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Abstract

Facing large amounts of data, subsampling is a practical technique to extract useful

information. For this purpose, Wang et al. (2017) developed an Optimal Subsampling

Method under the A-optimality Criterion (OSMAC) for logistic regression that samples

more informative data points with higher probabilities. However, the original OSMAC

estimator use inverse of optimal subsampling probabilities as weights in the likelihood

function. This reduces contributions of more informative data points and the resultant

estimator may lose efficiency. In this paper, we propose a more efficient estimator based

on OSMAC subsample without weighting the likelihood function. Both asymptotic re-

sults and numerical results show that the new estimator is more efficient. In addition,

our focus in this paper is inference for the true parameter, while Wang et al. (2017)

focuses on approximating the full data estimator. We also develop a new algorithm

based on Poisson sampling, which does not require to approximate the optimal subsam-

pling probabilities all at once. This is computationally advantageous when available

random-access memory is not enough to hold the full data. Interestingly, asymptotic

distributions also show that Poisson sampling produces more efficient estimator if the

sampling rate, the ratio of the subsample size to the full data sample size, does not con-

verge to 0. We also obtain the unconditional asymptotic distribution for the estimator

based on Poisson sampling.

Keywords: Asymptotic Distribution; Logistic Regression; Massive Data; Optimal

Subsampling, Poisson Sampling.
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1 Introduction

Extraordinary amounts of data that are collected offer unparalleled opportunities for ad-

vancing complicated scientific problems. However, the incredible sizes of big data bring new

challenges for data analysis. A major challenge of big data analysis lies with the thirst

for computing resources. Faced with this, subsampling has been widely used to reduce the

computational burden, in which intended calculations are carried out on a subsample that

is drawn from the full data, see Drineas, Kannan and Mahoney (2006a,b,c); Mahoney and

Drineas (2009); Drineas et al. (2011); Mahoney (2011); Halko et al. (2011); Clarkson and

Woodruff (2013); Kleiner et al. (2014); McWilliams et al. (2014); Yang et al. (2016), among

others.

A key to success of a subsampling method is to specify nonuniform sampling probabil-

ities so that more informative data points are sampled with higher probabilities. For this

purpose, normalized statistical leverage scores or its variants are often used as subsampling

probabilities in the context of linear regression, and this approach is termed algorithmic

leveraging (Ma et al., 2014; Ma and Sun, 2015; Ma et al., 2015). It has demonstrated re-

markable performance in making better use of a fixed amount of computing power (Avron

et al., 2010; Meng et al., 2014). Statistical leverage scores only contain information in the

covariate and do not take into account the information contained in the observed responses.

Wang et al. (2017) derived optimal subsampling probabilities that minimize the asymptotic

mean squared error (MSE) of the subsampling-based estimator in the context of logistic

regression. The optimal subsampling probabilities directly depend on both the covariates

and the responses to take more informative subsample. However, Wang et al. (2017) used a

weighted maximum likelihood estimator based on the subsample, and more informative data

points are assigned smaller weights in the likelihood function. Thus, the resultant estimator

may not be efficient.

In this paper, we propose more efficient estimators based on subsample taken randomly

according to the optimal subsampling probabilities. Asymptotic distributions will be de-

rived which show that asymptotic variance-covariance matrices of the new estimators are

smaller, in Loewner-ordering, than that of the weighted estimator in Wang et al. (2017). We

also consider to use Poisson sampling instead of sampling with replacement. Asymptotic

distributions show that Poisson sampling is more efficient in parameter estimation when

the subsample size is proportional to the full data sample size. It is also computationally

beneficial to use Poisson sampling because there is no need to generate a large amount of

random numbers all at once.

Before presenting the framework of the paper, we give a brief review of the emerging field
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of subsampling-based methods. For linear regression, Drineas, Mahoney and Muthukrishnan

(2006) developed a subsampling method and focused on finding influential data units for the

least squares (LS) estimates. Drineas et al. (2011) developed an algorithm by processing the

data with randomized Hadamard transform and then using uniform subsampling to approx-

imate LS estimates. Drineas et al. (2012) developed an algorithm to approximate statistical

leverage scores that are used for algorithmic leveraging. Yang et al. (2015) showed that us-

ing normalized square roots of statistical leverage scores as subsampling probabilities yields

better approximation than using original statistical leverage scores, if they are very nonuni-

form. The aforementioned studies focused on developing algorithms for fast approximation

of LS estimates. Ma et al. (2014, 2015) and Ma and Sun (2015) considered the statistical

properties of algorithmic leveraging. They derived biases and variances of leverage-based

subsampling estimators in linear regression and proposed a shrinkage algorithmic leveraging

method to improve the performance. Raskutti and Mahoney (2016) considered both the al-

gorithmic and statistical aspects of solving large-scale LS problems using random sketching.

Wang et al. (2018) developed an information-based optimal subdata selection method to

select subsample deterministically for ordinary LS in linear regression. The aforesaid results

were obtained exclusively within the context of linear models. Fithian and Hastie (2014)

proposed a computationally efficient local case-control subsampling method for logistic re-

gression with large imbalanced data. Recently, Wang et al. (2017) developed an Optimal

Subsampling Method under the A-optimality Criterion (OSMAC) for logistic regression. Al-

though they derived optimal subsampling probabilities, the inference procedure based on

weighted likelihood is not efficient.

This paper focuses on logistic regression models, which are widely used for statistical

inference in many disciplines, such as business, computer science, education, and genetics,

among others (Hosmer Jr et al., 2013). Based on optimal subsample taken according to

OSMAC developed in Wang et al. (2017), more efficient methods, in terms of both parameter

estimation and numerical computation, will be proposed. The reminder of the paper is

organized as follows. Model setups and notations are introduced in Section 2. The OSMAC

will also be briefly reviewed in this section. Section 3 presents the more efficient estimator

and its asymptotic properties. Section 4 considers Poisson sampling. Section 5 discusses

issues related to practical implementation and summaries the methods from Sections 3 and

4 into two practical algorithms. Section 6 gives unconditional asymptotic distributions for

the estimator from Poisson sampling. Section 7 evaluates the practical performance of the

proposed methods using numerical experiments. Section 8 concludes, and the appendix

contains proofs and technical details.
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2 Model setup and optimal subsampling

Let y ∈ {0, 1} be a binary response variable and x be a d dimensional covariate. A logistic

regression model describes the conditional probability of y = 1 given x, and it has the

following form.

P(y = 1|x) = p(β) =
ex

Tβ

1 + exTβ
, (1)

where β is a d× 1 vector of unknown regression coefficients belonging to a compact subset

of Rd.

With independent full data of size N from Model (1), say, DN = {(x1, y1), ..., (xN , yN)},
the unknown parameter β is often estimated by the maximum likelihood estimator (MLE),

denoted as β̂f . It is the maximizer of the log-likelihood function, namely,

β̂f = arg max
β

`f (β) = arg max
β

N∑
i=1

{
yix

T
i β − log

(
1 + eβ

Txi
)}
. (2)

Since there is no general closed-form solution to the MLE, Newton’s method or iteratively

reweighted least squares method (McCullagh and Nelder, 1989) is often adopted to find it

numerically. This typically takes O(ζNd2) time, where ζ is the number of iterations in

the optimization procedure (Wang et al., 2017). For super-large data, the computing time

O(ζNd2) may be too long to afford, and iterative computation is infeasible if the data volume

is larger than the available random-access memory (RAM). To overcome this computational

bottleneck for the application of logistic regression on massive data, Wang et al. (2017)

developed the OSMAC under the subsampling framework.

Let π1, ..., πN be subsampling probabilities such that
∑N

i=1 πi = 1. Using subsampling

with replacement, draw a random subsample of size n (� N), according to the probabilities

{πi}Ni=1, from the full data. We use ∗ to indicate any quantity for subsample, namely, denote

the covariates, responses, and subsampling probabilities in the subsample as x∗i , y
∗
i , and π∗i ,

respectively, for i = 1, ..., n. Wang et al. (2017) define the subsample estimator β̂
π

w to be the

weighted MLE, i.e.,

β̂
π

w = arg max
β

`∗w(β) = arg max
β

n∑
i=1

y∗iβ
Tx∗i − log

(
1 + eβ

Tx∗
i

)
π∗i

. (3)

The key to success here is how to specify the values for πi’s so that more informative

data points are sampled with higher probabilities. Wang et al. (2017) derived optimal sub-

sampling probabilities that minimize the asymptotic MSE of β̂
π

w. They first show that β̂
π

w

is asymptotically normal. Specifically, for large n and N , the conditional distribution of
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√
n(β̂

π

w − β̂f ) given the full data DN can be approximated by a normal distribution with

mean 0 and variance-covariance matrix VN = M−1
N (β̂f )VNcM

−1
N (β̂f ), in which

MN(β) =
1

N

N∑
i=1

φi(β)xix
T
i , VNc =

1

N

N∑
i=1

|yi − pi(β̂f )|2xixT
i

Nπi
,

and φi(β) = pi(β){1 − pi(β)} with pi(β) = ex
T
i β/(1 + ex

T
i β). Based on this asymptotic

distribution, they derive the following two optimal subsampling probabilities

πmMSE
i (β̂f ) =

|yi − pi(β̂f )|‖M−1
N (β̂f )xi‖∑N

j=1 |yj − pj(β̂f )|‖M−1
N (β̂f )xj‖

, i = 1, ..., N ; (4)

πmVc
i (β̂f ) =

|yi − pi(β̂f )|‖xi‖∑N
j=1 |yj − pj(β̂f )|‖xj‖

, i = 1, ..., N. (5)

Here, πmMSE
i minimize the trace of VN , tr(VN), and πmVc

i minimize the trace of VNc, tr(VNc).

These subsampling probabilities have a lot of nice properties and meaningful interpretations.

More details can be found in Section 3 of Wang et al. (2017).

For ease of presentation, use the following general notation to denote subsampling prob-

abilities

πOS
i (β) =

|yi − pi(β)|h(xi)∑N
j=1 |yj − pj(β)|h(xj)

, i = 1, ..., N, (6)

where h(x) is a univariate function of x. If h(x) = ‖x‖, then πOS
i (β̂f ) become πmVc

i (β̂f ). If

h(x) = ‖M−1x‖ where M is the limit of MN(β̂f ), then πOS
i (β̂f ) approximate πOS

i (β̂f ). If

h(x) = 1, then πOS
i (β) are proportional to the local case-control subsampling probabilities

(Fithian and Hastie, 2014).

Note that πOS
i (β) depend on the unknown β, so a pilot estimate of β is required to

approximate them. Let β̂1 be a pilot estimator from the pilot sample, for which we will

provide more details in Section 5. The original weighted OSMAC estimator is

β̂w = arg max
β

n∑
i=1

y∗iβ
Tx∗i − log

(
1 + eβ

Tx∗
i

)
πOS
i (β̂1)∗

. (7)

In Wang et al. (2017), β̂w have exceptional performance because πOS
i (β̂1) are able to

include more informative data points in the subsample. However, the weighting scheme

adopted in (7) prevent β̂w from being the most efficient estimator. Intuitively, a larger

πOS
i (β̂1) means that the data point (xi, yi) contains more information about β, but it has a

smaller weight in the log-likelihood in (7). This reduces contributions of more informative

data points in the log-likelihood function for parameter estimation.
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The weighted MLE in (7) is used because πOS
i (β̂1) dependent on the responses yi’s and an

un-weighted MLE is biased. If the bias can be corrected, then the resultant estimator can be

more efficient in parameter estimation. This is a major goal of this paper. Interestingly, for

the subsampling probabilities in (7), the bright idea proposed in Fithian and Hastie (2014)

can be used to correct the bias.

3 More efficient estimator with optimal subsampling

Let {(x∗1, y∗1), ..., (x∗n, y
∗
n)} be a random subsample of size n taken from the full data using

sampling with replacement according to the probabilities {πOS
i (β̂1)}Ni=1 defined in (6). We

present a more efficient estimation procedure based on subsample. Denote the more efficient

estimator as β̂r, where the subscript r stands for sampling with replacement. Remember

that a pilot estimate is required, and we use β̂1 to denote it. We will discuss how to obtain

it and how to use it to improve the estimation efficiency in Section 5. Here, we focus the

discussion on β̂r and assume that a consistent β̂1 is available. The following procedure

describes how to obtain β̂r.

Calculate

β̃r = arg max
β

`∗r(β) = arg max
β

n∑
i=1

{
βTx∗i y

∗
i − log

(
1 + eβ

Tx∗
i
)}
, (8)

and let

β̂r = β̃r + β̂1. (9)

The naive un-weighted MLE β̃r in (8) is biased, and the bias is corrected in (9) using β̂1.

We will show in the following that β̂r is asymptotically unbiased. This, together with the

fact that β̂1 is consistent, shows the interesting fact that β̃r converges to 0 in probability as

n→∞ and N →∞.

To investigate the asymptotic properties, we use βt to denote the true value of β, and

summarize some regularity conditions that are required in the following.

