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Abstract

The increased capabilities of generative AI have dramatically expanded

its possible use cases in medicine. We provide a comprehensive overview

of generative AI use cases for clinicians, patients, clinical trial organiz-

ers, researchers, and trainees. We then discuss the many challenges

– including maintaining privacy and security, improving transparency

and interpretability, upholding equity, and rigorously evaluating mod-

els – which must be overcome to realize this potential, and the open

research directions they give rise to.
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1. Introduction

Excitement about the promise of generative AI in medicine has inspired an explosion of new

applications. Generative models have the potential to change how care is delivered (1–5), the

roles and responsibilities of care providers (6, 7), and the communication pathways between

patients and providers (8, 9). Further upstream, generative models have shown promise in

improving scientific discovery in medicine (through both clinical trials (10, 11) and obser-

vational research (12, 13)) and facilitating medical education (8, 14). These developments

are a direct result of technical advances in generative AI, which have drastically increased

the ability to generate realistic language and images, and raise important questions about

how to integrate generative models into medicine.

Generative AI is the latest in a series of technical advances that have driven major shifts

in medicine. Past significant advances include the adoption of electronic health records

(EHRs); the integration of robotics into telesurgeries (15); and the incorporation of pre-

dictive models and continuous monitoring as foundational infrastructure for new diagnostic

tools (16, 17). But the introduction of new technologies into health settings inevitably intro-

duces new challenges to overcome. For instance, the introduction of EHRs led to increases

in data privacy concerns and data security breaches (18, 19). And while the introduction

of EHRs has led to significant reductions in medical errors and improvements in medical

guideline adherence overall (20), they have also introduced other types of errors (21). Sim-

ilarly, continuous monitoring devices in healthcare settings have resulted in pervasive alert

fatigue (22). Overall, the integration of technologies into medicine requires an iterative

design process which addresses pitfalls and amplifies benefits (23).

So, too, with generative AI. As generative models become a leading area of research

and deployment in medicine, we provide a comprehensive review of the new applications

they enable and the new challenges they create, with a particular focus on how users

could interact with generative models. We first provide a brief overview of generative AI,

detailing salient types of generative AI and how they fit into the broader landscape of

machine learning in medicine. We next discuss the myriad use cases for generative AI in

medicine, organized by potential users: clinicians (§2.1), patients (§2.2), trial organizers

(§2.3), researchers (§2.4), and trainees (§2.5). We then highlight the challenges (§3) that

must be addressed to realize this potential and safely deploy generative models (including

ensuring informed consent, protecting privacy, and improving transparency, among many

other considerations) and discuss future directions for research throughout.

1.1. Background on Generative AI

Generative modeling is a fundamental AI paradigm which stands in contrast to predictive

modeling (also called discriminative modeling): predictive models are given an input and

seek to predict its label but do not attempt to model the input, whereas generative models

do seek to model the input. For example, while a predictive model might be given a clinical

note (the input) and try to predict whether the note indicates the presence of cancer (the

label), a generative model would aim to model the distribution of clinical note text itself.

The fact that generative models are trained to model the entire data distribution affords

them the powerful ability to generate new data: for example, to write new clinical notes.

The basic generative modeling paradigm far predates the current surge of interest in

generative AI. For example, classical generative modeling methods such as Markov chains

have been used to model sequences of words for decades (24), and in theory could be used
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to write clinical notes. In practice, however, classical generative modeling methods do not

generate sufficiently realistic content to be useful, especially on complex medical data. The

current surge of interest is fueled by a drastic increase in generative modeling capabilities,

which has been driven by scaling models to larger deep learning architectures and larger

datasets (25). These improvements have, as we describe, expanded the number of useful

applications of generative AI models, and have spurred interest in applying these models

to domains outside of core machine learning (26).

We summarize three categories of generative models organized by the type of data on

which the model operates: (1) text, (2) images, or (3) text and images. For each category, we

focus on the state-of-the-art models that are currently in use. While we limit our discussion

to text and image data since these are most relevant to the use cases we subsequently discuss,

generative models for other types of data (for example, physiological signals and molecular

graphs) are an emerging area of clinical AI research (27–29). For more comprehensive

overviews, we refer the reader to (30).

For modeling text, large language models (LLMs) are the dominant approach,

with substantial performance gains in recent years. LLMs commonly use the transformer

neural network architecture (31) to perform next word prediction: given a sequence of

words, what is the most likely word that will come next? That is, for a context sequence

x1, · · · , xn, an LLM is trained to predict p(xn+1 | x1, · · · , xn) (32). What makes an LLM

“large” is the size of its deep learning architecture, and the amount of data and compute

used to train it; most language models in use today are considered LLMs. Training an

LLM usually consists of three phases: first, the LLM is pre-trained on a large corpus of

text scraped from the Internet; second, it is fine-tuned on instruction-following examples,

wherein user questions or instructions like “Convert this discharge report into layperson’s

terms” are followed by reasonable responses; third, the LLM is tailored with human feedback,

where humans choose which of two possible responses they prefer to capture fine-grained

preferences (33). Each of these phases can be tailored more specifically to medicine: some

models are pre-trained on medical corpora, usually PubMed, in addition to or instead of the

entire Internet (34, 35); some models are trained specifically to respond to medical questions

using datasets like MedQA (36, 37); and there are emerging datasets of physician-written

responses to medical queries to help align LLMs to medical best practice (38). While the

use cases we will discuss primarily involve models trained on human language, models with

similar transformer architectures can also be trained on other types of sequential biomedical

data. For example, electronic health record models have been trained on sequences of ICD

codes (39, 40); protein models have been trained on sequences of amino acids (41); and

DNA models have been trained on nucleotide sequences (42, 43).

