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Abstract. Evaluating the quality of explanations in Explainable Artifi-
cial Intelligence (XAI) is to this day a challenging problem, with ongoing
debate in the research community. While some advocate for establishing
standardized offline metrics, others emphasize the importance of human-
in-the-loop (HIL) evaluation. Here we propose an experimental design to
evaluate the potential of XAI in human-AI collaborative settings as well
as the potential of XAI for didactics. In a user study with 1200 partici-
pants we investigate the impact of explanations on human performance
on a challenging visual task - annotation of biological species in complex
taxonomies. Our results demonstrate the potential of XAI in complex
visual annotation tasks: users become more accurate in their annota-
tions and demonstrate less uncertainty with AI assistance. The increase
in accuracy was, however, not significantly different when users were
shown the mere prediction of the model compared to when also provid-
ing an explanation. We also find negative effects of explanations: users
tend to replicate the model’s predictions more often when shown expla-
nations, even when those predictions are wrong. When evaluating the
didactic effects of explanations in collaborative human-AI settings, we
find that users’ annotations are not significantly better after performing
annotation with AI assistance. This suggests that explanations in visual
human-AI collaboration do not appear to induce lasting learning effects.
All code and experimental data can be found in our GitHub repository:
https://github.com/TeodorChiaburu/beexplainable.
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1 Introduction

XAI strives to bridge the gap between complex AI models and human users
by providing explanations for the models’ decisions. However, evaluating the
effectiveness of XAI methods remains a challenging question[31,20,27,3,36,30].
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Currently, two primary methodological approaches dominate the XAI evalua-
tion landscape: fully automated evaluation metrics and HIL approaches.
While the former strategy offers an objective and scalable solution [18,10,19], it
often lacks the richness of human understanding.

HIL experiments are supposed to provide a powerful alternative by directly
assessing user interaction with explanations. While human comprehension is the
ultimate goal of explainability, evaluating model explanations through human
subject studies presents a significant challenge. These studies necessitate rigor-
ous experimental design and can be resource-intensive in terms of time, money
or logistics [24]. Nonetheless, due to the inherently human-centric nature of ex-
plainability, a substantial body of literature advocates for HIL experiments as a
means to assess explanation quality [12,22,9,23,2,28].

Several aspects of understanding the effect of explanations are of interest and
worth exploring for a given XAI method, as discussed in the following section.
While allowing for analyzing some of these points, the HIL framework we pro-
pose in this work enables practitioners to also measure the didactic potential of
explanations, as well as correlations between the subjects’ and the machine’s un-
certainty. To the best of our knowledge, these aspects have yet to be investigated
in the current XAI literature.

2 Related Work

The definition of a "good" explanation remains an ongoing debate, leading to
a diverse range of HIL experiments focusing on various aspects and metrics.
Comprehensive reviews of this field can be found in [33,15,37].

Perhaps the most extensively explored facet of XAI research concerns the
influence of explanations on human performance. Do explanations actually
help users perform better? This can be investigated through two main lenses:
human-AI collaboration and knowledge transfer.

In human-AI collaboration tasks, explanations can enhance user performance
by effectively communicating the AI’s reasoning. This allows users to better uti-
lize the AI’s suggestions, adjust their own decisions alongside the AI’s input and
potentially improve overall task efficiency through smoother collaboration. HIL
experiments can shed light on these aspects by observing user behavior in such
team-settings. The literature abounds in studies investigating scenarios where
users work with AI assistants to solve various tasks. These studies often demon-
strate that AI assistance improves human performance in tasks like sentiment
analysis [34], poisonous mushroom classification [26], insulin dosage decisions for
virtual patients [38] or prostate cancer classification in MRI scans [14].

In terms of long-term benefits of explanations, the question is whether expla-
nations can empower users to learn from the AI and improve their independent
performance on future tasks. Effective explanations might enhance user under-
standing of relevant rules and patterns used by the AI. This understanding
could then translate to improved task execution without AI assistance, poten-
tially promoting long-term learning that can be utilized for various tasks beyond
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the specific context of the AI system. HIL experiments can be designed to assess
whether explanations facilitate such knowledge transfer, basically crystallizing
a pedagogic effect of XAI. As previously stated, to the best of our knowledge,
there are no studies available at the time of writing this paper, that deal with
the didactics of explanations. Our proposed HIL framework attempts to cover
this gap.

