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Abstract

We have introduce a new vision of stochastic processes through the geometry induced by the dilation.
The dilation matrices of a given processes which are obtained by a composition of rotations matrices,
contain the measure information in a condensed way. Particularly interesting is the fact that the obtention
of dilation matrices is regardless of the stationarity of the underlying process. When the process is
stationary, it coincide with the Naimark Dilation. When the process is non-stationary, it returns a set
of rotation matrices. In particular, the periodicity of the correlation function that may appear in some
classes of signal is transmitted to the set of dilation matrices. These rotation matrices, which can be
arbitrarily close to each other depending on the sampling or the rescaling of the signal are seen as a
distinctive feature of the signal. In order to study this sequence of matrices, and guided by the possibility
to rescale the signal, the correct geometrical framework to use with the dilation’s theoretic results is
the space of curves on manifolds, that is the set of all curve that lies on a based manifold. To give a
complete sight about the space of curve, a metric and the derived geodesic equation are provided. The
general results are adapted to the more specific case where the base manifold is the Mie group of rotation
matrices. The notion of the shape of a curve can be formalized as the set of equivalence classes of curves
given by the quotient space of the space of curves and the increasing diffeomorphisms. The metric in the
space of curve naturally extent to the space of shapes and enable comparison between shapes.

1 Introduction

The Analysis and/or the representation of non-stationary processes has been tackled during 4 or 5 decades
for now by time-scale/time frequency analysis [21, 4], by Fourier-like representation when the processes
belong to the periodically-correlated subclass [39, 24] or by partial correlation coefficients (pacors) series
[29, 20] to cite a few. One of the advantages of dealing with parcors resides in their strong relation to the
measure of the process by the one-to-one relation with correlation coefficients [18, 52]. They consequently
appear explicitly in the Orthogonal Polynomial on the Real Line (OPRL)/Unit Circle (OPUC) decomposi-
tion of the measure [11, 44] and are the elements for the construction of dilation matrices that appear in the
CMV/GGT [43], for the Schur flows problem with upper Hessenberg matrices [1] which are also seen in the
literature as evolution operators [44] or shift operator [34], and appear finally in the state-space represen-
tation [15, 17]. The dilation theory takes its roots in the Operators theory [48] which bridges the process’s
measure and unitary operators. In its simplest version, the dilation theory corresponds to the Naimark dila-
tion [48, 3], and state that given a sequence of correlation coefficients, there exists a unitary matrix W such
that Rn , (1 0 0 · · · )Wn(1 0 0 · · · )T where ·T denotes the transposition. When the process is not stationary,
its associated correlation matrix is no more Toeplitz structured, a set of matrices is required [15] and the
previous expression becomes Ri,j , (1 0 0 · · · )Wi+1Wi+2 · · ·Wj(1 0 0 · · · )T . The matrices Wi are theoreti-
cally understood as infinite rotation matrices, which become finite when the correlation coefficients sequence
is itself finite. In that particular case, the matrices Wi belong to SO(n) or SU(n), the special orthogonal or
unitary group respectively and the process’s measure is totally described by the set of Wi. As a consequence,
the measure of the process is beautifully characterized for the non-stationary case, by a sampled trajectory
induced by the dilation matrices on the appropriate Lie Group. When the process is periodically correlated,
the sequence of parcors inherits of the periodicity and the sequence of dilation matrices becomes periodic as
well, we obtain consequently a closed path as illustrated in Fig.1. Characterizing the time varying measure
of the process is now tackled by studying curves (or sampled curves) on special groups.
Information geometry is now a fundamental approach for describing stochastic processes [33]. The second
order statistical properties/moments may be analyzed, characterized and compared [8, 5] to improve estima-
tion [47, 38] or classification of different processes [27]. When dealing with density estimation [25], the space
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Figure 1: Illustration of a sampled closed trajectory drawn in SO(n) or SU(n) which materializes the time
varying of the periodically-correlated measure for a stochastic process. Each Wi are dilation matrix built
through the parcors.

of n×n symmetric matrices Sym(n) is generally preferred and many developments have been proposed under
the Semi Positive Definite (SPD) assumption [40, 41, 45, 14] for which the set of SPD matrices constitute a
convex half-cone in the vector space of matrices. This leads to give more insights on the Fisher Information
metric [14, 25] or Wasserstein metric [28] and also cope with optimal mass transportation problems [7]. Many
efforts have also been made the last decade to exploit the hyperbolic geometry structure not of the correla-
tion matrices directly but of the related parcors when obtained in stationary conditions [19, 16, 52, 6, 2]. As
the Kullback–Leibler divergence let do, the comparison of stationary processes is then made by comparing
curves, whose sampled points are parcors sequences, defined on several copies of the Poincaré disk through
geodesics deformation. Treating the non-stationary case has not been tackled to our knowledge with the
previous mentioned approaches. In this paper, we hope to initiate interest in filling this gap by extending
the representation and the characterization of processes’ measure in non-stationary context. First, using the
dilation theory approach to give sampled points and next giving the prescribed geodesics equations used for
curves or paths comparisons in Lie group.
To support the reader, some insights on dilation theory are given in section 2. Practical implementations of
dilation matrices according to the operator theory approach [3, 15] or the lattice filter structure approach
[26, 42] are also discussed and the strong connection between parcors and the dilation matrices are empha-
sized. The section 3 focuses on the geometry of the curves induced by the dilation on particular manifolds.
The general framework is first introduced by recalling concepts of distances and shape of curves when the
ambiant space is not flat. Next, the Square Root Velocity (SRV) functions are developed and adapted to
Lie Group and a procedure to compare non-stationary processes through their time evolution trajectory is
presented. Finally, a conclusion is drawn in section 4 and the reader will find some technical tools in the
Appendix section.

2 The structure of semi-positive definite matrices and the dilation
theory

2.1 The theory of dilation and the interaction with

Let us give some insights on the dilation theory. In its fundamental definition, the dilation theory consists for
an Hilbert space H and an operator-valued function f , i.e. a L(H)-valued function, to find a larger Hilbert
space H and an other application F such that f is the orthogonal projection of F :

f(t) = PHF(t), t ∈ Z (1)

where PH denotes the orthogonal projection onto the Hilbert space H. The ideas of the dilation theory
are :
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• there exists a larger space from which the original function (or matrix) is deduced

• we can choose the ”dilated” function to be simpler. For instance, when dealing with matrices, each of
its coefficients can be expressed as the projection of a larger unitary matrix. In this case, we obtain
a unitary dilation. This approach has been for example developed in [32, 35, 36] for the stationary
dilation of periodically-correlated processes.

