayesian Inference and Computational Strategy
This section presents the Bayesian approach to inference for the Non-Homogeneous Hidden
Markov model. The key steps in our proposed framework are as follow. First, for a given
Hidden Markov model with time-varying probabilities, we construct a Markov chain which has
as a stationary distribution the posterior distribution of the model parameters. Simulation of
this Markov chain provides, after some burn-in period and adequately many iterations, samples
from the posterior distribution of interest; see, for details, Besag et al. (1995). Second, for a
given set of competing models each including a different set of predictors in the mean regression
and/or in the transition probabilities equation, we base our inference about the models on their
posterior probabilities. Thus, we avoid the usual approach which considers the models separately
and chooses the best model via significance tests or via model selection criteria (AIC, BIC, DIC,
WBIC).

3.1 Inference for fixed sets of predictors
Below we provide detailed guidelines on how to estimate the parameters of a given NHHMM,
i.e. for fixed sets of predictors X(1) and X(2). The proposed approach to Bayesian inference on
the parameters of the NHHMM is based on constructing a Markov chain Monte Carlo algorithm
which updates, in turn, the mean regression parameters, the logistic regression coefficients, and
the latent variables Z. Let Y t = (Y1, . . . , Yt) be the history of the observed process, Zt =
(Z1, . . . , Zt) the sequence of states up to time t, and let fs(.) denote the normal probability
density function of Yt | Zt = s, s ∈ S and π1(z1) the initial distribution of Z1. The joint
likelihood function of the observed data, yT , and the unobserved sequence of states, zT , is given
by

π(yT , zT | X, θ, β) = π(yT | zT , X, θ, β)π(zT | X, θ, β) = π1(z1)fz1(y1)
∏T
t=2
∏s
i=1
∏s
j=1 p

(t−1)
ij fj(yt)

If a prior distribution π(θ, β) = π(θ)π(β) is specified for the model parameters, then inference
on all the unknown quantities in the model is based on their joint posterior distribution

π(θ, β, zT | yT ) ∝ π(θ, β)π(yT , zT | θ, β).

For the parameters in the mean predictive regression equation, we use conjugate prior distribu-
tions, i.e.

σ2
s ∼ IG(p, q), Bs |, σ2

s ∼ N (L0, σ
2
sV0), s = 1, 2,

where IG denotes the Inverted-Gamma distribution. To make inference about the logistic re-
gression coefficients we use the auxiliary variables method of Polson et al. (2013) as described
in Subsection 3.1.1. Given an auxiliary variable ω, a conjugate prior for the logistic regression
coefficients βss, s = 1, 2 is multivariate normal distribution N (mω, Vω).
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The joint likelihood of the observed data yT and the hidden states zT is

L (θ, β) = π
(
yT , zT | X, θ, β

)
= π1(z1)fz1(y1)

T∏
t=2

m∏
i=1

m∏
j=1

p
(t−1)
ij fj(yt)

=
m∏
i=1

m∏
j=1

 ∏
t:zt=j

p
(t−1)
ij

( 1
2πσ2

j

)nj/2

× exp
{
− 1

2σ2
j

(Yj −X(1)′
j Bj)′(Yj −X(1)′

j Bj)
}

=
m∏
i=1

m∏
j=1

 ∏
t:zt=j

exp(x(2)
t−1βij)∑m

l=1 exp(x(2)
t−1βil)

( 1
2πσ2

j

)nj/2

× exp
{
− 1

2σ2
j

(Yj −X(1)′
j Bj)′(Yj −X(1)′

j Bj)
}

We use the notation ns, s = 1, 2 for the number of times the chain was in state s, that is
ns =

∑T
t=1 I(Zt = s), the ns × T with I the indicator function.

The MCMC sampling scheme is constructed with recursive updates of (i) the latent variables
zT given the current value of the model parameters by using the scaled Forward-backward al-
gorithm (Scott (2002)) (ii) the logistic regression coefficients by adopting the auxiliary variables
method of Polson et al. (2013) given the sequence of states zT , and (iii) the mean regression
coefficients conditional on zT by using the Gibbs sampling algorithm.

3.1.1 Simulation of the logistic regression coefficients

In a two-state NHHMM, as Meligkotsidou and Dellaportas (2011) observe, we can model the two
diagonal elements of probability transition matrix by linking them to the set of covariates using
a logistic link. However, the algorithm adopting the auxiliary representation of Holmes and Held
(2006) in the method of Meligkotsidou and Dellaportas (2011) does not converge in some cases,
especially if there is model uncertainty in transition probabilities. Many data-augmentation
or Metropolis-Hastings algorithms are proposed to model the logistic regression model, see for
example O’Brien and Dunson (2004); Fussl et al. (2013); Polson et al. (2013). We follow Polson
et al. (2013) since as shown in their work, using Pólya-Gamma data augmentation gives superior
results, it terms of convergence and mixing, among all the competing models.

Given the unobserved (latent) data zT = (z1, . . . , zT ) we define Z̃st = I [Zt+1 = Zt = s]. In
words Z̃st is the number of times where the chain was at the same stage for two consecutive time
periods. Then,

p
(
Z̃st
)

= ptss =
exp

(
x

(2)
t βss

)
1 + exp

(
x

(2)
t βss

) ⇔ logit(ptss) = x
(2)
t βss, s = 1, 2.

Polson et al. (2013) proved that binomial likelihoods (thus Bernoulli likelihoods in our simpler
case) parametrized by log odds can be represented as mixtures of Gaussian distributions with
respect to Pólya-Gamma distribution. The main result of Polson et al. (2013) is that letting p(ω)
be the density of a latent variable ω with ω ∼ PG(b, 0) for b > 0, the following integral identity
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holds for all a ∈ R:

exp (ψ)a

(1 + exp (ψ))b
= 2−b exp (kψ)

∫ ∞
0

exp
(
−ωψ2/2

)
p (ω) dω,

where k = a − b/2. Furthermore, the conditional distribution of ω | ψ is also Pólya-Gamma,
PG(b, ψ). Using the previous result and setting Ωs = diag{ω1,s, . . . , ωNs,s} as a set of latent
variables the likelihood for each state s = 1, 2 is

L (β, ω) =
Ns∏
t=1

 exp
(
x

(2)
t βss

)
1 + exp

(
x

(2)
t βss

)

z̃t  1

1 + exp
(
x

(2)
t βss

)


1−z̃t

=
Ns∏
t=1

exp
(
x

(2)
t βss

)z̃t

1 + exp
(
x

(2)
t βss

)
∝

Ns∏
t=1

exp
(
ktx

(2)
t βss

)∫ ∞
0

exp
{
−ωt

(
x

(2)
t βss

)2
/2
}
p(ωt)dωt

Conditioning on Ω, one can derive the proportion

π
(
β | zt, ω

)
∝

Ns∏
t=1

exp
{
ktx

(2)
t βss −

ωt
2

(
x

(2)
t βss

)2
}
π (βss)

∝ π (β)
Ns∏
t=1

exp
{
−ωt2

((
x

(2)
t βss

)2
− 2ktx(2)

t βss
ωt

)}

∝ π (β)
Ns∏
t=1

exp
{
−ωt2

((
x

(2)
t βss

)2
− 2ktx(2)

t βss
ωt

+ k2
t

ω2
t

)}
.