For modeling images, diffusion models (44) have recently become the method of

choice, largely surpassing the previous generation’s generative adversarial networks (45).

Given an unlabeled training distribution of images, a diffusion model learns to generate

new, synthetic images that look like images from the training distribution. To train a

diffusion model, a real image x0 is progressively corrupted to produce xt, an image after

t corruption steps that looks like random noise. The model is trained to reconstruct the

original clean x0 from noise xt by learning the distribution p(xi−1 | xi). A well-trained

diffusion model can then start from randomly-sampled noise, and produce a new image

that is not in the training set but appears to have been drawn from the same distribution.

Medical diffusion models have been trained on several different image types, such as chest

X-rays, dermatoscopic images, and pathology slides (46). To improve the biological validity
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of generated images, datasets and methods are being developed to fine-tune models using

physician feedback (47). Synthetic image generation can be a useful augmentation tech-

nique in data-constrained settings, where supervised ML models may benefit from synthetic

datapoints; recent evidence suggests this technique can help improve model robustness for

pathology and radiology tasks (13).

For tasks involving text and images, there are two key types of generative models: text-

to-image (T2I) and vision-language models (VLMs)1. T2I models accept a piece of text

as input, which is used by a text-conditioned diffusion model to generate a corresponding

image as output. These models consist of two components: a text encoder model (i.e., a

transformer (48)), and a diffusion model which generates the image using the text encoding.

T2I models are pre-trained using general image caption datasets; they can then be fine-tuned

for medicine, e.g. using chest X-rays and corresponding radiology reports (49). T2I models

further expand the possibilities of synthetic images, for example by allowing researchers to

generate training data for a specific patient pathology. Relatedly, VLMs take in an image

as input and generate text involving the image as output (50). VLMs consist of an image

encoder model (e.g., a convolutional neural network or a vision transformer (48, 50)) and

a large language model which can generate text based on the image encoding. VLMs also

require large image-text datasets, which can include image captions or reports, but also

answers to visual questions, like “Does this chest X-ray exhibit pleural effusion?” (51).

They can be applied to tasks like question answering and report generation for pathology

or radiology (52, 53).

Each of these model classes have natural applications in medicine. Many clinical pro-

cesses and decisions involve unstructured text (in the form of clinical notes, online health

information, and treatment plans) and medical images. Moreover, images and text often

appear in combination, as is the case with radiology reports. The next section elaborates

on the potential to combine these generative modeling paradigms with existing data and

processes in medicine.

2. Use cases for generative AI in medicine

The use cases for generative AI in medicine are numerous (Figure 1). We organize our dis-

cussion around key constituents in patient care: clinicians, patients, clinical trial organizers,

researchers, and trainees. Within each role, we highlight core responsibilities that can be

transformed by the introduction of generative AI.

2.1. Clinicians

Generative models have the potential to improve clinicians’ ability to provide care in mul-

tiple ways: by assisting with writing and documentation (reducing administrative burden

and physician burnout, which are major concerns (54)); assisting with diagnosis; retriev-

ing patient data; and supporting evidence-based medicine. Each use case suggests that

generative models can act as a useful tool for delivering care personalized to patient needs.

Assistance in writing The amount of documentation in the electronic health record is a

leading cause of physician burnout (55). Outside of their shifts, clinicians frequently spend

1The latter are sometimes also referred to as image-to-text models.
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significant time finishing clinical notes and communicating with patients; generative AI

provides an opportunity to speed up both of these documentation processes.

The earliest deployments of generative AI-driven writing assistance have been in ambient

documentation, in which recordings of patient-provider communications are used to generate

initial drafts of notes (6). In initial pilots, providers and patients alike have indicated that

the technology facilitates improved interactions, and providers have noted a decrease in

time spent completing notes after their shifts.

In another example, the past few years have seen an uptick in provider-patient mes-

saging through the electronic health record. While this has provided a straightforward

path for patients to surface concerns and questions to their providers, providers have had

to similarly spend increasing amounts of time responding (55). There have already been

several pilots using large language models to respond to patient queries (1, 3). Additional

work has explored having large language models prompt patients with follow-up questions

automatically so that clinicians have full patient context with fewer back-and-forths (9).

While clinicians report high usability of response drafting tools and decreased burnout,

early results show that significant editing is still required, and effects on documentation

time have yet to be seen.

Across both of these use cases, there are significant nuances which must be addressed

for successful deployments. First, the clinical note writing process is not one-size-fits-all, as

workflows differ significantly between specialties and clinicians. Second, significant effort

is necessary to ensure that automation in the writing process does not lead to automation

bias or decreased agency from clinicians (56). Clinical notes often serve not only as docu-

mentation for future reference, but also as an active space for iteration and re-analysis (57)

as, in many specialties, notes are not written at once, but in several sessions stretched over

a patient’s stay (58).

Assistance in diagnosis Several works have assessed the efficacy of using generative models

to provide diagnoses from patient information (e.g., medical imaging and lab test results).

