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Abstract

With the popularity of location-based services, human mobility prediction plays
a key role in enhancing personalized navigation, optimizing recommendation
systems, and facilitating urban mobility and planning. This involves predicting
a user’s next POI (point-of-interest) visit using their past visit history. However,
the uneven distribution of visitations over time and space, namely the long-tail
problem in spatial distribution, makes it difficult for AI models to predict those
POIs that are less visited by humans. In light of this issue, we propose the Long-
Tail Adjusted Next POI Prediction (LoTNext) framework for mobility prediction,
combining a Long-Tailed Graph Adjustment module to reduce the impact of the
long-tailed nodes in the user-POI interaction graph and a novel Long-Tailed Loss
Adjustment module to adjust loss by logit score and sample weight adjustment
strategy. Also, we employ the auxiliary prediction task to enhance generalization
and accuracy. Our experiments with two real-world trajectory datasets demonstrate
that LoTNext significantly surpasses existing state-of-the-art works. Our code is
available at https://github.com/Yukayo/LoTNext.

1 Introduction

Human mobility prediction is essential in various applications, aiming to forecast the next Point of
Interest (POI) a user may visit based on their historical location data, preferences, and patterns [10,
8, 53, 33]. By predicting user movements, it supports urban planning, traffic management, and
environmental protection, and provides intelligent personalized Location-Based Social Networking
(LBSN) services [7, 37], enhancing people’s life quality.

The growth of POI prediction tasks is closely linked to the development of LBSN platforms, where
users frequently share their itineraries and reviews, leading to a substantial accumulation of geograph-
ical visitation data. However, data collection faces challenges due to network and privacy constraints
on mobile devices and the requirement for user authorization to record check-ins. This often results in
data being sparse and biased towards popular locations, exhibiting a severe long-tail effect. Currently,
these methods fall into two primary categories: Sequence-based and Graph-based models.

• Sequence-based models treat users’ trajectories as independent visitation sequences. Existing
methods include Recurrent Neural Networks (RNNs) [6, 12, 11], Long Short Term Memory
(LSTM) [2, 20, 14, 13] and Gated Recurrent Unit (GRU) [4, 5] for modeling the rich spatial-
temporal information implied in the visitation sequence.

• Graph-based models focus on building models and data structures to capture trend information in
the data to enhance the prediction performance, such as the movement trends among all users [45,
39, 34, 35, 41], geographic adjacency [27, 22, 26], and category transition between POIs [49, 48].
This helps in modeling complex global visitation preferences and the semantic context of locations.
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Nevertheless, existing works often overlook the intrinsic long-tailed distribution problem in spatial
visitation patterns. As shown in Figure 1, it provides the evidence of long-tailed distribution on
Gowalla1 dataset, a real LBSN dataset. From the visualization results, it is evident that only a few
POIs are visited more than 100 times. In addition, the illustrative diagram above the graph presents
a hypothetical scenario. The prediction model might inaccurately predict that a user would visit a
common location, such as McDonald’s (a Head POI), while the user actually visits a less common
place like a ramen restaurant (a Long-Tail POI). This highlights the importance of designing models
capable of accurately predicting visits to Long-Tail POIs. The concept of a long-tailed distribution,
while first extensively studied and addressed within the computer vision (CV) field [44], manifests
differently in the context of POI prediction. In POI prediction, long-tailed POIs are embedded within
users’ complex trajectories. This distinction means that unlike in CV, where long-tailed samples
can be selectively augmented to balance datasets, selecting long-tailed POIs without considering the
spatial-temporal context in which they occur risks losing crucial trajectory information.

Head POIs Long-Tail POIs

Predicted: McDonald's

Head POI

Actual: Ramen Restaurant

Long-Tail POI

Home

Subway

School

Figure 1: The long-tailed distribution for POI
check-in frequency from the Gowalla dataset.

Against this background, to mitigate the long-
tail problem in the human next POI prediction
task, we propose the Long-Tail Adjusted Next
POI prediction (LoTNext) framework, which
is a generic framework aimed at optimizing
and fully utilizing long-tailed POI information.
More specifically, our solution first employs a
Long-Tailed Graph Adjustment module to re-
duce noise and long-tailed nodes in the user-
POI interaction graph, thereby mitigating the im-
pact of long-tailed POIs on model performance.
Through graph adjustment, the model can more
accurately capture spatial-temporal information
from trajectory contexts. Furthermore, to pre-
vent the model from overly focusing on head POIs (high-frequency POIs), we propose the Long-Tailed
Loss Adjustment module to balance the loss between head and tail POI data. Finally, to alleviate
the intrinsic sparsity issue without introducing additional data sources, we incorporate auxiliary
prediction tasks to further integrate the POI feature and spatial-temporal information.

We conclude our contributions as follows: (1) We propose the LoTNext framework based on graph
adjustment to effectively address the challenges of dataset-inherent sparsity in the user-POI interaction
graph. (2) We design the Long-Tailed Loss Adjustment module for adaptive sample re-weighting,
which more effectively balances the loss between head and tail samples. (3) We introduce the auxiliary
prediction task, which achieves complementarity of POI feature information and spatial-temporal
information. (4) We evaluate LoTNext on two public LBSN datasets, comparing it with numerous
baselines. The results demonstrate that LoTNext significantly outperforms state-of-the-art methods.

2 Related Work

Next POI Prediction. Most current works on the next POI prediction treat trajectories as time
series, further incorporating spatial-temporal contexts into models to enrich the semantics of POIs.
The pioneering ST-RNN [18] introduces spatial-temporal intervals to RNN for context awareness.
DeepMove [6] integrates LSTM with attention mechanisms to consider both the short-term and long-
term preferences of users comprehensively, and LSTPM [29] enhances spatial context integration.
The Flashback model [43] tackles user sparsity by mining similar contexts in historical data. However,
due to the limited capability of RNN in modeling long sequences, researchers have explored using
graphs for improvements. GETNext [45], based on the Transformer architecture, combines global
mobility patterns graph with various spatial-temporal contexts to fully utilize information among
similar user trajectories for improving prediction performance. Graph-Flashback [27] considers
constructing a knowledge graph to improve POI representation and integrates it with sequence
recommendation models. SNPM [46] builds a POI similarity graph to aggregate similar POIs and
enhance POI representation results. However, all these studies overlook the significant impact of the
long-tail problem on the next POI prediction.