Assuming as prior distributions ω ∼ PG(b, 0) and β ∼ N (m0ω, V0ω), simulation from the poste-
rior distribution can be done iteratively in two steps:

ωt,s | z̃t ∼ PG
(

1, x(2)
t βss

)
, t = 1 : Ns, s = 1, 2,

βss | Z̃,Ωs ∼ N (mωs
, Vωs

),

Vωs
=
(
X(2)′ΩsX(2) +m−1

0ω

)−1
and mωs

= Vωs

(
X(2)′k + V −1

0ω m0ω

)
,

where PG denotes the Pólya-Gamma distribution and k = (z̃1 − 1/2, . . . , z̃Ns
− 1/2).

3.1.2 Simulation of the mean equation parameters using the Gibbs algorithm

We used conditionally conjugate prior distributions on the parameters of the mean predictive
distribution, i.e.

σ2
s ∼ IG (p, q) and Bs | σ2

s ∼ N
(
L0s, σ

2
sV0s

)
, s = 1, 2.
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After some straightforward algebra we derive the conditional and the marginal posterior distri-
bution for the state specific parameters σs and Bs,

σ2
s | yT , zT ∼ IG

(
p+ n

2 + ns
2 , q + 1

2

(
Ys −X(1)

s Bs

)′ (
Ys −X(1)

s Bs

)
+ 1

2 (Bs − L0s)′ V −1
0s (Bs − L0s)

)
∼ IG

(
p+ ns

2 , q + 1
2
(
L′0sV

−1
0s L0s + Y ′sYs − L′sV −1

s Ls
))

,

Bs | σ2
s , z

T , yT ∼ N
(
Ls, σ

2
sVs
)
,

with Vs =
(
V −1

0s +X
(1)′
s X

(1)
s

)−1
, Ls = Vs

(
V −1

0s L0s +X
(1)′
s Ys

)
.

3.2 Inference under model uncertainty
Here, we consider the full model comparison problem where the uncertainty about which pre-
dictors should be included in the mean regression model is taken into account together with
the uncertainty about the predictors that should be included in the transition probability equa-
tion. The proposed model is flexible, since we do not decide a priori which covariates affect the
observed or the unobserved process. Instead, we have a common pool of covariates {X} and
within the MCMC algorithm we gauge which covariates are included in subset {X(1)}, affect-
ing the mean predictive equation of the observed process, and which covariates are included in
subset {X(2)}, affecting the time-varying transition probabilities. It is worth mentioning that
within the framework of the proposed model, a set of p − 1 covariates implies that there are
2p−1× 2p−1 = 22(p−1) possible models, hence the model selection problem becomes complicated.

Different approaches have been used in the literature to cope with the model selection prob-
lem. The use of information criteria, such as Akaike’s Information Criterion (AIC, Akaike et al.
(1973)), Bayesian Information Criterion (BIC) of Schwarz (1978) or Deviance Information Cri-
terion (DIC, Spiegelhalter et al. (2002)) or Widely applicable Bayesian Information Criterion
(WBIC, Watanabe (2013)), is another approach to variable selection.

We propose a probabilistic approach to inference, which is based on the calculation of the
posterior distribution of different NHHMMs or equivalently on computing the posterior probabil-
ities of different hidden Markov models. Posterior probabilities can be used either for selecting
the most probable model (i.e. making inference using the model with the highest posterior
probability), or for Bayesian model averaging (i.e. producing inferences averaged over different
NHHMM). Barbieri and Berger (2004) argue that the optimal predictive model is not necessarily
the model with highest posterior probability but the median probability model, which is defined
as the model consisting of those covariates which have overall posterior probability of being in-
cluded in the model (inclusion probability) greater or equal to 0.5. Our method allows us to
calculate the posterior probability of the model as well as the probabilities of inclusion. To this
end, we develop a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm (Green
(1995),Green and Hastie (2009)) which explores the model space by jumping between different
hidden Markov models. A more applied tutorial based on the lines of Green (1995), can be found
Waagepetersen and Sorensen (2001). A study for comparing variable selection methods is well
presented in O’Hara and Sillanpää (2009) whilst Dellaportas et al. (2002) study the variable
selection methods in the context of model choice.

As Green and Hastie (2009) noticed, reversible jump MCMC is in fact a Metropolis-Hastings
algorithm, formulated to allow sampling from a distribution on a union of spaces of differing
dimension and to permit state-dependent choice of move type. Suppose that a prior π(k) is
specified over k models (M1,M2, . . . ,Mk) in a countable set K and for each k we are given a
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prior distribution π(θ̃k | k) along with a likelihood L(y | k, θ̃k) for data y. The joint prior for θ̃k
and k is π(k, θ̃k) = π(θ̃k | k)p(k) and obviously the joint posterior distribution is

π(k, θ̃k | y) = π(k, θ̃k)L(y | k, θ̃k)∑
k′∈K

∫
π(k′, θ̃k′)L(y | k′, θ̃k′)dθ̃

′
k′

The standard formulation of the Metropolis-Hastings algorithm relies on the construction of a
time-reversible Markov chain, that satisfies the detailed balance condition. This condition means
that the probability that the state of a chain is in a general set A and moves to a general set B
is the same with the probability that the state is in the set B and moves to set A. Note that
this is a simple way to ensure that the limiting distribution of the chain is the desired target
distribution. Define x̃ =

(
k, θ̃k

)
∈
⋃
k∈K ({k} × Xk) as the state and state space of chain. At the

current state x̃ we generate r random numbers u from a known joint density g. The new state
of chain x̃′ is constructed by some suitable deterministic function h : Rn × Rr → Rn′ × Rr′

such that (x̃′, u′) = h (x̃, u). The inverse move is made by generating u′ from a suitable known
density g′ and then using the inverse function h′ : Rn′ ×Rr′ → Rn ×Rr of h to move from x̃′

to x̃. In practice, the construction of proposal moves between different models is achieved via
the concept of ’dimension matching’. Specifically, if the dimensions of x̃, x̃′, u and u′ are n, n′, r
and r′ respectively, then n + r = n′ + r′. If the move from x̃ to x̃′ is accepted with probability
α (x̃, x̃′) then, the reverse move is accepted with probability α (x̃′, x̃). Under this formulation the
detailed balance condition is∫

(x̃,x̃′)∈A×B
π(x̃)g(u)α (x̃, x̃′) dxdu =

∫
(x̃,x̃′)∈A×B

π(x̃′)g′(u′)α (x̃′, x̃) dx′du′.

