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We show that the orthogonal projection operator onto the range of
the adjoint of a linear operator  can be represented as , where  is anX YX Y
invertible linear operator. Given a Normal random vector  and a linear]

operator , we use this representation to obtain a linear operator  suchX Xs

that  is independent of  and  is an affine function of .X] X] ]  X] X]s s

We then use this decomposition to prove that the conditional distribution
of a Normal random vector  given , where  is a linear] ]g g
transformation, is again a multivariate Normal distribution. This result is
equivalent to the well-known result that given a -dimensional component5
of a -dimensional Normal random vector, where , the conditional8 5  8
distribution of the remaining -dimensional component is a 8  5 8  5 -dimensional multivariate Normal distribution, and sets the stage
for approximating the conditional distribution of  given , where  is] 1 ] 1 
a continuously differentiable vector field.

1. Introduction. What can we ascertain about the conditional distribution of a
multivariate Normal random vector  given , where  is a] − d 1 ] 1 À d È d8 8 7 
measurable function? Clearly, given a particular functional form of , the problem is a1
very specific one, and depending on the functional form, may or may not have a closed
form solution. Our objective is to derive an approximation to the conditional distribution
in question based on some regularity properties of . Specifically, in this paper we find1
the conditional distribution when  is a linear transformation, and in a companion paper1
use that to derive the desired approximation when  is a continuously differentiable (1 G")
vector field by exploiting the local linearity of .1

Before proceeding further, we present a brief review of what is known about the
conditional distribution when  is a linear transformation, to be denoted by  in what1 g
follows. Casella and Berger (2002) define the bivariate Normal distribution by specifying
the joint density in terms of the five parameters of the distribution - the means  and ,. ." #

the variances  and , and the correlation  [Definition 4.5.10]. They calculate the5 5 3" #
# #

marginal density of  and note that (using the joint and marginal densities) it is easy to]"

verify that the conditional distribution of  given  is Normal with] ] œ C# " "

mean  and variance .œ  C  œ " . 3 . 5 3
5

5
# " "

#

"
#
# #   

Anderson (1984, Section 2.5.1) and Flury (1997, Theorem 3.3.1) generalize this result to
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the multivariate Normal distribution. While Anderson (1984) deals with the Lebesgue
density of the multivariate Normal distribution (which exists only when the covariance
matrix is of full rank), Flury (1997) avoids dealing with the density by defining the
multivariate Normal distribution in terms of linear functionals, but requires the
covariance matrix of the conditioning component to be of full rank.

Though their approaches to defining the multivariate Normal distribution differ, both
Muirhead (1982, Theorem 1.2.11) and Eaton (1983, Proposition 3.13) obtain, as
described below, the conditional distribution without any restriction on the rank of the
covariance matrix. Let ]8‚" have the multivariate Normal distribution with mean vector
. D . D8‚" 8‚8 and covariance matrix . Partition , , and  as]

] œ ß œ ß œ
]

]
     " "

# #

"" "#

#" ##
. D

.

.

D D
D D

where  and  are  and  is . Then  and  are jointly] 5 ‚ " 5 ‚ 5 ]  ] ]" " "" # #" " """. D D D–

Normal and uncorrelated, hence independent, where  is a generalized inverse of .D D"" ""
–

Consequently, the conditional distribution of  given  equals the]  ] ]# #" " """D D–

unconditional distribution of , which is multivariate Normal in ]  ] 8  5# #" """D D–  
dimensions with mean  and covariance . Thus, the. D D . D D D D# #" " ## #" "#"" "" – –  
conditional distribution of  given  is multivariate Normal in  dimensions with] ] 8  5# "  
mean  and covariance .. D D . D D D D# #" " " ## #" "#"" "" ]  – – 
Given two topological vector spaces  and , let  denote the linear space ofZ [ Z ß[_ 
continuous linear transformations from  to , and let . Now noteZ [ Z ß Z œ Z_ _   
that, if , the joint distribution of  is multivariateg _ g− d ßd ] ß ] − d   8 7 78w

Normal with

mean  and covarianceœ œ
E E E E

E   . D D
. D D

w

w

[ , where the  matrix  represents theMuirhead (1982, Theorem 1.2.6)] 7‚ 8 E
transformation  with respect to the standard orthonormal bases of  and . By theg d d8 7

results of Muirhead (1982) and Eaton (1983) cited in the previous paragraph, we obtain
that the conditional distribution of  given  is multivariate Normal in  with mean] ] dg 8

. D D . D D D D E E E E ]   E E E Ew w w w     – – and covariance .