1https://snap.stanford.edu/data/loc-gowalla.html
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Figure 2: The Architecture of Long-Tail Adjusted Network for Next POI Prediction (LoTNext).

Long-Tailed Learning. The long-tail problem has always been a focus in the fields of CV [3, 30]
and recommendation systems [15]. The most direct solution is re-sampling [50], varying from
random to progressively balanced. Another common strategy is logit adjustment [24, 25, 31],
aimed at modifying the logistic output to address the imbalanced data class problem. A study by
Google [24] has proven that logit adjustment satisfies Fisher consistency and can effectively minimize
the average error per category. Compared to the CV field, the long-tail problem is more pronounced
in recommendation systems [1, 19]. Typically, the number of items far exceeds the number of users,
leading to many items rarely or infrequently accessed by users. Some works tackle the long-tail
problem by learning item similarities through random walk algorithms [47] or utilizing transfer
learning to transfer the knowledge from head to tail data [51]. [36] used meta-learning to enhance
the information representation of the user-item graph. [21] introduced a novel edge addition module
to enrich the connectivity for tail samples. However, unlike traditional recommendation tasks, the
next POI prediction involves complex spatial-temporal semantics due to the nature of trajectory data,
making it more challenging to improve the representation of long-tailed POI samples. To the best
of our knowledge, our work is the first to propose a general framework for the next POI prediction
under the long-tail problem.

3 Problem Definition

Given a user set U = {u1, u2, ..., u|U |} and a POI set P = {p1, p2, ..., p|P |}, with |U | and |P |
indicating the number of users and POIs respectively, we denote the POI check-in as a triplet ⟨u, p, t⟩,
which means a user u visits POI p at time t. Each POI p is a triplet p = ⟨lat, lon, freq⟩, representing
its latitude, longitude, and visit frequency. We proceed to outline our problem definition as follows.

Definition 1 (User Next POI Prediction) Given a user check-in sequence denoted as Qu=
(⟨p1, t1⟩, ⟨p2, t2⟩, . . . , ⟨pn, tn⟩), our goal is to predict a list of top POIs that the user u is likely
to visit next, which can be taken as a typical sequence classification task over |P | POI candidates. In
particular, our work focuses on how to accurately predict the “less visited” POIs belonging to the
long-tailed interval.

4 Methodology

In this section, we introduce the details of the LoTNext framework, as shown in Figure 2, which
consists of the preliminary POI prediction model, Long-Tailed Graph Adjustment module, and
Long-Tailed Loss Adjustment module.

4.1 Preliminary Model

We first construct a preliminary end-to-end model, which is designed for precise next POI prediction.
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Trajectory Embedding Layer. For the embedding generation, we initialize embeddings for POIs
EP ∈ R|P |×dp , timestamps ET ∈ R|T |×dt , and users EU ∈ R|U |×du , where dp, dt and du are the
corresponding embedding dimension and |T | is the number of the time slots. In our case, considering
each hour slot over a week, there are 168 time slots in total. During the sequence processing phase, we
select embedding from EP and ET based on the POI and time indices in the input sequence Qu to con-
struct an embedding sequence X ∈ Rn×(dp+dt), as X =

[
(EP

p1
, EP

p2
, ..., EP

pn
)||(ET

t1 , E
T
t2 , ..., E

T
tn)
]
,

where n is the sequence length and || denotes the concatenation operation.

Transformer Encoder. Transformer [32] architecture in modeling trajectories has been demonstrated
in multiple studies [39, 45, 40], we adopt its encoder block to encode spatial-temporal contexts within
trajectories, focusing on capturing long-distance dependencies through multi-layer stacking. To
maintain positional information in the sequence, we incorporate a learnable positional embedding
Epos ∈ Rn×dp with the raw embedding sequence X to form the Transformer input X̃ = X +Epos.
Next, we define the Transformer encoder block as follows:

Z = LayerNorm(X̃ + Multi-Head Attention(X̃)),

Z̃ = LayerNorm(Z) + FFN(Z)),
(1)

where FFN is a fully connected layer and the Multi-Head Attention can be described as:

Multi-Head(X̃) = [head1||head2||...||headh]W
O,

headi = Softmax

(
X̃iWQ(X̃iWK)T√

dk

)
X̃iWV ,

(2)

where X̃i is the input of the i-th head, WO,WQ,WK , and WV are the learnable weights matrix, h
is the number of the head, and

√
dk is the scaling factor.

Spatial Contextual Attention Layer. Inspired by Flashback [43], we introduce the Spatial Contextual
Attention Layer to analyze the relationship between spatial proximity and user interactions. It assigns
dynamic weights to POIs in a sequence, taking into account both the order and geographical distances,
focusing on POIs most influential to future movements. The spatial weight ωk for each POI pk in the
sequence (p1, p2, ..., pk, ..., pn), considering its spatial distance to all previous POIs p1∼pk, is:

ωk =

k∑
j=1

(
e−β(∆(pj ,pk)) + ϵ

)
, (3)

where ∆(pj , pk) is the haversine distance between pj and pk, β is the distance decay weight, and ϵ is
a small constant to prevent division by zero. Considering z̃k, an element from the Transformer output
sequence Z̃ = (z̃1, z̃2, ..., z̃k, ..., z̃n). The refined output z̃′k is obtained by applying spatial weight to
the cumulative previous outputs, defined as follows:

z̃′k =

∑k
j=1 ωj · z̃j∑k

j=1 ωj

. (4)