If the transformation h from (x, u) to (x′, u′) and its inverse h′ are differentiable then the equality
holds if

π (x̃) g(u)α (x̃, x̃′) = π(x̃′)g′(u′)α (x̃′, x̃)
∣∣∣∣∂ (x̃′, u′)
∂ (x̃, u)

∣∣∣∣ ,
where J =

∣∣∣∣∂(x̃′,u′)∂(x̃,u)

∣∣∣∣ is the Jacobian of the transformation. Thus, the acceptance probability α,

for moving is

α (x̃, x̃′) = min
{

1, π (x̃′) g′ (u′)
π (x̃) g (u)

∣∣∣∣∂ (x̃′, u′)
∂ (x̃, u)

∣∣∣∣}.
Holsclaw et al. (2017) recently introduced NHHMMs using the Pólya-gamma latent data

method. As a model selection strategy, they use BIC values to choose the best model among a
prespecified set of models. We apply a reversible jump algorithm to account model uncertainty.
Due to the fact that in the proposed model there is uncertainty both in the mean predictive
equation, as well as in the transition probability equation, we will have to perform two reversible
jump steps within our MCMC algorithm. Let us now assume that in a reversible jump step we
propose a move type m from x̃ = (k, θk) to x̃∗ = (k∗, θ∗k∗). Let jm(x̃) denote the probability that
move m is attempted at state x̃ and jm∗(x̃∗) the probability of the reverse move attempted at
state x̃∗. We accept the proposed move with probability αm (x̃, x̃∗) = min {1, Am(x̃, x̃∗)} where

Am(x̃, x̃∗) =
L
(
yT | x̃∗

)
p (θ∗ | k∗) p (k∗) jm∗(x̃∗)g′m (u∗ | x̃∗, k)

L (yT | x̃) p (θ | k) p (k) jm (x̃) gm (u | x̃, k∗)

∣∣∣∣∂ (θ∗k∗ , u∗)
∂ (θk, u)

∣∣∣∣ .
We adopt the proposal of Meligkotsidou and Dellaportas (2011) to implement the above

algorithm. In each step, we choose to add or remove one covariate with probability 0.5 and then
we randomly choose which covariate we will add/remove. We propose a new value for the mean
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equation coefficients B∗ or for the regression equation coefficients β∗ from the full conditional
posterior density, conditionally on the other coefficients, thus the Jacobian of transformation will
be equal to unity. To be more specific, if we want to update the covariates in the mean equation,
the proposal distribution g′ is just the product of the two conditional posterior distributions for
s = 1, 2 derived in Subsection 3.1.2 given σ and if we want to update the covariates that affect
the transition matrix, the proposal distribution is the product of conditional normal distributions
derived in Subsection 3.1.1 given Ωs for s = 1, 2. With some straightforward matrix algebra, the
acceptance probability for the mean equation is αB = min {1, AB} and the acceptance probability
for the transition matrix is αβ = min {1, Aβ} where

AB = jm∗ (k∗)
jm (k)

2∏
s=1

|V ∗s |
1/2 |V0s|1/2

|Vs|1/2 |V ∗0s|
1/2

× exp
{
− 1

2σ2
s

(
L∗
′

0sV
∗−1

0s L∗0s − L∗
′

s V
∗−1
s L∗s − L0sV

−1
0s L0s + L′sV

−1
s Ls

)}
,

and

Aβ = jm∗ (k∗)
jm (k)

2∏
s=1

|V ∗ωs|
1/2 |V0ωs|1/2

|Vωs|1/2 |V ∗0ωs|
1/2

× exp
{
− 1

2σ2
s

(
L∗
′

0ωsV
∗−1

0ωs L
∗
0ωs − L∗

′

ω V
∗−1
ωs L∗ωs − L0ωsV

−1
0ωsL0ωs + L′ωsV

−1
ωs Lωs

)}
.

3.3 MCMC Sampling Scheme
In the next lines, we summarize the predictive MCMC algorithm that we have constructed for
joint inference on model specification and model parameters.

1. Start with initial values of β, θ = [B, σ] .

2. Calculate the probabilities of time-varying transition matrix for t = 1 : T .

3. Run a Scaled Forward-Backward (Scott (2002)) algorithm to simulate the hidden states
given the parameters of the model.

4. Simulate the parameters of the regression model for the mean via a Gibbs sampler method.

5. Simulate the coefficients β using the Pólya-gamma representation by Polson et al. (2013).

6. Do a double reversible jump algorithm to define which covariates will affect the transition
matrix and which covariates will affect the mean regression model.

7. Make one-step-ahead predictions conditional on the simulated unknown quantities.

Repeat steps 3-6 until convergence and then repeat steps 3-7.

4 Bayesian Forecasting and Scoring rules
4.1 One-step-ahead predictions
The proposed modeling and inferential approach is used for forecasting. The posterior predictive
density can not be found in closed form, but it can instead be evaluated numerically. Given
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model M , the predictive distribution of yT+1 is

fp
(
yT+1 | yT

)
=
∫
f
(
yT+1 | yT , zT ,M, βM , θM

)
π
(
βM , θM | yT

)
dβMdθM ,

where

f
(
yT+1 | yT , zT , βM , θM

)
=

2∑
s=1

P (ZT+1 = s | ZT = zT ) fs (yT+1) .

In practice we follow an iterative procedure within the MCMC algorithm to draw a sample
from the posterior predictive distribution. At the r-th iteration of our algorithm, the algorithm
chooses model M . Also, the hidden states and the unknown parameters β(r)

M , θ
(r)
M are simulated

as described before. Let z(r)
T be the hidden state is at time T . To make an one-step-ahead

prediction (i.e. simulate yT+1), we first simulate the hidden state for time T + 1, from the
discrete distribution based on the transition probabilities P

(
Z

(r)
T+1 = s | ZT = z

(r)
T

)
, s = 1, 2

and then conditional on the hidden state we draw a value yrT+1 from

Y
(r)
T+1 | Z

(r)
T+1 = s ∼ N

(
X

(1)
T Bs, σ

2
s

)
, s = 1, 2.

Given YT+l, l = 1, . . . , L, the hidden state ZT+l and the covariates XT+l−1, we update the tran-
sition matrix PT+l−1, simulate ZT+l+1 and simulate the prediction yT+l+1 from the predicting
distribution, in sequence.