Unfortunately, this derivation of the conditional distribution of  given , because of] ]g
its dependence on manipulative matrix algebra, is not of much help when it comes to
approximating the conditional distribution of  given  for a  in  by exploiting] 1 ] 1 G  "

the local linearity of . In what follows, we present an alternative derivation of the1
conditional distribution of  given . Given , we find in Theorem 3] ] X − dg _ 8
X − d X ] X]s s_ 8 , depending on  and the covariance of , such that  is independent of
X] ]  X] X] − d ßds and  is an affine function of . In Theorem 4, given , weg _ 8 7

find  such that the conditional distribution of  given  equals that givenX − d ] X]_ 8
g ] , and use the decomposition obtained in Theorem 3 to obtain the conditional
distribution of  . ] given , hence that given X] ]g Our derivation facilitates the



approximation of the conditional distribution when the transformation  is nonlinear but1
continuously differentiable; see Remark 4 for a brief outline.

We define a multivariate Normal distribution in terms of an affine transformation of the
random vector with coordinates independent and identically distributed (iid, hereinafter)
standard Normals, as in Muirhead (1982), but work with the covariance operator (instead
of matrix) and characteristic function. This coordinate-free approach allows us to
seamlessly subsume the possibility that the multivariate Normal distribution is supported
on a proper subspace of  which is not spanned by a subset of the standard orthonormald8

basis . In the spirit of Axler (2015), references to which in the sequel are by / ßâß /" 8

omission only, this relegates the manipulative matrix algebra that so dominates the
multivariate Normal literature to the back burner.

The paper is organized as follows. In Section 2, we introduce all the notations,
definitions, and results from linear algebra used in Section 3. The main result of this
section is Theorem 1, where we show, using the Spectral Theorem, that the orthogonal
projection operator onto the range of the adjoint of a linear operator  is , where  isX YX Y
an invertible linear operator. Theorem 1 is used in our proof of Theorem 3.

In section 3, we first summarize the basic facts about the multivariate Normal distribution
in our coordinate-free setup.  2 shows that if  is -valued multivariateTheorem ] d8

Normal, then  is -valued multivariate Normal, where    f g f _] ß ] d ‚ d − d ßd7 : 8 7

and . Corollary 1, which is used in our proof of Theorem 3, theng _− d ßd 8 :

formulates a necessary and sufficient condition in terms of the operators , , and  forH f g
the independence of  and , where  is the covariance of .f g] ] H ]

Note that, since a component of a vector is a linear transformation of the vector and a
linear transformation of a multivariate Normal random variable is another multivariate
Normal random variable [Lemma 5], Theorem 4 allows us to deduce Theorem 1.2.11(b)
of Muirhead (1982)  (and Proposition 3.13 of Eaton (1983)) as an immediate corollary.

We also present alternative derivations of the independence of the sample mean and the
sample variance of a random sample from a Normal distribution [Remark 1], the "partial
out" formula  and thefor population regression in the Normal model [Corollary 2],
sufficiency of the sample mean in the Normal location model [Remark 3]. We simplify
the expressions for the conditional mean and covariance obtained in Theorem 4 in
Remark 2, leading to a direct verification of the iterated expectation and the analysis of
variance formulae. We outline a direction in which our method can possibly be extended
in Remark 5.

The Appendix contains two technical lemmas that are used in the proofs of Theorem 4
and Corollary 2.

The following notational conventions and their consequences are used throughout the rest
of the paper. The equality of two random variables, unless otherwise mentioned, implies
equality almost surely. For any Polish space , let  denote the Borel -algebra of .Ë U Ë 5 Ë 



Let  be a map from an arbitrary set  into a measurable space . For an arbitrary2 ßÌ Í m 
subset  of , let  denote , whereas for an arbitrary subset F 2 F C − À 2 C − F EÍ Ì"    
of , let  denote . Note that  for every subset  ofÌ 2 E 2 C À C − E 2 2 E œ E E        "

Ì 5 5 Ì. Let  denote the smallest -algebra of subsets of  that makes 2   measurable.2
Since    2 F À F −" m 5 Ì is a -algebra of subsets of  [Dudley (1989, page 98)], we
obtain . 5 m    2 œ 2 F À F −"

2. The results from Linear Algebra.  Let  be finite-dimensional vector spaces. ForZ ß[
any , let  denote the range of  and  denote the nullf _ e f f a f− [ßZ © Z © [     
space of .f

The result of Lemma 1 is used in the proof of Theorem 1. It is mentioned in Exercise
3.D.3; we present a proof for the sake of completeness.