2.1.1 Dilation and rotation of contractions

For an operator T on a Hilbert space H, we denote by T ∗ the adjoint operator, i.e. the operator on H such
that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. An operator T ∈ L(H) is said to be a contraction if || T ||≤ 1 where

|| · || is the operator norm. We deduce the expression for the defect operator DT = (I − T ∗T )
1/2

and its

adjoint DT∗ = (I − TT ∗)1/2
.

One of the easiest result is that, given a contraction Γ, the aforementioned unitary Julia operator

J(Γ) =

(
Γ DΓ∗

DΓ −Γ∗

)
(2)

satisfies, for all n ∈ N

Γn =
(
1 0

)
J(Γ)n

(
1
0

)
. (3)

In other words, the elementary rotation of a contraction, called consequently the Julia operator, also
corresponds to the unitary dilation operator of the contraction. Note that the Julia operator is sometimes
called the Halmos extension [34] of a contraction.

2.1.2 Dilation and isometries

Following the idea and the formulation of Naimark, the dilation theory can be restated in terms of dilation
of a sequence of operators, or sequence of numbers when the dimension of the underlying Hilbert space is 1.
Recall that a sequence of operators {Rn}∞n=1 acting on H is said to be positive if

+∞∑
i,j=0

〈Ri−jhi, hj〉 ≥ 0 for all hi ∈ Hi. (4)

Assuming now that R∗n = R−n and R0 = I, leads to the following Toeplitz matrix:

R(m) =


I R1 · · · Rm−1

R∗1 I · · · Rm−2

· · · · · ·
· · · · · ·

R∗m−1 R∗m−2 · · · I

 (5)

which is positive-definite. Remark that this matrix can be seen as the correlation matrix of a stationary
process, as it is positive and Toeplitz [12, 3, 51]. Owing this property, we obtain the following relation

Rn = PHU
n |H, for all n ≥ 0 and U an isometry on K (6)

due to Naimark dilation Theorem. Furthermore, if K =
∨
n≥0

UnH then U is unique up to an isomorphism.

2.1.3 Dilation and measure

From Bochner’s theorem we known that a matrix of type (5) can be seen as the Fourier coefficient of a given
positive Borelian measure. This is also known as the moment or trigonometric problem [15]. Therefore, we
can restate the dilation problem in term of measure. If we denote by Eλ an operator-valued distribution
function on [0, 2π[ then the function
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Rn =

∫ 2π

0

einλdEλ. (7)

This function is positive-definite and shows the strong correspondance between the spectral measure and
the dilation theory. There exists so a unitary operator on a Hilbert space K such that Rn = PHU(n) where PH
stands for the orthogonal projection. With the spectral representation of unitary operators, U =

∫ 2π

0
eiλdEλ

and we have ∫ 2π

0

einλd〈Eλu, v〉 =

∫ 2π

0

einλd〈Fλu, v〉 (8)

or, in an equivalent form :
Eλ = PHFλ. (9)

Note that the operator-valued measure Fλ is in fact an orthogonal projection-valued measure since all its
increments are orthogonal.
Dilations matrices having been introduced, we give now in the next section a methodology to understand
how they are obtained.

2.2 Construction of Dilation Matrices

As mentioned previously, given a SPD matrix R = (Ri,j)i,j∈N, it is possible to build a sequence of matrices

{Wi}i∈N such that Ri,j =
(
1 0 0 · · · 0

)
WiWi+1 · · ·Wj−1

(
1 0 0 · · · 0

)T
by a two-step procedure.

For the first step, the following theorem is needed [15] :

Theorem 1 (Structure of a positive definite block matrix). Let X and Z be positive operators in L(HX)
and L(HZ) respectively. Then the following are equivalent :

• The operator A =

(
X Y
Y ∗ Z

)
is positive

• There exists a unique contraction Γ in L(R(Z),R(X)) such that

Y = X1/2ΓZ1/2 (10)

Proof. Annexe A

Let us now apply this relation repeatedly on a SPD matrix. To fix ideas, let the 3× 3 (block-)matrix

R =

R1,1 R1,2 R1,3

R∗1,2 R2,2 R2,3

R∗1,3 R∗2,3 R3,3

 (11)

and apply theorem 1 to

(
R1,1 R1,2

R∗1,2 R2,2

)
,

(
R2,2 R2,3

R∗2,3 R3,3

)
and finally to

(
R1,2 R1,3

)
. Note that when a square

root of a (block-)matrix has to be chosen, it is done according to the Schur decomposition given in An-
nexe A. At each step, a contraction Γi,j is generated with respect to the indices of the upper and lower

(block-)matrices of the main diagonal, e.g. Γ1,2 for the first

(
R1,1 R1,2

R∗1,2 R2,2

)
(block-)matrix. We obtain thus a

one-to-one correspondence between the SPD matrix R and the set of contractions {Γi,j}i=1,2 j=3. Regarding

the huge work of Constantinescu [15], we will called these contractions the Schur-Constantinescu parame-
ters. Considering now unit variance and arbitrary size n × n for the SPD matrix, allows us to write the
correspondance:

I R1,2 R1,n

R∗1,2 I
. . .

. . .
. . . Rn−1,n

R∗1,n R∗n−1,1 I

←→


0 Γ1,2 Γ1,3 · · · Γ1,n

0 0 Γ2,3 Γ2,4 · · · Γ2,n

...
. . .

. . .
. . .

Γn−2,n

0 Γn−1,n

0 0 · · · 0


. (12)
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Once (12) established, each dilation matrix Wi are build-up as a product of Givens rotations of a sequence
of Schur-Constantinescu parameters in the following way

Wi = G(Γi,i+1)G(Γi,i+2) · · ·G(Γi,j) (13)

where GΓi,i+l denote the Givens rotation of Γi,i+l:

G(Γi,i+l) = I ⊕
(

Γi,i+l DΓ∗i,i+l

DΓi,i+l −Γ∗i,i+l

)
⊕ I. (14)

When the SPD matrix is Toeplitz, which correspond to a stationary underlying process, then all dilation
matrices Wi are identical and they take the form

Wi = U =



Γ1 DΓ∗1
Γ2 DΓ∗1

DΓ∗2
Γ3 DΓ∗1

DΓ∗2
DΓ∗3

Γ4 · · ·
DΓ1

−Γ∗1Γ2 −Γ∗1DΓ∗2
Γ3 −Γ∗1DΓ∗2

DΓ∗3
Γ3 · · ·

0 DΓ2
−Γ∗2Γ3 −Γ∗2DΓ∗3

Γ4 · · ·
0 0 DΓ3

−Γ∗3Γ4 · · ·
0 0 0 DΓ4

· · ·
· · · · · · ·
· · · · · · ·


(15)

which is nothing less than the Naimark dilation introduced in the first part, i.e. Ri,j = Rj−1 =
[1 0 0 · · · ]U j−i[1 0 0 · · · ]T .