Prediction Layer. To provide personalized predictive outcomes and ensure accurate representation
even for users with fewer check-ins, we further introduce user embeddings EU

u and fuse it with
refined output Z̃ ′ to form the input O = [Z̃ ′||EU

u ] for the final fully connected layer L = OW + bP ,
where W ∈ R(dp+du)×|P | is the weight matrix of the fully connected layer, b ∈ R|P | is the bias, and
L ∈ Rn×|P | is the logit scores for n steps of POI prediction. As the POI prediction is essentially a
sequence classification task, we adopt the standard cross-entropy loss LCE as follows:

LCE = − 1

N

N∑
k=1

|P |∑
i=1

yki log

(
exp(lki )∑|P |
j=1 exp(l

k
j )

)
, (5)

where lki ∈ R1 represents the logit score of the k-th sample for the i-th POI candidate in P , and yki is
the ground-truth indicator on POI label i for the k-th sample. In our implementation, we mix the n
steps of prediction and B samples in one batch together as N = n×B samples in total.
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4.2 Long-Tailed Graph Adjustment

In the next POI prediction task, we model user-POI interactions via a User-POI Interaction Graph GIn

= (VIn,AIn), where VIn = [EU ||EP ] ∈ R(|U |+|P |)×d is the input node feature matrix of the GIn, d
= dp = du, and AIn ∈ R|U |×|P | is the adjacent matrix. It’s a bipartite graph where user U and POI
P nodes connect through edges symbolizing interaction frequencies or preferences. Graph Neural
Networks (GNNs) [38] can leverage graphs to learn complex node representations, but performance
hinges on graph quality. However, the GIn often has long-tailed distributions—most interactions are
limited to few nodes with high visit frequency, which affects the quality of node embeddings and
model efficacy. To tackle the long-tail problem in GIn, we propose a denoising layer to prune and
reduce sparse interactions caused by the distribution. This layer evaluates edge importance, retaining
only beneficial edges for learning. Initially, an attention layer weights edges according to user-POI
embedding interactions, processed by a multilayer perceptron (MLP) to obtain attention scores:

Aij = σ(WB · LeakyReLU(WA[EU
i ||EP

j ] + bA) + bB). (6)

Here, σ denotes the sigmoid function, ensuring that the attention scores Aij lie in the (0, 1) interval,
EU

i and EP
j means the embedding of user and POI, W represents the trainable weight matrix, and b

represents the bias. Based on the attention score Aij , the denoising process applies a thresholding
operation to filter out edges with scores below a threshold δ, effectively reducing noise and focusing
on high-quality interactions. This process aims to derive the denoised graph G̃In = (VIn, ÃIn) can
be formalized as:

ÃIn
ij = AIn

ij · 1[Aij ≥ δ], (7)

where ÃIn
ij denotes the refined edge and 1[·] is the indicator function. The threshold δ controls the

sparsity of the graph, only edges with weights signifying a strong user-POI relationship are retained
in G̃In. It is worth noting that when all edges fall below δ, the edge with the highest attention score is
retained to prevent isolated nodes in the graph. The model then leverages the Graph Convolutional
Network (GCN) [16] layer to learn the node embedding EIn of the G̃In, as follows:

EIn = LeakyReLU
(
(DIn)−

1
2 ÃIn(DIn)−

1
2VInW In

)
, (8)

where DIn is the degree matrix of the ÃIn, and W In is the graph convolution weight. It is
noted that here we perform a slicing operation EIn = EIn[|P | :] to select the node embedding
representing the POI of G̃In. Beyond merely focusing on direct interactions between users and POIs,
we further extend our exploration to utilize all users’ check-in data to uncover global mobility patterns
among POIs. We build a user-independent directed Global Transition Graph GTr = (VTr,ATr),
where VTr ∈ R|P |×dp and ATr ∈ R|P |×|P |. Here, VTr is equal to EP , and ATr stores the visit
frequency between two different POIs. It is important to note that we do not perform a denoising
process on the GTr, as it accurately reflects the mobility patterns of all users, containing a wealth
of global transition information. Similarly, we employ GCN refer to Equation (8) to learn the
node embedding ETr of the GTr. Finally, we perform mean pooling to combine the two node
embeddings EIn and ETr, which yields the denoised POI embedding ẼP = 1

2 (E
In + ETr) that

incorporate comprehensive user mobility patterns from interaction and transition graphs. To introduce
denoised embedding in our model, we refine our input embedding sequence X construction process
as X =

[
(ẼP

p1
, ẼP

p2
, ..., ẼP

pn
)||(ET

t1 , E
T
t2 , ..., E

T
tn)
]
.

4.3 Long-Tailed Loss Adjustment

Logit Score Adjustment. Traditional classification models often mechanically employ the softmax
function for outputting predictions, which may lead to an oversight of the potential discrepancies
in the posterior distributions between training and testing data. To improve model discrimination,
logit adjustment has been explored, which originates in the domain of face recognition [28, 52], It
involves modifying the model’s output layer (i.e., logits) to encourage the generation of more compact
intra-class representations while increasing the distance between classes, thereby augmenting the
model’s capability to handle long-tailed data.

To address the long-tail problem in human next POI prediction tasks, we propose the Logit Score
Adjustment module. It adjusts the logits by a factor that is inversely correlated with the frequency
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of occurrence of each label, effectively dampening the influence of frequently occurring labels and
amplifying that of rarer ones. The adjustment factor αi for label i with frequency freq is given by:

αi = τ

[
1− log(freqi + ϵ)

log(freqmax + ϵ)

]
, (9)

where freqmax is the maximum label frequency observed in the dataset, τ is the logit adjustment
weight and ϵ is a small constant to stabilize the logarithm operation. We can adjust final logits l̃i ∈ R1

based on the logits li ∈ R1 as l̃i = li + αi.