Lemma 1. Let  be a finite-dimensional vector space,  a subspace of , andZ [ Z
h _ _ h− [ßZ Y − Z YA œ A   . There exists an invertible operator  such that  for
every  if and only if  is injective.A − [ h

Proof of Lemma 1. Let  be invertible such that  for every .Y − Z YA œ A A − [_  h
Let  be such that , implying . Since  is invertible, henceA − [ A œ ! YA œ ! Yh
injective by Theorem 3.69, we conclude that , showing that  is injective.A œ ! h

To show the converse, let  be a direct sum complement of  and  a direct sumU [ \
complement of  , where the existence of  and  are guaranteed by Theorem 2.34.e h U \
Let  be a basis for  and  a basis for . By the fundamental   ; ßâß ; U B ßâB \" 5 " 7

theorem of linear maps [Theorem 3.22], , implying, by Theoremdim dime h Ÿ [
2.43, . Recall that every  can be uniquely decomposed as , where5 Ÿ 7 @ − Z A  ;
A − [ ; − U Y − Z and . Define  as_ 

Y@ œ A B B œ - B − \ ; œ - ;h , where  and . 
4œ" 4œ"

5 5

4 4 4 4

Since  is a direct sum complement of  ,  implies . Since  is\ Y@ œ ! A œ B œ !e h h h
injective and  is linearly independent,  is injective, hence invertible (again B ßâB Y" 5

by Theorem 3.69). 

In the sequel we assume that  and  are real inner product spaces. For ,[ Z − Z ß[g _ 
let  denote the adjoint of  [Definition 7.2]. For any subspace  of , letg _ g‡ − [ ß Z U Z 
U U − Z¼

U denote the orthogonal complement of  [Definition 6.45] and  denote theC _ 
orthogonal projection operator onto  [Definition 6.53].U

Theorem 1. Given , there exists , invertible and depending on ,X − Z Y − Z X_ _   
such that .Ce X‡ œ YX



Proof of Theorem 1. We first observe that  is a positive operator [Definition 7.31].X X‡

By Theorems 7.6(e) and 7.6(c),  is self-adjoint; the observation follows, since, by theX X‡

definition of the adjoint operator, for every ,@ − Z

     X X@ß @ œ X@   !‡ #
. 1

By the Real Spectral Theorem [Theorem 7.29(b)],  has an orthonormal basisZ 0 ßâß 0 X X" 8
‡ consisting of eigenvectors of  with corresponding eigenvalues     - - - -" 8 4 4 4

#
ßâß   ! " Ÿ 4 Ÿ 8 œ X0. By Theorem 7.35(b),  for all . Since, by 1 , ,

we obtain

-

-
4 4

4 4

œ ! Í X0 œ !

 ! Í X0 Á !.
2 

If  for every , then  is the zero operator, implying, by 1 , that  is-4
‡œ ! 4 œ "ßâß 8 X X X 

the zero operator. By Theorem 7.7,  is the zero operator as well, and the theoremX‡

trivially holds with . Hence,  is non-empty withoutY œ M œ 4 À " Ÿ 4 Ÿ 8ß  !Ã - 4

loss of generality; let .Ã --
4œ 4 À " Ÿ 4 Ÿ 8ß œ ! 

For , since , we have , equivalently,4 − X œ 0 0 − XÃ e‡ ‡X0
4 4   4

4-

Ce X 4 4‡ 0 œ 0 . 3 
For ,  by 2 ; since  [Theorem 7.7(c)],4 − 0 − X X œ XÃ a a e- ‡

4
¼        

Ce X 4‡ 0 œ !. 4 
By 3  and 4 , for any ,    B − Z

Ce

Ã

 X

4−

4 4‡ B œ ØBß 0 Ù0  . 5

By 2  and the definition of , for any ,  Ã- B − Z

XB œ ØBß 0 ÙX0  
4−

4 4

Ã

. 6

By definition of  and , , the list of vectors  in  is0 " Ÿ 4 Ÿ 8 X0 X0 À 4 − Z4 4 4 4- Ã  
orthonormal, and consequently, by Theorem 6.26, linearly independent; the same
conclusion holds for the list . For span ,      0 À 4 − [ œ X0 À 4 − − [ ß Z4 4Ã Ã h _
defined by  is clearly injective. By Lemma 1 there exists an invertible operatorhX0 œ 04 4

Y − Z_  such that

YA œ A A − [h  for every . 7 
Now note that, for any , by 6 , 7 , the definition of , and 5 , in that order,B − Z      h



YXB œ ØBß 0 ÙYX0 œ ØBß 0 Ù X0 œ ØBß 0 Ù0 œ B  
4− 4− 4−

4 4 4 4 4 4 X

Ã Ã Ã

eh C  ‡ ,

completing the proof. 

Lemma 2. Given  positive, there exists  positive such thatH − Z H − Z_ _   "Î#

H H œ H H"Î# "Î# "Î# "Î# œ Ce H  8

and

HH œ H œ H H"Î# "Î# "Î# ,  9

where H H"Î# denotes the unique positive square root of .

Proof of Lemma 2. By Theorem 7.36,  exists and is defined byH"Î#

H 0 œ 0"Î#
4 44

"Î#
- , 10 

where  is an orthonormal basis of  consisting of eigenvectors of  with 0 ß 0 ßâß 0 Z H" # 8

corresponding eigenvalues , and  and  are as in the proof of Theorem - - - Ã Ã" # 8
-ß ßâß

1. Let  be defined byH − Z"Î# _ 
H 0 œ

0 4 −

! 4 −
"Î#

4
4
"Î#

4
-  - Ã

Ã

if 
if .