For a sake of completeness, we give the correspondence between the coefficients of the SPD matrix (the
left-hand side of (12) ) and the Schur-Constantinescu parameters:

Theorem 2. The matrix R(n) = [Rk,j ]
n
k,j=1, satisfying R∗j,k = Rk,j is positive if and only if

• Rkk > 0 for all k

• There exists a family {Γk,j | k, j = 1, · · ·n, k 6 j} of contraction such that

Rk,j = B∗k,k(Lk,j−1Uk+1,j−1Ck+1,j + DΓ∗k,k+l
· · ·DΓ∗k,j−l

Γk,jDΓk+1,j
· · ·DΓj−1,j

)Bj,j (16)

where Bk,k is any square root of Rk,k

Where we have :

Lk,j = [Γk,k+1 DΓ∗k,k+l
Γk,k+2 · · · DΓ∗k,k+l

· · ·DΓ∗k,j−1
Γk,j ]

a row contraction associated o the set of parameters {Γk,m | k < m ≤ j},

Ck,j = [Γj−1,j Γj−2,jDΓj−1,j
· · · Γk,jDΓk+1,j

· · ·DΓj−1,j
]T

a column contraction associated to the set of parameters {Γm,j | m = j − 1, · · · k}, and finally

Uk,j = G(Γk,k+1)G(Γk,k+2) · · ·G(Γk,k+j) (Uk+1,j ⊕ I)

Proof. This theorem is proved in [15].

A different approach leading to the same results can be found in [49], using directly the Kolmogorov
decomposition. In [26] the Naimark dilation is constructed using lattice filter and finally applications of this
decomposition in quantum mechanics are to be found in [50, 51] for example.

2.3 Link between the Levinson algorithm and Constantinescu’s formulae.

The theory explained so far provides infinite dimensional operators. Of course, it is not possible to treat
with infinite dimensional object in practice, particularly with numerical computations. To strengthen our
development, it is then necessary to adapt the theory to the finite dimensional case. This is tackled for
example in [22] where a Levinson algorithm is performed on block matrices.
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2.3.1 The principles of Levinson Algorithm

In classical stationary signal processing, the Levinson algorithm is a procedure to estimate linear regression
coefficients, say {αk} as the projection of the signal at time t onto the space spanned by its n past values:
Xt = −∑n

i=1 αiXt−i + εnt , where ε is a white gaussian noise by assumption. The last coefficient of the
model is the n-th reflexion (parcor) coefficient. If the correlation matrix of the stationary process is noted
R = {Rij}i,j=1,...,n we have the so called Yule-Waker equation:

R0 R1 · · · Rn

R∗1
. . .

. . .
...

. . .
. . .

R∗n · · · R0




1
αn1
...
αnn

 =


ε2n
0
...
0

 . (17)

The Levinson algorithm performs a recursion on the order n of the model which appears to be exactly what
is done for the dilation matrices.

2.3.2 Analogy between Levinson and Dilation

Let us recall that the form of the infinite dimensional dilation matrix is given by (15). This matrix acts on
the space K = H ⊕D1 ⊕ D2 · · · where the set of Di stands for the defect spaces. The forward prediction is
defined by

Un − PH⊕D1⊕D2···⊕DnU
nh =

(
0, 0, · · · , 0,DnDn−1 · · · D1h, 0, · · ·

)
(18)

for h ∈ H and the non zero elements are in the n + 1 position. In [22], the authors denotes the right-hand
part by φnεnh where εn = DnDn−1 · · · D1 and φn embeds onto the n + 1 position. They prove so the exact
accordance with the classical Levinson procedure. In that case, εn = DnDn−1 · · · D1 is therefore nothing else
than the prediction error when the Levinson procedure is applied on the positive-definite kernel representing
the correlation matrix.
Similarly, for the backward prediction error we have

h− P∪Cnh = φn∗εn∗h (19)

where εn∗ = Dn∗Dn−1∗ · · · D1∗ and Cn stands for the n first columns of U . In terms of dilation, the Levinson
procedure at step n can be written as

ε∗n∗Γn+1εnh = Rn+1 +

n∑
i=1

RiAn,i−1h (20)

where the An,i are the Levinson regression coefficients. Rewrite the equation such that

Rn+1 = ε∗n∗Γn+1εnh−
n∑
i=1

RiAn,i−1h (21)

and compared it with theorem 2, allows to see that the Levinson recursion is equivalent to the parametriza-
tion of positive-definite kernel by means of Schur-Constantinescu parameters. We remark in addition that
the necessary truncation error made when dealing with dilation matrices is now quantified.
Dilation matrices being now fully introduced, we focus the attention of the reader on the hidden information
contained in their timely geometrical dissemination.

3 Analysis of curves on a manifold induced by the dilation

parcors, composing dilation matrices, have already been given a geometrical point of view, as for exemple in
[52] where the sequence of parcors asociated with a stationary process is seen as a point onto the Poincaré
polydisk Pn, i.e. the product of Poincaré disk. To give geometrical settings, a distance to characterize
individual parcors is then proposed and discussed. In [30], a stochastic process is studied under the local
stationarity assumption. To each stationary slice of the process corresponds a sequence of parcors, represented
as a point in the Poincaré polydisk Pn as well. A trajectory is then generated on that space which materializes
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a curve on the manifold Pn. The underlying computations are quite intricate due to the product manifolds
and the question of nonstationarity arises. Based on the work of [30, 31, 13] and [54], we propose then to
give a particular attention to this question. We first make use of Dilation theory introduced in section 2.
When the process under study is non-stationary, a set of matrices Wi is obtained. The basic idea for having
geometric information on the non-stationary process is therefore to characterize the trajectory formed by the
set of dilation matrices. These matrices are theoretically operator of infinite dimension but as we dispose
of only a finite set of parcors, the theoretical matrices of (15) are truncated. Matrices respecting (15) are
general rotation matrices which becomes perfect rotation operator belonging then to SO(n) for real processes
and SU(n) when dealing with complex processes, when their dimension are reduced to n × n. Our aim is
finally to analyse those curves living on Lie Group of rotation matrices and emphasize the geometry or more
precisely the intrinsic geometry formulation of these objects. For exemple, we aim at comparing different
curves coming from different processes or at resuming many realizations of a stochastic process (multiple
measurements) through the computation of the mean of the associated several curves. The question of the
computation complexity still rises but many results have been proposed recently to overcome this difficulty
and to propose closed form formulations. In particular, it is predicated to extract the shape of the trajectory
for it contains the essentials, in topologic sense, information.
To allow the curves comparison, we have based our development on the work of [30] and [13]. First we define
the manifoldM given by the set of all curves in the based manifold. That leads to an other space, the shape
space, for which the manifold M will be a fiber bundle. We dispose then of a metric in M from which a
metric on the shape space is deduced. These steps are now explained in the followings.

