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Abstract
In “Embers of Autoregression” (McCoy et al.,
2023), we showed that several large language
models (LLMs) have some important limita-
tions that are attributable to their origins in next-
word prediction. Here we investigate whether
these issues persist with o1, a new system from
OpenAI that differs from previous LLMs in
that it is optimized for reasoning. We find that
o1 substantially outperforms previous LLMs
in many cases, with particularly large improve-
ments on rare variants of common tasks (e.g.,
forming acronyms from the second letter of
each word in a list, rather than the first let-
ter). Despite these quantitative improvements,
however, o1 still displays the same qualitative
trends that we observed in previous systems.
Specifically, o1—like previous LLMs—is sen-
sitive to the probability of examples and tasks,
performing better and requiring fewer “think-
ing tokens” in high-probability settings than
in low-probability ones. These results show
that optimizing a language model for reasoning
can mitigate but might not fully overcome the
language model’s probability sensitivity.

1 Introduction

How can we reason about the strengths and limita-
tions of AI systems? In McCoy et al. (2023), we
argue that one productive approach is to analyze the
system through the lens of the pressures that have
shaped it (Marr, 1982; Shepard, 1987; Anderson,
1990; Griffiths, 2020). By considering these pres-
sures, we can make predictions about what strate-
gies the AI system is likely to adopt. Reasoning
about these strategies can then provide hypotheses
about which types of examples the system will be
able to handle well or poorly.

In our prior work, we applied this approach—
which we call the teleological perspective—to
large language models (LLMs). Perhaps the most
significant pressure shaping these systems is their
primary training objective of autoregression (next-
word prediction; Elman 1990; Radford et al. 2018):

they are trained to take in the start of a piece of
text and probabilistically predict what word will
come next. By considering the probabilistic nature
of this objective, we predicted that LLMs would
be sensitive to both the probability of the text they
need to produce and the commonness of the task
they are being asked to perform. These hypotheses
were supported by a range of experiments. For ex-
ample, LLMs performed better at reversing a list
of words when the output of the reversal was a
high-probability word sequence than when it was a
low-probability word sequence. Thus, even when
LLMs are being used for tasks that seem very differ-
ent from next-word prediction, their performance
still shows embers of autoregression—behavioral
patterns that result from the influence of being op-
timized to perform next-word prediction.

In this work, we analyze a new system from
OpenAI called o11 to see whether it also displays
these embers of autoregression. Unlike previous
LLMs, o1 was explicitly optimized to perform rea-
soning. Thus, it is possible that this departure from
the next-word prediction objective would make o1
less susceptible to the limitations that arise from
next-word prediction. On the other hand, it is likely
that o1’s training involves next-word prediction as
well as reasoning optimization, meaning that o1
may still show the effects that arise from next-word
prediction.

We find that o1 improves substantially over pre-
vious LLMs in many of our evaluations, but it still
shows the same qualitative behavioral patterns that
we observed with other LLMs. On the front of ex-
ample probability, o1 scores substantially better on
examples with high-probability outputs than ones
with low-probability outputs. On the front of task
probability, o1 sometimes scores better on com-
mon task variants than rare ones, though these task
frequency effects are less pronounced than in pre-

1https://openai.com/index/learning-to-reaso
n-with-llms/
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Figure 1: Across the four tasks we considered (shift ciphers, Pig Latin, article swapping, and reversal), all six LLMs
evaluated here—including o1—show sensitivity to output probability, with higher accuracies on examples that have
a high output probability than on examples that have a low output probability. The results for all models except o1
are from McCoy et al. (2023). The intervals around the lines show one standard error.

vious LLMs. In addition to assessments based on
accuracy, o1 also provides another way to quantify
difficulty, namely via the number of tokens that it
produces while working toward an answer. This
metric corroborates the results based on accuracy:
o1 uses more tokens to produce its answers for low-
probability examples and rare task variants than it
does for high-probability examples and common
task variants. Overall, then, o1 represents an im-
pressive advance on the types of tasks we consider,
but it has not fully overcome the issues highlighted
in our previous work.

2 Background: o1

The exact details of how o1 works are not publicly
available, but a general description of its operation
is available at https://openai.com/index/lea
rning-to-reason-with-llms/. o1 is trained via
reinforcement learning to solve reasoning problems
using a chain of thought (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022), in which it breaks
the problem down into steps before producing the
final answer. The user is only given the final answer
(not the chain of thought), but the number of tokens
inside the chain of thought is provided, so we can
tell how long the chain of thought was even though
we cannot tell what its contents were; below we
have some analyses based on these counts of so-
called “thinking tokens.”

3 Results

The version of o1 used for all results below is
o1-preview-2024-09-12, which we tested with
its default settings. For detailed descriptions of the
tasks and datasets that are evaluated on, see McCoy

et al. (2023). We evaluated on only a subset of the
tasks from McCoy et al. (2023), excluding those
whose datasets involved a large number of exam-
ples because o1 has a fairly high cost per example.