Still related to performance, the aspect of simulatability is also frequently
investigated in HIL studies. Simulatability refers to whether users can under-
stand and replicate the model’s reasoning based on the explanations provided.
This topic is extensively discussed in [16] and [12], where the authors distinguish
between "forward simulation" (users predict the model’s output for a given in-
put and explanation) and "counterfactual simulation" (given an input, a model’s
output and an explanation, users predict the model’s output for a perturbation
of that input).

Another key factor is the effect of explanations on trust, namely how they
calibrate user trust in the model’s predictions or how they can mitigate the issue
of blind trust in situations where the model might be less confident. For instance,
in [22] participants are shown the prediction of a computer vision model along
with an explanation in the format "Class A because ..." and are asked how con-
fident they are in the model’s prediction. On a different note, [5] investigate in a
Turing test inspired approach whether subjects are able to distinguish between
human-generated and AI-generated explanations and argue that such a quantita-
tive metric, employed alongside trust calibration techniques, would offer valuable
insights into how intuitive an explanation is. Clear, comprehensive and accurate
explanations can help users assess the AI system’s competence and expertise.
If explanations effectively reflect the model’s reasoning process, users are more
likely to believe the AI is knowledgeable and capable of assisting with the task
at hand. This fosters trust in the AI’s ability to provide accurate suggestions
and recommendations. Explanations can also mitigate the risk of blind trust. By
highlighting the AI’s limitations and uncertainties, explanations can encourage
users to approach the AI’s suggestions with a healthy dose of skepticism. This
allows them to maintain an appropriate level of critical thinking and intervene
when necessary without entirely disregarding the AI’s input. Ultimately, expla-
nations should strive to create a balance between trust and critical engagement
with the AI system.

A natural question stems from the issue of trustworthiness: does user un-
certainty align with model uncertainty in XAI contexts? This is particularly
important for building trust in situations where the model might be less confi-
dent in its predictions [8]. Again, as far as we are aware, this aspect has yet to
be investigated in HIL studies in the available literature so far.

The perceived cognitive effort required to understand explanations is an-
other important consideration. Several studies highlight that explanations may
not always have a solely positive impact and could even yield negative effects on
human subjects during cognitive tasks [35,4,11,32]. These studies often attribute



4 T. Chiaburu et al.

performance declines in cognitive tasks to the increased cognitive load imposed
by explanations [32].

Lastly, XAI research also considers the perceived usefulness and perceived
ease of use of explanations, e.g., [29]. This focus acknowledges that explana-
tions must not only be understandable, but also practically valuable for users.
If explanations are deemed unhelpful or difficult to grasp, they are unlikely to
enhance user experience or performance.

The following sections present our proposed HIL approach and the methods
of investigating the didactic effect of explanations, the human-machine collabo-
ration, the degree of trust users have in AI, as well as the relation between the
users’ and the model’s uncertainty within this framework.

3 Dataset and Classification Problem

For the experiments described in this work, a subset of the iNaturalist dataset
[1] was used. A dataset of wild bee images was constructed by scraping 30k im-
ages from the online database https://www.inaturalist.org/. These images
depicted the top 25 most frequent wild bee species native to Germany within
their natural habitats. Following preliminary experiments, the dataset was re-
fined to focus on three particularly challenging and frequently confused species:
Andrena bicolor/flavipes/fulva (see Fig. 1). This refinement resulted in a final
subset containing 657 wild bee images. For more details on the scraping process,
data split and annotation, as well as training of the model - a ResNet50 [17] -
please consult [7] and our repository - https://github.com/TeodorChiaburu/
beexplainable.

