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ABSTRACT
There have been growing concerns around high-stake applications

that rely on models trained with biased data, which consequently

produce biased predictions, often harming the most vulnerable. In

particular, biased medical data could cause health-related applica-

tions and recommender systems to create outputs that jeopardize

patient care and widen disparities in health outcomes. A recent

framework titled Fairness via AI posits that, instead of attempting

to correct model biases, researchers must focus on their root causes

by using AI to debias data. Inspired by this framework, we tackle

bias detection in medical curricula using NLP models, including

LLMs, and evaluate them on a gold standard dataset containing

4,105 excerpts annotated by medical experts for bias from a large

corpus. We build on previous work by coauthors which augments

the set of negative samples with non-annotated text containing so-

cial identifier terms. However, some of these terms, especially those

related to race and ethnicity, can carry different meanings (e.g.,

“white matter of spinal cord”). To address this issue, we propose the

use of Word Sense Disambiguation models to refine dataset qual-

ity by removing irrelevant sentences. We then evaluate fine-tuned

variations of BERT models as well as GPT models with zero- and

few-shot prompting. We found LLMs, considered SOTA on many

NLP tasks, unsuitable for bias detection, while fine-tuned BERT

models generally perform well across all evaluated metrics.
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1 INTRODUCTION
For decades, medicine has been marred by implicit and explicit

biases that continue to negatively impact patient outcomes by per-

petuating stereotypes and contributing to health disparities among

social groups that face systemic oppression [8, 9]. Despite efforts to

remediate and address these biases from their source, many med-

ical schools still incorporate biased medical teachings during the

preclinical years [12, 28]. Many educators continue to misuse race

as a substitute for genetics or ancestry, or they use gender and sex

terms incorrectly reinforcing the notion that sex and gender are

binary or fixed rather than fluid, which can potentially alienate

gender-nonconforming students and patients [1, 14, 15]. The cur-

rent focus in AI research is primarily on identifying and exposing

bias within AI systems, often without addressing the root causes

of bias inherent in the data these systems are built upon. As long

as structural inequalities exist in the real world, AI systems will

perpetuate these biases [10]. By harnessing machine learning to

analyze and detect these biases, we can advance equity in medical

training and the fairness of AI models, leading to a more accurate

and effective healthcare system.

Recently, Salavati et al. [25] introduced the BRICC (Bias Reduc-

tion in Curricular Content) dataset and proposed a systematic and

scalable AI-based method for identifying potential bias in medical

curricula. Given the steep cost of false negatives (i.e., classifying

a biased sentence as unbiased), they emphasize that recall must

be prioritized over precision. Moreover, due to the inherent diffi-

culty of the task, one of the best approaches in this High-Recall

Information Retrieval setting is the Technology Assisted Review

(TAR) [7, 18], whereby a set of experts reviews the samples flagged

by a model, as envisioned by Salavati et al. The paper also used a

curated list of social identifiers to find additional, negative (i.e., non-

biased) samples in unlabeled data. However, this latter approach

suffered from social identifier terms that had ambiguous meanings,

leading to lower quality of the training data, and negative samples

that were too “easy” to classify as non-biased. For example, one

social identifier used to filter for race-related data was “white”. In

Table 1, simply searching for the keyword “white” will include both

race-related and non-race-related text excerpts.

We believe that using these ambiguous meaning terms as-is leads

to overestimating the true discernment power of the bias classifier
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Table 1: The term “white” in a racial vs. non-racial context

Race-Related Not Race-Related

“5 Year Relative Survival: over-

all 84% for white women, 62%

for black women, 95% for lo-

cal disease, 69% regional disease

(spread to lymph node), 17% for

distant disease.”

“White matter within the spinal

cord contains the axons of neu-

rons that are ascending and de-

scending to transmit signals to

and from the brain, respectively.”

by making the problem too easy. It may be that the classifier is

actually differentiating race-related from non-race-related terms,

rather than biased from non-biased sentences.

For this reason, we propose a new framework to augment the

sampling process for negative examples, using Word Sense Disam-

biguation (WSD) methods for data enhancement. We hypothesize

that this would improve the distinction between biased and non-

biased sentences in the bias classification process.

Our main contributions are as follows:

(1) We enhance a framework for detecting bias in medical cur-

riculum content, with a focus on improving data quality.

(2) We leverage Word Sense Disambiguation (WSD) models in

training bias detection classifiers by filtering out irrelevant

samples from the data. Moreover, we use ChatGPT-4o to

augment a set of manually labeled examples with synthetic

samples to fine-tune and/or evaluate WSD models.

(3) We fine-tune and evaluate various Transformer-based mod-

els including DistilBERT, RoBERTa, and BioBERT for the bias

detection task. In addition, we use Large Language Models

(LLMs), such as TinyLlama, for bias classification, evaluating

zero-shot vs. few-shot prompting with GPT, to improve the

performance of bias detection.

(4) We present a comprehensive evaluation of the various mod-

els, highlighting the improvements achieved through the use

of WSD and ChatGPT-generated sentences.