3.1 Basic Outline of Geometry

Curves of interest are those ones living in the Lie group of real rotation matrices, this yields to c : [0, 1] →
SO(n). For sake of clarity, we suppose that c is continuous, we will come back to the case of discrete curves
later. To study geometrical features of such curves, we interest ourself in the set of all curves lying in SO(n) (
where SO(n) is seen as a manifold) with non-vanishing velocity, i.e. M = {c ∈ C∞([0, 1], SO(n)) : c′(t) 6= 0 ∀t},
this is in fact a sub-manifold of C∞([0, 1], SO(n)). A curve c is so a particular point in M. The tangent
space at a curve c is given by

TcM =
{
v ∈ C∞([0, 1], TSO(n)) : v(t) ∈ Tc(t)SO(n)

}
(22)

where TSO(n) denote the tangent bundle of the based manifold SO(n). Note that a tangent vector is
a curve in the tangent space of SO(n). In this manifold, the expression of distances and thus geodesics
depends on the chosen metric. When comparing two curves, it is natural that the distance between this two
curves should remain the same if the curve are only reparametrized, i.e. if we define other curves that passes
through the same points than the original curves but at different speeds. When the curve is discretized as
we will see in the sequel, doing a reparametrization is equivalent to change the chosen points (see Figure 2).
A reparametrization is represented by an increasing diffeomorphism φ ∈ D : [0, 1]→ [0, 1] acting on the right
of the curve by composition. In other words, we required that the Riemannian metric g on M satisfies the
following property

gc◦φ(u ◦ φ, v ◦ φ) = gc(u, v) (23)

for all c ∈M, u, v ∈ TcM and φ ∈ D.

b

b

b

b

b

b

b
b
b
b
b

b

b

b

b

b

b

b

Figure 2: example of a reparametrization of a curve. Here, it consists in changing the discretization.

This property is called reparametrization invariance. We insist on the fact that g is the metric onM, the
space of all curves on SO(n) and not on SO(n) itself. In terms of distances, this gives

7



dM(c0 ◦ φ, c1 ◦ φ) = dM(c0, c1) (24)

where dM denote the distance onM corresponding to the metric g. The reparametrization introduced above
induces an equivalence relation between points in M in such a way we have

c0 ∼ c1 ⇐⇒ ∃φ ∈ D : c0 = c1 ◦ φ. (25)

With this equivalence relation, a quotient space can be constructed as the collection of equivalence classes,
it is named the shape space and has the following writting

S =M/ ∼, or S =M/D. (26)

A distance function on the shape space is obtained from the distance on M as follows

dS([c0], [c1]) = inf
φ∈D

dM(c0, c1 ◦ φ) (27)

where [c0], [c1] are representatives of the equivalence classes of c0 and c1 respectively. It can be shown
that this distance is independent of the choice of the representatives. It is in fact inherited from the fiber
bundle structure π =M→ S. As closed curves are of main interest in this work, we can also define the set

Mc = {c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1)} . (28)

Basically, the closure of a curve just imposes the equality of the first and the last point of it, and not of
their first derivative. Consequently, MC turns into

Mc+ = {c ∈ C([0, 1], SO(n)) : c′(t) 6= 0, c(0) = c(1), c′(0) = c′(1)} . (29)

We need now to introduce the Square Root Velocity function (SRV function) [46], in which a curve is
represented by its starting point and its normalized velocity at each time t. There are several possibilities to
define the SRV of a curve. The more general definition is the following

F :M→ SO(n)× TM

c→
(
c(0), q =

c′√
|| c′ ||

)
(30)

But we can go further and benefit from the specific case that we are dealing with : the data are in a Lie
group, G = SO(n), in this section, we will denote the base manifold G to emphasize its group structure, and
g is an element of the group. Recall that a Lie group G is a set that is both a smooth manifold and a group,
that is this is a manifold in which the group multiplication G×G→ G, (x, y) 7→ xy and the inversion map,
g → G, x 7→ x−1 are smooth.

Therefore, we can expect a simplification on the previous expressions. The main strength of a Lie group
G is that it can be approximated by its Lie algebra g, or in other words, the Lie algebra is the best linear
approximation of a Lie group. The Lie algebra is homeomorphic to the tangent space at the identity. As in
[13] we consider only curve that start at the identity: this is because other curve can be reduced to this case
by right or left translation. In this settings it is interesting to turn the SRV function into the transported SRV
function (TSRV). This is basically the SRV that has been parallel transport to a reference point. Different
version has been given, as it can be seen in [9], [13], [54] . They differ by the choice of their reference point.
As we study curve in a Lie group, the identity (the starting point of our curve in our case) is a particularly
good choice as a reference point. In a Lie group a parallel transport operation can be defined, here again, by
the right (or left) translation. This justify that we can take, as suggested in ([13]) a TSRV function of the
form:

FLie : C∞([0, 1], G) −→ SO(n)× {q ∈ C∞([0, 1], g), q(t) 6= 0, ∀t ∈ [0, 1]}

FLie(c)(t) = (c(0), q(t)) =

(
c(0),

R−1
c(t)∗(c

′(t))√
|| c′(t) ||

)
=

(
c(0),

T
c(t)→I
c (c′(t))√
|| c′(t) ||

)
(31)

where R is the right translation on the group, Rg1(g2) = g2g1, Rg∗ = TeRg is the tangent map (the
derivative equivalent on manifolds, equivalent notation : dRg) at the identity, and || · || is a norm induced by
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a right-invariant metric on G, and T
c(t)→I
c denotes the parallel transport from c(t) to the identity according

to the curve c. So a curve is now represented as an element of the tangent bundle (c(0), q(t)) ∈ M × TM
(recall that q draw a curve in the tangent bundle), and c(0) is the identity element of the Lie group. As
mentioned earlier, the TSRV function is the SRV function that has been transported to a certain point, in
other words, we use the natural reference point of a Lie group that consists in its identity element to define
the parallel transportation, and we apply it to the tangent curve. The inverse of the SRV function is then
straightforward: for every q ∈ C∞([0, 1], TM), there exists a unique curve c such that F (c) = q. We have

c(t) =
∫ t

0
q(r) || q(r) || dr where || · || is the norm in SO(n).