(a) Andrena bicolor (b) Andrena flavipes (c) Andrena fulva

Fig. 1: Prototypical examples of the three wild bee species used for our HIL ex-
periment. These examples were also shown to the participants in the instructions
at the beginning of the trial. The difficulty in distinguishing the three species
from one another consists in morphological features present on the bees’ thorax
and abdomen: A. bicolor has a fuzzy orange thorax and a shiny brown abdomen;
A. flavipes has a fuzzy brown thorax and shiny brown abdomen; A. fulva’s tho-
rax and abdomen are both fuzzy orange.

https://www.inaturalist.org/
https://github.com/TeodorChiaburu/beexplainable
https://github.com/TeodorChiaburu/beexplainable
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4 Experimental Design

Our experimental setup consists of three tasks - see Figure 2. The users are shown
images of wild bees and are required to recognize the three species depicted in
Fig. 1. In Task 1, subjects are left to assign on their own the correct label to
the images they see. In Task 2, they are aided by a computer vision model
trained to recognize wild bees. In the third and final task, the photos are again
shown without any AI hints. Each task comprises 10 images. The reason for
adding a second ’control task’ (Task 3) after the AI-assisted Task 2 is to enable
the investigation of the potential didactic effect that explanations may have.
We hypothesize that, if explanations are able in a pedagogical sense to teach
laypersons relevant classification rules, then the users’ accuracy in Task 3 should
be higher than in Task 1, when participants were just getting acquainted with
the problem.

The 30 images that every participant sees throughout the trial are randomly
drawn from a pool of 45 samples (selected from the test set). The pool is a
mixture of ’easy’ and ’hard’ examples with respect to the model’s confidence
in classifying those samples. We label an image as ’hard’ if the model assigned
a true class probability below 80%. Inherently, some of the hard samples were
misclassified by the network. When compiling the set of 30 images shown to a
subject, we ensured that each task contains 5 easy samples and 5 hard ones.

The participants were informed that the data gathered would solely be used
for research purposes. Their identities were anonymous and before starting they
were given a detailed description of what they were required to do. For each
possible class, a representative example was shown in the introduction, which
they could refer back to any time during the trial. The experiment was approved
by our institutional research board.

Users were divided into 6 groups that differed from one another in the type
of AI hint revealed in the second task (see Figure 2):

1. Control Group: the AI hint consists solely of the model’s predicted class
(which can be wrong)

2. Control-Confidence Group: the model’s prediction is accompanied by the
corresponding Softmax probability (model confidence)

3. Concepts-CoProNN Group: the model’s prediction and confidence are shown
together with an explanation computed by the concept-based XAI method
CoProNN [7]. The explanation is visualized in a ’traffic-lights’ format, where
a representative patch of the concepts learned by the XAI method is marked
as relevant (green) or not (red).

4. Concepts-TCAV Group: the model’s prediction and confidence are shown
together with an explanation computed by the concept-based XAI method
TCAV [21]. The explanation modality is the same as for CoProNN.

5. Examples-GradSim Group: the model’s prediction and confidence are shown
together with an explanation computed by the example-based method Gra-
dient Similarity [6]. The explanation is visualized in the form of the top 3
most similar samples from the training set that were classified similarly.
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Task 2

What species is this?

Task 1

What species is this?

Task 3
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What species is this?

Fig. 2: Experimental Design. From left to right: Task 1 - users classify images
on their own; Task 2 - further AI assistance is provided, presented differently
depending on the assigned group; Task 3 - users again classify images alone.
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6. Examples-RepPoint Group: the model’s prediction and confidence are shown
together with an explanation computed by the example-based method Rep-
resenter Point Selection [39]. The explanation is visualized the same way as
for Gradient Similarity.

We carried out our experiment on the crowdsourcing platform Toloka (https:
//toloka.ai/). For each of the above mentioned groups, 200 users were accepted
(not counting automatically discarded suspicious bot accounts that complete the
whole experiment in a matter of seconds). At the end of the experiment, a sepa-
rate outlier detection would be applied to every group, filtering out submissions
with less than 3 correct answers in any of the three tasks. The number 3 cor-
responds to the 20% quantile and was determined based on a pilot study. The
subjects were selected from the top 50% of English-speaking Tolokers and remu-
nerated for their participation with 0.06$ per task suite.

Before conducting this experiment at larger scale, we designed and performed
a smaller pilot study with five wild bee species and only 80 participants divided
into two groups: Control and CoProNN. The experiment was deployed as a
jsPsych app [25]. A demo is still freely available online for the CoProNN group at
https://hgyl4wmb2l.cognition.run. For more details about the pilot study,
please refer to [7] and our repository.