Assumption 1. The matrix E{φ(βt)h(x)xxT} is finite and positive-definite.

Assumption 2. The covariate x and function h(·) satisfy that E{‖x‖2h2(x)} < ∞, and

E{‖x‖2h(x)} <∞.

Assumption 3. As n→∞, nE{h(x)I(‖x‖2 > n)} → 0, where I() is the indicator function.

Assumption 1 is required to establish the asymptotic normality. This is a commonly

used assumption, e.g., in Fithian and Hastie (2014); Wang et al. (2017), among others. As-

sumptions 2 and 3 impose moment conditions on the covariate distribution and the function
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h(x). When h(x) = 1, if E‖x‖2 < ∞, then both the two conditions in Assumption 2 and

the condition in Assumption 3 hold. Thus, the assumptions required in this paper are not

stronger than those required by Fithian and Hastie (2014). When h(x) = ‖x‖, by Hölder’s

inequality,

nE{h(x)I(‖x‖2 > n)} ≤ n(E‖x‖3)1/3{EI(‖x‖2 > n)}2/3 = (E‖x‖3)1/3{n3/2P(‖x‖3 > n3/2)}2/3.

Therefore, if E‖x‖3 <∞, Assumption 3 holds. This shows that E‖x‖4 <∞ implies all the

three conditions required in Assumptions 2 and 3. Note that Wang et al. (2017) requires

that EevTx < ∞ for any v ∈ Rd in order to establish the asymptotic properties when a

pilot estimate is used to approximate optimal subsampling probabilities. Thus, the required

conditions in this paper are weaker than those required in Wang et al. (2017). Assumptions 1

and 2 are required in all the theorems in this paper while Assumption 3 is only required in

Theorem 1.

Theorem 1. Under assumptions 1-3, conditional on DN and β̂1, as n→∞ and N →∞,

√
n(β̂r − β̂wf ) −→ N

(
0, Σβt

)
, (10)

in distribution; furthermore, if n/N → 0, then

√
n(β̂r − βt) −→ N

(
0, Σβt

)
(11)

in distribution. Here

Σβ =

[
E{φ(β)h(x)xxT}

4Φ(β)

]−1

, Φ(β) = E{φ(β)h(x)} (12)

and

β̂wf = arg max
β

N∑
i=1

|yi − pi(β̂1)|h(xi)
[
yix

T
i (β − β̂1)− log{1 + ex

T
i (β−β̂1)}

]
, (13)

which satisfies that, conditional on β̂1,

√
N(β̂wf − βt) −→ N

(
0, Σwf

)
, (14)

in distribution, and

Σwf = [E{φ(βt)h(x)xxT}]−1E{φ(βt)h
2(x)xx}[E{φ(βt)h(x)xxT}]−1. (15)

Remark 1. The result in (10) of Theorem 1 also implies that β̂r is
√
n-consistent in a sense

that is similar to Theorem 5 of Wang et al. (2017), namely, given DN and β̂1 in probability,

β̂r − β̂wf = OP |DN ,β̂1
(n−1/2). (16)
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The OP |DN ,β̂1
(n−1/2) expression in (16) means that for any ε > 0, there exist a δε such that

P
{

sup
n

P(‖β̂r − β̂wf‖ > n−1/2δε|DN , β̂1) ≤ ε
}
→ 1 (17)

as n,N → ∞. Xiong and Li (2008) showed that if a sequence is bounded in conditional

probability, then it is bounded in unconditional probability, i.e., if an = OP |DN ,β̂1
(1), then

an = OP (1). Therefore, (16) implies that β̂r − β̂wf = OP (n−1/2). Similarly, (14) implies

that β̂wf −βt = OP (N−1/2). Thus, β̂r −βt = OP (n−1/2 +N−1/2) = OP (n−1/2), showing the
√
n-consistency of β̂r under the unconditional distribution.

Theorem 1 shows that, asymptotically, the distribution of β̂r given DN and β̂1 is centered

around β̂wf with variance-covariance matrix n−1Σβt
, and the distribution of β̂wf is centered

around βt with variance-covariance matrix N−1Σwf . Thus, both n−1Σβt
and N−1Σwf should

be considered in accessing the quality of β̂r for estimating the true parameter βt. However,

in subsampling setting, it is expected that n � N ; otherwise, the computational benefit

is minimum. Thus, n−1Σβt
is the dominating term in quantifying the variation of β̂r. If

n/N → 0, then the variation of β̂wf can be ignored as stated in (11).

Now we compare the estimation efficiency of β̂r with that of the weighted estima-

tor β̂w. With the optimal subsampling probabilities πOS
i (β̂f ), the asymptotic variance-

covariance matrix (scaled by n), VN , for the weighted estimator β̂w has a form of VOS
N =

M−1
N (β̂f )V

OS
NcM

−1
N (β̂f ), in which

VOS
Nc =

{
1

N

N∑
i=1

|yi − pi(β̂f )|h(xi)

}{
1

N

N∑
i=1

|yi − pi(β̂f )|xixT
i

h(xi)

}
.

Note that the full data MLE β̂f is consistent under Assumptions 1-2. If E{‖x‖2/h(x)} <
∞, then from Lemma 1 in the appendix and the law of large numbers, VOS

N converges in

probability to VOS = M−1VOS
c M−1, where

M = E{φ(βt)xxT} and VOS
c = 4Φ(βt)E

{
φ(βt)xxT

h(x)

}
.

Note that the asymptotically distribution of β̂w given DN and β̂1 is centered around β̂f .

It can be shown that under Assumptions 1-2,
√
N(β̂f − βt) −→ N

(
0,M−1

)
. (18)

Thus, both n−1VOS and N−1M−1 should be considered in accessing the quality of β̂w for

estimating the true parameter βt. However, similar to the case for β̂r, N
−1M−1 is small

compared with n−1VOS if n � N , and it is negligible if n/N → 0. Therefore, the relative

performance between β̂r and β̂w are mainly determined by the relative magnitude between

VOS and Σβt
. We have the following result comparing VOS and Σβt

.
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Proposition 1. Suppose that M, VOS
c , and Σβt

are finite and positive definite matrices.

We have that

Σβt
≤ VOS, (19)

where the inequality is in the Loewner ordering, i.e., for positive semi-definite matrices A

and B, A ≥ B if and only if A−B is positive semi-definite. If h(x) = 1, then the equality

in (19) holds.

This proposition shows that β̂r is typically more efficient than β̂w in estimating βt.

The numerical results in Section 7 also confirm this. Note that (19) holds if h(x) = 1. This

indicates that for subsample obtained from local case-control subsampling with replacement,

the weighted and unweighted estimators have the same conditional asymptotic distribution.

4 Poisson sampling

For the more efficient estimator β̂r in Section 3 as well as the weighted estimator β̂w in

Wang et al. (2017), the subsampling procedure used is sampling with replacement, which is

faster to compute than sampling without replacement for a fixed sample size. In addition,

the resultant subsample are independent and identically distributed (i.i.d.) conditional on

the full data. However, to implement sampling with replacement, subsampling probabilities

{πOS
i (β̂1)}Ni=1 need to be calculated all at once, and a large amount of random numbers need

to be generated all at once. This may reduce the computational efficiency, and it may require

a large RAM to implement the method. Furthermore, since a data point may be included

multiple times in the subsample, the resultant estimator may not be the most efficient.

To enhance the computation and estimation efficiency of the subsample estimator, we

consider Poisson sampling, which is also fast to compute and the resultant subsample can be

independent without conditioning on the full data. Note that for subsampling with replace-

ment, a resultant subsample is in general not independent, although it is i.i.d conditional

on the full data. As another advantage with Poisson sampling, there is no need to calculate

subsampling probabilities all at once, nor to generate a large amount of random numbers all

at once. Furthermore, a data point cannot be included in the subsample for more than one

time. A limitation of Poisson sampling is that the subsample size is always random. Due to

this, we abuse the notation in this section and use n to denote the expected subsample size.

Note that πOS
i (β) depend on the full data through the term in the denominator,

∑N
i=1 |yi−

pi(β)|h(xi). Write ΨN(β) = N−1
∑N

i=1 |yi − pi(β)|h(xi), and denote its limit as Ψ(β) =

E{|y − p(β)|h(x)}. Note that Ψ(βt) = 2Φ(βt). The pilot sample can be used to obtain an

estimator of Ψ(βt) to approximate ΨN(β). Let Ψ̂1 be a pilot estimator of Ψ(βt). Here, we
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focus on the Poisson sampling procedure and assume that such Ψ̂1 is available and consistent.

We will provide more details on this in the next section.

With β̂1 and Ψ̂1 available, the Poisson subsampling procedure is described as the fol-

lowing. For i = 1, ..., N , calculate πpi = |yi − pi(β̂1)|h(xi)/(NΨ̂1), generate ui ∼ U(0, 1),

and include (xi, yi, π
p
i ) in the subsample if ui ≤ nπpi . For the obtained subsample, say

{(x∗1, y∗1, πp∗1 ), ..., (x∗n∗ , y∗n∗ , π
p∗
n∗)}, calculate

β̃p = arg max
β

`∗p(β) = arg max
β

n∗∑
i=1

(nπp∗i ∨ 1)
{
βTx∗i y

∗
i + log(1 + eβ

Tx∗
i )
}
, (20)

and let β̂p = β̃p + β̂1. Note that here the actual subsample size n∗ is random.

Poisson sampling does not require to calculate πpi ’s all at once; each πpi can be calculated

on the go for each individual data point when scanning through the full data. Thus, one

pass through the data finishes the sampling. For the estimation step, if πpi is large so that

nπpi > 1, then this more informative data point will be given a larger weight, nπpi , in the

log-likelihood in (20). The following theorem describes asymptotic properties of β̂p.

Theorem 2. Under assumptions 1-2, conditional on DN and β̂1, as n → ∞ and N → ∞,

if n/N → 0 √
n(β̂p − βt) −→ N(0, Σβt

), (21)

in distribution; if n/N → ρ ∈ (0, 1), then

√
n(β̂p − β̂wf ) −→ N(0, Σβt

ΛρΣβt
), (22)

in distribution, where

Λρ =
E
[
φ(βt)h(x){Φ(βt)− ρφ(βt)h(x)}+xxT

]
4Φ2(βt)

, (23)

and ()+ means the positive part of the quantity, i.e., a+ = aI(a > 0).

Remark 2. Similar to the case of Theorem 1, Theorem 2 implies that β̂p is
√
n-consistent

to βt under the unconditional distribution.

Theorem 2 shows that with Poisson sampling, the asymptotic variance-covariance matri-

ces may differ for different sampling ratios n/N . In addition, comparing Theorems 1 and 2,

we know that β̂r and β̂p have the same asymptotic distribution if n/N → 0. This is intuitive

because if the sampling rate n/N is small, sampling with replacement is not very different

from sampling without replacement. However, if the sampling rate n/N does not converge to

zero, β̂r and β̂p have the same asymptotic bias but different asymptotic variance-covariance

matrices. The following result compares the two asymptotic variance covariance matrices.
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Proposition 2. If Σβt
is a finite and positive definite matrix and ρ > 0, then

Σβt
ΛρΣβt

< Σβt
, (24)

under the Loewner ordering.

This proposition shows that Poisson sampling is more efficient than sampling with re-

placement if the expected subsample size is proportional to the full data size.

5 Pilot estimate and practical implementation

Since πOS
i (β) depend on the unknown β, a pilot estimate of β is required to approximate

them. The pilot estimate can be obtained by taking a pilot sample using uniform subsampling

or case-control subsampling (Wang et al., 2017). For uniform subsampling, all subsampling

probabilities are equal, while for case-control subsampling, the subsampling probability for

the cases (yi = 1) are different from that for the controls (yi = 0). Let the subsampling

probabilities used to take the pilot sample be

π1i =
c0(1− yi) + c1yi

N
, (25)

where c0 and c1 are two constants that can be used to balance the numbers of 0’s and 1’s

in the responses for the pilot subsample. If c0 = c1 = 1, then π1i = N−1 are the uniform

subsampling probability. This choice is recommended due to its simplicity if the proportion

of 1’s is close to 0.5 (Wang et al., 2017). If c0 6= c1, then π1i are the case control subsampling

probabilities. This choice is recommended for imbalanced full data. Often, some prior

information about the marginal probability P(y = 1) is available. If ppr is the prior marginal

probability, we can choose c0 = {2(1− ppr)}−1 and c1 = (2ppr)
−1. The pilot estimate β̂1 can

be obtained using the pilot subsample. For uniform subsampling, weighted and unweighted

estimators are the same. For case-control subsampling, we use the unweighted estimators

for both sampling with replacement and Poisson sampling.