While current generative models do not identify the correct diagnosis with sufficient reli-

ability to be used without clinician supervision (59–61), their generated differentials (i.e.

sets of diagnoses) often contain the correct diagnosis and could be useful as a tool to aug-

ment clinicians by expanding the set of diagnoses a clinician considers (62). Such a tool

could be particularly useful in contexts where identifying candidate diagnoses is difficult

(for example, rare diseases (63) or challenging clinical cases (64)). (61) find that a large

language model includes the correct diagnosis in its differential in 88% of cases, nearing

the diagnostic performance of clinicians, who include the correct diagnosis in 96% of cases.

Other works have studied the accuracy of generative model diagnosis given both images and

text (65–68); (65), for example, demonstrate how a vision-language model can identify the

correct skin condition, given an image and a text prompt, in 80% of cases. Overall, diag-

nostic performance depends on both the task and generative model (69, 65, 70), and while

significant progress must be made for generative models to provide diagnostic assistance to

clinicians, the initial results are promising. Ultimately, such a tool could be used in service

of precision medicine by providing diagnostic assistance personalized to a patient’s medical

history.

Information retrieval of patient data Clinical practice requires a significant amount of

synthesis of a patient’s past health narrative (e.g., understanding past medications, lab
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trends, and diagnoses) with their current clinical state (57). In current EHRs, clinicians

often have trouble finding the relevant information needed for contextualized clinical care,

both due to the fragmentation of EHRs and the amount of information trapped in free-text

notes (71). Finding relevant labs or medical history can often involve time-consuming and

disjointed navigation through different sections of the electronic health record. Retrieval-

augmented generation (RAG), in which generative models retrieve information from an

external database and use it to inform the language they generate, provides a possible

avenue for clinicians to conveniently surface data in a single unified process, powered by

natural language (2). RAG combines the flexibility of generative AI with more classical

information retrieval systems; for example, a clinician could query a generative model with

“relevant family history for chest pain” or the “result of the patient’s last colonoscopy” to

retrieve information across a patient’s EHR. Going even further, the model could proactively

surface information likely to be relevant, based on the current stage of a visit. Here, open

questions remain on what information to automatically surface, when to do so, and how

to best display it (72, 58). Previously, researchers have found it useful to draw on past

interaction patterns in the electronic health record in order to inform interface design (73).

Evidence-based medicine Evidence-based medicine requires bringing new findings from

clinical research to the bedside, but it can be nearly impossible for clinicians to keep up

with the pace of clinical research (74, 75). Large language models can make it easier to

organize and query clinical trial information at the point-of-care. Existing explorations

have included NLP-generated databases of cleaner, searchable clinical trial information and

natural language interfaces for interacting with clinical guidelines more directly (7, 76, 77).

2.2. Patients

Patients often express a desire for increased involvement in their care, e.g. in the form of

shared decision making or increased access to information (78). Below, we describe a few

ways generative AI could impact the patient experience. We emphasize to the machine

learning community the necessity to embrace participatory design, where proposed tools or

interfaces (for example, interfaces to surface health information) are built in collaboration

with patients and center stakeholder perspectives, as has been done in informatics and

human-computer interaction (79–82).

Searching for Online Health Information Patients often leverage the Internet to help answer

their health questions, particularly when they have limited access to care (83). For those

with access, benefits have included increased ability to participate in decision making, more

informative questions during episodes of care, and improved adherence to instructions (84).

Recent surveys show that generative AI has already seen significant adoption for information

seeking between appointments (85, 86). Unlike existing search engines, generative AI en-

ables patients to pose more specific queries and ask follow up questions, allowing for more

tailored responses and conversational searching where questions and responses can build

upon one another. However, the current generation of models can provide plausible but

inaccurate information, making it challenging for patients to discern when to trust model

outputs (87). Patients are still faced with the challenge of discerning if the information is

accurate, and current generative AI chatbots provide few references. We expand on these

issues in later sections.
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Increasing Patient Engagement Increased patient engagement can enable patients to better

understand their own health conditions and care plan. This engagement can also lead to an

increase in patient-reported outcomes (e.g., self-tracking and sharing of symptom burden);

this in turn can enable clinicians to better understand their patients’ conditions in between

visits (88). One approach to increased patient engagement is the use of patient portals;

however, utilization of patient portals remains low (89). Given their potential, there have

been several long-running suggestions for how to increase utility of patient portals that are

now more feasible with generative AI (90–92). As an example, clinical notes contain valuable

information for patients but were not written with patients as the intended audience: they

are filled with jargon, and patients cite the difficulty of medical jargon as a major barrier to

comprehension (93). Recent work has explored using generative models to translate clinical

notes into patient-friendly language and visualizations, with the opportunity to personalize

to information needs of patients and how they want that information presented (4, 5, 94).

The opportunity of patient-friendly text simplification extends past clinical notes alone to

other facets of health literacy, e.g., medical literature and patient consent forms (95, 96).

2.3. Trial Organizers

Clinical trials provide critical evidence to update and improve clinical practice. Conducting

these trials, however, remains challenging: only 20% of clinical trials in the United States

complete within the planned timeframe (97), and of those that do, only a small fraction are

published (98, 99). The difficulty of clinical trial design is in part due to the complexity

of interaction and documentation involved; trials can fail due to incorrectly designed pro-

tocols, insufficient participant registration, or high patient dropout (100, 101). Generative

interfaces present the potential to rework key components of this pipeline.

Protocol Design Clinical trial design begins with the creation of a protocol, which collates

existing research, study aims, and regulatory requirements into concrete steps detailing how

the trial will proceed. Protocol creation requires significant manual effort (102), and exist-

ing work has illustrated the value in using generative models (specifically, large language

models) to expedite the process (10, 11, 102–105). Several works center on the generation

and evaluation of exclusion and inclusion criteria (106, 103, 10, 105), while others propose

the use of large language models to retrieve relevant past clinical trials to inform the con-

struction of a new protocol (11, 102). (104) employs large language models to evaluate

protocols for bias automatically, while (10) uses large language models to generate trial

inclusion and exclusion criteria based on details of the setup expressed in natural language.

