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Abstract

It is undeniable that most developers today are building dis-

tributed applications. However, most of these applications

are developed by composing existing systems together through

unspecified APIs exposed to the application developer. Sys-

tems are not going away: they solve a particular problem

and most applications today need to rely on several of these

systems working in concert. Given this, we propose a re-

search direction where higher-level languages with well de-

fined semantics target underlying systems infrastructure as

a middle-ground.

1 Distributed Programming

Applications today are inherently distributed. Even if you

are requesting a ride through a popular ride sharing service

such Uber or Lyft, your request is being handled by several

microservices running in the data center, with state repli-

cated and stored across several different databases. [4]

These different systems and databases each make differ-

ent guarantees to the application developer and each has

its own semantics. This puts additional burden on the ap-

plication developer; not only does she need to implement

the business logic required to build the application, she also

must ensure that the composition of systems being used is

correct and preserves application invariants. To provide a

concrete example, Uber’s ridematchmaking service involves

three microservices for matching supply to demand, where

data is stored in both durable storage and message queues

for workflow management of the ride.

Systems composition andmanagement of data consistency

across multiple systems is a difficult challenge. Not only

do these systems provide different guarantees through their

APIs (consider the case of composing a system providing

at-least-once event delivery with a system that requires at-

most-once delivery of events), these APIs are largely defined

by their implementation with no formal semantics or other

way to guarantee application correctness. In one example

discovered by Kingsbury [2] and later formalized by Alvaro
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et al. [1], theApacheKafka system, whenmanaged byApache

Zookeeper, can acknowledgewrites as durable and later lose

the writes because of a incorrect interaction between the

two systems. In this example, it is important to highlight

that each of these systems are believed to operate correctly

in isolation, but these guarantees do not extend to the com-

position of these systems.

Historically, there have been two approaches taken to solve

the challenge of distributed programming: greenfield lan-

guage and runtime development, and work on retrofitting

existing systems for distribution, each of which has had lit-

tle widespread success.

In terms of greenfield language development, theArgus [3]

andEmerald [6] systems attempted to provide new languages

and runtime systems for distributed application development.

These systems provided features that aided developers build-

ing distributed applications: namely, serializable transactions,

support for asynchronous programming, and process/object

mobility. However, greenfield language and runtime devel-

opment is difficult from an adoption point-of-view: appli-

cation developers want to work with languages with an es-

tablished community, a proven runtime system and efficient

tooling.

In terms of retrofitting existing languages and systems,

one notable example is CORBA. CORBA attempted to solve

the problem of distributed programming by allowing ob-

jects (in an object oriented programming language) to live

anywhere on a network of machines, each using different

languages and system architectures. CORBAwould take care

of objectmigration, serialization, andmade remote calls trans-

parent to the application developer: they appeared synchro-

nous and local.While successful in aiding programmerswho

desired towrite simple distributed applications, scaling these

applications and dealing with the realities of distributed pro-

gramming: namely, latency, partial failure, and concurrency,

during execution was extremely challenging given that dis-

tribution was transparent to the application developer. [8]

A clear tension exists between these two extremes: lan-

guages and runtime systems that are designed for distribu-

tion will always be ideal, however unrealistic because devel-

opers want to build applications on proven systems, with
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proven languages. Further exacerbating the issue, is the ap-

proach taken by the systems research community, where

systems are developed in isolation to solve a particular prob-

lem; many of these systems have historically been industri-

alized (databases, queueing systems, etc.) and therefore exist

as isolated components in a larger composed system. These

systems typically have no formal semantics, and have been

only empirically validated and not formally verified.

We believe that a promising direction for the program-

ming languages community is to try to solve for the middle-

ground. Is it possible to treat existing systems as a backend

to a general purpose compiler for distributed programming?

We believe so! Our work on Lasp [5], a restricted program-

ming model for distributed programming is a first step to-

wards this direction.

2 Lasp

Lasp is a declarative, functional programmingmodel for large-

scale distributed computing that leverages replicated abstract

data types, called Conflict-Free Replicated Data Types [7], to

ensure value convergence under concurrency using amerge

function for any two copies of replicated state. Lasp is im-

plemented as a library in the Erlang programming language,

allowing interoperability and composition with existing Er-

lang applications.

Given Lasp is built assuming weak consistency, we can

operate the Lasp system on a variety of different underlying

infrastructures.

We highlight some of the properties of Lasp below.

Specialization. There exists several implementations for each

type of CRDT, and the Lasp system has the ability to special-

ize the implementation at both compile time and runtime;

for instance, if your application never needs to remove an

item from a collection, the implementation can be special-

ized to a CRDT set that does not model removals, which is

more efficient in space. Right now, this is a manual process,

but we believe that this should be able to be mechanized

with the use of an effects system.

Data storage. The Lasp system relies on an underlying data

store for storage of the CRDTs: this underlying storage does

not need to provide a particular level of consistency, nor

replication, because the programming model and data repli-

cation layers live above the underlying store. Lasp supports

both built-in Erlang data stores, and has been extended to

use both the Riak distributed data store and the Redis data

store.

Network topologyagnostic. Determining the network topol-

ogy that the system will run on is a runtime parameter: no

application code has to be changed to alter the communi-

cation paths between nodes. In our current version, Lasp

applications can run in either client/server, full mesh, or in

peer-to-peer mode, all specified at runtime. This is config-

urable through an external membership service called by

the runtime, and could easily be integrated with a system

like Apache Zookeeper, if one desired.

Configurable synchronization. Lasp applications arewrit-

ten using shared state. Again, an option that is configurable

at runtime, is how often nodes in the system should prop-

agate their state to other nodes in the system. The system

provides the option to propagate changes immediately to all

nodes in the system, propagate every N changes, or propa-

gate based on a timer interval: these settings do not alter

program behavior, but only alter when changes become vis-

ible to other nodes in the system.

3 Moving Forward

We believe that the success of distributed computing relies

on tighter integration between the underlying infrastruc-

ture and application code. However, themajority of research

today on distributed computing is focused in the database

and systems communities, where the focus is on building

standalone systems for solving individual problems. While

this direction has been incredibly fruitful, application de-

velopers typically need many of these systems working in

concert to solve an actual business requirement. Therefore,

application developers devote a significant amount of ef-

fort to composing systems together using APIs with under-

specified semantics, hoping for the best. We believe that the

programming language community can make a significant

impact here by applying principled techniques to building

restricted programming models for distributed computing

that leverage infrastructure being created by the systems

community.
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