Sample Weight Adjustment. Based on the Equation (5), for the standard cross-entropy loss, we
can find due to the nature of the softmax function, which normalizes the logits lki into probabilities,
the model can become biased toward head classes. This imbalance means that the model’s updates
are predominantly driven by the head classes, as the loss from incorrectly classified examples in
long-tailed classes contributes insignificantly to the overall loss. Even marginal improvements in the
predictions for these long-tailed classes may contribute insignificantly to the overall loss. Therefore,
it is necessary to reweight long-tailed samples, like with Focal Loss [17], which reduces the weights
of well-classified samples to better focus on minority classes, but it does not explicitly consider the
imbalance degree between classes in the long-tailed distribution. Unlike Focal Loss, we propose a
novel Long-Tail Adjusted (LTA) loss to adaptively re-weight long-tailed samples. Specifically, for the
final prediction layer, we have the hidden inputs of N samples O = (o1, o2, ..., oN ) and the weights
W = (w1, w2, ..., w|P |) for |P | candidates, where ok ∈ R(du+dp) is from the k-th sample. The true
class label for the k-th sample is denoted by yk. We can take wyk ∈ R(du+dp) as the class “center”
for the class to which the k-th sample truly belongs. Then we assess the impact posed by the k-th
sample to the overall prediction through the cosine similarity between ok and wyk as follows:

cos(ok, wyk) =
ok · wyk

∥ok∥∥wyk∥
. (10)

Based on these cosine similarities, we compute the adjusted vector magnitude ξk for each sample as:

ξk =

{
1, cos(ok, wyk) ≤ 0,
1− cos(ok, wyk), cos(ok, wyk) > 0.

(11)

Then we determine the geometric mean of the vector magnitude to serve as a baseline magnitude ξ̄.
The traditional definition of the geometric mean of the vector magnitudes is the N -th root of their
product ξ̄ = N

√
ξ1ξ2 · · · ξN . However, it can be problematic in practice due to numerical underflow

or overflow when dealing with very small or very large values. To mitigate this issue, we utilize
logarithm to turn the product into a sum, making the calculation more numerically stable, as follows:

ξ̄ = exp

(
1

N

N∑
k=1

log(ξk + ϵ)

)
. (12)

We calculate adaptive weights ϕk for each sample using the deviation of vector magnitude from the
geometric mean:

ϕk =

{
1, ξk − ξ̄ ≤ 0,
1 + ξk − ξ̄, ξk − ξ̄ > 0.

(13)

Finally, the overall Long-Tail Adjusted loss LLTA can be formulated as:

LLTA = − 1

N

N∑
k=1

ϕk

|P |∑
i=1

yki log

(
exp(l̃ki )∑|P |
j=1 exp(l̃

k
j )

)
. (14)

By combining the Logit Score Adjustment and the Sample Weight Adjustment, we present a nuanced
approach to recalibrating the model’s focus across the spectrum of label frequencies. It ensures that
each sample contributes to the model’s learning process in proportion to its significance, as dictated
by the distributional characteristics of the dataset and the discriminative capacity of the model.
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4.4 Model Optimization

Building upon our Long-Tailed Loss Adjustment module, we further embrace auxiliary prediction
tasks to optimize LoTNext. To incorporate these tasks, we define a joint loss function that combines
three distinct loss components: the standard cross-entropy loss (LCE), the Long-Tail Adjusted Loss
(LLTA), and the Mean Squared Error loss for auxiliary time prediction (LAux). Each component
serves a critical role: LCE ensures the fidelity of the next POI prediction, LLTA addresses the
long-tailed data imbalance through adaptive weighting, and LAux measures the accuracy of the
timing predictions, an auxiliary task that supports the model by providing it with temporal context,
thereby improving prediction accuracy and robustness, which can be denoted as:

LAux =
1

N

N∑
k=1

||t̂k − tk||2, (15)

where t̂k is the forecasted time slot of k-th candidate POI and tk is the ground truth time slot. The
overall loss function is constructed as a weighted sum of these components, with the weights λ being
learnable parameters, as follows:

LJoint = λ1LCE + λ2LLTA + λ3LAux. (16)

5 Experiments

Datasets & Baselines. We evaluate our LoTNext on two publicly available real-world LBSN datasets:
Gowalla and Foursquare2 Each user check-in record includes the User ID, POI ID, latitude, longitude,
and timestamp. To focus solely on the impact of long-tailed POIs and ensure the dataset’s quality, we
filter out inactive users with fewer than 100 check-ins. We then split each user’s check-in records
according to temporal order, using the first 80% for training and the remaining 20% for testing. To
batch training, we uniformly segment the length of each input trajectory (e.g., 20). The specific
statistical results are shown in Table 1, where we additionally calculated the percentage of POIs with
a frequency smaller than 200 times and smaller than 100 times out of the total number of POIs. For
instance, defining long-tailed POIs as those with a frequency of less than 100 times, approximately
98.38% of POIs could be considered long-tailed POIs. Considering both Table 1 and Table 2, the
reason why the model performs about 20% points better on Foursquare compared to Gowalla is due
to the more severe long-tail effect on the Gowalla dataset, along with a sparser density of the dataset.

Table 1: Basic dataset statistics.

Dataset Gowalla Foursquare
Duration 2009.02-2010.10 2012.04-2014.01
#Users 7,768 45,343
#POIs 106,994 68,879

#Check-ins 1,823,598 9,361,228
#Trajectories 84,357 429,071

Density 0.002194 0.002997
POI frequency <200 (%) 99.57% 89.26%
POI frequency <100 (%) 98.38% 63.70%

To demonstrate the performance of the LoTNext, we implement the following 10 state-of-the-art
methods as the comparison baselines:

• ST-RNN [18] extends the RNN by introducing the spatial and temporal transition matrices.

• DeepMove [6] considers long-term and short-term interests of users by attention mechanism.

• LBSN2Vec [42] introduces the hypergraph and calculates the similarity of users and time embed-
dings to rank POIs.