Together, the literature thus far highlights the potential for generative interfaces to reduce

the time required to construct a successful protocol.

Participant Recruitment & Retention Equipped with a protocol, clinical trial designers

must recruit a sufficient number of participants to conduct the trial. Generative interfaces

can be used to identify suitable trial participants by parsing both the criteria and patient

history (107–110). Early results suggest that large language models can reduce the number

of eligibility criteria a clinician must manually check to assess eligibility by 90% (107) and

reduce the time it takes to assess eligibility by 42% (109).

As the trial progresses, patient dropout can threaten its validity and success. Patients

drop out of clinical trials for a multitude of reasons, one of which is poor communication
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with trial recruiters and clinicians (111, 112). Patient dropout is particularly salient to

decentralized clinical trials, which are conducted at non-traditional sites (e.g. a patient’s

home, or a local clinic) and are known to recruit more diverse patient populations compared

to their standard counterparts (113). (114) propose the use of AI to improve patient

engagement in these settings, which could include chat interfaces to answer trial-related

patient questions as they arise. Such an interface could effectively and efficiently address

patient concerns and misconceptions about a trial, including the potential for adverse events

(115) or the importance of trial participation regardless of treatment outcome (112).

2.4. Researchers

Designing a useful medical study is a time-consuming process. Researchers comb through

large bodies of literature, across multiple disciplines, to identify open questions and un-

derstand the status quo in different application areas. Later stages of research, including

dataset construction, hypothesis generation, and code generation are no easier. Here, we

highlight how generative models can help alleviate significant manual effort at each step.

Literature review Efforts to collate existing literature into a coherent research question

precede any effort to execute the study. Large language models have been shown to be

a promising tool for problem generation through automated systematic literature reviews

(12, 116). Here, a generative interface can allow a researcher to automatically assemble

a clinical review by querying thousands of clinical abstracts, substantially reducing the

effort required to perform a systematic review. (12) demonstrate how a popular large

language model (GPT-4) can identify relevant papers at 91% accuracy compared to human

evaluation, with the ability to justify the inclusion and exclusion of particular papers.

Dataset construction Generative AI can improve the quality, quantity, and diversity of

datasets in medicine (117, 13, 118). To produce such datasets, generative models can be

used in two ways: to generate completely synthetic data, or to extract structured information

from existing unstructured data.

Using generative models to create synthetic data has shown promise in compensating

for gaps in existing datasets (13, 119, 120). (119) show that synthetically generated images

can be used to improve a machine learning model’s ability to detect COVID-19. Beyond

improvements to accuracy, (13) illustrated how augmenting training data using generative

models can improve the fairness of the resulting diagnostic classifier. These findings hold

in the context of natural language; (120) demonstrate how diagnostic classifiers trained

on generated text perform comparably to those trained on real datasets of the same size,

suggesting that synthetic data is a promising approach to addressing data limitations.

Generative AI can also be used to extract structured information from semi-structured

data or to label existing data, across both natural language and imaging. Research on health

equity, for example, relies on structured fields describing patient demographics to assess the

severity of health disparities. Large language models can be used to extract demographic

data from unstructured text (e.g. clinical notes) (121), thus enabling comparisons of health

outcomes between demographic groups. Similarly, several generative AI tools have also

been developed to measure morphological features from large cohorts of histopathology

images using natural language prompts (122–124). Generative models can also be used to

alleviate the burden of data annotations by providing synthetic labels (i.e. predictions of
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ground truth) for unlabeled examples (125); for example, one could use a generative model

to suggest candidate segmentations of medical images (126).

Hypothesis generation Given a dataset, generative models can be used to surface hypothe-

ses (127–130). (127) examine the use of generative models to produce natural language

hypotheses (i.e. “customers tend to buy shoes that match the color of their shirt”). They

find that the resulting hypotheses confirm expected relationships, provide new insights, and

outperforms supervised baselines. (128) frame the discovery of drug-specific side effects as

a task for a generative model; given patient feedback for different drugs, the generative

model is tasked with describing differences between drug-specific patient feedback in natu-

ral language.

Code generation Generative interfaces can also be used to write code based on natural lan-

guage prompts, which could lower the barrier for researchers to perform quantitative analy-

sis of large-scale datasets (131). (131) demonstrate that GPT-4 is capable of autonomously

producing code to train models for disease screening and diagnosis. Collaboration with a

code assistant has been shown to improve programming productivity (132), and could help

facilitate quantitative analysis of increasingly large observational health datasets.

2.5. Trainees

Generative interfaces are already in widespread use by medical trainees (133). The rapid

uptake of these tools among trainees suggests the potential for generative interfaces to

significantly transform medical education. Two promising applications are the use of gen-

erative interfaces to create practice clinical scenarios and provide feedback that targets

student-specific areas for improvement.