In Wang et al. (2017), the pilot sample are combined with the second stage sample taken

using approximated optimal subsampling probabilities to obtain a final estimator. While

this does not make a difference asymptotically since n1 is typically a small term compared

with n, i.e., n1 = o(n), using the pilot sample helps to improve the finite sample performance

in practical application. However, combing the raw samples may not be the most computa-

tionally efficient way of utilizing the pilot sample. Since β̂1 is already calculated, we can use

it directly to improve the second stage estimator using a divide-and-conquer method. This

avoids iterative calculation on the pilot sample for the second time.
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For Poisson subsampling, the pilot sample can also be used to construct Ψ̂1 to approxi-

mate ΨN(β). We use the following expression to obtain Ψ̂1.

Ψ̂1 =
1

N

n∗
1∑

i=1

|y∗i − p∗i (β̂1)|h(x∗i )

nπ∗1i ∧ 1
, (26)

where p∗i (β) = eβ
Tx∗

i /(1 + eβ
Tx∗

i ). It can be verified that Ψ̂1 defined in (26) converges in

probability to Ψ(βt).

Another practical issue one has to consider is whether the full data can be loaded into

available RAM or not. If so, subsampling probabilities can be calculated in RAM and sub-

sampling with replacement can be implemented directly. Otherwise, special considerations

have to be given in practical implementation. If the full data is larger than available RAM

while subsampling probabilities {πOS
i (β̂1)}Ni=1 can still be loaded in available RAM, one can

calculate {πOS
i (β̂1)}Ni=1 by scanning the data from hard drive line-by-line or block-by-block,

generate row indexes for a subsample, and then scan the data line-by-line or block-by-block

to take the subsample. To be specific, one can draw a subsample, say {idx1, ..., idxn}, from

{1, ..., N}, sort the indexes to have {idx(1), ..., idx(n)}, and then use the following algorithm

to scan the data line-by-line or block-by-block in order to obtain the subsample.

Algorithm 1 Obtain subsample with given indexes by scanning through the full data

Input: data file, subsample indexes {idx(1), ..., idx(n)}.
i← 1

j ← 1

while i ≤ N and j ≤ n do

readline(data file)

if i == idx(j) then

include the ith data point into the subsample

while i == idx(j) do

j ← j + 1

end while

end if

i← i+ 1

end while

Remark 3. Clearly, Algorithm 1 takes no more than linear time to run. We assume that a

generic function readline() reads a single line (or multiple lines) from the data file and stop

at the beginning of the next line (or next block) in the data file. No calculation is performed

12



on a data line if it is not included in the subsample. Such functionality are provided by

most programming languages. For example, Julia (Bezanson et al., 2017) and Python (van

Rossum, 1995) has a function readline() that read a file line-by-line; R (R Core Team,

2017) has a function readLines() that read one or multiple lines; C (Kernighan and Ritchie,

1988) and C++ (Stroustrup, 1986) has a function getline() to read one line at a time.

Taking into account all aforementioned issues in this section, including how to obtain the

pilot estimates, how to combine it with the second stage estimates, as well as how to process

data file line-by-line, we summarize practical implementation procedures in Algorithm 2 and

Algorithm 3, where Algorithm 2 is for sampling with replacement and Algorithm 3 is for

Poisson sampling. The algorithms are presented for the scenario that data volume is larger

than the size the the RAM. When the full data can be loaded into the RAM, the procedure

of sampling can be done directly in the RAM and the method is easier to implement for that

scenario.

Remark 4. In Algorithm 2 and Algorithm 3, if n1 = o(n), then the result for β̂r in The-

orem 1 hold for β̌r and the result for β̂p in Theorem 2 hold for β̌p as well. This is be-

cause {῭∗1r (β̃1) + ῭∗
r(β̃r)}−1 ῭∗1

r (β̃1)
√
n(β̂1 − βt) = Op(

√
n1/
√
n) = oP (1) and {῭∗1r (β̃1) +

῭∗
r(β̃r)}−1 ῭

r(β̃r)→ 1 in probability. The reason for β̌p is similar.

Remark 5. In Algorithm 2 and Algorithm 3, to combine the two stage estimates using

the second derivative of the likelihood, the inconsistent estimators β̃1, and β̃r or β̃p should

be used, because their limits correspond to the terms in the asymptotic variance-covariance

matrices of the more efficient estimators. This is an advantage of the proposed estimators for

implementation using existing software that fit logistic regression. One can use the inverse

of the estimated variance-covariance matrix from the software output to replace the second

derivative of the likelihood.

Remark 6. The variance-covariance estimators V̂(β̌r) in (31) and V̂(β̌p) in (35) can be

replaced the following simplified estimators,

V̂s(β̌p) = {῭∗1p (β̃1) + ῭∗
p(β̃p)}−1 and V̂s(β̌r) = {῭∗1r (β̃1) + ῭∗

r(β̃r)}−1, (27)

respectively. If the subsampling ratio n/N is much smaller than one, then V̂s(β̌r) and V̂s(β̌p)

perform very similarly V̂(β̌r) and V̂(β̌p), respectively.

Remark 7. The time complexity of Algorithm 2 is the same as that of Algorithm 2 in Wang

et al. (2017). The major computing time is to calculate {πOS
i (β̂1)}Ni=1 in Step 2, but it does

not require iterative calculations on the full data. Once {πOS
i (β̂1)}Ni=1 are available, it takes
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O(N) time to obtain the subsample using Algorithm 1 and the calculations of β̂uw and β̌uw

are fast because they are done on the subsamples only. To calculate {πOS
i (β̂1)}Ni=1, the required

time varies. For πmVc
i , the required time is O(Nd); for πmMSE

i , the required time is O(Nd2).

Thus, the time complexity of Algorithm 2 with πmVc
i is O(Nd) and the time complexity with

πmMSE
i is O(Nd2), if the sampling ratio n/N is much smaller than one.
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Algorithm 2 More efficient estimation based on subsampling with replacement

Step 1: obtain the pilot β̂1

(1) Take pilot subsample indexes of size n1 from {1, ..., N} using sampling with replacement

according to subsampling probabilities π1i in (25), and use Algorithm 1 to obtain a

pilot subsample, say, (x∗1i , y
∗1
i ), i = 1, ..., n1.

(2) Calculate

β̃1 = arg max
β

`∗1r (β) = arg max
β

n1∑
i=1

{
βTx∗1i y

∗1
i − log

(
1 + eβ

Tx
∗1
i
)}
, (28)

and let β̂1 = β̃1 + b, where b = {log(c0/c1), 0, ..., 0}T.

Step 2: obtain the more efficient estimator β̂r

(1) Calculate {πOS
i (β̂1)}Ni=1 defined in equation (6); take subsample indexes of size n from

{1, ..., N} according to sampling probabilities {πOS
i (β̂1)}Ni=1 using sampling with re-

placement; and use Algorithm 1 to obtain a subsample, (x∗i , y
∗
i ), i = 1, ..., n.

(2) Calculate

β̃r = arg max
β

`∗r(β) = arg max
β

n∑
i=1

{
βTx∗i y

∗
i − log

(
1 + eβ

Txi
)}
, (29)

and let β̂r = β̃r + β̂1.

Step 3: combine the two estimators β̂1 and β̂r

Calculate

β̌r = {῭∗1r (β̃1) + ῭∗
r(β̃r)}−1{῭∗1r (β̃1)β̂1 + ῭∗

r(β̃r)β̂r} (30)

where ῭∗1
r (β̃1) =

∑n1

i=1 φ
∗1(β̃1)x∗1i (x∗1i )T and ῭∗

r(β̃r) =
∑n

i=1 φ
∗(β̃r)x

∗
i (x
∗
i )

T.

The variance-covariance matrix of β̌r can be estimated by

V̂(β̌r) = {῭∗1r (β̃1) + ῭∗
r(β̃r)}−1

[ n1∑
i=1

{ψ∗1i (β̃1)}2x∗1i (x∗1i )T×

+
n∑
i=1

{ψ∗i (β̃r)}2x∗i (x
∗
i )

T

]
{῭∗1r (β̃1) + ῭∗

r(β̃r)}−1, (31)

where ψ∗i (β) = y∗i − p∗i (β).
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Algorithm 3 More efficient estimation based on Poisson sampling

Step 1: obtain the pilots β̂1 and Ψ̂1

(1) For i = 1, ..., N , calculate π1i = c0(1−yi)+c1yi
N

, generate u1i ∼ U(0, 1), and add (xi, yi, πi1)

in the subsample if u1i ≤ n1π1i.

(2) For the obtained subsample, say (x∗1i , y
∗1
i , π

∗1
1i ), i = 1, ..., n∗1, calculate

β̃1 = arg max
β

`∗1p (β) = arg max
β

n∗
1∑

i=1

(nπ∗11i ∨ 1)
{
βTx∗1i y

∗1
i + log

(
1 + eβ

Tx
∗1
i
)}
, (32)

let β̂1 = β̃1 + b, and then calculate Ψ̂1 in equation (26).

Step 2: obtain the more efficient estimator β̂p

(1) For i = 1, ..., N , calculate πpi = |yi−pi(β̂1)|h(xi)

NΨ̂1
, generate ui ∼ U(0, 1), and if ui ≤ nπpi

add (xi, yi, π
p
i ) in the subsample.

(2) For the obtained subsample, say {(x∗1, y∗1, πp∗1 ), ..., (x∗n∗ , y∗n∗ , π
p∗
n∗)}, calculate

β̃p = arg max
β

`∗p(β) = arg max
β

n∗∑
i=1

(nπp∗i ∨ 1)
{
βTx∗i y

∗
i + log(1 + eβ

Tx∗
i )
}
, (33)

and let β̂p = β̃p + β̂1.

Step 3: combine the two estimators β̂1 and β̂p

Calculate

β̌p = {῭∗1p (β̃1) + ῭∗
p(β̃p)}−1{῭∗1p (β̃1)β̂1 + ῭∗

p(β̃p)β̂p} (34)

where ῭∗1
p (β̃1) =

∑n∗
1
i=1 φ

∗1(β̃1)x∗1i (x∗1i )T and ῭∗
p(β̃p) =

∑n∗

i=1 φ
∗(β̃p)x

∗
i (x
∗
i )

T.

The variance-covariance matrix of β̌p can be estimated by

V̂(β̌p) = {῭∗1p (β̃1) + ῭∗
p(β̃p)}−1

[ n∗
1∑

i=1

{ψ∗1i (β̃1)}2x∗1i (x∗1i )T×

+
n∗∑
i=1

{ψ∗i (β̃p)}2x∗i (x
∗
i )

T

]
{῭∗1p (β̃1) + ῭∗

p(β̃p)}−1. (35)
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6 Unconditional distribution

Asymptotic distributional results in Sections 3 and 4, as well as in Wang et al. (2017), are

about conditional distributions, i.e., they are about conditional distributions of subsample-

based estimators given the full data and the pilot estimate. We investigate the unconditional

distribution of β̂p in this section.

Theorem 3. Assume that Assumptions 1 and 2 hold. If the pilot estimators are obtained

with subsampling probabilities in (25) and E{h3(x)‖x‖3}, E{h3(x)‖x‖2}, E{h(x)‖x‖3}, and

E{h2(x)} are finite, or if β̂1 and Ψ̂1 are independent of the data, then the following results

hold.

As n→∞ and N →∞, if n/N → 0

√
n(β̂p − βt) −→ N(0, Σβt

), (36)

in distribution; if n/N → ρ ∈ (0, 1), then

√
n(β̂p − βt) −→ N(0, Σβt

ΛuΣβt
), (37)

in distribution, where

Λu =
E[φ(βt){ρφ(βt)h(x) ∨ Φ(βt)}h(x)xxT]

4Φ2(βt)
. (38)

Remark 8. If the pilot estimators β̂1 and Ψ̂1 are obtained through the data, stronger moment

conditions are required. Note that h(x) is often a function of the norm of x, such as in

πmVc
i , πmMSE

i , and the local case control subsampling. In general, if h(x) = ‖Ax‖a for some

constant matrix A and constant a ≥ 0, then the four additional moment conditions reduce

to one requirement of E{h3(x)‖x‖3} <∞.

Fithian and Hastie (2014) obtained unconditional distribution of local case-control esti-

mator by assuming that the pilot estimate is independent of the data. Our Theorem 3 in-

cludes this scenario, and the required assumptions are the same as those required in Fithian

and Hastie (2014). In practice, a consistent pilot estimator that is independent of the data

may not be available and a pilot subsample from the full data is required to construct it.

For this scenario, a pilot estimator is dependent on the data, and we need a stronger mo-

ment condition to establish the asymptotic normality. For local case-control subsampling,

h(x) = 1, so the additional moment requirement is that E(‖x‖3) <∞.

From Theorems 2 and 3, the conditional asymptotic distribution and unconditional

asymptotic distribution of β̂p are the same if n/N → 0. This is intuitive, because if the
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sampling rate n/N is small, the variation of β̂p due to the variation of the full data is small

compared with the variation due to the variation of the subsampling.