11

Clearly, , showing that  is self-   H Bß C œ ØBß 0 ÙØCß 0 Ù œ BßH C H"Î# "Î# "Î#

4−
4
"Î#

4 4
Ã

-

adjoint and implying , that is, . H Bß B   !"Î# H − Z"Î# _  is positive

For any , by 10  and 11 ,C − Z    
H H C œ ØCß 0 Ù0 œ H H C"Î# "Î# "Î# "Î#

4−

4 4  
Ã

. 12

Since  is self-adjoint, by Theorem 7.7(d),H

e a      H œ H ¼. 13

Since  is contained in  and  in , it follows that       0 À 4 − H 0 À 4 − H4 4
-Ã a Ã e         0 À 4 − H4 Ã e is a basis of , and 8  follows from 12 . Note that 9  follows from

the observation that both  and  equal .HH C H HC ØCß 0 Ù 0 œ H C"Î# "Î# "Î#

4−
4 44

"Î#
Ã

- 

3. The multivariate Normal distribution results. Let  be iid standard Normal^ ßâß^" 8

random variables. The distribution of



^ œ / ^  
5œ"

8

5 5 14

is defined to be the standard multivariate Normal distribution , where Á _8
8   !ß M M − d

is the identity operator.

Lemma 3. The characteristic function  of the  distribution is given byG Á!ßM 8 !ß M

G!ßM
#       > œ I 3Ø>ß ^Ù œ  > Î#exp exp .

Proof of Lemma 3. Follows from Proposition 9.4.2(a) of Dudley (1989). 

Lemma 4. Given , , and , let^ µ !ß M − d X − dÁ . _8
8 8   

] œ  X^. . 15 
Then, for any ,=ß > − d8

I 3Ø>ß ] Ù œ 3Ø>ß Ù  >ß XX >
"

#

I Ø>ß ] Ù œ Ø>ß Ù

Ø>ß ] Ùß Ø=ß ] Ù œ >ß XX =

     
    
exp exp .

.

‡

‡Cov .

Proof of Lemma 4. Straightforward algebra using the bilinearity of the inner product and
the definitions of ,  in 14 , and  in 15 , along with the fact that  are iidX ^ ] ^ ßâß^‡

" 8   
standard Normal random variables, proves the lemma. 

Definition 1. The distribution of  in 15  is defined to be the multivariate Normal]  
distribution with mean  and covariance . Recall that a distribution on  is. XX d‡ 8

uniquely determined by its characteristic function  since[Dudley (1989, Theorem 9.5.1)];
the characteristic function of  is determined by its mean  and covariance , the] XX. ‡

multivariate Normal distribution  with mean  and covariance  (where  isÁ . .8 ß H H H
any positive operator on ) is uniquely defined in terms of the characteristic functiond8

G ..ßH    > œ 3Ø>ß Ù  Ø>ßH>Ù
"

#
exp . 16

Lemma 5. Given  and ,] µ ßH − d ßdÁ . f _8
8 7   

f Á f. f f] µ ß H7
‡ .

Proof of Lemma 5. The proof is a straightforward consequence of Definition 1. 

Given , the inner product on  is given by   = ß > ß = ß > − d ‚ d œ d d ‚ d" " # #
7 : 7: 7 :

    = ß > ß = ß > œ Ø= ß = Ù  Ø> ß > Ù" " # # " # " # .

Theorem 2. Given , , and , the random] µ ßH − d ßd − d ßdÁ . f _ g _8
8 7 8 :     



vector  with mean  and covariance operator   f g Á f. g .] ß ] µ œ ß − d ‚ d7:
7 :

^ _− d ‚ d 7 :  given by

 .^ f f f g g f g g   =ß > œ H =  H >ß H =  H >‡ ‡ ‡ ‡

Proof of Theorem 2. We first verify that  is a positive operator.^ À d ‚ d È d ‚d7 : 7 :

The verification of ^ _− d ‚ d 7 :  being linear and self-adjoint is routine. Since

       
     
f f f g g f g g

f g f g

H =ß =  H >ß =  H =ß >  H >ß >

œ H =  # H >ßH =  H >

‡ ‡ ‡ ‡

"Î# ‡ "Î# ‡ "Î# ‡ "Î# ‡# #
,

the  for every  follows. By thenon-negativity of       ^ =ß > ß =ß > =ß > − d ‚ d7 :

definition of the inner product in  and 16 , the characteristic function  of thed ‚ d7 :   G
random vector  taking values in  is given by f g] ß ] d ‚ d7 :

G f g . f g f g         =ß > œ 3 =  >ß  =  >ßH =  >
"

#
exp ‡ ‡ ‡ ‡ ‡ ‡ . 17

Since  and      f g . f. g .‡ ‡=  >ß œ =ß > ß ß

           
f g f g

f f f g g f g g

f f f g g f g g

‡ ‡ ‡ ‡

‡ ‡ ‡ ‡

‡ ‡ ‡ ‡

=  >ßH =  >

œ =ß H =  H >  >ß H =  H >

œ =ß > ß H =  H >ß H =  H > ,

18

the proof follows. 