4.2 Forecasting criteria
One way to evaluate a model is through the accuracy of its forecasts (Geweke and Whiteman
(2006)). As Gelman et al. (2014) observe, predictive accuracy is valued not only for its own
sake but also for comparing different models. Advances in numerical integration via MCMC
algorithms made probabilistic forecasts possible, which are in most cases, preferable. Besides,
having the posterior predictive distribution, one can obtain a point effective forecasts, using
suitable scoring functions (Gneiting (2011)).

Scoring rules provide summary measures for the evaluation of probabilistic forecasts, by
assigning a numerical score based on the forecast and on the event or value that materializes.
We refer to Gneiting and Raftery (2007) for a review on the theory and properties of scoring
rules. If the forecaster quotes the predictive distribution P and the event x materializes, then
his reward is S (P, x). If Q is the forecaster judgment then S (P,Q) is the expected value of his
reward under Q. A scoring rule is said to be proper if S (Q,Q) ≥ S (P,Q) and if the equality
S (Q,Q) = S (P,Q) holds if and only if Q = P , then the rule is strictly proper. Intuitively,
proper scoring rules encourage a forecaster to report the truth about his judgment distribution
and they are strictly proper is the issued forecasts are the same with the forecaster’s judgment.

There are various proper scoring rules for continuous variables, such as the probabilistic
score, the Linear Score (LinS), the Quadratic Score (QS), the Logarithmic Score (LogS) and
the Continuous Ranked Probability Score (CRPS), among others (Machete (2013); Gneiting and
Raftery (2007)). Probabilistic and Linear score are often used, nevertheless they are improper
and can have misleading results. A widely used and quite powerful criterion is the Logarithmic
Score. It is based on the posterior predictive density evaluated at the observed value and there
is a strong connection with the classical Kullback-Leibler divergence, which is one of the reasons
for being studied quite intensively (see for example Gelman et al. (2014), GschlÃűÃ§l and Czado
(2007)). The Logarithmic Score is defined as follows: Let T be the total sample size and N the
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number of out-of-sample forecasts. For i = T −N,T −N + 1, . . . , T let yi be the real observed
values of the forecasts, ŷi the estimated forecasts and θ̃ the unknown quantities. Finally, let D
be the number of draws of the simulation. Using the notation fp(ŷi) for the posterior predictive
density of the new data, f for the distribution of the true model and π(y | θ̃) for the likelihood
of the data, the predictive fit for the i-th observation would be,

log (fp (ŷi)) = log
∫
π
(
ŷi | θ̃

)
π
(
θ̃
)
dθ̃.

Having in mind though that the new data are unknown Gelman et al. (2014) defined the expected
out-of-sample log predictive density for the i-th observation as

Ef (log (fp (ŷi))) =
∫

(log (fp (ŷi))) f (ŷi) dŷi.

To compute the predictive density for N estimated forecasts in practice, since θ̃ is unknown, we
shall calculate the

LogS =
T∑

i=T−N
log

 1
D

D∑
j=1

π
(
ŷi | θ̃j

) .

Although the Logarithmic Score is a strictly proper rule, it lacks robustness as it involves harsh
penalty for low probability events and thus is sensitive to extreme cases (Boero et al. (2011)).
Besides, comparing the entropies of the forecasts, Machete (2013) showed that LS prefers the
forecast density that is less informative. As Gneiting and Raftery (2007) notice, measures which
are not sensitive to distance give no credit for assigning high probabilities to values near but
not identical to the one materializing. Sensitivity to distance seems desirable when predictive
distributions tend to be multimodal, which is the case for our model. To deal with this, one could
calculate the Continuous Ranked Probability Score which is based on the cumulative predictive
distribution. Recently, Boero et al. (2011) made a comparison between LS, CRPS and QS and
they argued that when density forecasts are collected in histogram format, then the ranked
probability score has advantages over the other scoring rules. Note than when the forecast is
deterministic, CRPS is reduced to the Mean Absolute Forecast Error

(
1
N

∑T
i=T−N |yi − ŷi|

)
and

therefore it is easily interpretable and provides a direct way for comparing various deterministic
and probabilistic forecasts.

The posterior predictive cumulative density function is defined as Fp(x) =
∫ x
−∞ fp (ŷ | y) dŷ,

where ŷ is the forecast of interest and y is the history of the predictive quantity. Using the same
notation as in Logarithmic score, the CRPS for the real observed value yi is defined as,

CRPS(Fp,i, yi) = −
∫ ∞
−∞

(Fp,i (ŷi)− I (ŷi ≥ yi))2
dŷi = −

∫ ∞
−∞

(Fp,i (ŷi)− Fyi
(ŷi))2

dŷi,

where I (x ≥ y) denotes a step function along the real line that attains the value 1 if x ≥ y and
the value 0 otherwise, Fyi = H(ŷi − yi) is the cumulative distribution of the real value yi and H
is the known Heaviside function (Hersbach (2000))

H(x) =
{

0 if x ≤ 0,
1 otherwise.

As we described above, at each iteration of the MCMC algorithm, we obtain a sample of length
L from the predictive distributions of yT+1, . . . , yT+L. Hence we can evaluate both the posterior
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predictive probability and cumulative distribution function. Instead,there is an easier way of
evaluating CRPS using the identity of SzÃľkely and Rizzo (2005).

CRPS(F, yi) = 1
2EF |Y − Y

′| − EF |Y − yi| ,

were Y, Y ′ are independent copies of a random variable with distribution function F (see also
GschlÃűÃ§l and Czado (2007)).

Finally, for the sake of completeness we estimate the mean, mode and median of the predic-
tive distribution and compare them using two well known point forecasting criteria, the Mean
Square Forecast Error, MSFE = 1

N

∑T
i=T−N (yi − ŷi)2 and the Mean Absolute Forecast Error,

MAFE = 1
N

∑T
i=T−N |yi − ŷi|. Based on the MCMC sample, the computed point forecasting

criteria is just the average score of MSFE or MAFE for all the sample values.

5 Simulation Study
We have tested our method using a number of simulated data sets. We conducted a series of
simulation experiments to validate the superiority of our method. We tested quite extensively our
algorithms, accounting for model uncertainty or not, using different sample sizes and assigning
various values to the parameters. In all our experiments our model outperforms the competing
models in forecasting the observed process yT . We compared our model with a Homogeneous
Hidden Markov model and a linear model with autoregression terms (qAR). Although considered
standard, for the sake of completeness, we give the definitions of HHM and qAR models. In the
Homogeneous Hidden Markov model, covariates affect the mean equation but the transition
probability matrix is constant. That is,

Yt | Zt = s ∼ N (X(1)
t−1Bs, σ

2
s), s = 1, 2, t = 1, . . . , T,

P (zt = j | zt−1 = i) = pij , i, j = 1, 2 ∀ t = 1, . . . T.