However, if the sampling rate n/N does not converge to zero, then the conditional asymp-

totic distribution and unconditional asymptotic distribution of β̂p are quite different. First,

we notice that under the unconditional distribution, β̂p is asymptotically unbiased to βt,

while under the conditional distribution, β̂p is asymptotically biased with the bias being

β̂wf − βt = OP (N−1/2). Second, since the variation of β̂p due to the variation of the full

data is not negligible, we expect that the asymptotic variance covariance matrices for the

unconditional distribution is larger than that for the conditional distribution. Indeed this is

true, and we present it in the following proposition.

Proposition 3. If Σβt
is a finite and positive definite matrix and ρ > 0, then

Σβt
ΛuΣβt

≥ Σβt
> Σβt

ΛρΣβt
, (39)

under the Loewner ordering. Furthermore, if P{ρφ(βt)h(x) > Φ(βt)} > 0, then the “≥”

sign in (39) can be replaced by “>”, the strict great sign.

7 Numerical evaluations

We evaluate the performance of the more efficient estimators in terms of both estimation

efficiency and computational efficiency in this section.

7.1 Estimation efficiency

In this section, we use numerical experiments based on simulated and real data sets to eval-

uate the estimators proposed in this paper. For simulation, to compare with the original

OSMAC estimator, we use exactly the same setup used in Section 5.1 of Wang et al. (2017).

Specifically, the full data sample size N = 10, 000 and the true value of β, βt, is a 7×1 vector

of 0.5. The following 6 distributions of x are considered: multivariate normal distribution

with mean zero (mzNormal), multivariate normal distribution with nonzero mean (nzNor-

mal), multivariate normal distribution with mean zero and unequal variances (ueNormal),

mixture of two multivariate normal distributions with different means (mixNormal), multi-

variate t distribution with degrees of freedom 3 (T3), and exponential distribution (EXP).

Detailed explanations of these distributions can be found in Section 5.1 of Wang et al. (2017).

To evaluate the estimation performance of the new estimators compared with the original

weighted OSMAC estimator, β̌w, we define the estimation efficiency of β̌new relative to β̌w
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as

Relative Efficiency =
MSE(β̌w)

MSE(β̌new)
, (40)

where β̌new = β̌r for the subsampling with replacement estimator described in Algorithm 2

and β̌new = β̌p for Poisson subsampling estimator described in Algorithm 3. We calculate

empirical MSEs from S = 1000 subsamples using MSE(β̌) = S−1
∑S

s=1 ‖β̌
(s) − βt‖2, where

β̌
(s)

is the estimate from the sth subsample. We fixed the first step sample size n1 = 200

and choose n to be 100, 200, 400, 600, 800, and 1000. This is the same setup used in Wang

et al. (2017).

Figure 1 presents the relative efficiency of β̌r and β̌p based on two different choices of πOS
i :

πmMSE
i and πmVc

i . It is seen that in general β̌r and β̌p are more efficient than β̌w. Among the

six cases, the only case for β̌w to be more efficient is when x has a T3 distribution and πmVc

is used, but the difference is not very significant. For all other cases, β̌r and β̌p are more

efficient. For example, when x has a the nzNormal distribution, β̌p can be 250% as efficient

as β̌w if πmMSE is used. Between β̌r and β̌p, β̌p is more efficient than β̌r for all cases. We

also calculate the empirical unconditional MSE by generating the full data in each repetition

of the simulation. The results are similar and thus are omitted.

To assess the performance of V̂(β̌r) in (31) and V̂(β̌p) in (35), we use tr{V̂(β̌r)} and

tr{V̂(β̌p)} to estimate the MSEs of β̌r and β̌p, and compare the average estimated MSEs with

the unconditional empirical MSEs. We focus on the unconditional MSE because conditional

inference may be appropriate only if n/N → 0. Figure 2 presents the results for using πmVc.

Results for using πmMSE are similar and are omitted for clearer presentation. It is seen that

the estimated MSEs are very close to the empirical MSEs, except for the case of nzNormal

covariate for subsampling with replacement. For this case, the responses are imbalanced with

about 95% being 1’s. For this scenario, the variance-covariance estimator for β̌w proposed

in Wang et al. (2017) also has a similar problem of underestimation. For Poisson sampling,

the problem of underestimation from V̂(β̌p) is not significant.
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Figure 1: Relative efficiency for different second step subsample size n with the first step

subsample size being fixed at n1 = 200. A relative efficiency larger than one means the

associate method is more efficient than the original OSMAC estimator β̂w.
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Figure 2: MSE and estimated MSE, tr{V̂(β̌)}, for different second step subsample size n

with the first step subsample size being fixed at n1 = 200.

We also apply the more efficient estimation methods to a supersymmetric (SUSY) bench-
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mark data set (Baldi et al., 2014) available from the Machine Learning Repository (Lichman,

2013). The data contains a binary response variable indicating whether a process produce

new supersymmetric particles or not and 18 covariates that are kinematic features about

the process. The full sample size is N = 5, 000, 000 and the data file is about 2.4 gigabytes.

About 54.24% of the responses in the full data are from the background process. We use the

more efficient estimation methods with subsample size n to estimate parameters in logistic

regression.

Figures 3 gives the relative efficiency of β̌r and β̌p to β̌w for both πmVc and πmMSE. It

is seen that when πmMSE is used, β̌r and β̌p always outperform β̌w. When πmVc is used, β̌r

and β̌p may not be as efficient as β̌w, but they become more efficient when the second stage

sample size n gets larger. It is also seen that β̌p dominates β̌r and πmMSE dominates πmVc

in estimation efficiency.
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Figure 3: Relative efficiency for the SUSY data set with n1 = 200 and different second

step subsample size n. The gray horizontal dashed line is the reference line when relative

efficiency is one.

7.2 Computational efficiency

We consider the computational efficiency of the more efficient estimation methods in this

section. Note that they have the same order of computational time complicity, so they should

have similar computational efficiency. For Poisson sampling, there is no need to calculate
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{πpi }Ni=1 all at once and random numbers can be generated on the go, so it requires less RAM

and may require less CPU times as well. To confirm this, we record the computing time of

implementing each of them for the case when x is mzNormal. All methods are implemented

in the R programming language (R Core Team, 2017), and computations are carried out on

a desktop running Ubuntu Linux 16.04 with an Intel I7 processor and 16GB RAM. Only one

logical CPU is used for the calculation. We set the value of d to d = 50, the values of N to

be N = 104, 105, 106 and 107, and the subsample sizes to be n1 = 200 and n = 1000.

Table 1 gives the required CPU times (in seconds) to obtain β̌w, β̌r, and β̌p, using

πmVc and πmMSE. The computing times for using the full data (Full) are also given for

comparisons. It is seen that β̌r and β̌p are a little more computationally efficient than β̌w

but the advantages are not very significant. Note that these times are obtained when all the

calculations are done in the RAM, and only the CPU times for implementing each method

are counted while the time to generate the data is not counted.

Table 1: CPU seconds when the full data are generate and kept in the RAM. Here n1 = 200,

n = 1000, and the full data size N varies; the covariates are from a d = 50 dimensional

multivariate normal distribution.

Method N

104 105 106 107

mVc, β̌w 0.14 0.13 0.45 5.24

mVc, β̌r 0.08 0.11 0.41 3.71

mVc, β̌p 0.08 0.11 0.43 3.88

mMSE, β̌w 0.13 0.32 3.31 35.15

mMSE, β̌r 0.12 0.31 3.29 34.98

mMSE, β̌p 0.12 0.31 3.29 35.06

Full 0.15 1.62 15.05 247.89

For big data problem, it is common that the full data are larger than the size of the

available RAM, and full data can not be loaded into the RAM. For this scenario, one has to

load the data into RAM line-by-line or block-by-block. Note that communication between

CPU and hard drive is much slower than communication between CPU and RAM. Thus,

this will dramatically increase the computing time. To mimic this situation, we store the full

data on hard drive and use readlines() function to process data 1000 rows each time. We

also use a smaller computer with 8GB RAM to implement the method. For the case when

N = 107, the full data is about 9.1GB which is larger than the available RAM.

The computing times when data are scanned from hard drive are reported Table 2. Here
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the computing times can be over thousand times longer than those when data are loaded

into RAM. Note that these computing times can be reduced dramatically if we use some

other programming language like C++ (Stroustrup, 1986) or Julia (Bezanson et al., 2017).

However, for fair comparisons, we use the same programming language R here. Furthermore,

our main purpose here is to demonstrate the computational advantage of subsampling so

the real focus is on the relative performance among different methods. From Table 2, it

is seen that using πmMSE does not cost much more time than using πmVc. The reason

for this observation is that the major computing time is spent in data processing and the

computing times used in calculating the subsampling probabilities are short. We also notice

that Poisson sampling is more computational efficient than subsampling with replacement

since it calculates subsampling probabilities and generates random numbers on the go and

requires one time less to scan the full data. Poisson subsampling only used about 2% of the

time required by implementing the full data approach.

Table 2: CPU seconds when the full data are scanned from hard drive. Here n1 = 200,

n = 1000, and the full data size N varies; the covariates are from a d = 50 dimensional

multivariate normal distribution.

Method N

104 105 106 107

mVc, β̌w 4.26 41.60 441.46 4374.94

mVc, β̌r 4.13 41.42 413.09 4384.99

mVc, β̌p 2.77 27.58 272.32 2699.13

mMSE, β̌w 4.43 41.75 434.96 4393.38

mMSE, β̌r 4.10 41.83 417.55 4369.04

mMSE, β̌p 2.88 27.93 273.24 2719.51

Full 139.46 1411.78 14829.63 138134.69

8 Summary

In this paper, we proposed a new unweighted estimator for logistic regression based on

OSMAC subsample. We derived conditional asymptotic distribution of the new estimator

which has a smaller variance-covariance matrix compared with the weighted estimator.

We also investigate the asymptotic properties if Poisson sampling is used, and showed that

the resultant estimator has the same conditional asymptotic distribution if the subsampling

rate converges to zero However, if the subsampling rate converges to a positive constant, the
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estimator based on Poisson sampling has a smaller variance-covariance matrix.

Furthermore, we also derive the unconditional asymptotic distribution for the proposed

estimator based on Poisson sampling. Interestingly, if the subsampling rate converges to

zero, the unconditional asymptotic distribution is the same as the conditional asymptotic

distribution, indicating that the variation of the full data can be ignored. If the subsam-

pling rate does not converge to zero, the unconditional asymptotic distribution has a larger

variance-covariance matrix. Our results also include the case-control sampling method. With

a stronger moment condition that the third moment of the covariate is finite, we do not re-

quire the pilot estimate to be independent of the data.

A Proofs and technical details

In this appendix, we provide proofs for the results in the paper. Technical details related

to sampling with replacement in Section 3 are presented in Section A.1; technical details

related to Poisson sampling in Section 4 are presented in Section A.2; and technical details

related to unconditional results in Section 6 are presented in Section A.3.

A.1 Proofs for subsampling with replacement

In this section we prove the results in Section 3. The proofs require a series of Lemmas,

which are presented below and will be proved later in this section.

For easy of presentation, we use notation λ to denote the log-likelihood shifted by β̂1.

For the subsample, λ∗r(β) = `∗r(β − β̂1). Denote the first and second derivatives of λ∗r(β) as

λ̇∗r(β) = ∂λ∗r(β)/∂β and λ̈∗r(β) = ∂2λ∗r(β)/(∂β∂βT).

Note that from Xiong and Li (2008), the fact that a sequence converges to 0 in conditional

probability is equivalent to the fact that it converges to 0 in unconditional probability. Thus,

in the following, we will not use oP (1) to denote a sequence converging to 0 in probability

without stating whether the underlying probability measure is conditional or unconditional.

Lemma 1. Let v1, ...,vn be i.i.d. random vector with the same distribution of v. Let g1 be a

bounded function that may depend on n and other random variables, and g2 be a fixed function

that does not depend on n. If g1(vi) = oP (1) for each i as n→∞, and E|g2(v)| <∞, then

1

n

n∑
i=1

g1(vi)g2(vi) = oP (1).
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Lemma 2. Let ηi = |ψi(β̂1)|ψi(βt − β̂1)h(xi)xi, where ψi(β) = yi − pi(β). Under Assump-

tions 1 and 2, conditional on β̂1,

√
N(β̂wf − βt) =

Σβt

2E{φ(βt)h(x)}
1√
N

N∑
i=1

ηi + oP (1), (A.1)

which, as N → ∞, converges in distribution to the a normal distribution with mean 0 and

variance-covariance matrix [E{φ(βt)h(x)xxT}]−1E{φ(βt)h
2(x)xx}[E{φ(βt)h(x)xxT}]−1.

Lemma 3. Let

λ̇∗r(βt) =
n∑
i=1

{
y∗i − p∗i (βt − β̂1)

}
x∗i . (A.2)

Under Assumptions 1 and 2, conditional on DN and β̂1 which is assumed to be a consistent

estimator of βt, as n→∞ and N →∞,

λ̇∗r(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN(β̂1)
−→ N

(
0, Σ−1

βt

)
, (A.3)

in distribution.