• LightGCN [9] simplifies the structure of Graph Convolutional Network (GCN) to learn user
preferences for POIs.

2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Table 2: Acc@k and MRR performance comparison on Gowalla and Foursquare datasets.

Model Gowalla Foursquare
Acc@1 Acc@5 Acc@10 MRR Acc@1 Acc@5 Acc@10 MRR

ST-RNN [18] 0.0900 0.2120 0.2730 0.1508 0.2290 0.4310 0.5050 0.3248
DeepMove [6] 0.0625 0.1304 0.1594 0.0982 0.2400 0.4319 0.4742 0.3270
LBSN2Vec [42] 0.0864 0.1186 0.1390 0.1032 0.2190 0.3955 0.4621 0.2781
LightGCN [9] 0.0428 0.1439 0.2115 0.1224 0.0540 0.1790 0.2710 0.1574
LSTPM [29] 0.0721 0.1843 0.2327 0.1306 0.2484 0.4489 0.5018 0.3365
Flashback [43] 0.1158 0.2754 0.3479 0.1925 0.2496 0.5399 0.6326 0.3805
STAN [23] 0.0891 0.2096 0.2763 0.1523 0.2265 0.4515 0.5310 0.3420
GETNext [45] 0.1419 0.3270 0.4081 0.2294 0.2646 0.5640 0.6431 0.3988
Graph-Flashback [27] 0.1495 0.3399 0.4242 0.2401 0.2786 0.5733 0.6501 0.4109
SNPM [46] 0.1593 0.3514 0.4346 0.2505 0.2899 0.5967 0.6763 0.4278

LoTNext (Ours) 0.1668 0.3605 0.4429 0.2591 0.3155 0.6059 0.6812 0.4469

• LSTPM [29] proposes geo-nonlocal LSTM to further extend DeepMove structure.

• Flashback [43] searches the most similar hidden states in historical information based on the
current context information and updates the model.

• STAN [23] explores the influence between non-adjacent check-in records in trajectory sequences
through the attention mechanism.

• GETNext [45] introduces the global mobility patterns of all users into the Transformer architecture
to improve model prediction effects.

• Graph-Flashback [27] combines Spatial-Temporal Knowledge Graph with the sequential model
to enrich the representation of each POI.

• SNPM [46] learns the general characteristics of POIs by constructing a POI similarity graph and
aggregating similar POIs.

Metrics. To evaluate the model performance, we utilize two of the most common metrics for the
next POI prediction: Accuracy@k (Acc@k) and Mean Reciprocal Rank (MRR). Acc@k effectively
measures whether the true label is present within the top-k predicted results. Here, we consider
k=1, 5, and 10 to comprehensively assess the model’s performance. MRR directly quantifies the
average rank of the correct label among all predictions when the correct label is not within the top-k
predictions, with higher values indicating better average prediction performance by the model.

Settings. We implement LoTNext using PyTorch 1.13.1 on a Linux server equipped with 384GB
RAM, 10-core Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, and Nvidia RTX 3090 GPUs. The
embedding dimensions for POIs and users are set to 10, and the time embedding dimension is set
to 6. For the Transformer architecture, we incorporate two multi-head attention mechanisms and 2
encoder blocks. For the spatial decay rate β, we follow the settings of Flashback [43].

Overall Performance. Table 2 shows the predictive performance of all baseline methods and
LoTNext on two datasets. Based on Table 2, we can draw the following conclusions:

• On both public datasets, LoTNext outperforms all other state-of-the-art baseline methods across
all metrics. Compared to the most recent and best-performing baseline method, SNPM, LoTNext
achieves more significant improvements in Acc@1. These results indicate that LoTNext is better at
predicting long-tailed POIs that are less popular but highly relevant to specific users.

• Utilizing graphs to model all user mobility patterns, thereby improving POI embeddings, repre-
senting as SNPM, Graph-Flashback, and GETNext, significantly outperform sequential methods
represented by LSTPM and DeepMove, which rely solely on an individual user’s short-term and
long-term interests to predict the user’s next location. However, the raw User-POI Interaction Graph
has a large number of long-tailed nodes with a degree of 1 or very small. LoTNext, through its
long-tailed graph adjustment module, effectively filters these long-tailed nodes, thereby enhancing
the model’s predictive performance.

Performance on Long-Tailed Samples. To evaluate whether our model achieves accuracy improve-
ment on long-tailed samples, we define samples with a frequency less than 100 on Gowalla dataset
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as long-tailed samples to test the model’s specific predictive performance on both long-tailed and
head samples. We compare LoTNext with Graph-Flashback which provides the pre-trained model
for ease of comparison. As shown in Figure 3(a) and Figure 3(b), LoTNext consistently outperforms
Graph-Flashback on both Acc@1 and MRR metrics, whether for head or long-tailed samples. Fur-
thermore, Figure 3(c) reveals a notable distinction in the prediction of long-tailed POIs, LoTNext
exhibits a roughly 6% higher propensity to predict long-tailed POIs compared to Graph-Flashback.
This increment not only underscores the enhanced capacity of LoTNext to identify and anticipate
long-tailed POIs but also demonstrates the efficacy of our methodology.
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Figure 3: The performance comparison of the long-tailed and head POIs between LoTNext and
Graph-Flashback on Gowalla dataset.

Ablation Study. To analyze the impact of different modules on LoTNext, we conducted the following
ablation settings: (1) without the Long-Tailed Graph Adjustment module (w/o LTGA), where we
conducted with the raw graph without graph adjustment. (2) without the Long-Tailed Loss Adjustment
module (w/o LTLA), meaning we only used the original cross-entropy loss for testing. (3) without the
original cross-entropy loss (w/o LCE), meaning we only use Long-Tailed Loss Adjustment module
(LLTA loss). (4) without the auxiliary prediction task module, we utilized the LTLA module and
cross-entropy loss function, removing the auxiliary time prediction task, denoted as w/o LAux.

Table 3: The performance comparison among the LoTNext and variants without some components.