3.2 Metric and distance over M and S
We now give insights on a relevant metric that should be used onM to compare different closed trajectories.
The idea is to have a metric on M that induced a ”coherent” distance on the shape space S. The following
development and expression of metrics and distance can be found in [30]. The distance on the shape space
is used to compare how to curve are intrinsically different. It has been in [37] that the simple L2 metric on
M given by

gL
2

c (u, v) =

∫
〈u, v〉 || c′(t) || dt

where 〈·, ·〉 is the Riemannian metric on SO(n) induced a vanishing metric on the shape space, that is we
can not differentiate shape with this metric. Another type of metric has been investigated, which induced
non-vanishing metrics on the shape space: the idea is to add higher order derivatives. These are the elastic
metric, derived from the Sobolev metric [10], [23], which in the case of an Euclidean space Rn:

ga,bc (u, v) =

∫ (
a2〈Dlu

N , Dlv
N 〉+ b2〈Dlu

T , Dlv
T 〉
)
|| c′(t) || dt (32)

Where: 〈·, ·〉 is the Euclidean canonical metric on the based manifold (SO(n) in our case), Dlu = h′/ || c′ ||,
Dlu

T = 〈Dlu,w〉w, with w = c′/ || c′ || and Dlu
N = Dlu −Dlu

T this way,
(
Dlu

N , Dlu
N
)

defines a mobile
frame along the curve c, see figure (3).

Here we are only interesting on the special metric thats has been proposed in [30], and which is an
adaptation of the elastic metric for Riemannian manifold:

gc(u, v) = 〈u(0), v(0)〉+

∫ (
〈∇luN ,∇lvN 〉+

1

4
〈∇luT ,∇lvT 〉

)
|| (c′t) || dt (33)

Where 〈·, ·〉 denotes the Riemannian metric of the original space SO(n), ∇ is the Levi-Civita connection

that corresponds to 〈·, ·〉; ∇lu =
1

|| c′ ||∇c′h, ∇luT = 〈∇lu,w〉w, w = c′/ || c′ ||. The computations being

done now in a manifold space, the Levi-Civita connection replaced the ordinary derivative of Rn.
This metric is obtained as the pullback of the canonical L2 metric in the SRV framework. Recall that

if we have a map φ : U → V and a one-form (that is a section) α of T ∗V, the cotangent bundle of V, the
pullback of α is the one-form on U defined by : (φ∗α)x (X) = αφ(x) (dφ(x)(X)), for all x ∈ U , X ∈ TxU .
Here, α = F , and U =M,V = TM and as we the ambiant space is a Lie group we see that the metric is the
pullback of the L2-metric on the tangent bundle (i.e. an inner product on the double tangent bundle TTM)
defined by

∼
gc(f, g) =

∫ 1

0

〈∇sqf (0, t),∇sqg(0, t)〉dt (34)

where for any f ∈ Tc a path of curve s 7→ cf (s) ∈ M is defined, as usually, such that cf (0) =
c, (∂cf/∂s) (0) = f (recall that a tangent f vector to a point c can be seen as an equivalence class of
infinitesimal deformations of a path that passes through c at time 0). qf is the TSRV function of cf . Due
to the transportation of the TSRV, the starting point is no longer required in the TSRV domain. Thus, from
the definition of a metric on TM, that apply on the space of TSRV functions we can deduce a metric on the
space of curves as gc(u, v) =

∼
gF (c)(TcF (u), Tc(F (v)), where TcR denote the tangent map (the derivative) of

the TSRV function at c (which carry the information about the starting point of the curve).
What is particular with this metric compared to the classical elastic metric, is that the starting point of the

curves intervene explicitly, which is quite important when we deal with periodic curves, as explained before.
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b

b

h(t0)

h(t0)
N

h(t0)
T

h(t1)
T

h(t1)
N

h(t1)

P t1,t0
c h(t0)

T

P t1,t0
c h(t0)

N

P t1,t0
c h(t0)

Figure 3: The inner product measures the angle between a frame at a given point and the parallel transport
version of this frame at a latter time.

It could be possible to add a term such that 〈c′0(0), c′1(0)〉TSO(n) for some metric on SO(n) to underline the
fact that curves are closed even in their first order derivatives.

One can notice that the SRV formulation of the metric takes a quite simple form. In this framework, the
length of a path of curve (notice that it is the length of a path of curve and not the length of a curve in
SO(n)) is

L(c) =

∫ 1

0

√
|| x(s) ||2 +

∫ 1

0

|| ∇∂c/∂sq(s, t) ||2 dtds (35)

Once the geometry has been settled inM, the geometry of the state-space can be derived from its quotient
structure (recall that the space of curve induced a fiber bundle structure above the state-space). Before we
have to remember the definition of the decomposition of the tangent bundle as an horizontal and a vertical
tangent bundle : given the fiber bundle π : M → S the tangent bundle can be decomposed into a vertical
and a horizontal subspace :

TM = HM ⊕ VM (36)

with VM = ker (Tcπ) ( Tc is the tangent map), and HM = (VM)
⊥

where the orthogonality has to be
understood in the sense of the metric defined earlier. This metric is reparametrization invariant, that is
constant along the fibers, so it can be proven that the horizontal space HM (which concern the fibers) and
the tangent space in the shape-space are isometric : π is a Riemannian submersion. Translated in terms of
metrics, we have :

gc(uH, vH) = [g]π(c) (Tcπ(u), Tcπ(v))

where [g] denote the metric on the shape space.
Similar result in a different (but still close) context is used in [53], lemma 1. In terms of distances, this

can be understood in the following sense:
The geodesic s 7→ [c](s) between [c0] and [c1] in the state-space is the projection of the horizontal geodesic

linking c0 to the fiber containing c1. In fact the horizontal geodesic between c0 and c1 intersect the fiber of
c1 at the a re-parametrized version of c1, c1 ◦ φ which give the distance in the shape space :

[d]([c0], [c1]) = dg(c0, c1 ◦ φ) (37)

where [d] denote the distance in S, and dg the distance on the space of curve induced by the aforementioned
riemannian metric. Here again a recursive procedure [30] enable the computation of the horizontal geodesic.
In the TSRV function formulation, the distance problem is equivalent to an optimization problem :

10



T[c]M
[c]

HM

S

Figure 4: The tangent space T[c]M at a point [c] in the shape space S is isomorphic to the horizontal part
HM of the tangent space at a point on the associated fiber.