Corollary 1. Given , , and , and ] µ ßH − d ßd − d ßd ] ]Á . f _ g _ f g8
8 7 8 :     

are independent if and only if , equivalently , isf g _ g f _H − d ßd H − d ßd‡ : 7 ‡ 7 :   
the zero operator.

Proof of Corollary 1. From 17 , 
G f. g . f g f g             =ß > œ 3 =ß 3 >ß  =  >ßH =  >

"

#
exp exp exp ‡ ‡ ‡ ‡ .

Now by 18 , 
        f g f g f f f g g g‡ ‡ ‡ ‡ ‡ ‡ ‡=  >ßH =  > œ =ß H =  # =ß H >  >ß H > .

Thus, by 16  and Lemma 5, 
G f g f g               =ß > œ I 3 =ß ] I 3 >ß ]  =ß H >exp exp exp ‡ .

That is, the characteristic function of  is the product of two factors; one factor f g] ß ]
is the characteristic function of the product measure of the distributions induced by f]
on  and  on , whereas the other factor is .U g U f g      d ] d  =ß H >7 : ‡exp
Therefore, and  are independent if and only if for everyf g f g] ]  =ß H > œ "exp  ‡



= − d > − d =ß H > œ ! = >7 : ‡ and , equivalently,  for every  and . Since f g

g f f gH œ H‡ ‡ ‡   by Theorems 7.6(e) and 7.6(c), the proof follows. 

Remark 1. For  iid Normal random variables with mean  and variance ,\ ßâß\" 8
#) 5

\ œ \ W œ \ \
" "

8 8  "
– – and   

3œ" 3œ"

8 8

3 3
# #

are independent [ Theorem 5.3.1(a) ]. Most textbooks proveCasella and Berger (2002, )
this result by working with the (joint) density of the sample and using the Jacobian
formula for finding the density of the transformation that maps the sample to the sample
mean and the sample variance. Some textbooks use Basu's (1955) Theorem on an
ancillary statistic (the sample variance) being independent of a complete sufficient
statistic (the sample mean) to prove this result. We are going to show that this result is a
straightforward consequence of Corollary 1.

Let  be the sum of the standard orthonormal basis vectors, and  the span of . N N N  Since

C N
#

B œ N ØBß N ÙN  ,

we have

\ œ N W œ N  "
–       # ##

"

C C   N N
#

\ß N M  \   and ,

where . By Corollary 1, using the fact that an orthogonal\ œ \ / µ N ß M  
5œ"

8

5 5 8
#Á ) 5

projection operator is self-adjoint, we obtain  and  are independent ifC C   N N] M  ] 
and only if  is the zero operator, where . Clearly,   M  H ] µ ßHC C Á .   N N 8   M  H B œ ! B − d M  HN œ !C C C     N N N

8 for all  if and only if , equivalently,
N H N M is an eigenvector of . Since  is an eigenvector of , the  independence of  and–

5# \
W \ M  \#

N N follows from that of  and .C C    
The class of positive operators with  as an eigenvector does not reduce to the singletonN
set . For , define  by ; clearly,       M 8 œ # H − d H ? ß ? œ #?  ? ß ?  #?_ #

" # " # " #

N œ "ß " H  is an eigenvector for . Thus, for the sample mean and the sample variance to
be independent, it is not necessary for the sample to be iid. As long as the joint
distribution of the sample is multivariate Normal such that  is an eigenvector of theN
covariance, the independence of the sample mean and the sample variance holds.
However, for Normal random variables that are dependent, whether the joint distribution
is multivariate Normal becomes a modeling question, as the joint distribution of even
pairwise uncorrelated Normal random variables may not be multivariate Normal. //

Theorem 3. Given  and , define] µ ßH X − dÁ . _8
8   

W œ XH"Î#;  19



then

H H ] X]"Î# "Î#
WCa    is independent of  20

and

] H H ] X]"Î# "Î#
WCa    is an affine function of .  21

Proof of Theorem 3. For any  and , we obtain from 9 ,B − d J − d8 8_   
XH H H B œ XHH H B œ XH H B "Î# "Î# "Î# "Î# "Î# "Î#

J J J
‡

C C Ca a a      ,

implying, by 19 , that  is the zero operator, whence 20    XH H H"Î# "Î#
W

‡
Ca  

follows from Corollary 1.