Model Gowalla Foursquare
Acc@1 Acc@5 Acc@10 MRR Acc@1 Acc@5 Acc@10 MRR

w/o LTGA 0.1617 0.3568 0.4419 0.2550 0.3020 0.6002 0.6783 0.4368
w/o LTLA 0.1544 0.3439 0.4266 0.2450 0.3014 0.5985 0.6758 0.4362
w/o LCE 0.1550 0.3455 0.4287 0.2462 0.3029 0.5989 0.6771 0.4365
w/o LAux 0.1609 0.3567 0.4344 0.2523 0.3039 0.5993 0.6769 0.4370

LoTNext 0.1668 0.3605 0.4429 0.2591 0.3155 0.6059 0.6812 0.4469

From Table 3, we have the following findings: (1) The embeddings obtained after the LTGA module
contribute to the model’s predictive performance. This is mainly because long-tailed POIs can
be considered noise to some extent, and appropriately eliminating some noise helps with model
prediction. (2) Utilizing only the original cross-entropy loss results in performance below SNPM,
indicating that the strategy of considering the long-tailed distribution through the LTLA module is
effective for improving model accuracy in identifying the most relevant items. (3) The results using
only the LLTA loss show slightly higher metrics than results w/o LTLA, which suggests that the
model may over-focus on long-tail data, leading to a decline in the recommendation performance
for head data. For this reason, we consider incorporating the LCE to balance the recommendation
performance between long-tail data and head data. (4) Without the time prediction task, we observe a
decline in the MRR metric, suggesting that temporal features play a crucial role in helping the model
capture the dynamic changes in user behavior.

Case Study: Learned POI Embedding. Figure 4 presents t-SNE visualizations of the embeddings
for the four least frequently occurring POIs on Gowalla dataset. In Figure 4(b) representing LoTNext
the embeddings of these low-frequency POIs are more distinct and well-separated, indicating that
LoTNext effectively captures the unique characteristics of these tail POIs. This clear separation
demonstrates that LoTNext can learn meaningful representations even for the least frequent POIs,
which is crucial for accurate prediction and recommendation. In contrast, Figure 4(a) showing Graph-
Flashback’s performance, reveals more overlapping and less distinct clusters for these low-frequency
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(a) Graph-Flashback. (b) LoTNext.

Figure 4: The visualization of tail POIs on Gowalla dataset. The color represents the POI frequency.

POIs. This overlap suggests that Graph-Flashback struggles to differentiate between the tail POIs,
potentially leading to less accurate predictions for these rarely visited locations.

LoTNext

941 (26) 792 (99)

940 (33)

939 (12)

936 (108)

938 (26)

937 (200)

837 (112)

935 (76)

934 (64)

True: 933 (94)

Long-Tail POI

False: 61 (2023)

Head POI

Graph-Flashback

Figure 5: Sample prediction from Gowalla dataset
with Graph-Flashback and LoTNext.

Case Study: Prediction on Long-Tailed Sample.
Figure 5 provides a visual comparison of sam-
ple predictions made by the Graph-Flashback
and LoTNext models on a trajectory from the
Gowalla dataset for user 5. Each POI in the
user’s trajectory is identified by a unique ID
and its visitation frequency, where the number
in parentheses represents the frequency of vis-
its. In this specific trajectory, user 5 visits a
sequence of POIs. For the given POI 934, LoT-
Next accurately predicts the next POI to be 933,
a long-tail POI with a visitation frequency of 94.
In contrast, the Graph-Flashback model incor-
rectly predicts the next POI to be 61, a head POI
with an extremely high visitation frequency of
2023. This is the same sample as the problem
shown in Figure 1, demonstrating the efficacy of LoTNext in capturing the user’s actual movement
pattern, which encompasses both frequently and infrequently visited POIs.

6 Conclusion

In this work, we propose LoTNext, a novel framework for human next POI prediction under long-
tailed data distribution. Specifically, we employ a Long-Tailed Graph Adjustment module to mitigate
the impact of long-tailed nodes within the User-POI Interaction Graph. Additionally, to balance the
influence of long-tailed data in the loss, we propose the Long-Tailed Loss Adjustment module to adjust
the model’s predicted logits and adaptively increase the weight of long-tailed samples. Moreover, we
leverage the auxiliary prediction task to achieve spatial and temporal prediction synergy. Through
comparisons with 10 state-of-the-art methods, we demonstrate the superiority of LoTNext over the
most advanced approaches. A limitation of our approach lies in that LoTNext’s reliance on extensive
user trajectory data poses a potential risk for privacy breaches if deployed by certain institutions or
companies, which could lead to negative social impacts. We plan to address it in future work.
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A Appendix / supplemental material

A.1 Notations

The notations used in our paper are summarized as follows.

Table 4: Notation Table.

Symbol Meaning

U, u User set and user
P, p POI set and POI
T, t Time slot set and time slot
EU , EP , ET , Epos Embedding of user, POI, timestamp, and position
X, X̃ Embedding sequence w/o./with positional embedding
Z, Z̃ Output of the multi-head attention layer and transformer
Z̃′, z̃′ Refined output by spatial contextual attention layer
O, o Input of the final fully connected layer
L Logit scores calculated by fully connected layer
W,w Trainable weight matrix
N The number of sample
B Batchsize
GIn User-POI Interaction Graph
GTr Global Transition Graph
VIn,AIn Input node feature matrix and adjacent matrix of GIn
VTr,ATr Input node feature matrix and adjacent matrix of GTr

Aij Attention scores
G̃In, ÃIn Refined User-POI Interaction Graph and its adjacent matrix
EIn, ETr Node embedding of GIn and GTr

DIn, DTr Degree matrix of GIn and GTr

ẼP Denoised POI embedding

dp, dt, du Hidden dimension of the POI, time and user
n Sequence length
b Bias
yi Ground-truth indicator
l, l′ Logits and adjusted logits for each POI class
ti, t̂i Time slot and the forecasted time slot