3.1 Output probability
The first major effect that we tested for was sensitiv-
ity to output probability: Does o1 perform better on
examples for which the answer is a high-probability
string than on examples for which the answer is a
low-probability string? We investigated the effects
of output probability across four tasks: decoding
shift ciphers (a simple type of cipher), decoding
messages expressed in Pig Latin, article swapping
(swapping certain words in a sequence with the
words before them), and reversing a list of words.

As shown in Figure 1, o1—like the other LLMs
illustrated there—shows clear effects of output
probability. For example, in the shift cipher task, its
accuracy ranges from 47% in the lowest-probability
case to 92% in the highest-probability case. Al-
though o1 shows the same qualitative trend as other
LLMs, it often outperforms them quantitatively,
with particularly strong results in the article swap-
ping task.

In addition to evaluating accuracy, we also noted
how many tokens were used by o1 to answer its
queries (Figure 2). Across all four tasks, o1 tended
to use more tokens for low-probability examples
than high-probability ones, further corroborating
the conclusion that low-probability cases are harder
for o1 than high-probability cases.

3.2 Task frequency
The other major effect that we tested for was sen-
sitivity to task frequency: Does o1 perform better

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/


Shift cipher Pig Latin Article swapping Reversal

−125 −100 −75 −120 −100 −80 −60−160 −140 −120 −100 −80 −125 −100 −75

0

2000

4000

6000

Output log probability

To
ke

ns
 u

se
d

o1−preview

Figure 2: o1 tends to use more tokens when processing examples that have low-probability answers than examples
that have high-probability answers. The plots show the median number of tokens that o1 used for each group of
examples.

on task variants that occur frequently in training
data (e.g., sorting a list into alphabetical order)
than rarer variants of those tasks (e.g., sorting a
list into reverse alphabetical order)? For this set of
experiments, we considered five task types, with a
common and rare variant for each one: decoding
messages written in shift ciphers, encoding mes-
sages into Pig Latin, forming acronyms, applying
a linear function, and sorting a list.

We find that o1 performs substantially better than
the other LLMs on the rare task variants (Figure 3,
left). Further, although all other LLMs show stark
differences between the rare and common versions
of at least some tasks, o1 achieves similar scores
between the two members of each pair. These re-
sults suggest that o1 might not be sensitive to task
frequency, but it is difficult to draw definitive con-
clusions because o1’s strong performance might
be producing ceiling effects. That is, even if o1 is
sensitive to task frequency, the datasets used here
might not be challenging enough for the effects to
be evidenced.

To address the possibility of ceiling effects, we
investigated more challenging versions of two of
the tasks. First, the sorting tasks involve sorting
a list of words into alphabetical order (the com-
mon variant) or reverse alphabetical order (the rare
variant). We made sorting more challenging by
having all words in the list start with the same
letter—namely, i—so that finding the right order-
ing requires considering at least the first two letters
of each word, whereas previously it was usually
sufficient to only consider the first letter. In this
harder version of sorting, o1 now performs sub-
stantially better on the common version of the task
than the rare one (Figure 3, top right). Second, the

shift cipher tasks involve decoding a message writ-
ten in a simple cipher, where the cipher involves
shifting each letter forward in the alphabet either
13 positions (the common variant) or 12 positions
(the rare variant). To modulate difficulty in this
case, we used examples whose target outputs var-
ied in probability, since we have established that
lower-probability cases tend to be harder for o1. Al-
though o1 performs similarly on the common and
rare task variants in the highest-probability case, its
performance in the medium-probability and low-
probability settings is higher for the common task
variant than the rare one (Figure 3, bottom right).
These additional experiments therefore show that
o1 is sensitive to task frequency in at least some
cases—but this trend may only be observable when
the examples are challenging enough for bring o1’s
performance substantially below 100% accuracy.

Finally, plotting the number of tokens that o1
uses for each task variant reveals additional evi-
dence that rare task variants can be harder for o1
than common task variants (Figure 4). Specifically,
for both shift cipher decoding and acronyms, o1
uses far more tokens for the rare task variant than
the common one. Notably, for both of these tasks,
accuracy is nearly identical for both task variants;
e.g., for acronyms, o1 achieved 100% accuracy on
the common variant and 99.9% accuracy on the
rare variant. These cases therefore show that it is
possible for o1 to display a difference in difficulty
as quantified by the number of tokens that are used
even when the relevant accuracies show no varia-
tion. Although shift cipher decoding and acronyms
both showed large differences in token quantities
between the two task variants, the other three task
types had almost identical token usage between
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Figure 3: Left: We evaluated LLMs on two variants of five tasks—a variant that is common in Internet text (e.g.,
forming acronyms from the first letter of each word in a sequence) and a variant that is rare (e.g., forming acronyms
from the second letter of each word in a sequence). On these datasets, the five LLMs other than o1 showed much
higher accuracy on the common variants than the rare ones, but o1 showed similar performance on common and
rare variants. The results for models other than o1 are from McCoy et al. (2023). Top right: On datasets based on
challenging sorting tasks, o1 performs better on the common type of sorting (i.e., sorting into alphabetical order)
than on the rare type of sorting (i.e., sorting into reverse alphabetical order). Bottom right: When decoding shift
ciphers, o1 shows roughly the same performance on the common cipher type and on the rare cipher type when the
examples are ones with a high output probability. However, when it is instead evaluated on examples with medium
or low probability, its accuracy is higher for the common cipher type than the rare one. The error intervals in all
plots show one standard error.
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Figure 4: In some cases—namely, for shift ciphers and acronyms—o1 consumes more tokens when performing a
rare task variant than a common task variant. For the other task pairs, the number of tokens it consumes is similar
across both task frequency levels. The bars show the median number of tokens used within each group of examples.
Note that the vertical axes have different scales in each plot.