To prove 21  we first observe that, by 13  and 8  in that order,     
] œ ]  ] œ H H ]  ] ÞC C Ce a a     H H H

"Î# "Î#  22

Now we are going to show that

C C .a a   H H] œ , 23 
implying, by 22 , that 

] œ H H ] "Î# "Î#
HC .a   . 24 

Let , , , and  be as in the proof of Lemma 2. Recall that  is an0 0 À 4 −4 4 4
- -- Ã Ã Ã 

orthonormal basis for  and  is an orthonormal basis for . Fora Ã e     H 0 À 4 − H4

4 − ? − dÃ-  and , by 16 , 
I 3? ] ß 0 œ 3 ?0 ß  ?0 ßH?0 œ 3? ß 0

"

#
         exp exp exp4 4 4 4 4   . . ,

implying  for all , that is, 23 .   ] ß 0 œ ß 0 4 −4 4
- . Ã

By Theorems 6.47 and 7.7(c),

M œ C Ce a   W W‡ , 25 
implying, by 24 , 

] H H ] œ H H ] "Î# "Î# "Î# "Î#
W W HC C C .a e a     ‡ . 26 

By Theorem 1, there exists , invertible, such thatY − d_ 8
Ce W‡ œ YW; 27 

applying 27 , 19 , and 24  in that order, we obtain that RHS 26  equals       



H YWH ]  œ H YX]  M H YX"Î# "Î# "Î# "Î#
H HC . C .a a     ,

thereby establishing 21 .  

Theorem 4. Given  and , , the conditional distribution of ] µ ßH − d d ]Á . g _8
8 7   

given  is multivariate Normal on .g U] d 8
Proof of Theorem 4. The idea is to first construct  such that X − d ] œ X]_ 5 g 5     8

and then use Theorem 3 to find the conditional distribution of  given .] X]

Let Ç e− _ g Ç g Ç d B œ B B − d8 8,  be defined by  for every . Clearly,  is 
surjective, hence injective and invertible [Theorem 3.69]. By Theorem 7.7,
Ç _ g‡ 8− d e _ Ç Ç   ,  be defined by ; note is invertible as well. Let X − d XB œ B8 ‡

that , being the composition of two invertible transformations, is invertible.X

Let  denote the probability space underlying . Since  is continuous, hence H Y gß ß T ]

measurable,  forg H Y g Y] À ß È d ß d ] I −       7 7 "U   is measurable, implying 
every Note that, . Further, I − d ] I œ ] I ∩U e e     7 " ". , by       g Ç g g
virtue of being closed, is an element of , and  is the trace of  onU U e U      d d7 7g
e U e e U          g g g; that is, , implying œ I ∩ À I − d ] œ ]7 5 g 5 Ç   .
Since  and  are injective (and measurable), by Lemma A.1, ;Ç 5 Ç U 5X œ d œ X     8

that is, . Since, for any          Ç U U" 8 " 8K À K − œ d œ X J À J − dU e  g
K − J − dU e  g  and ,U 8

              Ç Ç] K œ ] K X] J œ ] X J" "" " " " and ,

we obtain

5 Ç Ç U 5                ] œ ] K À K − œ X] J À J − d œ X]" " 8U e  g .

That completes the proof that .5 g 5   ] œ X]

By the pull-out property of conditional expectation, 20 , and 21 ,   
I 3 >ß ] X]

3 >ßH H ]

    
    

exp

expœ 3 >ß ]  H H ] Iexp   "Î# "Î#
WCa   "Î# "Î#

WCa   ,

where  is as in 19 . By Lemma 5 and 16 ,W    
I œ  exp exp       3 >ßH H ] 3 >ßH H  >ßK>

"

#
"Î# "Î# "Î# "Î#

W WC C .a a    ,

where the operator , K œ H H HH H"Î# "Î# "Î# "Î#
W WC Ca a     equals by 9  and 8 ,   

H H ] X]"Î# "Î#
W H WC C Ca e a      . Therefore, the conditional distribution of  given ,

hence that given , is Normal with mean g 8] ] œ  ] H H ] "Î# "Î#
WC .a     and

covariance .K 



Remark 2. The expressions for the mean  and the covariance  of 8 K the conditional
distribution of  given  can be considerably simplified, rendering the verification of] ]g
the iterated expectation formula and the analysis of variance formula immediate.

Since 25  and 8  in that order,]  œ ] . C .e H     by 23 , applying    
8 . C .     ] œ H H ] "Î# "Î#

We ‡ . 28

To simplify the expression of the covariance operator  (which does not depend on ),K ]
first note that, by ,   8  and 9

H œ H H H œ HH œ H"Î# "Î# "Î# "Î# "Î# "Î#
HCe  .  29

By 27 , 19 , and 29 , in that order,     
C C C Ce e e e       W H H W

"Î# "Î#
‡ ‡œ YXH œ YXH œ .  30

Consequently,  equalsK

H H H H

H H H H

H H H H

"Î# "Î# "Î# "Î#

"Î# "Î# "Î# "Î#

"Î# "Î# "Î# "

C C C C C

C C C C

C C C

e a e e a

a e e a

a e a

         
       
     

H W W H W

W W H W

W W W

‡

‡

‡

by 25

by 

 
œ

œ

 29
Î#

"Î# "Î#

by 30 
œ H HCa  W by 25 .