In the linear regression with autocovariates, besides covariates Xt−1, Yt−1 lagged values of Yt
are assumed to affect the mean equation. Specifically,

Yt = [Xt−1Yt−1]B + εt , t = 1, . . . , T and εt ∼ N (0, σ2).

The data were generated either from a Homogeneous Hidden Markov model (HHMM) or from
a NHHMM model with independent normal distributed covariates. We found that the mean
equation parameters converge rapidly whereas the logistic regression coefficients needed some
burn in period to converge. The hidden chain ZT was well estimated. For each iteration we
kept a replication of the hidden chain (thus the number of the hidden-chain replications is the
same with the MCMC sample size) and compared it with the real simulated hidden chain,
using a 1-0 loss function. Also the reversible jump algorithm behaved really well in all of our
simulations. Even in the case where the data were homogeneous, no covariates were selected in
the logistic regression equation, thus the transition probability matrix remained constant through
time. Furthermore, in order to test the predictive ability of our model we kept N out-of-sample
observations and we calculated the CRPS for every observation. We confirm that our forecasts
were more accurate than the forecasts of the competing models. A summary of our comparisons
are presented and discussed in the following subsections.
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5.1 The fixed model
Below, we present two experiments with simulated data using the fixed NHHMM. For all our
experiments we used non-informative priors for the unknown parameters σs, Bs, βss, s = 1, 2,
that is σ2

s ∼ IG(0.1, 0.1), Bs | σ2
s ∼ N (0, 100σ2

s) and finally βss ∼ N (0, 80× I). Inferences
are based on an MCMC sample of 15000 iterations after 10000 burn in period. In the first
experiment we used a sample of T = 1000 observations. From a common pool of covariates
X = {1, X1, X2, X3, X4, X5, X6, X7} we chose X(1) = {1, X1, X2, X3, X7} to affect the mean
equation and X(2) = {1, X1, X3, X4, X6, X6} to affect the transition matrix. The mean equation
parameters were B1 = [5, 1, 3, 2, 4]′ , σ2 = 0.8 and B2 = [3,−4, 3, 1, 2]′ , σ2 = 1.3 whereas the
logistic regression coefficients where β1 = [−2, 3, 2, 4, 1,−2]′ and β2 = [2, 4, 1, 2,−1, 3]′ for states
s = 1, 2 respectively. Secondly, we run another experiment with sample size T = 1500. We
used 3 covariates X = {1, X1, X2, X3} affecting the mean equation and X = {1, X1, X2, X4}
the transition matrix. The mean equation parameters were B1 = [2,−0.3, 2, 2]′ , σ2 = 0.1.5 and
B2 = [1, 3, 4, 3]′ , σ2 = 0.8 whereas the logistic regression coefficients where β1 = [1.5, 1, 2, 3]′
and β2 = [3,−2.5, 4, 1]′ for states s = 1, 2 respectively. For both experiments, we kept 10 out-
of-sample observations, we computed a sequence of one-step-ahead forecasts of the real observed
process. For completenes we present in Section 7 various plots that confirm the estimation per-
formance and convergence of our methodology, parameter estimates and summary statistics of
these experiment studies (Tables 7 and 9) and a comparison of the three competing models in
terms of forecasting (Tables 8 and 10).

Figure 1: Experiment 1: The upper panel shows a comparison between the transition probabilities
pss. True probability values are marked with red dots whereas the posterior mean estimated
transition probabilities are marked with blue crosses. Lower panel: The difference between real
and mean estimated probabilities.
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Figure 2: Forecasts of experiment 1. Empirical continuous approximation of the posterior predic-
tive distribution (based on a normal kernel function) using the NHHMM model (blue continuous
line) and the HHMM (red dotted line). True out-of-sample values are marked with yellow aster-
isk.

Figure 3: Experiment 1: This figure presents the quantiles of the predictive distribution of the
studied model.. Blue dashed line presents the real observed out-of-sample values of interest.
Gray bold line represents the median of the predictive distribution. The gray area around the
median is defined by the 2.5% and 9.5% quantiles. Red circles represent the median values of
the predictive distribution using the HHMM model.
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Figure 4: Experiment 2: The upper panel shows a comparison between the transition probabilities
pt11 and pt22. True probability values are marked with red dots whereas the posterior mean
estimated transition probabilities are marked with blue crosses. Lower panel: The difference
between real and mean estimated probabilities.

Figure 5: Forecasts of experiment 2. Empirical continuous approximation of the posterior predic-
tive distribution (based on a normal kernel function) using the NHHMM model (blue continuous
line) and the HHMM (red dotted line). True out-of-sample values are marked with yellow aster-
isk.
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Figure 6: This figure presents the quantiles of the predictive distribution of the studied model
for the second experiment. Blue dashed line presents the real observed out-of-sample values of
interest. Gray bold line represents the median of the predictive distribution. The gray area
around the median is defined by the 2.5% and 9.5% quantiles. Red circles represent the median
values of the predictive distribution using the HHMM model.

5.2 Model selection
In this section we present two case studies (experiments 3 and 4). We compared outputs of three
models (NHHMM, HHMM, qAR) with model uncertainty. We performed stochastic variable
selection with reversible jump for all the competing models. As in Subsection 5.1we used the
same non informative priors and burn-in period. For the first experiment we simulated data of size
T = 1200. We used the same two covariates affecting the mean equation and transition matrix
via the logistic regression. To check the variable selection ability of our method we included three
more covariates in the common pool of predictors. Next, we present a second, more complicated,
experiment. We used 3 covariates affecting the mean equation and 5 covariates affecting the
transition probability matrix. In Tables 1 and 3 we show that the most probable model and
the Median probability model is the true one for the two experiments. Additionally, as in the
fixed model case studies we kept 10 out-of-sample observations for forecasting evaluation exercise
and we confirmed that our model performed better than the other models in terms of CRPS,
MAFE and MSFE (see Tables 2 and 4). Finally, for each MCMC iteration we kept a replicated
chain of the hidden process and we compared it with the true simulated chain. Using the 0-1
Loss function we computed the mean mis-estimated states in each chain. On average from the
chain with 1200 hidden states of the first experiment, our model failed to recognize 22 states per
iteration and on average from the chain of 1500 hidden states of the second experiment we failed
to recognize 8 states. We note that we did not encounter any label switching problems.

In the following pages we present the mean estimated probabilities (for being at the same stage
two consecutive time periods, that is p11 or p22) of the transition matrix and the differences with
the true simulated probabilities (Figure 7) for the first case study and in Figure 11 for the second
case study. A realization of the observed process and hidden process as well as one realization of
the simulated hidden process for the two case studies presented in Figures 8 and 12 respectively.
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Lastly for each experiment, the predictive distribution using a kernel density function is plotted,
for both NHHM and HHM models, are presented in Figures 10 and 14 and the quantiles of the
predictive distributions in Figures 9 and 13.