ω Spatial weight
β Distance decay weight
∆(i, j) Haversine distance between pi and pj
ϵ Small constant
σ Sigmoid function
δ Denoising threshold
τ Logit adjustment weight
α Adjustment factor
ξ, ξ̃ Adjusted vector magnitude and its geometric mean
ϕ Adaptive weights for each sample
λ Learnable loss weights

A.2 Computational Cost

In this section, we explore the computational cost of LoTNext. We selected three sequence-based and
three graph-based baselines to demonstrate the computational efficiency of our approach. Table 5 lists
the inference time for each deep learning model during the testing phase (running one training/testing
instance, i.e., test time divided by batch size). We ensured that all models were executed on the
same RTX 3090 GPU. Surprisingly, due to batch training, the graph-based methods generally run
significantly faster than the sequence-based methods. DeepMove is the fastest among the sequence-
based methods, as it only considers calculating attention using historical trajectories. Compared to
DeepMove, LSTPM further introduces a geographical relationship adjacency matrix to enrich the
spatial context, making it slightly slower than DeepMove. STAN employs a dual-layer attention
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architecture, with one attention layer aggregating spatiotemporal correlations within user trajectories
and the other selecting the most likely next POI based on weighted check-ins, resulting in the longest
inference time for STAN.

Table 5: Comparison of computational cost. Each method is benchmarked on the same NVIDIA
GeForce RTX 3090 GPU.

Method Inference Time (10−3 Seconds)

DeepMove (Sequence-based) 1.422
LSTPM (Sequence-based) 3.417
STAN (Sequence-based) 2887.809
GETNext (Graph-based) 3.824

Graph-Flashback (Graph-based) 0.0918
SNPM (Graph-based) 0.491

LoTNext (Graph-based) 0.257

In the graph-based methods, GETNext introduces additional computational overhead due to the
need for extra POI candidate probability reorganization based on transition attention during the final
prediction stage. SNPM requires extra computation time due to the search for similar neighborhoods
within the graph. As for our LoTNext, it requires more time to run compared to Graph-Flashback
because LoTNext includes graph denoising and an auxiliary temporal prediction task. However,
Table 2 and Table 3 demonstrate the effectiveness of our proposed modules, even at the cost of some
computational time. Thus, considering that LoTNext encompasses more processing steps and overall
accuracy, the increase in inference time is still acceptable.

A.3 Hyperparameter Analysis
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Figure 6: Impact of denoising thresholds δ and logit adjustment weight τ .

We conduct hyperparameter sensitivity experiments on the Long-Tailed Graph Adjustment module’s
threshold δ and the weight τ of the logit adjustment module to identify the optimal parameter values
on Gowalla and Foursquare datasets. We first experiment with a range of thresholds δ from 0.1 to
0.9 in increments of 0.2, which controls the sensitivity of the model to the long-tailed distribution
by filtering less significant edges in the graph. The results, shown in Figure 6(a) for Gowalla and
Figure 6(c) for Foursquare, indicate that Acc@1 and MRR remain stable across different values, with
the optimal threshold identified as δ = 0.5. Next, we vary the logit adjustment weight τ from 1 to
2 in increments of 0.2 to test the model’s performance in balancing class imbalances. Figure 6(b)
and Figure 6(d) reveal that τ = 1.2 yields the best results on both datasets, suggesting a moderate
adjustment weight helps generalize better without overly amplifying rare classes. These consistent
findings across both datasets underscore the robustness of δ = 0.5 and τ = 1.2, highlighting the
importance of hyperparameter tuning in improving model accuracy and ranking metrics for better
prediction of user behavior in diverse datasets.
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A.4 Model Training Pseudo-code

Algorithm 1 shows the pseudo-code of the LoTNext training process. In our experiments, all training
instances are processed through mini-batches.

Algorithm 1 Pseudo-code of training LoTNext
1: Input: User set U , POI set P , user check-in sequences Qu for each user u ∈ U
2: Output: Trained model parameters γ
3: γ← Initialize randomly
4: while not converge do
5: Construct graph GIn and GTr , apply denoising, and learn node embeddings EIn and ETr by Eqs.

(8)-(11) ▷ Graph Adjustment
6: Compute denoised POI embedding ẼP by Eq. (12) ▷ Embedding Denoising
7: Calculate time and user embeddings ET , EU , and construct embedding sequence X by Eq. (1) ▷

Embedding Initialization
8: Transform input X̃ by Eq. (1) ▷ Positional Encoding
9: Calculate Transformer encoder output Z̃ by Eq. (2) ▷ Transformer Encoder