2 RELATEDWORK
Health Recommender Systems (HRS). Recommender systems have

become integral to the healthcare industry, providing personalized

medical recommendations that enhance patient understanding of

their medical condition and improve health outcomes [27]. These

systems assist healthcare professionals in predicting and treating

diseases by analyzing patient data to recommend personalized diets,

exercise regimens, medications, diagnoses, and other health ser-

vices [21, 24]. Despite numerous studies exploring various aspects

of HRS, the literature for addressing various types of biases in such

systems rooted in curricula contents is limited [25].

Debiasing medical corpora manually and via AI. Concerns over bi-
ased AI models and, particularly, recommender systems in health-

care applications have been gaining more attention due to their

increased use in high-stake decisions [4]. In essence, their biases

are rooted in implicit and explicit biases embedded in the data

used for training them [13], which stem from various sources, in-

cluding inherent biases in medical literature, the subjectivity of

human annotators, and historical and systemic inequities present

in healthcare systems [25]. Numerous recent studies have aimed

to quantify and address this issue both manually and through AI.

Khan et al. [16] manually explored the systemic bias held by med-

ical professionals when writing recommendation letters. On the

other hand, Raza et al. [22] and Salavati et al. [25] aimed to detect

bias in medical text using transformer-based language models. The

former used a semi-autonomously labeled dataset covering diverse

medical topics, whereas the latter employed a dataset manually la-

beled by medical experts focusing on biased information in medical

curricular texts. Although both studies provide a comprehensive

overview of bias detection, ensuring high-quality data remains an

issue. While we also explore AI models for debiasing medical text

data, we investigate better ways of augmenting the set of unbiased

samples and consider a wider gamut of models, including LLMs.

Machine Learning for Bias Detection. Prior works have applied var-

ious BERT models for bias classification tasks. Tiderman et al. [26]

used DistilBERT, a transformer-based distilled BERT model, to clas-

sify biased information in social media content. Similarly, Raza et

al. [22] achieved the best results for bias classification in medical

text through fine-tuning BERT, a simple encoder-only transformer.

Building on the existing literature for bias detection in medical

contexts, we additionally apply Large Language Models (LLMs) for

this task. Specifically, we use TinyLlama [31], a computationally

efficient variant of Llama 2, for bias classification. In addition, we

consider additional strategies for constructing the set of negative

samples– such as through the use of WSD for data refinement.

Use of LLMs for NLP tasks and prompt engineering. In NLP tasks,

prompting LLMs have been shown to perform on par with encoder-

only architectures, like BERT, without the need for fine-tuning [6].

It has been shown that prompting techniques, such as zero-shot,

few-shot, or chain of thought (CoT), serve a key role in the quality

and correctness of a model’s output [19]. These techniques have

been used in many tasks, such as sentiment analysis [3], text classi-

fication [5], as well as for healthcare applications, such as question-

answering, and as a clinical recommender system [20, 29]. Despite

these initiatives, we are the first to evaluate zero- and few-shot

prompting for detecting bias in medical curricular content.

3 DATASET
Our work builds on the BRICC dataset introduced by Salavati et

al. [25], which consists of 509 PDF files and 12,647 pages of medical

school instructional materials annotated by medical students and

experts trained in identifying bias. Within the dataset, there are

three tiers of coding. The first-level codes identify social identifiers

within the excerpt. The second-level codes assess the presence

or absence of bias in the excerpt, categorized into four distinct

groups: ‘biased’, ‘potentially biased’, ‘non-biased’, and ‘review’.

Additionally, third-level codes establish a link between a medical

condition and one or more categories of social identifiers (e.g., race),

specifying the type of identity and whether it was portrayed in a

biased or unbiased manner. Each excerpt is then assigned one or

more codes formatted as “TYPE-disease”, where TYPE represents

one of 17 categories of social identifiers. Akin to the previous work,

we focus on the most frequent types including sex, gender, race,

ethnicity, age, and geography. Each category is associated with a

list of keywords that can signify social identifiers.
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Table 2: BRICC Dataset Characteristics

Counts
Number of PDF Files 509

Total Number of Pages 12,647

Annotated Excerpts 4,105

Labeled Positives 1,116

Labeled Negatives (LN) 2,989

Extracted Negatives (XN) 4,391

Positive and negative samples. Positive samples are defined as

those excerpts that contain either a ‘biased’, ‘potentially biased’,

or ‘review’ and a selected “TYPE-disease”. Negative samples are
subdivided into various types, as detailed in the previous work [25].

The negative types that we are most interested in are referred

to as extracted negatives (XN). In this case, these are sentences

from the corpus that, despite containing a category keyword, were

deliberately excluded from the annotation process. Please refer to

supplemental materials for a detailed explanation of negative types

found in the BRICC dataset. Of the XN types, we filtered for those

that contained at least one relevant keyword relating to our selected

“TYPE-disease”. The distribution of positives and negatives across

the dataset is displayed in Table 2.