Figure 7: Experiment 3: True simulated transition probabilities vs mean estimated transition
probabilities. Upper panel: True probabilities are marked with blue crosses and mean estimated
probabilities are estimated with red dots. Lower panel: The difference between mean estimated
probabilities for one estimated realized hidden process and the true simulated probabilities.

Figure 8: Observed process (black dotted line) and hidden process. True hidden states are
marked with blue x and a realized simulated states are marked with red dots.
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True model
Included Covariates, Mean X1, X2
Included Covariates, Transition Matrix X1, X2
Total Covariates X1, X2, X3, X4, X5

Highest Posterior Probability model
Included Covariates, Mean X1, X2
Included Covariates, Transition Matrix X1, X2
Posterior probability 0.9958

Median Probability model
Included Covariates, Mean X1, X2
Included Covariates, Transition Matrix X1, X2

Table 1: Experiment 3: Highest posterior probability model and median probability model.

Figure 9: Experiment 3: Empirical posterior predictive distribution for the 10 out-of-sample
forecasts using the NHHMM (blue line) and the (red dotted line). Yellow asterisk represents the
true simulated values.
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Figure 10: Experiment 3: Quantiles of the predictive distribution. Ten one-step-look-ahead
observed values (as taken from the sample) are marked with dashed blue line (and grey dots).
Gray bold line represents the median of the predictive distribution. The gray area around the
median is defined by the 2.5% and 9.5% quantiles. Red circles represent the median values of
the predictive distribution using the HHMM model.

Probabilistic Forecasting Criterion
y NHHMM HHMM qAR
y1 -0.2428 -0.2735 -6.0555
y2 -0.7669 -5.5975 -6.2297
y3 -0.9958 -2.6073 -6.0018
y4 -2.3435 -5.1726 -6.6054

CRPS(yi) y5 -2.0090 -4.6137 -6.4204
y6 -0.9844 -1.15774 -5.8633
y7 -1.4488 -2.4993 -6.0581
y8 -2.4239 -5.5700 -6.6718
y9 -1.0679 -0.7877 -6.1227
y10 -2.6806 -1.3794 -5.6358

E(CRPS) -1.5163 -2.9957 -6.1728
MAFE 3.5105 4.8270 20.5394
MSFE 22.2409 37.0315 665.1931

Table 2: Experiment 3: Predictive ability of the three competing models.
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Figure 11: Experiment 4: True simulated transition probabilities vs mean estimated transition
probabilities . Upper panel: True probabilities are marked with blue crosses and mean estimated
probabilities are estimated with red dots. Lower panel: The difference between mean estimated
probabilities for one estimated realized hidden process and the true simulated probabilities.

Figure 12: Experiment 4: Thinned observed process (black dotted line) and hidden process.
True hidden states are marked with blue x and a realized simulated states are marked with red
dots.
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True model
Included Covariates, Mean X1, X2, X3
Included Covariates, Transition Matrix X1, X2, X5, X6, X7
Total Covariates X1, X2, X3, X4, X5, X6, X7, X8

Highest Posterior Probability model
Included Covariates, Mean X1, X2, X3
Included Covariates, Transition Matrix X1, X2, X3, X4, X5
Posterior probability 0.9775

Median Probability model
Included Covariates, Mean X1, X2, X3
Included Covariates, Transition Matrix X1, X2, X5, X6, X7

Table 3: Experiment 4: Highest posterior probability model and median probability model.

Figure 13: Experiment 4: Empirical posterior predictive distribution for the 10 out-of-sample
forecasts using the NHHMM (blue line) and the HHMM (red dotted line). Yellow asterisk
represents the true simulated values.
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Figure 14: Quantiles of the predictive distribution. Ten one-step-look-ahead observed values are
marked with dashed blue line. Gray bold line represents the median of the predictive distribution.
The gray area around the median is defined by the 2.5% and 9.5% quantiles. Red circles represent
the median values of the predictive distribution using the HHMM model.

Probabilistic Forecasting Criterion
y NHHMM HHMM qAR
y1 -0.7132 -0.7163 -26.5950
y2 -0.1909 -5.5165 -26.2714
y3 -0.5462 -3.6384 -26.5136
y4 -0.2409 -11.7427 -26.4477

CRPS(yi) y5 -0.3732 -2.3383 -26.3171
y6 -0.9319 -11.1786 -27.6324
y7 -0.6246 -3.6083 -26.1485
y8 -1.1246 -1.4325 -26.5387
y9 -1.1691 -2.2991 -26.6335
y10 -0.8270 -6.8545 -25.7379

E(CRPS) -0.6742 -2.9957 -26.4565
MAFE 1.6932 9.6738 88.5193
MSFE 9.7859 211.4431 1.2× 104

Table 4: Experiment 4: Predictive ability of the three competing models.

6 Empirical Application: Realized volatility data
Financial volatility has been extensively studied in the literature, due to the crucial role in
various financial fields, such as pricing, risk managment, investment, asset allocation among
others. Many models have been proposed, exploring different methodologies. A review on the
realized volatility literature can be found in ÎĲichael McAleer and Medeiros (2008). There are
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though only few studies in predicting realized stock volatility using various financial predictors
(Mittnik et al. (2015); Meligkotsidou et al. (2015); Christiansen et al. (2012); Paye (2012)). We
use the described model and methodology to asses the predictive ability of 13 financial variables
in realized volatility data.

6.1 The data
We applied our method to Realized stock market Volatility data, as described in detail by
Christiansen et al. (2012). Specifically, we use the ’long’ sample of U.S. equity market of the
S&P500. The realized volatility is the squared root of the realized variance for asset class i in
month t us the sum of squared intra-period (daily) returns

RVi,t =

√√√√Mt∑
τ=1

r2
i,t,τ , t = 1 . . . , T.

Where ri,t,τ is the rth daily continuously compounded return of month t for asset i and Mt

denotes the trading days during month t. Thus
∑Mt

τ=1 r
2
i,t,τ is the realized variance for asset class

i in month t. The distribution of the realized daily variances are highly non-normal and skewed
to the right, but the logarithms of the realized variances are approximately normal and thus they
have better behavior (see Andersen et al. (2003)). Hence, in the following analysis we study the
natural logarithm of the realized volatility series,

RVi,t = ln

√√√√Mt∑
τ=1

r2
i,t,τ , t = 1 . . . , T.