10: for each POI pk in sequence do
11: Calculate spatial weight ωk by Eq. (4) ▷ Spatial Weight Calculation
12: Refine output z̃k by Eq. (5) ▷ Output Refinement
13: end for
14: Calculate fused output O and logits L by Eq. (6) ▷ Prediction Layer
15: Compute cross-entropy loss LCE by Eq. (7) ▷ Loss Calculation
16: Adjust logits using αi and recompute logits l̃i by Eqs. (13)-(14) ▷ Logit Adjustment
17: Calculate adaptive weights ϕk and overall loss LLTA by Eqs. (19)-(20) ▷ Loss Adjustment
18: Compute auxiliary loss LAux by Eq. (21) ▷ Auxiliary Loss
19: Update parameters γ by minimizing joint loss LJoint by Eq. (22) ▷ Parameter Update
20: end while
21: return γ
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction effectively summarize the paper’s main contri-
butions and the scope of the study, which focus on improving POI prediction through the
proposed LoTNext method. This method addresses challenges related to the long-tailed
distribution of location visitations. The main claims include the development of the Long-
Tailed Graph Adjustment module and the Long-Tailed Loss Adjustment module, along with
the incorporation of auxiliary prediction tasks to enhance model generalization and accuracy.
These elements are precisely reflected in the detailed methodology and results sections
of the paper, where the effectiveness of LoTNext is demonstrated on real-world datasets,
significantly outperforming existing methods. Thus, the abstract and introduction provide a
clear and accurate preview of the paper’s technical content and its contributions to the field.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses the limitations of the proposed method, LoTNext.
It acknowledges that the model does not account for emergent events such as vehicle
accidents and extreme weather conditions, which are typical examples of long-tail data that
can affect human mobility and, consequently, the model’s robustness. Additionally, the
paper highlights the privacy concerns associated with the extensive use of user trajectory
data, acknowledging the potential risks if the model is deployed by certain entities. This
discussion in the paper ensures that readers are fully aware of the conditions under which
the model was tested and its potential limitations in real-world scenarios.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results or formal proofs as it primarily
focuses on the application of deep learning techniques to the problem of the next POI
prediction. The mathematical formulations presented within the paper represent specific
operational processes within the deep learning model rather than propositions requiring
formal proofs. These formulations are used to describe the architecture and function of the
proposed LoTNext method, including its components like the Long-Tailed Graph Adjustment
module and the Long-Tailed Loss Adjustment module. Since the paper’s contributions are
empirical and methodological rather than theoretical, it does not involve the derivation of
theorems or the necessity of providing rigorous proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides the detailed information required for the reproducibility
of the main experimental results. It describes the datasets used, namely the Gowalla and
Foursquare datasets, including the criteria for data filtering and splitting for training and
testing purposes. It also specifies the baselines against which the proposed LoTNext method
is compared, encompassing a comprehensive list of state-of-the-art methods. Furthermore,
the paper outlines the evaluation metrics used, such as Accuracy@k and Mean Reciprocal
Rank (MRR), and explains their significance in the context of the next POI prediction.
Additionally, detailed descriptions of the experimental settings, including hardware specifi-
cations and software versions, are provided. This level of detail in the experimental setup,
methodology, and evaluation ensures that other researchers can replicate the study and verify
the claims made about the performance of the LoTNext method. The disclosure of this
information supports the reproducibility of the research, adhering to the standards required
for scientific verification and validation.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper grants open access to both the code and data necessary for repro-
ducing the main experimental results, as stated in the abstract and introduction sections.
The code for the proposed LoTNext method is available at a specified URL, hosted on a
public repository which maintains anonymity as per submission guidelines. This repository
includes detailed instructions on setting up the environment, executing the code, and repro-
ducing the experiments conducted with the LoTNext method. Additionally, the datasets
used, Gowalla and Foursquare, are publicly available and well-documented, allowing re-
searchers to access and use them for replication purposes. Instructions for data preprocessing
and setup are clearly provided, ensuring that other researchers can faithfully replicate the
study’s findings. This comprehensive provision of resources supports the transparency and
reproducibility of the research, aligning with the conference’s guidelines for open access to
data and code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive details about the experimental setup neces-
sary to understand and reproduce the results. It specifies the data splits used for training and
testing, with 80% of the data used for training and the remaining 20% for testing. The paper
also describes the hyperparameters employed, including the dimensions for user and POI
embeddings, and the configuration of the Transformer architecture used in the model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: To ensure the reproducibility of our experimental results, we fixed the ran-
dom seed during the data splitting and model execution phases. As a result, we did not
report statistical significance measures such as error bars, confidence intervals, or statistical
significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information in Section 5 about the compute
resources used for the experiments, including the type of compute workers (Linux server with
Intel Xeon Silver 4210R CPU and Nvidia RTX 3090 GPUs), memory (384GB RAM), and the
software environment (PyTorch 1.13.1). The specifications for the embedding dimensions,
the Transformer architecture, and the spatial decay rate are also clearly described, ensuring
that the experiments can be accurately reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the NeurIPS Code of Ethics carefully and ensure we follow all the
requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper addresses both the potential positive and negative societal impacts
of the proposed LoTNext method. On the positive side, the method aims to enhance
personalized navigation, optimize recommendation systems, and facilitate urban mobility
and planning. These improvements could significantly enhance the quality of life for city
residents by making navigation and planning more efficient and tailored to individual needs.
On the negative side, the paper acknowledges specific risks associated with the deployment
of LoTNext, particularly concerning privacy. The reliance on extensive user trajectory
data could potentially lead to privacy breaches if the model is employed by institutions
or companies without stringent data protection measures. This could have adverse social
impacts, such as unauthorized surveillance or misuse of personal data. The paper’s discussion
of these potential harms demonstrates an awareness of the broader implications of deploying
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such technology in real-world settings. By addressing both the potential benefits and risks,
the paper provides a balanced view of its societal impact, complying with ethical standards
for transparency and responsibility in AI research. This acknowledgment of both positive
and negative impacts ensures that readers and potential users are well-informed about the
capabilities and limitations of the proposed method.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks. We did not use any pre-trained models, and all
datasets are sourced from publicly available data, which are commonly used in related work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly credited the creators and original owners of all assets used
in the paper, including code, data, and models. The sources and relevant citations are clearly
indicated in the paper. Additionally, the licenses and terms of use for these assets have
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been explicitly mentioned and properly respected. We have used publicly available datasets,
citing the original papers that produced them, and included the specific versions and URLs
where applicable. The licenses, such as CC-BY 4.0, have been noted, ensuring compliance
with the terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are thoroughly documented. De-
tailed documentation is provided alongside the assets, including information about the
dataset/code/model, training procedures, licenses, and limitations. This ensures that other
researchers can effectively utilize and build upon our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Although our research involves predicting human next points of interest (POI),
our data is sourced from publicly available datasets, which are commonly used in related
work. The sources and relevant citations are clearly indicated in the paper, making this
question not applicable to our study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Although our research involves predicting human next points of interest (POI),
our data is sourced from publicly available datasets, which are commonly used in related
work. The sources and relevant citations are clearly indicated in the paper, making this
question not applicable to our study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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