31

 
 

Recall that if  and  are random vectors in  such that  is an affine function of ,Z [ d Z [8

i.e., , where  and , thenZ œ +  V[ + − d V − d8 8_ 
I Z œ +  V I [ Z œ V [ V          and Cov Cov ,‡

implying , verifying the iterated expectation formula.I I ] X] œ   .

Defining the expected value of an operator-valued random element  as the operatorE
I I = œ I = = − d       E E E such that for every , provided the expected value on8

the right hand side is well defined for every , we conclude from 31  that=  
I ] X] œ H H  Cov ."Î# "Î#

WCa  
By 28  and   Lemma 5,

Cov ,  I ] X] œ H H HH H œ H H"Î# "Î# "Î# "Î# "Î# "Î#
W W WC C Ce e e     ‡ ‡ ‡

where the second equality follows by 9 , 8 , and 30 . The analysis of variance     
formula, Cov Cov Cov , is verified by 25 . //I ] X]  I ] X] œ ]           
An immediate corollary of Theorem 4 is the "partial out" formula for population
regression in the Normal model.



Corollary 2. If  is multivariate Normal such that ,   \ß] ß ^ ^ œ ^ âß^ − d" 8#
8#

and , then\ß] − d

I ] l\ß^  I ] l^ œ \l^  ! \ I \l^
\ß ] l^

\l^
              Cov

Var
Var . 32

Proof of Corollary 2. Let  and  be defined byc _ c _"ß$ $
8 8" 8 8#− d ßd − d ßd   

c c"ß$ $A œ Bß D A œ D A œ Bß Cß D      and , where . By 28 ,

LHS 32 33   œ H  H [  ß /"Î# "Î#
W W #    C C .e e   
"ß$
‡

$
‡ ,

where ,  is the mean of  and  is the covariance of[ œ \ß] ß ^ − d [ H − d   . _8 8

[ W œ T H T − d T A œ Bß !ß D W œ T H,  with  defined by , and "ß$ "ß$ "ß$ "ß$ $ $
"Î# 8 "Î#_   

with  defined by .T − d T A œ !ß !ß D$ $
8_   

To show RHS 32 RHS 33 , we first observe, using 31  and 28 ,       œ

Cov

Var 34

   
     
   

 
\ß] l^ œ H H / ß /

\l^ œ H H / ß / œ H /

\ I \l^ œ M 

"Î# "Î#
W " #

"Î# "Î# "Î#
W W" " "

#

C

C C

a

a a

 
   

$

$ $

H H [  ß /"Î# "Î#
W "C .e $‡   .

Since  if , ,  if , and  if ,T / œ / 4 Á # T / œ ! T / œ / 4   $ T / œ ! 4 œ "ß #"ß$ 4 4 "ß$ # $ 4 4 $ 4

a

a

    
    
W œ H / ßH / ßâßH /

W œ H / ßâßH /

"ß$ " $ 8
"Î# "Î# "Î# ¼

$ $ 8
"Î# "Î# ¼

span

span .

If span , then RHS 33 , in which caseH / − H / ßâßH / œ œ !"Î# "Î# "Î#
" $ 8   e W$

‡

Var , a constant function of , is also equal to , thereby vacuously satisfying 32 .   \l^ ^ !

If span , by Lemma A.2,H / Â H / ßâßH /"Î# "Î# "Î#
" $ 8 

   
 

C C .

.

e e   W W
"Î#

"ß$
‡

$
‡ H [ 

[ œ H / H ß H / H /   C C C Ca a a a       W W W W
"Î# "Î# "Î# "Î#

" " "

#

$ $ $ $
.

Therefore, RHS  33  equals

 
   C C

C
C

a a

a

a
   

 
 W W

"Î# "Î#
"

W
"Î#

"

#
"Î# "Î#

W " #
$ $

$

$

H ß H /

H /
H H / ß /

 [  .
,

which, by the first two rows in 34 , equals, since  is self-adjoint and idempotent,  Ca  W$



Cov
Var

.
    \ß] l^

\l^
H H ß /"Î# "Î#

W "Ca  $  [  .

Since   H H œ H H "Î# "Î# "Î# "Î#
W HCa  W$

M  C Ce a   $
‡  by 25 , 8 , the     and 13 , 

proof follows by the 23third row in 34  and .    