The data are in a monthly basis, starting from December 1926 until October 2002. The
out-of-sample forecast evaluation period is two years, i.e. 24 observations from October of 2000
until October 2002. In both simulations, for realized volatility and for log-realized volatility,
we had a burn-in period of 20000 and we generated 20000 MCMC samples. We used non-
informative priors for the unknown parameters σs, Bs, βss, s = 1, 2, that is σ2

s ∼ IG(0.1, 0.1),
Bs | σ2

s ∼ N (0, 1000σ2
s) and finally βss ∼ N (0, 100× I). Following Christiansen et al. (2012)

and Meligkotsidou et al. (2015) we take into account 13 macroeconomic and financial predictive
covariates. Particularly, from a list of equity market variables and risk factors we consider
dividend price ratio (DP) and earnings price ratio (EP) (Welch and Goyal (2008)), lagged equity
market returns (MKT), in order to capture the leverage effect, that is the asymmetric response of
volatility to positive and negative returns (Nelson (1991)). We also use the risk factors of Fama
and French (1993),that is, the size factor (SMB), value factor (HML), a short-term reversal factor
(STR). From the set of interest rates, spreads and bond market factors we included the treasure
bill rate (TBL), i.e. the interest rate on a three-month Treasure bill, the long-term return (LTR)
on long-term government bonds, the term spread (TMS), i.e. the difference between the log-term
yield and Treasure bill rate, the relative T-bill rate (RTB) as the difference between, T-bill rate
and its 12-month moving average and the relative bond rate (RBR), as the difference between
LTR and its 12 month moving average (Welch and Goyal (2008)). To proxy for weighted credit
risk we also used the default spread (DEF) defined as the yield spread between BAA and AAA
rated bonds. Lastly we consider the macroeconomic variable, inflation rate (INF), the monthly
growth rate of CPI. The strong contemporaneous relation between the volatility and the business
conditions implies that lagged volatility plays important role in forecasting (see Paye (2012)).
We run a series of experiments for this data. Specifically we performed our analysis using the
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predictors described and then we repeated the analysis using the predictors plus autoregressive
terms (AR) of lag 1, 2 and lag 3 to investigate if there is additional predictive content of the
macroeconomic and financial variables that go beyond the information contained in time-series
history of volatility.

6.2 Results
Our in-sample analysis revealed some interesting results. Based on the posterior probabilities of
inclusion we see that if we do not include any AR terms in the pool of the predictors, then the
median NHHMM model has 9 predictors that affect the series linearly or not. When we added
the AR(1) term, the included predictors in the median probability model immediately reduced in
6. Adding more AR terms (of lag 2 and lag 3), the median probability model remained almost the
same as in the case of the model with one autoregressive term. Furthermore, in our out-of-sample
analysis, we did not encounter any significant improvement in the forecasting ability of the models
with AR(2) and AR(3) terms. We note that this result confirms the analysis of Christiansen
et al. (2012), who also used only one AR term of lag 1 in their analysis. Thus, from hereafter even
though based on the CRPS the model with the best performance was the one with AR(1) term we
present both results of the model with no autoregressive terms (NHHMM0) and the model with
one autoregressive term (NHHMM1), for the sake of completeness. Also, we compare our results
with two benchmark models, the Homogeneous model with one autoregressive term (HHMM)
and the quasi-AR model (qAR), as described in Section 5.

Figure 15 shows a plot of the realized volatility data (blue line), the probability of staying at
the same stage (e.g. if at time t we are on state 1 then the red dot at time t shows the value
of probability p11) and the shaded bars represent the time period that the chain was in state 2,
based on the smoothed probabilities of being above 0.5 for NHHMM1. We observe that both
states are highly persistent, i.e. probabilities of staying at the same state are high. Also, we
present a thinned in-sample realization of the observed process inferred by our algorithm along
with the real data in Figure 17.

6.2.1 Model Selection

The double reversible jump algorithm of our methodology, did not assign high probability to
a specific model. Instead, we summarize in Table 6 (Section 7) the posterior probabilities of
inclusion for each predictor, both for the mean equation and for the transition matrix for the
NHHMM0 and NHHMM1. With our methodology we are not only able to identify which covari-
ates affect the realized volatility series but to comment on how the covariates affect the series
(linearly or not). Based on the median model of NHHMM0 we found that predicting realized
volatility series can be improved using several predictors. Earnings price ratio (EP), lagged eq-
uity market returns (MKT), value factor HML, relative T-bill rate (RTB), long-term goverment
bonds (LTR), relative T-bill rate (RBR) affect the series linearly, term spread (TMS), difference
between LTR and TBL (RBR),inflation (INF) affect the series non linearly and term spread
(TMS), default spread (DEF) affect the series in a linear and non-linear fashion. The median
proabability NHHMM with AR(1) term NHHMM1 has notably less predictors affecting the RV-
series. Specifically we found that MKT affect the series linearly, TBL,RTB,LTR,TMS affect the
series non-linearly and DEF both linearly and non linearly. Our analysis agrees with the analysis
of Christiansen et al. (2012) who find that MKT, TBL,LTR, DEF improve volatility forecasts,
but we also find significant two more predictors (TMS, RTB), whereas we do not include the
variables STR and LTR that Christiansen et al. (2012) found also significant.
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6.2.2 Forecasting

As far as forecasting, we report in Table 5 the values of the forecasting criteria that we used for
all the competing models. We confirm that NHHMM1 performs better than all the other models,
since it has higher scores in Mean Ranked Probability Score (E(CPRS)) and also in MAFE and
MSFE. Here we would like to remark that eventhough the NHHMM0 performs worse than all
the other models, it can predict the moves of the series better.

Figure 15: Time series of the monthly realized volatility of the Standard & Poor (S&P ) 500 index
(in logarithmic scale) for the period 1926-2002 ,using the NHHMM0 (top figure) and NHHMM1
(lower figure). Red dots are the posterior mean probabilities of staying at the same stage. We
calculated the smoothed probability of staying at state 1. If the probability is above 0.5 we
marked this event with gray-shaded bar.

Figure 16: This figure shows the probabilities of staying at state 1 (blue solid line) and the
probabilities of staying at state 2 (red dashed line).
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Figure 17: This figure presents a thinned realization of the observed process (1:5 observations) as
calculated using our NHHM model (gray solid line). For comparison we also present the thinned
time series of the studied variable.

Probabilistic Forecasting Criterion
NHHMM0 NHHMM1 HHMM qAR

E(CRPS) -0.2388 −0.1474∗ -0.1745 -0.1822
MAFE 0.4873 0.2398∗ 0.3465 0.3035
MSFE 0.3737 0.0914∗ 0.1821 0.1652

Table 5: Out-of-Sample results: Predictive ability of the competing models
(NHHMM0,NHHMM1, HHMM, qAR(3)) for the log-realized volatility data. For each of
the competing models the table presents the mean Continuous Ranked Probability Score
E(CRPS). Also Mean Absolute Forecasting Error and Mean Squared Forecasting Error are
reported. Better performance by means of forecasting criteria is marked with asterisks.