Lemma 4. Under Assumptions 1-3, as n,N →∞, for any sn → 0,

1

n

n∑
i=1

φ∗i (βt − β̂1 + sn)‖x∗i ‖2 −
N∑
i=1

πi(β̂1)φi(βt − β̂1)‖xi‖2 = oP (1). (A.4)

Proof of Theorem 1. The estimator β̂r is the maximizer of

λ∗r(β) =
n∑
i=1

[
(β − β̂1)Tx∗i y

∗
i − log

{
1 + e(β−β̂1)Tx∗

i
}]
, (A.5)

so
√
n(β̂r − βt) is the mazimizer of γ(s) = λ∗r(βt + s/

√
n)− λ∗r(βt). By Taylor’s expansion,

γ(s) =
1√
n

sTλ̇∗r(βt) +
1

2n

n∑
i=1

φ∗i (βt − β̂1 + ś/
√
n)(sTx∗i )

2, (A.6)

where φ∗i (β) = p∗i (β){1− p∗i (β)}, and ś lies between 0 and s.

From Lemma 4,

1

n

n∑
i=1

φ∗i (βt − β̂1 + ś/
√
n)x∗i (x

∗
i )

T −
N∑
i=1

π(β̂1)φi(βt − β̂1)xix
T
i = oP (1). (A.7)

From Lemma 1 and the law of large numbers,

N∑
i=1

π(β̂1)φi(βt − β̂1)xix
T
i =

1
N

∑N
i=1 |ψi(β̂1)|h(xi)φi(βt − β̂1)xix

T
i

ΨN(β̂1)
= Σ−1

βt
+ oP (1). (A.8)
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Combining the above two equations, we have that n−1
∑n

i=1 φ
∗
i (βt − β̂1 + ś/

√
n)x∗i (x

∗
i )

T

converges in probability to Σ−1
βt

, a positive definite matrix. In addition, from Lemma 2

and Lemma 3, conditional on DN , and β̂1, λ̇∗r(βt)/
√
n = OP |DN ,β̂1

(1). Thus, from the Basic

Corollary in page 2 of Hjort and Pollard (2011), the mazimizer of γ(s),
√
n(β̂r−βt), satisfies

√
n(β̂r − βt) = Σβt

1√
n
λ̇∗r(βt) +OP |DN ,β̂1

(1) (A.9)

given DN and β̂1. Thus,

√
n(β̂r − β̌w) = Σβt

{
1√
n
λ̇∗r(βt)−Σ−1

βt

√
n(β̌w − βt)

}
+OP |DN ,β̂1

(1). (A.10)

From Lemma 2,

Σ−1
βt

√
n(β̂wf − βt) =

√
n
∑N

i=1 ηi
2NE{φ(βt)h(x)} =

√
n
∑N

i=1 ηi

NΨN(β̂1)
+ oP (1), (A.11)

Combining equations (A.10) and (A.11), Lemma 3, and Slutsky’s theorem, Theorem 1

follows.

A.1.1 Proof of Proposition 1

Proof of Proposition 1. To prove that Σβt
≤ VOS = M−1VOS

c M−1, we just need to show

that

Σ−1

β̂f
≥M(VOS

c )−1M. (A.12)

From the strong law of large numbers,

M =
1

N

N∑
i=1

φi(βt)xix
T
i + o(1), (A.13)

VOS
c = 4Φ(βt)

1

N

N∑
i=1

φi(βt)xix
T
i

h(xi)
+ o(1), (A.14)

Σβt
= 4Φ(βt)

{
1

N

N∑
i=1

φi(βt)h(xi)xix
T
i

}−1

+ o(1), (A.15)

almost surely. Thus, we only need to verify that

N∑
i=1

φi(βt)h(xi)xix
T
i ≥

{ N∑
i=1

φi(βt)xix
T
i

}{ N∑
i=1

φi(βt)xix
T
i

h(xi)

}−1{ N∑
i=1

φi(βt)xix
T
i

}
. (A.16)
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Denote Z =
{√

φ1(βt)x1, ...,
√
φN(βt)xN

}T
, and H = diag{h(x1), ..., h(xN)}. The in-

equality in (A.16) can be written as

ZTHZ ≥ZTZ(ZTH−1Z)−1ZTZ, (A.17)

which is true if

H ≥ Z(ZTH−1Z)−1ZT (A.18)

Note that (H−1/2Z){(H−1/2Z)(H−1/2Z)T}−1(H−1/2Z)T is the projection matrix of H−1/2Z,

so it is, under the Loewner ordering, smaller than or equal to the identity matrix IN , namely,

IN ≥ H−1/2Z(ZH−1ZT)−1ZTH−1/2, (A.19)

which implies (A.18). If h(x) = 1, the equality can be verified directly.

A.1.2 Proof of Lemma 1

Proof of Lemma 1. Let B be a bound for g1 i.e., |g1| ≤ B. For any ε > 0, by Markov’s

inequality,

P
{∣∣∣ 1
n

n∑
i=1

g1(vi)g2(vi)
∣∣∣ > ε

}
≤ E|g1(v)g2(v)|

ε

=
E[|g1(v)||g2(v)|I{|g2(v)| ≤ K}]

ε
+

E[|g1(v)||g2(v)|I{|g2(v)| > K}]
ε

≤ K

ε
E|g1(v)|+ B

ε
E{|g2(v)|I(|g2(v)| > K)}.

For any ζ > 0, we can choose a K large enough such that E{|g2(v)|I(|g2(v)| ≤ K)} <
ζε/(2B), since E|g2(v)| < ∞. The facts that g1(vi) ≤ B and g1(vi) = oP (1) imply that

E|g1(v)| = o(1). Thus, there is a nζ such that E|g1(v)| < ζε/(2K) when n > nζ . Therefore,

for any ζ > 0, P{|n−1
∑n

i=1 g1(vi)g2(vi)| > ε} < ζ for sufficiently large n. This finishes the

proof.

A.1.3 Proof of Lemma 2

Proof of Lemma 2. Since β̌w is the maximizer of

λwf (β) =
N∑
i=1

|yi − pi(β̂1)|h(xi)
[
yix

T
i (β − β̂1)− log{1 + ex

T
i (β−β̂1)}

]
,

√
N(β̌w−βt) is the mazimizer of γwf (s) = λwf (βt+s/

√
N)−λwf (βt). By Taylor’s expansion,

γwf (s) =
1√
N

sTλ̇wf (βt)−
1

2N

N∑
i=1

|yi − pi(β̂1)|h(xi)φi(βt − β̂1 + ś/
√
N)(sTxi)

2 (A.20)
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where

λ̇wf (βt) =
N∑
i=1

ηi =
N∑
i=1

|ψi(β̂1)|ψi(βt − β̂1)h(xi)xi, (A.21)

and ś lies between 0 and s.

Denote ψ(β) = y − p(β) and η = |ψ(β̂1)|ψ(βt − β̂1)h(x)x. Note that E(η|β̂1) = 0

because

E(η|β̂1,x) =E
[
|ψ(β̂1)|

{
y − p(βt − β̂1)

}
h(x)x

∣∣∣β̂1,x
]

=− p(x, β̂1)p(βt − β̂1){1− p(x,βt)}h(x)x

+ {1− p(x, β̂1)}{1− p(βt − β̂1)}p(x,βt)h(x)x

=− ex
Tβ̂1

1 + exTβ̂1

ex
Tβt−xTβ̂1

1 + exTβt−xTβ̂1

1

1 + exTβt
h(x)x

+
1

1 + exTβ̂1

1

1 + exTβt−xTβ̂1

ex
Tβt

1 + exTβt
h(x)x = 0. (A.22)

This also gives that

V(η|β̂1) = E
{
V(η|x, β̂1)

∣∣β̂1

}
+ V

{
E(η|x, β̂1)

∣∣β̂1

}
= E

{
V(η|x, β̂1)

∣∣β̂1

}
.

Now, since

V(η|x, β̂1) =E
[
|y − p(β̂1)|2

{
y − p(βt − β̂1)

}2
h2(x)xxT

∣∣∣β̂1,x
]

=p(x,βt){1− p(β̂1)}2
{

1− p(βt − β̂1)
}2
h2(x)xxT

+ {1− p(x,βt)}{p(β̂1)}2
{
p(βt − β̂1)

}2
h2(x)xxT

=φi(β̂1)φi(β̂1 − βt)h
2(x)xxT,

we have

V(η|β̂1) = E
{
φ(β̂1)φ(β̂1 − βt)h

2(x)xxT
∣∣∣β̂1

}
. (A.23)

Let ‖‖ denote the Frobenius norm if applied on a martix, i.e., for a matrix A, ‖A‖2 =

tr(AAT), and denote V(η|βt) = E{φ(βt)φ(βt − βt)h
2(x)xxT} = 0.25E{φ(βt)h

2(x)xxT}.
Notice that

∣∣φ(β̂1)φ(β̂1 − βt)− 0.25φi(βt)
∣∣h2(x)‖x‖2 converges to 0 in probability and it is

bounded by h2(x)‖x‖2, an integrable random variable under Assumption 2. Thus,

E
∥∥V(η|β̂1)− V(η|βt)

∥∥ ≤ E
{∣∣{φ(β̂1)φ(β̂1 − βt)− 0.25φi(βt)

∣∣h2(x)‖x‖2
}

= o(1). (A.24)

This implies that

V(η|β̂1) = V(η|βt) + oP (1) = 0.25E
{
φ(βt)h

2(x)xx
}

+ oP (1). (A.25)
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Conditional on β̂1, η1, ..., ηN are i.i.d. with mean 0 and variance V(η|β̂1). Since for any

ε > 0,

1

N

N∑
i=1

E
{
‖ηi‖2I(‖ηi‖ >

√
Nε)

∣∣∣β̂1

}
≤ 1

N

N∑
i=1

E
{
‖h(xi)xi‖2I(‖h(xi)xi‖ >

√
Nε)

∣∣∣β̂1

}
=E{‖h(x)x‖2I(‖h(x)x‖ >

√
Nε)} → 0,

the Lindeberg-Feller central limit theorem (Section ∗2.8 of van der Vaart, 1998) applies

conditional on β̂1. Thus, we have, conditional on β̂1,

λ̇wf (βt)√
N

−→ N
[
0,

E
{
φ(βt)h

2(x)xx
}

4

]
, (A.26)

From Lemma 1, conditional on β̂1,

1

N

N∑
i=1

|yi − pi(β̂1)|h(xi)φi(βt − β̂1 + ś/
√
N)xix

T
i

=
1

4
E{|ψ(βt)|h(x)xxT}+ oP |β̂1

(1) =
1

2
E{φ(βt)h(x)xxT}+ oP (1).

Thus, from the Basic Corollary in page 2 of Hjort and Pollard (2011), the mazimizer of

γwf (s),
√
N(β̌w − βt), satisfies

√
N(β̂wf − βt) =2[E{φ(βt)h(x)xxT}]−1 1√

N
λ̇w(βt) + oP (1). (A.27)

Note that

[E{φ(βt)h(x)xxT}]−1 =
Σβt

4Φ(βt)
. (A.28)

Combining equations (A.21), (A.27), and (A.28), we have

√
N(β̂wf − βt) =

Σβt

2Φ(βt)

1√
N
λ̇w(βt) + oP (1).

An application of Slutsky’s theorem yields the result for the asymptotic normality.

A.1.4 Proof of Lemma 3

Proof of Lemma 3. Note that given DN and β̂1, {y∗i − p∗i (βt − β̂1)
}
x∗i are i.i.d. random

vectors. We now exam their mean and variance, and check the Lindeberg-Feller condition

(Section ∗2.8 of van der Vaart, 1998) under the conditional distribution given DN and β̂1.

For the expectation, we have,

E
[{
y∗ − p∗(β − β̂1)

}
x∗|DN , β̂1

]
=

N∑
i=1

πi(β̂1)ψi(βt − β̂1)xi =

∑N
i=1 ηi

NΨN(β̂1)
. (A.29)
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From Lemma 2 and its proof,
∑N

i=1 ηi = OP (
√
N) conditional on β̂1 in probability, i.e.,

for any ε > 0, there exits a K such that P{P(
∑N

i=1 ηi/
√
N > K|β̂1) < ε} → 1 as n1, N →∞.

From Xiong and Li (2008), we know that
∑N

i=1 ηi = OP (
√
N) unconditionally. Thus, for the

expectation, we have

∆ =E
[{
y∗ − p∗(β − β̂1)

}
x∗|DN , β̂1

]
= OP (1/

√
N).

For the variance,

V
[{
y∗ − p∗(β − β̂1)

}
x∗|DN , β̂1

]
=

N∑
i=1

πi{yi − pi(βt − β̂1)}2xix
T
i −∆2

=
1
N

∑N
i=1 |ψi(β̂1)|ψ2

i (βt − β̂1)h(xi)xix
T
i

ΨN(β̂1)
−OP (1/N)

=
1
N

∑N
i=1 |ψi(βt)|(yi − 0.5)2h(xi)xix

T
i

ΨN(βt)
+ oP (1)

=
1

4

E{|ψ(βt)|h(x)xxT}
Ψ(βt)

+ oP (1) = Σ−1
βt

+ oP (1)

where the third equality is from Lemma 1 and the fact that E{h(x)‖x‖2} < ∞, and the

forth equality is from the law of large numbers.