Case creation Designing realistic clinical scenarios to test understanding is a critical yet

difficult task. Those in charge of clinical curriculum design could use large language models

to generate compelling multiple choice questions, as (134) have demonstrated in the context

of surgical education. Doing so could also address the lack of diversity in clinical vignettes

(135), and allow the generation of problems that better reflect patient populations trainees

are likely to interact with (14, 136, 137). (14), for example, develop a tool to use large

language models to produce 30 distinct cases in under an hour (including manual human

review). Simulated patients could also be used to simulate real-world interaction. For

example, the process of collecting patient history could be taught through a generative

interface, in which a large language model responds to a medical student’s requests for

information based on a synthetic patient profile. (138) have shown that such a set-up is

well-received by medical students, and that more than 97% of the generated answers were

deemed clinically plausible. Each of these uses cases presents an opportunity to reduce the

resources required to train medical students to deliver care.

Providing personalized feedback Generative interfaces can also provide tailored feedback

to students (139). (139) show that large language models can provide students with more

coherent, process-oriented feedback compared to human instructors, while retaining high

agreement with human-generated feedback. There is significant opportunity to apply these

findings in medicine; for example, one could use large language models to provide feedback
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on a medical student’s efforts to communicate health information to patients. Indeed, (8)

showed that when generative models are used to provide feedback on clinical notes, the

resulting notes are more complete, concise, and correct across four distinct specialties.

Feedback for trainees can take many forms; in surgery, for example, non-generative AI

is already being used to provide automated assessments of surgical procedures in simulated

environments (140), which helps trainees safely gain familiarity with procedures. (141)

develop a generative model to output the optimal surgical path and show that real-time

guidance leads to significant improvements along multiple surgery-specific performance met-

rics, including the number of attempts required to complete the surgery and risk of tissue

damage.

3. Challenges and directions for future work

Fully realizing the opportunities to apply generative AI in healthcare requires significant

progress on a number of challenges we describe below, and illustrate in Figure 2. Generative

AI interfaces are far from perfect, and we are only beginning to understand the impacts of

such interfaces on clinical decision-making. We have already seen examples of the potential

harms such interfaces have caused that warrant attention. For example, (70) demonstrate

how large language models fail to follow diagnostic guidelines up to 36% of the time in

an evaluation across realistic patient cases. Below, we enumerate challenges we foresee as

critical to address as the intersection between generative interfaces and healthcare evolves,

and discuss future directions for research throughout.

3.1. Ensuring informed consent

Informed consent is a foundational principle of medical ethics which states that a patient

must have access to sufficient information about a medical procedure (including risks, bene-

fits, and alternatives) (142–145). Achieving informed consent when using AI models raises

new challenges which are a topic of active discussion (146): for example, how do we pro-

vide patients with comprehensive, accurate, and understandable information about complex

models whose behavior is not fully understood even by their own creators (let alone the

clinicians using them)? How do we ensure patients are consenting to the use of their data

if it is used in model training? These issues similarly apply to generative models, which

also raise new challenges (147, 148). For example, when asked for their concerns about the

use of generative AI models to transcribe and summarize patient-clinician conversations,

providers expressed concerns about whether patients could meaningfully consent to the col-

lection of this data (147). Similarly, the use of generative models in chatbots that interact

with patients raises new concerns about informed consent (148). When chatbots and other

generative AI tools are implemented in care practices, patients need to be given the option

to decline the use of the models in their care and the use of their data. Patients must be

provided with clear information that they are interacting with a chatbot, who the chatbot’s

creators are, and the uses and limitations of the technology.

Contrasting with these concerns, generative models also show promise for improving

the informed consent process (149) by making consent forms easier to understand. A

study comparing LLM-generated consent forms to those created by five surgeons for six

common medical procedures found that the LLM-created forms were more readable and

accurate than those created by surgeons. In this way, LLMs can help advance equity in
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medicine, through the creation of consent forms that are more accessible to a broader

audience. Current medical consent forms are often written at a high reading level and

describe complex procedures (150). As a result, many people, especially non-native English

speakers and individuals with low literacy, are at increased risk of consenting to research

and medical procedures without being fully informed (151). While LLMs offer promise

in improving consent documentation readability, more work is needed to ensure consent

documents developed by LLMs contain comprehensive information (152).

3.2. Maintaining privacy and security

The use of generative models in medicine raises substantial privacy and security chal-

lenges (153), given the sensitivity and legal protections of medical data. One challenge

is that generative models perform best (and are more likely to generalize) when trained on

large, multi-institutional datasets, raising the question of how to share data across multiple

institutions in a privacy-preserving way. Technical approaches like federated learning (154–

156) offer one approach to this, although recent work has indicated that privacy violations

are still possible in this setting (157–159). The creation of large de-identified datasets

which can be securely shared with researchers (160, 161) is also an important catalyst for

generative model research which institutions and policymakers should facilitate.

After training generative models, a second challenge is deploying models trained on

sensitive data in a secure and private way. Past work has demonstrated that generative

models can leak sensitive data by memorizing their training datasets and revealing private

data in response to adversarially crafted prompts (162–166). Past work also suggests that

these problems may grow worse as models continue to scale because larger models possess

greater capacity to memorize the training data (164). Mitigating these challenges remains

an active area of research which is essential for safely deploying models trained on sensitive

health data.

Finally, and more optimistically, generative AI also holds potential for sharing data in a

more privacy-preserving way, via generation of synthetic datasets which mimic properties of

a real dataset while preserving patient privacy (167–169) (see §2.4 for further discussion of

synthetic datasets). For example, (167) demonstrate how synthetic patient records produced

by a generative model can be substituted for real data at no loss of performance, with

significant improvements to patient privacy.