The following section discusses the results of our experiment. As a forenote
regarding the quantification of the user-related and model-related metrics: we
report the entropy3 of the Softmax-normalized probability vector output by our
model for every image as the model’s uncertainty and the entropy over the
Softmax-normalized vector of the users’ submitted answers for each image as
the users’ uncertainty. We acknowledge that more sophisticated metrics exist
for quantifying epistemic uncertainty within model predictions, see e.g. [13].
However, for the purposes of this study, a proxy measure as defined above was
deemed sufficient.

5 Results and Discussion

We summarize below the insights we gained from our user study. Figure 3 offers
a broad overview of the subjects’ performance throughout the three tasks and
the six groups, while the correlation plots in Figures 4 and 5 display the relation
between the model’s and the users’ performance.

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
entropy.html

https://toloka.ai/
https://toloka.ai/
https://hgyl4wmb2l.cognition.run
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.entropy.html
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Fig. 3: AI assistance improves users’ performance, but showing only AI predic-
tions helps as much as showing explanations. Throughout all the 6 human-AI
collaboration conditions we notice higher user accuracies in Task 2 (where AI
hints were provided) in the mean and median, as opposed to Tasks 1 and 3 (both
without AI assistance). In Task 3 participants are not performing any better than
in Task 1, suggesting that there is no substantial didactic effect derived from the
assistive AI in Task 2. Moreover, there is also no noticeable difference between
the two control groups and the four explanation groups. This suggests that ex-
planations were not more effective than simply reporting the model’s prediction.
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5.1 No Observable Didactic Effects Detected

Our experiment did not reveal any considerable evidence of long-term learning
or knowledge transfer from explanations to independent task performance. This
is indicated by the comparable user accuracy observed in Task 3 (where users
classified images on their own again) compared to Task 1 (initial independent
classification). Across all six groups, both average and median accuracy scores in
Task 3 remained similar to those in Task 1 (Figure 3). This suggests that while
explanations may improve performance during collaboration with the AI (as
shown in Subsection 5.3), they may not necessarily equip users with the ability
to retain that knowledge and apply it to solve similar tasks independently over
time. Tiredness and cognitive load may also play a role once users arrive at the
final Task 3.

5.2 Users’ Uncertainty Decreases when Collaborating with an AI
Assistant

Our study also revealed a positive impact on user confidence when collaborating
with an AI assistant. This is reflected in the user uncertainty levels observed
across the different tasks and computed as described at the end of Section 4.
User uncertainty in Task 2, where participants received help from our model,
was considerably lower compared to the uncertainty levels observed in Tasks
1 and 3 (Table 1 and Figure 5). This suggests that hints provided by the AI
assistant helped users feel more certain about their classifications in Task 2 and
allowed them to approach the task with greater confidence.

5.3 Human Performance Improves when Collaborating with an AI
Assistant

Our findings demonstrate that human performance improves when collaborating
with an AI assistant. Across all user groups participating in Task 2, both average
and median user accuracy scores are consistently higher compared to Tasks 1
and 3 (as illustrated in Figure 3). Overall, user performance in Task 2 is gener-
ally superior to that observed in Tasks 1 and 3, particularly for samples where
the model exhibited a high degree of certainty (Figure 4). This indicates that ex-
planations and AI assistance were most beneficial for tasks where the model was
most certain, potentially aiding users in making more accurate classifications.