Now we check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under

the condition distribution. Denote λ̇∗ri = {y∗i − p∗i (β − β̂1)}x∗i .

E
1

n

n∑
i=1

{
‖λ̇∗ri‖2I(‖λ̇∗ri‖ >

√
nε)
∣∣DN , β̂1

}
(A.30)

≤E
{
‖x∗‖2I(‖x‖ > √nε)

∣∣DN , β̂1

}
(A.31)

=
N∑
i=1

π(β̂1)
{
‖xi‖2I(‖xi‖ >

√
nε)
}

(A.32)

≤
1
N

∑N
i=1

{
h(xi)‖xi‖2I(‖xi‖ >

√
nε)
}

ΨN(β̂1)
(A.33)

≤
1
N

∑N
i=1

{
h(xi)‖xi‖2I(‖xi‖ >

√
nε)
}

ΨN(β̂1)
= oP (1), (A.34)

by Lemma 1 and the fact that E{h(x)‖x‖2} < ∞. Thus, applying the Lindeberg-Feller

central limit theorem (Section ∗2.8 of van der Vaart, 1998) finishes the proof.
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A.1.5 Proof of Lemma 4

Proof of Lemma 4. We begin with the following partition,

1

n

n∑
i=1

φ∗i (βt − β̂1 + sn)‖x∗i ‖2 (A.35)

=
1

n

n∑
i=1

φ∗i (βt − β̂1 + sn)‖x∗i ‖2I(‖x∗i ‖2 ≤ n) +
1

n

n∑
i=1

φ∗i (βt − β̂1 + sn)‖x∗i ‖2I(‖x∗i ‖2 > n)

≡∆1 + ∆2. (A.36)

The second term ∆2 is oP (1) because it is non-negative and

E(∆2|DN , β̂1) =
N∑
i=1

πi(β̂1)φi(βt − β̂1 + sn)‖xi‖2I(‖xi‖2 > n) (A.37)

≤
∑N

i=1 |ψi(β̂1)|h(xi)‖xi‖2I(‖xi‖2 > n)∑N
i=1 |ψi(β̂1)|h(xi)

(A.38)

≤
1
N

∑N
i=1 h(xi)‖xi‖2I(‖xi‖2 > n)

ΨN(β̂1)
= oP (1) (A.39)

as n,N →∞, where the last step is from Lemma 1.

Similarly, we can show that

E(∆1|DN , β̂1)−
N∑
i=1

π(β̂1)φi(βt − β̂1)‖xi‖2 = oP (1). (A.40)

Thus, we only need to show that ∆1 − E(∆1|DN , β̂1) = oP (1). For this, we show that the

conditional variance of ∆1 goes to 0 in probability. Notice that

V(∆1|DN , β̂1)

=
1

n
V
{
φ∗(βt − β̂1)‖x∗‖2I(‖x∗‖2 ≤ n)

∣∣DN , β̂1

}
≤‖s‖

4

16n
E
{
‖x∗‖4I(‖x∗‖2 ≤ n)

∣∣DN , β̂1

}
=
‖s‖4

16n

n∑
i=1

E
{
‖x∗‖4I(i− 1 < ‖x∗‖2 ≤ i)

∣∣DN , β̂1

}
≤‖s‖

4

16n

n∑
i=1

i2E
{
I(i− 1 < ‖x∗‖2 ≤ i)

∣∣DN , β̂1

}
≤‖s‖

4

16n

n∑
i=1

i2
{
P(‖x∗‖2 > i− 1

∣∣DN , β̂1)− P(‖x∗‖2 > i
∣∣DN , β̂1)

}
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=
‖s‖4

16n

{
P(‖x∗‖2 > 0

∣∣DN , β̂1)− n2P(‖x∗‖2 > n
∣∣DN , β̂1) +

n−1∑
i=1

(2i+ 1)P(‖x∗‖2 > i
∣∣DN , β̂1)

}

≤‖s‖
4

16n

{
1 +

n−1∑
i=1

3iP(‖x∗‖2 > i
∣∣DN , β̂1)

}
This is oP (1) because

1

n

n∑
i=1

iP(‖x∗‖2 > i|DN , β̂1) =
1

n

n∑
i=1

i

n∑
j=1

πj(β̂1)I(‖xj‖2 > i) (A.41)

=
1

n

n∑
j=1

n∑
i=1

iπj(β̂1)I(‖xj‖2 > i) (A.42)

=
1
N

∑n
j=1

1
n

∑n
i=1 i|ψj(β̂1)|h(xj)I(‖xj‖2 > i)

ΨN(β̂1)
(A.43)

≤
1
N

∑n
j=1

1
n

∑n
i=1 ih(xj)I(‖xj‖2 > i)

ΨN(β̂1)
, (A.44)

and the numerator is non-negative and has an expectation

1

N

n∑
j=1

1

n

n∑
i=1

iE{h(x)I(‖x‖2 > i)} (A.45)

which is o(1) since iE{h(x)I(‖x‖2 > i)} = o(1) as i→∞.

A.2 Proofs for Poisson subsampling

In this section we prove the results in Section 4 about Poisson subsampling.

Define δ
β̂1
i = I{ui ≤ nπpi (β̂1)}, and use notation λp to denote the log-likelihood shifted

by β̂1, i.e., λp(β) = `∗p(β − β̂1). Using these notation, the estimator β̂p is the maximizer of

λp(β) =
N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}

[
(β − β̂1)Txiyi − log{1 + e(β−β̂1)Txi}

]
, (A.46)

Denote the first and second derivatives of λp(β) as λ̇p(β) = ∂λp(β)/∂β and λ̈p(β) =

∂2λp(β)/(∂β∂βT). Two lemmas similar to Lemmas 3 and 4 are derived below which will be

used in the proof of Theorem 2.

Lemma 5. Let

λ̇p(βt) =
N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}{yi − pi(βt − β̂1)}xi. (A.47)
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Under Assumptions 1 and 2, conditional on DN , β̂1, and Ψ̂1, if n = o(N), then

λ̇p(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN(β̂1)
−→ N

(
0, Σβt

)
, (A.48)

in distribution; if n/N → ρ ∈ (0, 1), then

λ̇p(βt)√
n
−
√
n
∑N

i=1 ηi

NΨN(β̂1)
−→ N

(
0, Λρ

)
, (A.49)

in distribution.

Lemma 6. Under Assumptions 1 and 2, as n,N →∞, for any sn → 0,

1

n

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + sn)‖xi‖2 −

N∑
i=1

πpi (β̂1)φi(βt − β̂1)‖xi‖2 = oP (1).

Proof of Theorem 2. The estimator β̂p is the maximizer of (A.46), so
√
n(β̂p−βt) is the

mazimizer of γp(s) = λp(βt + s/
√
n)− λp(βt). By Taylor’s expansion,

γp(s) =
1√
n

sTλ̇p(βt) +
1

2n

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + ś/

√
n)(sTxi)

2 (A.50)

where φi(β) = pi(β){1− pi(β)}, and ś lies between 0 and s.

From Lemmas 5 and 6, conditional on DN , and β̂1,

1

n

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + ś/

√
n)xix

T
i = Σ−1

βt
+ oP (1). (A.51)

In addition, from Lemma 5, conditional on DN , β̂1, and Ψ̂1, λ̇p(βt)/
√
n converges in dis-

tribution to a normal limit. Thus, from the Basic Corollary in page 2 of Hjort and Pollard

(2011), the mazimizer of γp(s),
√
n(β̂p − βt), satisfies

√
n(β̂p − βt) = Σβt

1√
n
λ̇p(βt) + oP (1) (A.52)

given DN , β̂1, and Ψ̂1. Combining this with Lemma 5 and Slutsky’s theorem, Theorem 2

follows.

A.2.1 Proof of Proposition 2

Proof of Proposition 2. To prove that Σβt
ΛρΣβt

< Σβt
, we just need to show that Λρ <

Σ−1
βt

. This is true because

Λρ =
E
[
φ(βt)h(x){Φ(βt)− ρφ(βt)h(x)}+xxT

]
4Φ2(βt)

≤ E
{
φ(βt)h(x)Φ(βt)xxT

}
4Φ2(βt)

=
E
{
φ(βt)h(x)xxT

}
4Φ(βt)

= Σ−1
βt
.
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A.2.2 Proof of Lemma 5

Proof of Lemma 5. Note that, δ
β̂1
i = I{ui ≤ nπpi (β̂1)}, where ui are i.i.d. with the standard

uniform distribution. Thus, given DN , β̂1, and Ψ̂1, λ̇p(βt) is a sum of N independent random

vectors. We now exam the mean and variance of λ̇p(βt). Recall that ηi = |ψi(β̂1)|ψi(βt −
β̂1)h(xi)xi, and ψi(β) = yi − pi(β). For the mean, we have,

1√
n
E
{
λ̇p(βt)|DN , β̂1, Ψ̂1

}
(A.53)

=
1√
n

N∑
i=1

{nπpi (β̂1) ∧ 1}{nπpi (β̂1) ∨ 1}ψi(βt − β̂1)xi (A.54)

=
1√
n

N∑
i=1

nπpi (β̂1)ψi(βt − β̂1)xi =

√
n√
N

∑N
i=1 ηi

Ψ̂1

√
N

= OP (
√
n/N), (A.55)

where the last equality is from Lemma 2.

For the variance,

1

n
V
{
λ̇p(βt)|DN , β̂1, Ψ̂1

}
=

1

n

N∑
i=1

[{nπpi (β̂1) ∧ 1} − {nπpi (β̂1) ∧ 1}2]{nπpi (β̂1) ∨ 1}2ψ2
i (βt − β̂1)xix

T
i

=
N∑
i=1

πpi (β̂1){nπpi (β̂1) ∨ 1}ψ2
i (βt − β̂1)xix

T
i − n

N∑
i=1

{πpi (β̂1)}2ψ2
i (βt − β̂1)xix

T
i

=
1
N

∑N
i=1 |ψi(β̂1)|{nπpi (β̂1) ∨ 1}ψ2

i (βt − β̂1)h(xi)xix
T
i

Ψ̂1

− n

N

1
N

∑N
i=1 ψ

2
i (β̂1)ψ2

i (βt − β̂1)h2(xi)xix
T
i

Ψ̂2
1

≡∆3 + ∆4 (A.56)

Note that E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞, and |ψi(·)| are bounded. Thus, from

Lemma 1, if n/N → ρ,

∆4 → ρ
E{ψ2(βt)h

2(x)xxT}
4Ψ2(βt)

= ρ
E{φ2(βt)h

2(x)xxT}
4Φ2(βt)

, (A.57)

in probability.

For the term ∆3 in (A.56), it is equal to

∆3 =
1

Ψ̂2
1

1

N

N∑
i=1

|ψi(β̂1)|
{n|ψi(β̂1)|h(xi)

N
∨ Ψ̂1

}
ψ2
i (βt − β̂1)h(xi)xix

T
i
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=
1

Ψ̂2
1

n

N2

N∑
i=1

ψ2
i (β̂1)ψ2

i (βt − β̂1)h2(xi)xix
T
i I
{n|ψi(β̂1)|h(xi)

N
> Ψ̂1

}
+

1

Ψ̂1

1

N

N∑
i=1

|ψi(β̂1)|ψ2
i (βt − β̂1)h(xi)xix

T
i I
{n|ψi(β̂1)|h(xi)

N
≤ Ψ̂1

}
.