3.3. Improving transparency and interpretability

Modern AI models are opaque for a number of reasons, and generative models are no excep-

tion. A first major challenge is a lack of transparency : basic details of generative models are

often not disclosed, including training data, training methods, model architecture, capabili-

ties, limitations, and risks (170). Lack of transparency causes several harms (170): it makes

it more challenging for policymakers to regulate models; for users to assess when they will

perform reliably; and for researchers to innovate on them. Consolidation around a small

number of closed models risks heightening the lack of transparency (26). The sensitivity

of health datasets, which often cannot be publicly released, also makes achieving trans-

parency more challenging. A 2023 review of widely used generative models scored them

on 100 granular transparency indicators and found they averaged only 37 out of 100 (170),

though the average score had improved to 58 out of 100 when the review was conducted in

May 2024 (171), suggesting that transparency can be improved and that systematic reviews
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of the ecosystem are helpful.

A related, but distinct, challenge is interpretability : even if all details of a model are

fully disclosed, understanding why the model gives the output it does can be extremely

difficult. Without understanding why a model produces a particular output, it is difficult

to know whether to trust the model, and when it will fail. For example, healthcare models

have been known to rely on spurious features to make predictions, and without knowing

what features a model is using, these failure modes are difficult to identify (172–174). Inter-

pretability challenges are not unique to generative models, but occur with many modern AI

models, including other deep learning architectures (175, 176). In general, interpretabil-

ity methods (also known as explainable AI methods) have seen mixed success (177, 178);

different methods can yield very different answers, and those answers may be misleading.

Similar interpretability challenges occur in the context of modern generative models,

which can have billions or trillions of parameters, encoding non-linear, highly complex

functions of the input data which are extremely challenging to understand or describe

in a human-interpretable way (179). While language-based generative models can pro-

vide plausible-sounding explanations for their reasoning (180), seemingly improving inter-

pretability, those explanations are not necessarily accurate (181). In general, the capabilities

of generative models are currently advancing considerably more quickly than our ability to

explain how they achieve those capabilities, which is concerning especially in high-stakes

domains like healthcare.

Improving interpretability of generative models remains an active research area; pro-

posed approaches include local explanations, which explain a single output from an genera-

tive model and global explanations which explain a model’s behavior as a whole (180). In a

qualitative analysis of local explanations for a vision-language model applied to pathology

images, (182) find that the interpretations align with clinically known disease characteris-

tics. Although the fidelity of such explanations is context-dependent, they remain a key

ingredient in improving the transparency of generative models. Another recent line of work

seeks to train generative models that are interpretable by design, by training models on

paired images and text so the model can provide natural language annotations of generated

images; (183) apply this approach to dermatology data, and find that the models can accu-

rately annotate images, as verified by dermatologists. A final way to address interpretability

challenges is simply rigorous evaluation of a model across a range of settings: even if it is

not possible to understand exactly how a model produces its outputs, one can verify that

they are reliably accurate.

3.4. Mitigating hallucinations

Recent work has shown that generative models sometimes output medical information that

is incorrect (184) or hallucinated (185, 186). Hallucinated outputs in high-stakes medical

settings can be dangerous: for example, they can harm patients without clinician access who

rely on LLM-generated outputs for medical advice. Other work shows that LLM outputs

can be hard to understand or non-actionable (187), which, while not directly harmful, may

undermine widespread usability, especially for underserved patients.

One promising approach to reducing generative models’ propensity to hallucinate is

retrieval-augmented generation (RAG). As discussed above (§2.1), RAG integrates tradi-

tional approaches towards search and information retrieval into generative models: specifi-

cally, by retrieving information from a verified knowledge base to guide the text a language
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model generates. RAG has been shown to reduce the extent to which large language mod-

els hallucinate (188) and can also make a model’s information sources more transparent,

increasing users’ ability to assess their reliability. While RAG and other methodological

developments continue to mitigate hallucinations (76, 189, 190), it’s essential to continue

validating accuracy and readability in each use case, especially more difficult or error-prone

ones (e.g., as done in (191)). We further discuss challenges in evaluating LLMs below (§3.7).
In addition to technical methods and audits, regulatory oversight of generative models will

also help mitigate the harms of inaccuracies (192). Policymakers can, for example, encour-

age greater transparency in model development by mandating disclosure of adverse events

and of important details which are currently often not disclosed, including training datasets,

architectures, limitations, and biases.

3.5. Designing usable interfaces

Pioneers in human-computer interaction have called generative AI “the first new interaction

model in more than 60 years” (193). When interacting with generative AI, users are now able

to tell the computer their desired intent (e.g. create a summary of melanoma for patients

that includes symptoms, treatment options, and management strategies), rather than the

exact actions they want the computer to take (194). Thus, generative AI interactions can

be efficient and low-burden (195), and offer a new way to design and develop novel health

interventions (196). However, this new interaction paradigm brings usability challenges that

have yet to be addressed. Numerous studies have shown that creating accurate and useful

prompts for a generative AI platform is difficult for end users (197–201). Once a prompt

is provided, end users then face the additional challenge of interpreting and evaluating the

output (200, 202). As we have seen with previous AI technologies, when end-users are unable

to accurately evaluate the output of a model, they can become overreliant or make erroneous

decisions (203–206). To address these usability challenges, (207) recommend adopting user

experience principles to guide the design of these systems. More work is needed to establish

best practices for both the design and end-user evaluations of generative AI systems.