5.4 Limited Impact of Explanation Type on Task Performance

While Subsections 5.3 and 5.2 highlighted the overall benefits of collaboration
with an AI assistant in Task 2, user performance within this task did not exhibit
noticeable differences across the six groups (as depicted in Figure 3). This sug-
gests that, in the context of our experiment, the specific format or level of detail
provided in the explanations (concept-based or example-based) did not have a
substantial impact on user accuracy when compared to the two Control groups
that received only the model’s prediction (with and without model confidence).
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(a) Task 2 (AI Assistance)

(b) Tasks 1 and 3 (no AI Assistance)

Fig. 4: Explanations improve user accuracy in human-AI collaboration (Task 2).
Every dot represents one of the 45 images with corresponding user metrics aver-
aged over all users’ responses. (a) Task 2 (with AI assistance): Throughout
all groups, samples classified with high certainty by the model were also classi-
fied with high accuracy by users. These samples are also associated with high
acceptance rate for the AI suggestion. (b) Tasks 1+3 (without AI assis-
tance): User accuracy is lower than in Task 2, regardless of whether the model
was certain or not. The user-AI agreement rate is also notably lower.
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(a) Task 2 (AI Assistance)

(b) Tasks 1 and 3 (no AI Assistance)

Fig. 5: Uncertainty of users’ responses decreases when explanations are shown
(Task 2) compared to no AI assistance (Task 1+3). Every dot represents one of
the 45 images with corresponding user metrics averaged over all users’ responses.
(a) Task 2 (with AI assistance): Independent of model uncertainty, the users’
uncertainty is near 0 for most samples. User-AI agreement is also high with these
samples. (b) Tasks 1+3 (without AI assistance): Users are less certain than
without AI assistance (Task 2), regardless of whether the model was certain or
not. Also the acceptance rate of the AI’s suggestions is lower.
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5.5 Potential for Blind Trust with Explanations

Our study also identified a potential concern regarding the use of explanations,
particularly in relation to fostering blind trust. Figures 4 and 5 use color coding
to represent user agreement with the model’s suggestion (low agreement in blue,
high agreement in red). These figures reveal a notable presence of "hot spots"
where user agreement is high (green-yellow-orange-red) despite high model un-
certainty. Table 1 also shows that, on average, users’ responses matched more
often the model’s prediction in Task 2 than in the other tasks. On the one
hand, following the AI’s recommendation lead to higher user accuracy scores,
as discussed above. On the other hand, when zooming in only on the misclas-
sified samples (accompanied by a matching wrong explanation in the four XAI
groups), we report the following agreement rates: Control - 47.29%, Control-
Confidence - 52.31%, CoProNN - 47.67%, TCAV - 45.25%, GradSim - 62.95%,
RepPoint - 69.1%. This suggests that users may, in some cases, predominantly
in the two example-based XAI groups, exhibit a tendency to blindly trust the
model’s suggestions, even when presented with explanations for demonstrably
incorrect predictions.

Table 1: Aggregated user uncertainty scores and user-AI agreement rates for
control tasks (1 and 3) and Task 2. The users’ uncertainty was computed as
described at the end of Section 4.

User Uncertainty User-AI Agreement

Tasks 1+3 (no AI help) 0.0359 0.5732

Task 2 (with AI assistance) 0.0151 0.7187

6 Conclusion

In this work, we proposed a novel HIL experiment design that allows to analyze
the didactic effect of explanations, as well as correlations between the users’ and
the model’s uncertainty. Apart from these new considerations, more traditional
investigative points such as human-machine performance as a team or blind
trust were also taken into account. We examined human-AI collaboration with
explanations in image classification; nonetheless, our framework can be readily
applied to any other machine learning task.

We found that explanations considerably improved user performance during
collaboration, especially when the AI was certain of its prediction. User un-
certainty also decreased with explanations. However, our study also identified
certain limitations. Explanations did not show notable benefits for long-term
knowledge transfer and the specific explanation format had little to no impact
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on user accuracy. In line with previous work, our results also show that expla-
nations tend to bias users responses to replicate the AI predictions, even when
they are wrong; this finding highlights the need for well calibrated trust relation-
ships in human-AI interactions in order to counteract blind trust in AI systems.
We hope that the experimental paradigms quantifying the trust relationship in
XAI developed in this study contribute to a better understanding of the trust
relationship.

Overall, our findings support the potential of human-AI collaboration with
explanations to enhance performance and trust. Nevertheless, further research
is needed to optimize the design of explanations for knowledge transfer and
mitigate blind trust. Future work should explore how XAI can empower users
not just to collaborate effectively, but also develop their own problem-solving
skills. By striking a balance between trust and critical thinking, we believe that
explanations can pave the path for a future of successful human-machine collab-
oration.
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