[d]([c0], [c1]) = inf
φ∈D

(∫ 1

0

|| q0(t)− q1(φ(t))
√
φ′(t) ||2

)1/2

(38)

where qi(·) = F (ci)(·). As these curves in the tangent space had been transported according to the same
point, which is the identity element, they lived in the same space and can be compared. In [13] the author
used a dynamic linear programming to solve this linear optimization problem, they construct a piecewise
linear approximation of φ. A traditional gradient descent algorithm is also possible.

Last but not least, we have to mentioned that in a practical situation, the above formula have to be
discretized. This is the object of [31]. Formulas are essentially similar, but in this setting, a curve is now
represented by a set of points cdisc(x0, x1, · · · , xn) and the tangent space turns into

TdiscM = {v = (v0, v1, · · · , vn), vi ∈ TxiSO(n), ∀i} .
Concerning the metric on the space of curve, it becomes

gcdisc(u, v) = 〈u0, v0〉+
1

n

n−1∑
i=0

〈∇∂c/∂squ
(

0,
k

n

)
,∇∂c/∂sqv

(
0,
k

n

)
〉 ∀u, v ∈ TdiscM (39)

where, as before, for a u ∈ TcdiscM, we define a path of piecewise geodesic curves (s, t) 7→ cu(s, t) such
that the following traditional initial condition are fulfilled, i.e.

cu
(

0,
k

n

)
= xk, and

(∂cu/∂t)

(
0,
k

n

)
= n logxk(xk+1).

This is the discrete analogue of the tangent vector of a continuous curve at time t. The log function is the
inverse of the exponential map on the base manifold, SO(n) for us, and here cu (s, ·) must be a geodesic
(on SO(n)) between xk/n and x(k+1)/n. Thus the SRV functions that appears in the formula refers to
the SRV function of the piecewise geodesics cu (s, ·). Then, the discretized version of the SRV function,
qk =

√
n logxk(xk+1)/

√
|| logxk(xk+1) || is such that

∇∂c/∂sq
(
s,
k

n

)
= ∇∂c/∂sqk(s) (40)
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3.3 The geodesic equation in the Lie group case

Before giving the geodesic equation in the space of curves on a Lie group, we start with some preliminaries.
We recall some useful facts about Lie group and Lie algebra, for those who are not familiar with these object.

A metric 〈·, ·〉 on a Lie group is said to be left invariant if :

〈u, v〉b = 〈(dLa)bu, (dLa)bv〉ab
where (dLa)b is the derivative in the manifold field sense (so the tangent map) of the left translation La
at b. A left invariant metric give the same number whenever the vectors are translated on the left. It is
straightforward to adapt this definition to a right-invariant metric. A metric that is both left and right-
invariant is called a bi-invariant metric. A Lie group endowed with a bi-invariant metric has plenty of import
properties that we are can be exploited for our study to curve on shape spaces. We list some of them in the
following

• The geodesics through e (the identity element) are the integral curves t 7→ exp(tu), u ∈ g,i.e. the one-
parameter groups. Also, since left and right are isometries and isometries maps geodesics to geodesics,
the geodesics through any point a ∈ G are the left (right) translates of the geodesics through e

γ(t) = La (exp(tu)) , u ∈ g.

Of course we have
γ′(0) = (dLa) e(u).

• The Levi-Civita connection is given by : ∇XY =
1

2
[X,Y ], ∀X,Y ∈ g

• The curvature tensor is given by : R(u, v)w =
1

4
[[u, v], w]

where [·, ·] denotes the Lie bracket. We can now link these formulas to our based manifold SO(n).
A Killing form, B, of a Lie algebra is a symmetric bilinear form B : g × g −→ C given by B(u, v) =
tr(ad(u) ◦ ad(v)), where tr denote the trace operator and ad the adjoint representation of the group, namely
the map ad : G −→ GL(g) such that, for all a ∈ G ada : g −→ g is the linear isomorphism defined by
ada = d(R−1

a ◦La)e. If now we assume B to be negative-definite, then -B is an inner product and is adjoint-
invariant. So, it is a classical result of the Lie theory that -B induces a bi-invariant metric on G. Furthermore,

the Ricci curvature is given by Ric(u, v) = −1

4
B(u, v).

The Lie algebra of SO(n) is the set of skew-symmetric matrices, that is matrices M which verifies
MT = −M . The Killing form on SO(n) is given by : Bso(n) = (n − 2)tr(XY ), and due to the skew-
symmetry, we have −Bso(n) = (n− 2)tr(XY T ). Therefore, it induces a bi-invariant metric and the previous
formula can be plugged in expression of the metric on the space of curve or on the shape space. To conclude
these preliminaries, we see that due to the simpler form of the parallel transportation and of the metric, the
distance equations (38) are now easier to handle.

It is now time to give the geodesic equation, relative to our chosen measure. Due to the TSRV, the
geodesic equation takes a much simpler form than what can be found in [30] and [31]. The formula can be
found in [13]. For the sake of completeness, we give a reformulated proof in Annex B. Recall that a geodesic
is a particular path of curves. A path of curve is a continuous set of curve s 7→ c(s, ·) such that for each
s, c(s, ·) is a point in M, or equivalently a curve in M , see figure (B). So, for each curve of the path of
curves we can defined its TSRV function, then for all s ∈ [0, 1] we have (we omit the letter ’s’ for clarity):

q =
∂c/∂t√
|| ∂c/∂t ||

Theorem 3. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a geodesic
on M if and only if

∇∂c/∂s
(
∇∂c/∂sq(s, t)

)
(s, t) = 0 ∀s, t (41)

Proof. Annex B
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Thus, we have a quite familiar expression for the geodesic interpolation between two curves c0 and c1,
expressed in their TSRV domain:

F−1
Lie ((1− s)FLie(c0) + sFLie(c1)) (42)

for s ∈ [0, 1]. This expression is nothing less than a linear interpolation on the transported tangent spaces.