Since E{h(x)‖x‖2} < ∞, E{h2(x)‖x‖2} < ∞, and |ψi(·)| are bounded, from Lemma 1, if

n/N → ρ, as n→∞ and N →∞, in probability,

∆3 →
ρE
[
ψ2(βt)h

2(x)xxTI
{
ρ|ψ(βt)|h(x) ≥ Ψ(βt)

}]
4Ψ2(βt)

+
E
[
|ψ(βt)|h(x)xxTI

{
ρ|ψ(βt)|h(x) ≤ Ψ(βt)}

}]
4Ψ(βt)

=
E
(
φ(βt)h(x)xxT

[
{ρφ(βt)h(x)} ∨ Φ(βt)}

])
4Φ2(βt)

(A.58)

From, (A.56), (A.57), and (A.58), if n/N → ρ,

1

n
V
{
λ̇p(βt)|DN , β̂1, Ψ̂1

}
=

E
[
φ(βt)h(x)xxT{Φ(βt)− ρφ(βt)h(x)}+

]
4Φ2(βt)

+ oP (1). (A.59)

Specifically, when ρ = 0,

1

n
V
{
λ̇p(βt)|DN , β̂1, Ψ̂1

}
= Σβt

+ oP (1). (A.60)

Now we check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under

the condition distribution. Denote λ̇pi = δ
β̂1
i {nπpi (β̂1) ∨ 1}ψi(βt − β̂1)xi. For any ε > 0

1

n

N∑
i=1

E
{∥∥λ̇pi∥∥2

I(
∥∥λ̇pi∥∥ > √nε)∣∣∣DN , β̂1, Ψ̂1

}
≤ 1

n

N∑
i=1

E
[∥∥δβ̂1

i {nπpi (β̂1) ∨ 1}xi
∥∥2
I(
∥∥δβ̂1

i {nπpi (β̂1) ∨ 1}xi
∥∥ > √nε)∣∣∣DN , β̂1, Ψ̂1

]
=

N∑
i=1

πpi (β̂1){nπpi (β̂1) ∨ 1}‖xi‖2I({nπpi (β̂1) ∨ 1}‖xi‖ >
√
nε)

≤ |ψi(β̂1)|h(xi){n/N |ψi(β̂1)|h(xi) + Ψ̂1}‖xi‖2I({nπpi (β̂1) + 1}‖xi‖ >
√
nε)

Ψ̂2
1

≤
1
N

∑N
i=1 h

2(xi)‖xi‖2I({h(xi)/Ψ̂1 + 1}‖xi‖ >
√
nε)

Ψ̂2
1

+
1
N

∑N
i=1 h(xi)‖xi‖2I({h(xi)/Ψ̂1 + 1}‖xi‖ >

√
nε)

Ψ̂1

= oP (1),

where the last equality is from Lemma 1. Thus, applying the Lindeberg-Feller central limit

theorem (Section ∗2.8 of van der Vaart, 1998) finishes the proof.
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A.2.3 Proof of Lemma 6

Proof of Lemma 6. Note that, from Lemma 1,

N∑
i=1

πpi (β̂1)φi(βt − β̂1)xix
T
i =

1

Ψ̂1N

N∑
i=1

|ψi(β̂1)|φi(βt − β̂1)h(xi)xix
T
i = Σβt

+ oP (1);

and from the strong law of large numbers

1

n

N∑
i=1

δ
βt
i {nπpi (βt) ∨ 1}φi(βt − βt)xix

T
i = Σβt

+ oP (1),

where δ
βt
i = I{ui ≤ nπpi (βt)}. Thus, if we show that

∆5 ≡
1

n

N∑
i=1

∣∣∣δβ̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + sn)− δβt

i {nπpi (βt) ∨ 1}φi(βt − βt)
∣∣∣‖xi‖2 = oP (1),

(A.61)

then the result in Lemma 6 follows. Noting that ∆5 is nonnegative, we prove (A.61) by

showing that E(∆5|DN , β̂1, Ψ̂1) = oP (1). Note that given DN , β̂1, and Ψ̂1, the only random

terms in ∆5 are δ
β̂1
i = I{ui ≤ nπpi (β̂1)} and δ

βt
i = I{ui ≤ nπpi (βt)}. We have that

E(∆5|DN , β̂1, Ψ̂1)

≤ 1

n

N∑
i=1

{nπpi (β̂1) ∧ nπpi (βt) ∧ 1}

×
∣∣∣{nπpi (β̂1) ∨ 1}φi(βt − β̂1 + sn)− {nπpi (βt) ∨ 1}φi(βt − βt)

∣∣∣‖xi‖2

+
1

n

N∑
i=1

|nπpi (β̂1)− nπpi (βt)|
∣∣∣nπpi (β̂1) + nπpi (βt) + 2

∣∣∣‖xi‖2

≡∆6 + ∆7. (A.62)

Note that nπpi (β̂1) ∧ nπpi (βt) ∧ 1 ≤ nπpi (β̂1). Thus ∆6 is bounded by

1

Ψ̂1

1

N

N∑
i=1

∣∣∣{nπpi (β̂1) ∨ 1}φi(βt − β̂1 + sn)− {nπpi (βt) ∨ 1}φi(βt − βt)
∣∣∣h(xi)‖xi‖2, (A.63)

which is oP (1) by Lemma 1 if |{nπpi (β̂1)∨ 1}− {nπpi (βt)∨ 1}| = oP (1). This is true because

|{nπpi (β̂1) ∨ 1} − {nπpi (βt) ∨ 1}| ≤n|πpi (β̂1)− πpi (βt)|

≤nh(xi)

N

∣∣∣∣ |ψi(β̂1)|
Ψ̂1

− |ψi(βt)|
ΨN(βt)

∣∣∣∣ = oP (1).
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The term ∆7 is bounded by

1

N

N∑
i=1

∣∣∣∣ |ψi(β̂1)|
Ψ̂1

− |ψi(βt)
ΨN(βt)

∣∣∣∣∣∣∣∣ |ψi(β̂1)|
Ψ̂1

+
|ψi(βt)|
ΨN(βt)

+
2

h(xi)

∣∣∣∣h2(xi)‖xi‖2 = oP (1),

where the equality to oP (1) is from Lemma 1 and the fact that E{h2(x)‖x‖2} <∞.

A.3 Proofs for unconditional distribution

In this section we prove Theorem 3 in Section 6. A lemma similar to Lemma 5 is presented

below. Lemma 6 can be used in the proof of Theorem 2 because for the problem considered

in this paper, convergence to zero in probability is equivalent to convergence to zero in

probability under the conditional probability measure (Xiong and Li, 2008).

For the pilot sample taken according to the subsampling probabilities π1i in (25), we

define δ
(1)
i = I{u1i ≤ c0(1−yi)+c1yi

N
}, where u1i are i.i.d. standard uniform random variables.

With this notation, the estimator Ψ̂1 defined in (26) can be written as

Ψ̂1 =
1

N

N∑
i=1

δ
(1)
i |yi − pi(β̂1)|h(xi)

nπ1i ∧ 1
. (A.64)

Lemma 7. Let β̂1 and Ψ̂1 be constructed according to Step 1 of Algorithm 3, respectively.

For

λ̇p(βt) =
N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}{yi − pi(βt − β̂1)}xi, (A.65)

under the same assumptions of Theorem 3, if n = o(N), then

λ̇p(βt)√
n
−→ N

(
0, Σβt

)
, (A.66)

in distribution; if n/N → ρ ∈ (0, 1), then

λ̇p(βt)√
n
−→ N

(
0, Λu

)
, (A.67)

in distribution.

Proof of Theorem 3. The proof of this theorem is similar to that of Theorem 2. The key

difference is that Lemma 7 is about asymptotic distribution unconditionally.

The estimator β̂p is the maximizer of

λp(β) =
N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}

[
(β − β̂1)Txiyi − log{1 + e(β−β̂1)Txi}

]
, (A.68)
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so
√
n(β̂p−βt) is the mazimizer of γp(s) = λp(βt + s/

√
n)− λp(βt). By Taylor’s expansion,

γp(s) =
1√
n

sTλ̇p(βt) +
1

2n

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + ś/

√
n)(sTxi)

2 (A.69)

where ś lies between 0 and s.

From Lemma 5,

1

n

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}φi(βt − β̂1 + ś/

√
n)xi(xi)

T = Σ−1
βt

+ oP (1). (A.70)

In addition, from Lemma 7, λ̇p(βt)/
√
n converges in distribution to a normal limit. Thus,

from the Basic Corollary in page 2 of Hjort and Pollard (2011), the mazimizer of γp(s),
√
n(β̂p − βt), satisfies

√
n(β̂p − βt) = Σβt

1√
n
λ̇p(βt) + oP (1). (A.71)

Combining this with Lemma 7 and Slutsky’s theorem, Theorem 3 follows.

A.3.1 Proof of Proposition 3

Proof of Proposition 3. To prove (39), we just need to show that Λu ≥ Σ−1
βt

> Λρ. From

Proposition 2, we know that Σ−1
βt
> Λρ. To show that Λu ≥ Σ−1

βt
, we notice that

Λu =
E[φ(βt){ρφ(βt)h(x) ∨ Φ(βt)}h(x)xxT]

4Φ2(βt)
.

≥ E
{
φ(βt)h(x)Φ(βt)xxT

}
4Φ2(βt)

=
E
{
φ(βt)h(x)xxT

}
4Φ(βt)

= Σ−1
βt
,

where the strict inequality holds if ρφ(βt)h(x)∨Φ(βt) 6= ρφ(βt)h(x) with positive probability,

i.e., P{ρφ(βt)h(x) > Φ(βt)} > 0.

A.3.2 Proof of Lemma 7

Proof of Lemma 7. We first proof the case when the pilot estimates β̂1 and Ψ̂1 depend on the

data. For any l ∈ Rd, denote τNi =
√
N/nΨ̂1δ

β̂1
i {nπpi (β̂1) ∨ 1}ψi(βt − β̂1)xT

i l, i = 1, ..., N ,

where δ
β̂1
i = I{ui ≤ nπpi (β̂1)}, and ui are i.i.d. standard uniform random variables. Note

that τNi’s have the same distribution but they are not independent. We now exam the mean

and variance of τNi. For the mean, based on calculation similar to that in (A.22), we have,

E
(
τNi
∣∣β̂1, Ψ̂1

)
=
√
nNΨ̂1E

{
πpi (β̂1)ψi(βt − β̂1)xT

i l
∣∣β̂1, Ψ̂1

}
=

√
nE(ηi

∣∣β̂1, Ψ̂1)√
N

= 0, (A.72)
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which implies that

EτNi = 0. (A.73)

For the variance, V(τNi) = E(τ 2
Ni), we start with the condition expectation,

E
(
τ 2
Ni

∣∣β̂1, Ψ̂1

)
=NΨ̂2

1E
[
πpi (β̂1){nπpi (β̂1) ∨ 1}ψ2

i (βt − β̂1)(xT
i l)

2
∣∣∣β̂1, Ψ̂1

]
=E
[
|ψi(β̂1)|

{ n
N
|ψi(β̂1)|h(xi) ∨ Ψ̂1

}
ψ2
i (βt − β̂1)h(xi)(x

T
i l)

2
∣∣∣β̂1, Ψ̂1

]
.

If we let

ΥNi = |ψi(β̂1)|
{ n
N
|ψi(β̂1)|h(xi) ∨ Ψ̂1

}
ψ2
i (βt − β̂1)h(xi)(x

T
i l)

2, (A.74)

then V(τNi) = E(ΥNi). Note that

ΥNi → Υi = 0.25|ψi(βt)|{ρ1|ψi(βt)|h(xi) ∨Ψ(βt)}h(xi)(x
T
i l)

2, (A.75)

in probability. We now show that

E(ΥNi)→ E(Υi) = E[φ(βt){ρφ(βt)h(x) ∨ Φφ(βt)}h(x)(xTl)2]. (A.76)

Let Ξ = |ΥNi −Υi|. For any ε,

|E(ΥNi)− E(Υi)| = E{ΞI(Ξ > ε)}+ E{ΞI(Ξ ≤ ε)}
≤ E

[
{h2(xi)(x

T
i l)

2 + Υi + Ψ̂1h(xi)(x
T
i l)

2}I(Ξ > ε)
]

+ ε

We know that E
[
{h2(xi)(x

T
i l)

2 + Υi}I(Ξ > ε)
]
→ 0 since E{h2(xi)(x

T
i l)

2 + Υi} <∞ for any

l ∈ Rd, and I(Ξ > ε) is bounded and is oP (1). Thus, to prove that E(ΥNi)− E(Υi)→ 0, we

only need to show that

E
{

Ψ̂1h(xi)(x
T
i l)

2I(Ξ > ε)
}

=
1

N

N∑
k=1

E
{
δ

(1)
k |yk − pk(β̂1)|h(xk)

n1π
(1)
k ∧ 1

h(xi)(x
T
i l)

2I(Ξ > ε)

}
≡ 1

N

N∑
k=1

∆8k → 0,

which is true if ∆8k = o(1) for any k. We need to keep in mind that δ
(1)
k = I{u1k ≤

c0(1−yk)+c1yk
N

} and ΥNi are correlated, and they both depend on the data. For π1k with the

expression in (25), we have

1

n1π1k ∧ 1
≤ N

n1

c0 + c1

c0c1

+ 1 and n1π1k ∧ 1 ≤ n1

N
(c0 + c1). (A.77)
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Using this, we have

∆8k ≤
(
N

n1

c0 + c1

c0c1

+ 1

)
E
{
δ

(1)
k h(xk)h(xi)(x

T
i l)

2I(Ξ > ε)
}

(A.78)

=

(
N

n1

c0 + c1

c0c1

+ 1

)
E
{
h(xk)h(xi)(x

T
i l)

2I(Ξ > ε)
∣∣δ(1)
k = 1

}
P(δ

(1)
j = 1) (A.79)

<
(c0 + c1 + c0c1)2

c0c1

E
{
h(xk)h(xi)(x

T
i l)

2I(Ξ > ε)
∣∣δ(1)
k = 1

}
(A.80)

Note that E
{
h(xk)h(xi)(x

T
i l)

2
∣∣δ(1)
k = 1

}
< ∞ for any i, k, because E{h2(x)‖x‖2} < ∞.