AI tools often face many obstacles to widespread adoption (208–211) leading to limited

health impact (212, 213). Given similarities of generative interfaces with prior AI tools,

we expect similar challenges to arise. First, healthcare professionals may be hesitant or

skeptical about new generative AI interfaces, making them resistant to change. In studies

which simulated clinical settings with patients, research has found that provider experience

levels (214, 215), interface style (216), and time pressure (216) may all affect adoption like-

lihood. Second, training and education are crucial to ensuring that healthcare professionals

can best leverage these new technologies, which can be costly and time-consuming. Ex-

posure through formal education or prior experience with similar AI interfaces can make

healthcare professionals more comfortable with AI tools, leading to a higher rate in adop-

tion (217). Educating users on the strengths and weaknesses of commonly used generative

interfaces has been shown to improve qualities of human-AI collaboration including accu-

racy (218) and reliability (219), and we expect these findings to hold true in medicine.

Lastly, deployment of generative interfaces may require an initial investment in cost and

resource allocation. While preliminary studies have shown that generative interfaces can

save time — e.g., initial estimates show that it may save nurses around 30 seconds per gen-

erated message (220)— the potentially large upfront cost remains a key concern to active

adoption.
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3.6. Centering equity

Abundant previous work has demonstrated how biases in medical datasets can propagate

into AI models (221–242). It is thus unsurprising that the use of generative models in

medicine creates several equity-related challenges (243). Research indicates that larger

models do not, on their own, necessarily resolve equity concerns; indeed, larger models have

been shown to exhibit more covert forms of bias (i.e. prejudice against certain dialects)

compared to smaller counterparts (244). (243) perform the largest-scale health equity eval-

uation of large language models to date, highlighting the complexity of equity challenges

and the necessity of careful, multi-dimensional evaluations to identify and mitigate them.

A first challenge is mitigating stereotypes and bias in generated text. Like human

clinicians (245), LLM-generated text has been shown to display medical stereotypes (246,

247). For example, (246) finds that when GPT-4 is asked to provide clinical vignettes about

sarcoidosis, it generates vignettes about Black patients 97% of the time, exaggerating the

true population skew. Due to these embedded biases, if patients specify their demographics

when asking questions to LLM chatbots, there is a risk that the LLM will overestimate the

impact of race, gender, etc. in its response. Similarly, when generating new clinical vignettes

(e.g., for use in medical education), LLMs may over-index on demographic correlations

(246), which would skew the knowledge of medical trainees if generated vignettes are widely

used (248). It is likely that these issues can be mitigated through improved prompting and

careful auditing of generated text. However, LLM stereotypes remain a key risk, both

because they can be hard to detect, and because even small effect sizes can cause significant

harm if the models are used at scale. Further work is necessary to better document such

patterns, to properly inform users about them, and to develop mitigating strategies.

A second equity-related challenge is disparities in patient awareness of, and willingness

to use, generative interfaces. Recent surveys show that awareness of LLMs positively cor-

relates with formal education level and household income (249). Moreover, LLMs are more

accessible to “tech-savvy” users (250), since using them requires a fast internet connec-

tion, intuition around how to best phrase prompts, etc. These factors raise the possibility

that generative interfaces may create larger benefits for already-privileged patients who

have fewer barriers to health access. (251, 252). To mitigate this risk, we need to study

the factors underlying generative interface literacy (253) and ensure they become broadly

accessible.

However, generative models also open important new health-equity-related opportuni-

ties (121, 254). (121) describes several such use cases for generative models: detecting

human biases (e.g., from clinical notes); creating structured equity-relevant databases from

unstructured text; and improving equity of access to health information. To identify such

equity-related opportunities, it is imperative to focus on equity from the very beginning of

a project, at the problem selection stage (226, 255).

3.7. Performing real-world evaluation

In order to reason about the real-world efficacy of generative models, we need fine-grained,

real-world evaluations. Recent work has highlighted how evaluating clinical generative

models on the basis of diagnosis alone overestimates their efficacy (70). Specifically, (70)

highlight the importance of quantifying the extent to which generative models fail to adhere

to treatment guidelines, or are sensitive to the order in which information is presented to

them; measures of these types of behavior are important towards reasoning about the impact
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of generative models in medicine.

The principles of fine-grained real-world evaluation apply to all use cases we highlight.

For example, evaluations of generative models for medical question-answering must specify

both (1) a set of prompts to test and (2) a set of criteria for a response to be deemed

high-quality. For example, on (1), common medical LLM benchmarks use questions from

exams (256, 257), clinical guidebooks (184, 187), or research papers (258). These evalu-

ation sets may be systematically different from the real distribution of patient questions,

both in medical content and linguistic characteristics (e.g., language, grammar, or dialect),

which could affect performance (259–261). More recently, evaluations have included real

patient questions from forums like MedlinePlus (262, 191), Reddit (/r/AskDocs; (263)), or

cancer support groups on Facebook (264). These results may better reflect real-world pa-

tient questions, but future work should explicitly recruit patients from underserved groups,

whose needs may differ from those represented by the dominant voices on online medical

forums. On point (2), response quality is usually judged by physicians (191, 263, 265, 264),

not patients. While physicians can best evaluate correctness, patients themselves may be

better judges of perceived qualities like empathy (263) or understandability (187). Future

work should also prioritize closing the gap between real-world usage and assumptions made

during evaluation. For example, the standard approach to evaluation assumes that gen-

erative models have no capacity to collect additional information; a more realistic set-up

would allow a generative model to pose follow-up questions (266). More broadly, a deeper

understanding of the ways in which humans interact with generative interfaces will lead to

a deeper understanding of generative model failures in the real world.