Figure 18: This figure shows the out-of-sample forecasting ability of the NHHMM0 (dotted line)
and NHHMM1 (gray solid line). The real values of the realized volatility series is marked with
blue dashed line.
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7 Appendix
7.1 Simulation study plots
In this section we present tables and figures of the case-studies described in Section 5.

States True Values Posterior Mean Std 2.5% Median 97,5 %
s = 1 b0 = 3 3.5566 0.3282 2.9187 3.5566 4.2020

b1 = −4 -4.0533 0.0481 4.1483 -4.0533 -3.9592
b2 = 3 2.9584 0.0491 2.8619 2.9584 -3.0544
b3 = 1 1.0855 0.0978 0.8929 1.0855 1.2748
b4 = 2 1.8942 0.0954 1.7083 1.8942 2.0809
σ2 = 1.3 1.4228 0.0829 1.2709 1.4202 1.5947
β0 = 2 3.1800 1.8851 -0.4722 3.1685 6.9587
β1 = 4 3.7009 0.4236 2.9081 3.6835 4.3753
β2 = 1 0.7587 0.3742 0.0439 0.7527 1.5111
β3 = 2 1.1884 0.2659 1.3518 1.8290 2.3900
β4 = −1 -1.1579 0.2074 -1.5772 -1.1528 -0.7683
β5 = 3 3.2933 0.3852 2.5767 3.2777 4.0901

s = 2 b0 = 5 4.8797 0.2422 -3.5162 4.8797 5.3552
b1 = 1 1.0220 0.0382 0.9467 1.0220 1.0971
b2 = 3 2.9519 0.0366 2.8802 2.9519 3.0234
b3 = 2 1.9104 0.0688 1.7739 1.9104 2.0448
b4 = 4 3.9987 0.0744 3.8555 3.9987 4.1465
σ2 = 0.8 0.7598 0.0446 0.6766 0.0.7589 0.8515
β0 = −2 0.8237 2.2179 -3.5296 0.8211 5.2151
β1 = 3 3.0154 0.3732 2.3360 2.9994 3.7981
β2 = 2 2.0436 0.4490 1.1941 2.0327 2.9592
β3 = 4 4.2320 0.4990 3.3177 4.2092 5.2799
β4 = 1 0.6664 0.1944 0.2906 0.6627 1.0621
β5 = −2 -2.4036 0.3300 -3.0887 -2.3927 -1.7888

Table 7: The fixed model: Summary statistics for the explanatory variables of experiment 1.
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Out-of-sample Forecasting Criteria
y NHHMM HHMM qAR
y1 = −1.3404 -1.5227 -2.7418 -22.8871
y2 = 25.0334 -0.9262 -2.9887 -22.9191
y3 = 3.7751 -0.9208 -2.2213 -21.9447
y4 = 12.4843 CRPS(yi) -0.3128 -4.4827 -25.5160
y5 = −7.8430 -5.5556 -6.8169 -23.7165
y6 = 13.8031 -3.2179 -4.7337 -23.2957
y7 = 1.4307 -2.4628 -2.9928 -22.7315
y8 = −11.1139 -0.3740 -7.4199 -22.5383
y9 = 16.5539 -0.8481 -3.6279 -22.6431
y10 = 24.4482 -1.2314 -6.3935 -22.7568

E(CRPS) -1.7372 -4.4419 -22.7949
MAFE 3.9173 9.3282 77.2418
MSFE 62.0849 187.9507 9.4×104

Table 8: Comparing the forecasting ability of the three competing models of experiment 1.

Figure 19: Experiment 1: Histograms of the mean equation parameters
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Figure 20: Experiment 1: Convergence plots of the mean equation parameters

Figure 21: Experiment 1: Histograms of the logistic regression coefficients
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Figure 22: Experiment 1: Convergence plots of the logistic regression coefficients

States True Values Posterior Mean Std 2.5% Median 97,5 %
s = 1 b0 = 2 1.7134 0.3147 1.0985 1.7147 2.3336

b1 = −0.3 -0.2569 0.0538 -0.3632 -0.2572 -0.1536
b2 = 2 2.0721 0.0501 1.9730 2.0729 2.1696
b3 = 2 2.0488 0.0975 1.8604 2.0481 2.2406
σ2 = 1.5 1.0245 0.0822 1.2312 1.375 1.5559
β0 = 1.5 1.3815 1.1805 0.04722 2.2870 4.6590
β1 = 1 1.0364 0.1902 0.6770 1.0314 1.4203
β2 = 2 2.0923 0.2343 1.6540 2.0840 2.5682
β3 = 3 3.2644 0.3325 2.6567 3.2515 3.9610

s = 2 b0 = 1 1.1955 0.1878 0.8263 1.1935 1.5650
b1 = 3 2.9608 0.0298 2.9018 2.9608 3.0192
b2 = 4 3.9925 0.0302 3.9333 3.9927 4.0514
b3 = 3 3.0312 0.0595 2.9142 3.0315 3.1471
σ2 = 0.8 0.7635 0.0359 0.6968 0.7626 0.8369
β0 = 3 3.5477 0.9022 1.8020 3.5363 5.3628
β1 = −2.5 -2.5752 0.2103 -3.0022 -2.5683 -2.1785
β2 = 4 3.9736 0.2917 3.4352 3.9674 4.5709
β3 = 1 1.0602 0.1405 0.7397 1.0573 1.3453

Table 9: The fixed model. Summary statistics for the explanatory variables of the experiment 2
using the NHMM model.
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Out-of-sample Forecasting Criteria
y NHHMM HHMM qAR
y1 = 19.4094 -0.2674 -0.8738 -27.3658
y2 = 2.6234 -0.6003 -4.9020 -26.5102
y3 = 12.3667 -0.4427 -1.7485 -28.4347
y4 = 13.3616 CRPS(yi) -0.2889 -1.7146 -26.5481
y5 = 22.12014 -0.4673 -2.5203 -27.2373
y6 = −0.1348 -1.2171 -4.1459 -26.6438
y7 = 12.7453 -0.3824 -1.7933 -26.6438
y8 = 0.9820 -1.0587 -10.5293 -26.6438
y9 = 20.1527 -0.1921 -2.6289 -26.6438
y10 = 0.3442 -1.2822 -8.0522 -26.6438

E(CRPS) -0.6199 -3.8929 -27.1233
MAFE 1.8977 7.56560 91.8549
MSFE 15.0261 123.1742 1.3255×104

Table 10: Comparing the forecasting ability of the three competing models of experiment 2

Figure 23: Experiment 2: Histograms of the mean equation parameters
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Figure 24: Experiment 2:Convergence plots of the mean equation parameters

Figure 25: Experiment 2: Histograms of the logistic regression coefficients
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Figure 26: Experiment 2: Convergence plots of the logistic regression coefficients
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