Remark 3. Given a random sample \ ßâß\" 8 from the Normal distribution with mean
) 5 ) and (known) variance ,  is a sufficient statistic for  [Example 6.2.4, –# \ Casella and
Berger (2002)]. While the typical proof uses the powerful factorization theorem
[Theorem 6.2.6, Casella and Berger (2002)], we are going to show that the conditional

distribution of the sample given \ œ \ / µ N ß M  
5œ"

8

5 5 8
#Á ) 5  \ 8 \

–, that is, ,"
NC 

does not depend on , thereby proving the sufficiency of  directly. The said conditional–
) \

distribution, by Theorem 2, 28 , and 31 , is multivariate Normal with mean   
) C ) C 5N H H \  N H H H œ M"Î# "Î# "Î# "Î# #

W We a   ‡   and covariance , where  and
W œ 8 H W œ 8 œ" "Î# ‡ "

N N W NC 5 C C C       , implying  and consequently, , furthere ‡

implying that the mean equals  and the covariance equals . //C 5 C   N N
#\ M  

Remark 4. In a companion paper we are currently working on, we use the local linearity
of a  ( and the decomposition of  inG d d" 8 7 vector field on  that takes values in ) 1 ]
Theorem 3 to approximate the conditional distribution of  given . If  is constant,] 1 ] 1 
then the -algebra generated by  is the trivial -algebra consisting of the empty set5 51 ] 
and the entire sample space, making  independent of , so that the conditional] 1 ] 
distribution of  given  is the unconditional distribution of . I] ]1 ] 1 1   f  is injective, 5
equals  by Lemma A.1; consequently, the conditional distribution of  given U   d ] 1 ]8

is the point mass at .]

Thus, the interesting problem unfolds when  is a non-constant, non-injective,  vector1 G"

field. The conditional distribution of  given  will not be  multivariate Normal if ] 1 ] 1 
is not linear. Let  be defined to be the continuous function that  _À d È d ßd8 8 7 
maps  to the total derivative of  at . Given , there exists a compact subset+ − d 1 +  !8 %
O d T ] − O  "  O% % % of  such that . The function , restricted to , is uniformly8   %  
continuous, and admits a uniformly continuous modulus of continuity . We are working'%
to show that, for a suitably chosen metric for weak convergence of probability measures
and  (that depends on the given  through the supremum of the modulus of$ % !
continuity  on the closed interval , where  is the diameter of ), the'% % % % !ßF F O
conditional distribution of  given is within -neighborhood of the family of] 1 ]  $
multivariate Normal distributions. //

Remark 5. Proposition 3.13 of Eaton (1983) holds at a much greater level of generality;
see Bogachev (1998, Theorem 3.10.1). Extending our approach, in the absence of an
inner product, to finding the conditional distribution of a Gaussian random element given
a (non-injective, non-trivial) linear transformation appears to be an interesting area of
future research. In particular, if  is the Brownian motion, i.e., the random element in]



V / /  !ß " ßâß distributed according to the Wiener measure,  are measures on" 5

U g V g / /          !ß " À !ß " È d 0 œ 0. ßâß 0., and  is given by  , what is the5
" 5

conditional distribution of  given ? //] ]g

Appendix. We present a lemma on measurability [Lemma A.1] that was used in the
proof of Theorem 4 and another lemma on orthogonal projection operators in a Hilbert
space [Lemma A.2] that was used in the proof of Corollary 2.

Lemma A.1 Let  and  be Ë Ì Polish spaces. If  is Borel measurable and2 À ÈË Ì
injective, then .5 U Ë   2 œ

Proof of Lemma A.1. The inclusion 5 U Ë   2 ©  follows from the pertinent definitions.
For , define . Since  and  by Q − F œ 2 Q 2 F œ Q F −U Ë U Ì       " Theorem I.3.9
of Parthasarathy (1967), the reverse inclusion follows. 

Lemma A.2 For a proper and closed subspace  of a Hilbert space  and , letZ L B − L Z
Z @  -B À @ − Z ß - − d C − LB denote the closure of the subspace . Then, for any , 

C CZ ZB
¼ ¼ ¼ ¼C  C œ    C C C CZ Z Z Z

#
B Cß B BÞ  35

Proof of Lemma A.2. By the definition of  there exists a sequence Z @ À 8   " § ZB 8 
and a sequence  such that - À 8   " § d8

CZ 8 8
8Ä∞B

C œ @  - Blim  .  36

Since , since  is continuous, by 36 ,Z § ZB C C C CZ Z Z ZC œ C
B

;  
C CZ 8 8 Z

8Ä∞
C œ @  - Blim  .  37

Since , subtracting 37  from 36 ,B  BCZ B œ CZ ¼    
LHS 35 38   œ - B lim

8Ä∞
8 ZC ¼ .

Since LHS 35 , taking the inner product of both sides of 38  with   œ C  CC CZ Z¼  B ¼

CZ ¼B and using the linearity and homogeneity of inner product, we obtain

  C C C C CZ Z Z ZZ

#
¼ ¼ ¼ ¼Cß B  Cß B œ B      B ¼ lim

8Ä∞
8- . 39

Since  and , , implying ; sinceB − Z B − Z Cß B œ !B BZ ZZCZ BB − Z § Z C C C¼ ¼  B ¼ 
B Â Z B Á !, that is, , the lemma follows from 39  and 38 .CZ

#
¼      
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