3.8. Clarifying accountability

The introduction of generative AI in healthcare raises important questions about who should

be responsible for potential harms and regulation. Errors from generative models are in-

evitable, as they are with humans, but it remains unclear whether responsibility lies with

the healthcare provider, the AI system developer, or the institution implementing the tech-

nology. Uncertainty surrounding liability is a key concern for healthcare providers who

interact with generative interfaces (267), and regulation should be designed to reduce this

uncertainty. Possible paths forward range from holding the “manufacturer” (i.e. the model

developer) completely accountable for model errors to distributing responsibility across

providers, hospitals, and model developers (268).

The question of accountability is further complicated by concerns about over-reliance. If

healthcare professionals rely too heavily on generative AI tools to make accurate decisions,

while model developers simultaneously rely on healthcare professionals to carefully vet those

decisions, accountability may be lost. Healthcare professionals who rely too heavily on

generative AI tools may not only find it difficult to make accurate decisions without them,

but also be unable to detect errors when the generative AI tools are incorrect. Behavioral

changes in response to the integration of AI tools are well-established (269, 270) and relate

to the autonomy of decision-making, a key factor in determining liability (271). In the

education space, researchers have found that students who have access to generative AI tools

outperform a control group, but once the generative AI tools are removed, they perform

worse (269). Similar studies have found that humans can also inherit biases from AI even

when access to tools has been removed (270). These findings have important implications

for the deployment of generative models in medicine, and suggest the importance of research
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We highlight promising use cases of generative AI in medicine for five key constituent groups:

clinicians, patients, trial organizers, researchers, and trainees.

and regulation that clarifies accountability in human-AI collaboration.

4. Conclusion

Those witnessing the explosion of interest in generative models in healthcare might justly

feel both excitement and trepidation. On the one hand, increased model capabilities enable

many use cases benefiting clinicians, patients, trial organizers, researchers, and trainees,

with the potential to transform healthcare. But realizing this potential in high-stakes

healthcare settings will require addressing numerous challenges — from centering equity, to

protecting consent, to rigorously evaluating models — to bridge the gap between medical

generative models in theory and in practice. The history of technical advances in medicine

suggests that we will not be able to anticipate all the impacts of generative models —

hospitals today are still adapting to the transition to EHRs, 15 years after their widespread

introduction — and that humility is warranted. But, in the face of this uncertainty, the

research directions we outline offer a roadmap for addressing generative AI’s shortcomings,

and realizing its potential, in order to provide better healthcare for all.
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Bridging the gap between generative models in theory and practice will require addressing key
challenges to mitigate risks and maximize benefits.
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157. Geiping J, Bauermeister H, Dröge H, Moeller M. 2020. Inverting Gradients – How easy is it

to break privacy in federated learning?

158. So J, Ali RE, Guler B, Jiao J, Avestimehr S. 2023. Securing Secure Aggregation: Mitigating

Multi-Round Privacy Leakage in Federated Learning

159. Huang Y, Gupta S, Song Z, Li K, Arora S. 2021. Evaluating Gradient Inversion Attacks and

Defenses in Federated Learning

160. Mullainathan S, Obermeyer Z. 2022. Solving medicine’s data bottleneck: Nightingale open

science. Nature Medicine 28(5):897–899

161. Johnson AE, Bulgarelli L, Shen L, Gayles A, Shammout A, et al. 2023. Mimic-iv, a freely

accessible electronic health record dataset. Scientific data 10(1):1

162. Barrett C, Boyd B, Bursztein E, Carlini N, Chen B, et al. 2023. Identifying and mitigating the

security risks of generative ai. Foundations and Trends® in Privacy and Security 6(1):1–52

163. El-Mhamdi EM, Farhadkhani S, Guerraoui R, Gupta N, Hoang LN, et al. 2022. On the im-

possible safety of large ai models. arXiv preprint arXiv:2209.15259

164. Carlini N, Ippolito D, Jagielski M, Lee K, Tramer F, Zhang C. 2022. Quantifying memorization

across neural language models. arXiv preprint arXiv:2202.07646

165. Huang J, Shao H, Chang KCC. 2022. Are large pre-trained language models leaking your

personal information? arXiv preprint arXiv:2205.12628

166. Carlini N, Tramer F, Wallace E, Jagielski M, Herbert-Voss A, et al. 2021. Extracting training

data from large language models. In 30th USENIX Security Symposium (USENIX Security

21), pp. 2633–2650

167. Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. 2018. Generating Multi-label Discrete

Patient Records using Generative Adversarial Networks

168. Ghosheh GO, Li J, Zhu T. 2024. A survey of generative adversarial networks for synthesizing

structured electronic health records. ACM Computing Surveys 56(6):1–34

169. Loong B, Zaslavsky AM, He Y, Harrington DP. 2013. Disclosure Control using Partially Syn-

thetic Data for Large-Scale Health Surveys, with Applications to CanCORS. Statistics in

medicine 32(24):4139–4161

170. Bommasani R, Klyman K, Longpre S, Kapoor S, Maslej N, et al. 2023. The foundation model

transparency index. arXiv preprint arXiv:2310.12941

171. Bommasani R, et al. 2024. The foundation model transparency index v1.1 may 2024. Stanford

www.annualreviews.org • Generative AI in Medicine 25



CRFM

172. Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, et al. 2019. Association between surgical

skin markings in dermoscopic images and diagnostic performance of a deep learning convolu-

tional neural network for melanoma recognition. JAMA dermatology 155(10):1135–1141
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