Finally we can give a slightly modified version of the algorithm of geodesic shooting. As we have seen
for exemple in equation (39) that a piecewise (continuous) geodesic is required to express the metric. This
is because the expression are formally constructed with initial conditions (initial point and initial tangent
vector). In [13] an exemple is given for curves on SO(3). We give here a simplified version of their construction.
Starting from a continuous curve, they discretize it as {x0, · · ·xn} and then construct a piecewise geodesic c
between these points:

c(t) =

n−1∑
k=0

χk,k+1(t)exp ((t− k)logck(ck+1)) ck (43)

Notice that this geodesic is in the base manifold, and not in the space of curve. Thus, the geodesics are
expressed in terms of one-parameter groups. But in our case, we already have a discrete curve. The problem
is the number of points that we have. Results exists that show the convergence of the discrete case to the
continuous case, but when we deal with positive definite matrice with a certain periodicity, we may have not
enough matrices. So, a step has to be added, which is another interpolation step. But in order to have a
curve at least C1, and also because distance between the W matrices can be quite high, we interpolate first
by spline. There are many way to thought spline interpolation on manifold, but one of the simplest is to
interpolate in the tangent space, which is Euclidean, and to go back to the manifold via the exponential map.

Therefore, our procedure to compare curves on manifold arising from positive definite matrices is the
following :

1. Input : a set of rotation matrices {Wi}i , seen as a partially observation of a periodic trajectory on
SO(n).

2. Interpolate with splines between matrices Wi.

3. Truncate the previous curve to obtain a sequence of points {x0, · · · , xn} with a finer discretization.

4. Interpolate between these points to obtain a piecewise geodesic curve in the base manifold SO(n).

5. Apply geodesic shooting to obtain a geodesic path between two curves, and eventually between the
shapes of the two curves.

6. Output : distance between two curve in the manifold defined by the set of curves in SO(n)

Formally, we have to add a preliminary step when one deal’s with curve that do not starts at the identity.
We can either compute the TSRV representation of the curve and then transport this representation to the
Lie algebra, or first translate the curve to a curve that starts at the identity. To end this part, we mention
that in the general framework of the dilation, we deal with operators of infinite size. These operators are
unitary. So, computations are to be adapted: and the inner product on the tangent space is now derived
from the Hilbert Schmidt norm :

|| A ||H.S= tr(AA∗) =

+∞∑
k=1

λk(AA∗) (44)

where A is a trace class operator, and {λk(AA∗)}k is the eigenvalues of AA∗. This is a generalization of the
Frobenius norm to the infinite dimensional case.
As these operator give rise to the spectral measure of the underlying process, we therefore have a way to
compare spectral measures, in a geometrical way that is different from the ”classical” use of Fisher information
metric or Kullback-Leibler distance in the information geometry context.
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4 Conclusion

We have introduced a new vision of stochastic processes through the geometry induced by the dilation. The
dilation matrices of a given processes are obtained by a composition of rotations whose angle correspond
to the well-known reflexion coefficients. The advantage to work with these particular matrices is that they
are strongly related to the stochastic measure of the process, and thus to its spectra. Furthermore, the
dilation theory is independent of the stationarity of the underlying process: when the signal is stationary,
its dilation operator is related to the Naimark dilation whereas when the signal is non-stationary, a set of
dilation matrices is obtained and it is related to the Kolmogorov decomposition. Rigorously, dilation matrices
are infinite dimensional, though we turn them into rotation matrices by truncation. Each of them belongs
so to the Special Orthogonal Group SO(n) or the Special Unitary Group SU(n) depending on the real or
complex-valued process under study. We focus our attention on the Periodically Correlated (PC) class of
non-stationary processes for which a timely ordered set of dilation matrices describes the process measure.
This set draws a closed curve on the Lie group of rotation matrices, and describing or classifying the different
PC processes is made by curves comparison. We use for that the Square Root Velocity (SRV) function which
represents a curve by its starting point and by its normed velocity vector on the space or curves. The metric
in the space of curve naturally extent to the space of shapes. It is then possible to compare the shape of
curves when the metric is translated to the Lie algebra, achieving therefore a closed-form expression and easy
computation.

A Defect operator, elementary rotation

Introducing the defect operator of a contraction T as being DT = (I − T ∗T )1/2, we have the following
factorization : (

X Y
Y ∗ Z

)
=

(
X1/2 0
Z1/2Γ∗ Z1/2DΓ

)(
X1/2 ΓZ1/2

0 DΓZ
1/2

)
(45)

Where X and Y are positive matrices. Note that this is a Cholesky factorization-type result. This type of
decomposition is used as squared-root of matrices in the construction of the dilation. A corollary is that the

operator

(
I T
T ∗ I

)
is positive if and only if T is a contraction.

Theorem 4. Let X and Y be operators in z. The following statements are equivalent :

• There exists a contraction Γ in z such that X = ΓY

• X∗X 6 Y ∗Y .

Proof. This result can be proved by taking the contraction Γ with respect to ΓXh = Y h, [50].

As a corollary, If X∗X = Y ∗Y then there exists a partial isometry V such that V X = Y . It is easy to see
that we can chose V to be the contraction Γ defined above. Isometry V can also be assumed unitary. For
a positive operator A ∈ L(H), if we denote by A1/2 its unique positive square root, then every L such that
L∗L = A is related to A1/2 by A1/2 = V L (or A1/2 = L∗V ∗).
Let us state another theorem that intervene much in Constantinescu’s factorization of positive definite kernel.
Note that in the next, R(Γ) will denote the close range of the operator Γ. We first start with a basic case:

Theorem 5 (row contraction). Let T = [T1 T2] ∈ L(H1⊕H2,H), then || T ||6 0 if and only if there exists
contractions Γ1 ∈ L(H1,H) and Γ2 ∈ L(H2,H) such that

T = [Γ1 DΓ∗1
Γ2]

Proof. The proof is a simple application of theorem 4. For the if part, it is obvious that we can take Γ1 to
be T1. Then || T ||6 1 implies

I − TT ∗ = I − Γ1Γ∗1 − T2T
∗
2 > 0

with D2
Γ∗1

> T2T
∗
2 . There exists so ∆ such that ∆DΓ∗1

= T ∗2 . Choosing Γ2 = ∆∗ finishes the argument.
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In the same way as that of the Cholesky factorization, we can write down the defect operator for the
whole contraction T = [T1 T2] [50] to be

D2
T =

(
DΓ1

0
−Γ∗2Γ1 DΓ1

)(
DΓ1

−Γ∗1Γ2

0 DΓ1
.

)
(46)

Therefore, with the theorem 5 we have an operator α such that

DT =

(
DΓ1 0
−Γ∗2Γ1 DΓ1

)
α

Similarly,
D2
T∗ = (DΓ∗1

DΓ∗2
DΓ∗2

DΓ∗1
)

and the general case is

Theorem 6 (Structure of row contration). The following are equivalent :

• The operator Tn = [T1 T2 · · ·Tn] in L(⊕nk=1Hk,H′) is a contraction

• T1 = Γ1 is a contraction and, for k > 2, there exists uniquely determined contractions Γk ∈ L(Hk,R(γk))
such that Tk = DΓ∗1

DΓ∗2
· · ·DΓ∗k−1

Γk

Furthermore, the defect operators of the whole contraction T are of the the form

D2
T =


DΓ1 0 · · · 0

−Γ∗
2Γ1 DΓ2 · · · 0
...