Thus, ∆8k = o(1), if Ξ = oP (1) given δ
(1)
k = 1. From the expression of Ξ, we only need to

show that β̂1 and Ψ̂1 are consistent given δ
(1)
k = 1. This is true because n1 →∞ and fixing

the value of one observation does not affect the consistency. For example, for Ψ̂1, given

δ
(1)
k = 1,

Ψ̂1 =
1

N

N∑
j 6=k

δ
(1)
j |yj − pj(β̂1)|h(xj)

n1π
(1)
j ∧ 1

+
|yk − pk(β̂1)|h(xk)

n1{c0(1− yk) + c1yk} ∧N
, (A.81)

in which the first term converge to Ψ(βt) = 2Φ(βt) and the second term is oP (1). We have

finished proving that

V(τNi)→ E(Υi) = E[φ(βt){ρφ(βt)h(x) ∨ Φφ(βt)}h(x)(xTl)2]. (A.82)

In the following, we exam the third moment of τNi and prove that

E|τNi|3 = o(
√
N). (A.83)

For the conditional expectation,

E
(
|τNi|3

∣∣β̂1, Ψ̂1

)
= N

√
N/nΨ̂3

1E
[
πpi (β̂1){nπpi (β̂1) ∨ 1}2ψ3

i (βt − β̂1)(xT
i l)

3
∣∣∣β̂1, Ψ̂1

]
=
√
N/nE

[
|ψi(β̂1)|

{ n
N
|ψi(β̂1)|h(xi) ∨ Ψ̂1

}2

ψ3
i (βt − β̂1)h(xi)(x

T
i l)

3
∣∣∣β̂1, Ψ̂1

]
≤ 2‖l‖3

√
N/nE

[
{h2(xi) + Ψ̂2

1}h(xi)‖xi‖3
∣∣β̂1, Ψ̂1

]
.

Thus, (A.83) follows if E
[
{h2(xi) + Ψ̂2

1}h(xi)‖xi‖3
]

= O(1), which is true if

E{Ψ̂2
1h(xi)‖xi‖3} = O(1) (A.84)

since E{h3(xi)‖xi‖3} = E{h3(x)‖x‖3} <∞ and it is a constant that does not depend n1, n,

or N . For (A.84),

E{Ψ̂2
1h(xi)‖xi‖3}
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= E
{

1

N

N∑
k1=1

δ
(1)
k1
|yk1 − pk1(β̂1)|h(xk1)

n1π
(1)
k1
∧ 1

1

N

N∑
k2=1

δ
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n1π
(1)
k2
∧ 1
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}

≤ 1

N2

N∑
k1 6=k2

E
{
δ

(1)
k1
h(xk1)

n1π
(1)
k1
∧ 1

δ
(1)
k2
h(xk2)

n1π
(1)
k2
∧ 1

h(xi)‖xi‖3

}
+

1

N2

N∑
k=1

E
{

δ
(1)
k h2(xk)

{n1π1k ∧ 1}2
h(xi)‖xi‖3

}

=
1

N2

N∑
k1 6=k2

E{h(xk1)h(xk2)h(xi)‖xi‖3}+
1

N2

N∑
j=1

E
{

1

n1π1k ∧ 1
h2(xk)h(xi)‖xi‖3

}

≤ 1

N2

N∑
k1 6=k2

E{h(xk1)h(xk2)h(xi)‖xi‖3}+
c0 + c1 + c0c1

c0c1n1N

N∑
j=1

E{h2(xk)h(xi)‖xi‖3}

=
N − 1

N
{Eh(x)}2E{h(x)‖x‖3}+

c0 + c1 + c0c1

c0c1n1

[E{h2(x)}][E{h(x)‖x‖3}] = O(1). (A.85)

This finish the proof of (A.84).

Denote νNi = τNi{V(τNi)}−1/2. We know that νNi are i.i.d. conditional on β̂1 and Ψ̂1.

Thus, from Theorem 7.3.2 of Chow and Teicher (2003), they are interchangeable. The fact

that β̂1 and Ψ̂1 are consistent estimators implies that they are a sequence of two estimators,

and for each β̂1 and Ψ̂1, τNi are interchangeable. For this setup, the central limit theorem

in Theorem 2 of Blum et al. (1958) can be applied to prove the asymptotic normality.

It is evident that νNi have mean 0 and variance 1. It is also easy to verify that, for i 6= j,

E(νNiνNj) = E{E(νNiνNj|β̂1, Ψ̂1)} = 0, (A.86)

and

1√
N
E{|νNi|3} = E|τNi|3{V(τNi)}−3/2 → 0 (A.87)

which follows from (A.83). We now show that for i 6= j,

E{ν2
Niν

2
Nj} → 1. (A.88)

Since νNi = τNi{V(τNi)}−1/2, from (A.82), to prove (A.88), we only need to show that

E(τ 2
Niτ

2
Nj)→ E(Υi)E(Υj) = E(ΥiΥj), where the equality is because Υi and Υj are indepen-

dent. Noting that τ 2
Ni and τ 2

Nj are conditionally independent, we have E
(
τ 2
Niτ

2
Nj

∣∣β̂1, Ψ̂1

)
=

E
(
τ 2
Ni

∣∣β̂1, Ψ̂1

)
E
(
τ 2
Ni

∣∣β̂1, Ψ̂1

)
= E

(
ΥNi

∣∣β̂1, Ψ̂1

)
E
(
ΥNj

∣∣β̂1, Ψ̂1

)
= E

(
ΥNiΥNj

∣∣β̂1, Ψ̂1

)
, so we

know that E
(
τ 2
Niτ

2
Nj

)
= E

(
ΥNiΥNj

)
.

Now we prove that E
(
ΥNiΥNj

)
→ E

(
ΥiΥj

)
. Let Ξ2 = |ΥNiΥNj −ΥiΥj|. For any ε > 0,

|E(ΥNiΥnj)− E(ΥiΥj)|
≤E{Ξ2I(Ξ2 > ε)}+ E{Ξ2I(Ξ2 ≤ ε)}
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≤E
[
{h2(xi)(x

T
i l)

2h2(xj)(x
T
j l)

2 + ΥiΥj}I(Ξ2 > ε)
]

+ E
[
Ψ̂2

1h(xi)‖xi‖2h(xj)‖xj‖2I(Ξ2 > ε)
]

+ E
[
Ψ̂1{h(xi)(x

T
i l)

2h2(xj)(x
T
j l)

2 + h(xj)(x
T
j l)

2h2(xi)(x
T
i l)

2}I(Ξ2 > ε)
]

+ ε

≡ ∆9 + ∆10 + ∆11 (A.89)

Note that E{h2(xi)(x
T
i l)

2h2(xj)(x
T
j l)

2 + ΥiΥj} < ∞, I(Ξ2 > ε) ≤ 1, and Ξ2 = oP (1), thus

∆9 → 0. Now we exam ∆10 and ∆11 show that they are also o(1). For ∆10,

∆10 =E{Ψ̂2
1h(xi)‖xi‖2h(xj)‖xj‖2I(Ξ2 > ε)}

=E
{

1

N

N∑
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δ
(1)
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|yk1 − pk1(β̂1)|h(xk1)

n1π
(1)
k1
∧ 1

× 1

N

N∑
k2=1

δ
(1)
k2
|yk2 − pk2(β̂1)|h(xk2)

n1π
(1)
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∧ 1

h(xi)‖xi‖2h(xj)‖xj‖2I(Ξ2 > ε)

}

≤ 1

N2

N∑
k1 6=k2

E
{
δ

(1)
k1
h(xk1)

n1π
(1)
k1
∧ 1

δ
(1)
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h(xk2)

n1π
(1)
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∧ 1

h(xi)‖xi‖2h(xj)‖xj‖2I(Ξ2 > ε)

}
(A.90)

+
1

N2

N∑
k=1

E
{

δ
(1)
k h2(xk)

{n1π1k ∧ 1}2
h(xi)‖xi‖2h(xj)‖xj‖2I(Ξ2 > ε)

}
. (A.91)

Let hk1k2ijxi2j2 = h(xk1)h(xk2)h(xi)‖xi‖2h(xj)‖xj‖2. From (A.77), we have

E
{

δ
(1)
k1

n1π
(1)
k1
∧ 1

δ
(1)
k2

n1π
(1)
k2
∧ 1

hk1k2ijxi2j2I(Ξ2 > ε)

}
≤
(
N

n1

c0 + c1

c0c1

+ 1

)2

E
[
hk1k2ijxi2j2I(Ξ2 > ε)

∣∣∣∣δ(1)
k1

= δ
(1)
k2

= 1

]
P(δ

(1)
k1

= δ
(1)
k2

= 1)

<
(c0 + c1 + c0c1)2(c0 + c1)2

c2
0c

2
1

E
[
hk1k2ijxi2j2I(Ξ2 > ε)

∣∣∣∣δ(1)
k1

= δ
(1)
k2

= 1

]
. (A.92)

Note that although k1 or k2 may equal i or j, k1 6= k2, so we know that E(hk1k2ijxi2j2) <∞
since E{h2(x)‖x‖2} <∞. Thus, the term in (A.92) is o(1) if Ξ2 = oP (1) given δ

(1)
j = 1. This

is true because β̂1 and Ψ̂1 are consistent given δ
(1)
k1

= δ
(1)
k2

= 1, namely, fixing the values of two

observations does not affect the consistency of β̂1 and Ψ̂1. From (A.92), the term in (A.90)

converges to zero. Using a similar approach, it can be shown that if E{h3(x)‖x‖2} < ∞,

then ∆11 = o(1), and the term in (A.91) converges to zero, which implies that ∆10 = o(1).

Thus, (A.88) holds.

Since (A.86), (A.87), (A.88) are satisfied, the central limit theorem in Theorem 2 of Blum

et al. (1958) holds for νNi, which gives that

1√
N

N∑
i=1

νNi → N(0, 1), (A.93)
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in distribution. Note that

1√
N

N∑
i=1

νi =
Ψ̂1√

n{V(τNi)}1/2

N∑
i=1

δ
β̂1
i {nπpi (β̂1) ∨ 1}ψi(βt − β̂1)xT

i l

=
Ψ̂1√

n{V(τNi)}1/2
lTλ̇p(βt) =

Ψ√
n{V(τNi)}1/2

lTλ̇p(βt) + oP (1).

Thus, from Slutsky’s theorem, for any l ∈ Rd,

1√
n
lTλ̇p(βt)→ N(0, lTΛul) (A.94)

in distribution, where

Λu =
V(τNi)

Ψ2(βt)
=

E[φ(βt){ρφ(βt)h(x) ∨ Φ}h(x)xxT]

4Φ2(βt)
≥ E[φ(βt)h(x)xxT]

4Φ(βt)
= Σ−1

βt
, (A.95)

and the equality holds if ρ = 0, i.e., n/N → 0. Based on (A.94), from the Cramér-Wold

theorem, we have that

1√
n
λ̇p(βt)→ N(0,Λu) (A.96)

in distribution.

When the pilot estimates β̂1 and Ψ̂1 are independent of the data, if we can prove the

results in Lemma 7 under the conditional distribution given β̂1 and Ψ̂1, then the result follows

unconditionally. We provide the proof under the conditional distribution in the following.

The proof is similar to the proof of Lemma 5 and thus we provide only the outline. The

difference is we do not conditional on the full data DN here.

Note that, given β̂1 and Ψ̂1, λ̇p(βt) is a sum of N independent random vectors. We now

exam the mean and variance of λ̇p(βt) given β̂1 and Ψ̂1. For the mean,

1√
n
E
{
λ̇p(βt)|β̂1, Ψ̂1

}
= 0. (A.97)

For the variance,

1

n
V
{
λ̇p(βt)|β̂1, Ψ̂1

}
=

E
[
|ψi(β̂1)|{nπpi (β̂1) ∨ 1}ψ2

i (βt − β̂1)h(xi)xix
T
i

∣∣∣β̂1, Ψ̂1

]
Ψ̂1

, (A.98)

which, under Assumptions 1 and 2, converges in probability to Λu.

To check the Lindeberg-Feller condition (Section ∗2.8 of van der Vaart, 1998) under the

condition distribution, we note that for any ε > 0,

1

n

N∑
i=1

E
{∥∥λ̇pi∥∥2

I(
∥∥λ̇pi∥∥ > √nε)∣∣∣β̂1, Ψ̂1

}
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≤
E
[
{h(x)‖x‖2 + Ψ̂1}h(x)I({h(x)/Ψ̂1 + 1}‖x‖ > √nε)

∣∣∣β̂1, Ψ̂1

]
Ψ̂2

1

= oP (1).

Thus, applying the Lindeberg-Feller central limit theorem (Section ∗2.8 of van der Vaart,

1998) finishes the proof.
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