variants, showing that differences in task frequency
are only sometimes associated with differences in
token usage.

Overall, o1 shows substantially less sensitivity to
task frequency than the other LLMs we have previ-
ously identified. However, there still is evidence of
task frequency effects in some cases, namely when
the tasks are made more challenging and when we
consider the number of tokens consumed by o1.
We therefore conclude that o1 can be substantially
influenced by task frequency.

4 Conclusion

On many of the tasks we considered, o1 performed
substantially better than the LLMs we had previ-
ously evaluated, with particularly strong results on
rare variants of common tasks. However, it still
qualitatively showed both of the central types of
probability sensitivity discussed in McCoy et al.
(2023): sensitivity to output probability and sensi-
tivity to task frequency.

These results are consistent with the teleologi-
cal perspective that we have argued for. On one
hand, o1 is explicitly optimized for reasoning, so
we should expect it to perform well on the sorts of
algorithmic tasks that we have considered—as it
indeed does. On the other hand, although this is
not explicitly stated in the o1 documentation as far
as we can tell, o1 also probably went through a sub-
stantial amount of training on next-word prediction,
such that we would expect it to display the behav-
ioral signatures that go with being optimized for
next-word prediction—and we have indeed found
that it does so. These results support the view that
developing a complete teleological analysis of an
AI system requires consideration of all types of
optimization that have been applied to that system.

We see two potential aspects of o1 that might
give rise to the probability sensitivity we have ob-
served. First, probability sensitivity might arise
during the process of generating text, for the same
reasons as it does in other types of LLMs—the gen-
eration process in any system optimized for statisti-
cal prediction is expected to be biased toward high-
probability text. Indeed, Prabhakar et al. (2024)
showed that LLMs using chain-of-thought reason-
ing are susceptible to probability effects when gen-
erating text, so it would not be surprising if the
process of generation produces similar effects in
the hidden chains of thought produced by o1. Sec-
ond, it might be that the process of developing a

chain of thought could also introduce biases toward
high-probability scenarios: if o1’s task is viewed
as considering multiple potential chains of thought
and deciding between them, this decision might
be at least partially influenced by probability (e.g.,
favoring chains that produce higher-probability an-
swers because those answers are judged as more
plausible), which would introduce biases favoring
high-probability text (or would enhance those bi-
ases if they are already present).

It is not clear what modeling enhancements
would suffice to fully overcome the limitations that
we have highlighted. One potential solution would
be to incorporate model components that do not
involve probabilistic judgments in any way, such as
modules that execute Python code. For now at least,
the sparks of AGI (Bubeck et al., 2023) that LLMs
may be producing continue to be accompanied by
embers of autoregression.

Competing interests

S.Y. is employed by OpenAI, but this work is an
addendum to a project that was completed before
he started at OpenAI. Though this paper includes
some speculation about how o1 works, S.Y. did not
contribute to these parts of the paper, so the paper
should not be viewed as providing any informa-
tion about how o1 works beyond what is publicly
available.

References
John R Anderson. 1990. The Adaptive Character of

Thought. Erlbaum.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4. arXiv
preprint arXiv:2303.12712.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Thomas L Griffiths. 2020. Understanding human intelli-
gence through human limitations. TiCS, 24(11):873–
883.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large
language models are zero-shot reasoners. NeurIPS,
35:22199–22213.

David Marr. 1982. Vision. W.H. Freeman.



R. Thomas McCoy, Shunyu Yao, Dan Friedman,
Mathew Hardy, and Thomas L. Griffiths. 2023. Em-
bers of autoregression: Understanding large language
models through the problem they are trained to solve.
arXiv preprint arXiv:2309.13638.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint
arXiv:2112.00114.

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas
McCoy. 2024. Deciphering the factors influenc-
ing the efficacy of chain-of-thought: Probability,
memorization, and noisy reasoning. arXiv preprint
arXiv:2407.01687.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Roger N. Shepard. 1987. Toward a universal law of
generalization for psychological science. Science,
237(4820):1317–1323.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. NeurIPS,
35:24824–24837.