...
. . .

...
−Γ∗

nDΓ∗n−1
· · ·DΓ∗2

−Γ∗
nDΓ∗n−1

· · ·DΓ∗3
Γ2 · · · DΓn



DΓ1 −Γ∗

1Γ2 · · · −Γ∗
1DΓ∗2

· · ·DΓ∗n−1
Γn

0 DΓ2 · · · −Γ∗
2DΓ∗3

· · ·DΓ∗n−1
Γn

...
...

. . .
...

0 0 · · · DΓn


and

D2
T∗ = DΓ∗1

· · ·DΓ∗n
DΓ∗n

· · ·DΓ∗1

Proof. It can be proved straightforwardly by induction.

This construction permits to understand the apparition of the operators α and β in the publications of
Constantinescu which are used to identify the defect space of the components (the underlying contractions
of a row contraction) of a row contraction with the defect space of the row contraction itself. Same results

are readily obtained for column contraction of the form T =

T1

...
T2

.

B Geodesic equation in the space of curve M
To have a complete insight on the geodesic equation, we give the proof for a more general case that arise
when considering the SRV and not only the TSRV function of a cuve, that is the curve are parametrized by
their starting point and their velocity but their starting point are not transported to the identity.

Theorem 7. A path of curves [0, 1] 3 s 7→ (c(s, 0), q(s, t)) (t is the parameter of the curve c(s, ·))is a geodesic
on M if and only if:

∇∂c/∂sc(s, 0) +

∫ 1

0

R
(
q(s, t),∇∂c/∂sq(s, t)

)
(c(s, 0))dt = 0 ∀s (47)

∇∂c/∂s
(
∇∂c/∂sq(s, t)

)
(s, t) = 0 ∀s, t (48)

Similarly to [30] and [54], we consider a variation of the path s 7→ c(s, 0), q(s, t) starting and ending at
the same points, we denote {(c(s, 0, τ), q(s, t, τ))}. In figure (5), to get a clear picture, we have represented
a variation of a path of curves with fixed starting and ending points. Though similar, the situation here
is a bit different because of the representation of the curve through its SRV function, which we can hardly
represent. But the process remains similar. We emphasize the subtle difference with [30]. Here, we work
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b b
c0 c1

b

b

c0(s1, ·, τ1)

c0(s2, ·, τ2)

Figure 5: we consider a beam of curves, which consists in a slight modification of the geodesic. The different
curves are indexed by τ . The idea is to find which of these curves give the minimal energy to go from c0 to
c1

directly in the tangent space representation, via the SRV representation, and not with ”the whole family”

of curves c(s, t, τ). We denote ∂τ c(s, 0, τ) =
∂c(s, 0, τ)

∂τ
, and similarly for ∂sc(s, 0, τ) and ∂τ c(s, 0, τ). The

energy of the path indexed by τ is

E(τ) =
1

2

∫ 1

0

〈∂sc(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈∇∂c/∂sq(s, t, τ),∇∂c/∂sq(s, t, τ)〉ds.

Recall that the derivative of the inner product is given by
d

dx
〈f(x), f(x)〉 = 2 ∗ 〈f(x),

df

dx
〉. Then

E′(0) =

∫ 1

0

〈∇∂c/∂τ
∂c

∂s
(s, 0, 0),

∂c

∂s
(s, 0, 0)〉+ 〈∇∂c/∂τ∇∂c/∂sq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds

with ∇∂c/∂s (∂τ c(s, 0, τ)) = ∇∂c/∂τ (∂sc(s, 0, τ)) and owing to the curvature tensor
R (∂τ c(s, 0, τ), ∂sc(s, 0, τ)) (q(s, t, τ) = ∇∂c/∂τ∇∂c/∂s(q(s, t, τ))−∇∂c/∂s∇∂c/∂τ (q(s, t, τ)) we have

E′(0) =

∫ 1

0

〈∇∂sc∂τ c(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈R (∂τ c(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂sq(s, t, τ)〉

+ 〈∇∂sc∇∂τ cq(s, t, 0),∇∂scq(s, t, 0)〉ds
.

Integrating by parts now, allows to have

∫ 1

0

〈∇∂τ c∂sc(s, 0, τ), ∂sc(s, 0, τ)〉ds = −
∫ 1

0

〈∇∂sc∂sc(s, 0, τ), ∂τ c(s, 0, τ)〉ds∫ 1

0

〈∇∂sc∇∂τ c(q(s, t, τ)),∇∂sq(s, t, τ)〉 = −
∫ 1

0

〈∇∂sc∇∂sc(q(s, t, τ)),∇∂τ q(s, t, τ)〉

which yields to:

E′(0) =

∫ 1

0

(−〈∇∂sc∂sc(s, 0, τ), ∂τ c(s, 0, τ)〉) + 〈R (∂τ c(s, 0, τ), ∂sc(s, 0, τ)) q(s, t, τ),∇∂sq(s, t, τ)〉

+ (−〈∇∂sc∇∂scq(s, t, 0),∇∂τ cq(s, t, 0)〉)ds
For any vector fields X,Y, Z,W , 〈R(X,Y )Z,W 〉 = −〈R(W ), Z〉, consequently we obtained

E′(0) = −
∫ 1

0

〈∇∂sc∂τ c(s, 0, τ), ∂sc(s, 0, τ)〉+ 〈R (q(s, t, τ),∇∂sq(s, t, τ)) (∂sc(s, 0, τ)), ∂τ c(s, 0, τ〉

+ 〈∇∂c/∂s∇∂c/∂τq(s, t, 0),∇∂c/∂sq(s, t, 0)〉ds
Geodesic corresponds to minimal energy. It means that every other path that starts and ends at the same
points should require more energy to travel than the geodesic. We then have to solve E′(0) = 0 for every
∂τ c(s, 0, τ) and every ∇∂τ (q(s, t, τ)). This gives the result.
Now when the framework is given by the TSRV and not by the SRV, only the second part of the geodesic
equation remains due to the fixed starting point which corresponds to the identity element. This simplifies
a lot the equation, even though the derivation is the same.
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