We focus on XN samples in our experiments because the authors

previously reported higher recall, 0.925, but at the expense of preci-

sion, 0.504, by using this negative set [25]. Despite this improved

performance, we noticed that many of the keywords may lead to

the inclusion of non-“TYPE-disease” related content. An example

of this occurrence may be seen in Table 1. Hence, retaining only

negative samples that relate to the social demographics of interest

is a key computational task, which we address using WSD.

Labeling data forWSD. To gather samples suitable for trainingWSD

models, we selected those XN excerpts that contained a keyword

related to the selected social demographics categories: sex, gen-

der, race, ethnicity, geography, and age. After obtaining a random

sample of XN excerpts for each category, we had a human expert

annotate whether the meaning of the keyword term was indeed re-

lated to that category or not. Based on the results of this annotation

process, we decided to only focus on race keywords because they

suffered the most from ambiguity. The other bias categories did

not have a significant degree of ambiguity that required correction.

These labeled excerpts were used to train our WSD models.

4 PRELIMINARIES
4.1 LLM Prompting
Reynolds et al. [23] suggest that zero-shot prompts could signifi-

cantly outperform few-shot prompts. Their analysis highlights the

need to consider the role of prompts in controlling and evaluating

the performance of language models. Their study stated that since

GPT-3 is often not learning from few-shot examples during the

run time, this model can effectively be prompted without exam-

ples [23]. Additionally, Kojima et al. [17] demonstrate that chain

of thought (CoT) prompting, a recent technique for eliciting com-

plex multi-step reasoning through step-by-step answer examples,

achieved state-of-the-art performances in arithmetics and sym-

bolic reasoning tasks. They proposed Zero-shot-CoT, a zero-shot

template-based prompting using chain of thought reasoning, and

highlighted its high performance.

4.2 Word Sense Disambiguation Task Definition
Generally speaking, word sense disambiguation (WSD) is the task

of identifying the correct sense of a polysemous 𝑤 ∈ W (a word

with multiple meanings) in a given context 𝑥 . Formally, given a set

of words W, a finite set of possible senses S𝑤 = {𝑆 (1)𝑤 , . . . , 𝑆
(𝑘 )
𝑤 }

for each 𝑤 ∈ W and a context (ordered sequence of words) 𝑥 =

(𝑥1, . . . , 𝑥𝑖−1,𝑤, 𝑥𝑖+1, . . . 𝑥𝑛) ∈ X, find a function 𝑓 : W ×X → S,
such that 𝑓 (𝑤, 𝑥) is the correct sense of𝑤 in context 𝑥 .

For this paper, we are interested in determining if a

term 𝑤 , listed as a possible social identifier for category

𝑡 , is related to 𝑡 in an excerpt 𝑥 . To do so, we need to

learn a function IsRelated(𝑤, 𝑥, 𝑡) ∈ {true, false}. For in-

stance, the set of social identifiers for race is Srace =

{‘white’, ‘black’, . . .}. Ideally, in one of the examples seen earlier, we

want IsRelated(‘white’, ‘white matter within...’, ‘race’) = false.

4.3 Bias Detection Task Definition
In the context of medical education, we consider bias detection as a

High Recall Information Retrieval task. It is the first step in a TAR

system. This task consists of classifying a text excerpt 𝑥 as unbiased

(𝑦 = 0) or potentially biased (𝑦 = 1). In the latter case, the sample

would be subsequently reviewed by a medical expert.

Bias may be related to one or more categories of social iden-

tifiers, including race, ethnicity, sex, gender, age, and geography.

For instance, “They promote hair growth in the groin, axilla, chest
and face, yet they also promote hair loss in the scalp in men who
are genetically susceptible to androgenetic alopecia.” is labeled by

medical excerpts as ‘biased’ with respect to gender (designated
by the social identifier men). As explained, in the comment from

one of the annotators: “Use sex terms when speaking of populations,
should be male instead of men. Also, include citation to support this
assertion.”

Formally, Salavati et al. [25] define type-specific bias as a binary

label bias(𝑥, 𝑡) ∈ {true, false} indicating whether excerpt 𝑥 is

biased with respect to a social identifier category 𝑡 . In the present

work, we consider only the general definition of bias, regardless of

which category 𝑡 in a set T it belongs to: bias(x,T) = true ⇐⇒
∃𝑡 ∈ T s.t. bias(x, t) = true.

5 METHODOLOGY
In this section, we provide an overview of the proposed frame-

work. Figure 1 (left) shows the data processing steps performed

by Salavati et al. [25], which we leverage in the present work. As

explained, in addition to labeled data, BRICC includes negative

samples extracted from the non-annotated data (denoted as XN).

Figure 1 (center) illustrates the application of WSD to filter out

irrelevant samples, which results in the filtered XN set (XN
∗
). This

process is described in detail in Section 5.1. Last, Figure 1 (right)

depicts the augmentation of labeled data with XN
∗
for training

different bias classifiers, whose performance we evaluate. Details

are discussed in Section 5.2.
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Figure 1: Workflow stages. (Left) Data processing: annotated
excerpts are labeled as ‘biased’ (positive) or ‘non-biased’ (neg-
ative); XN: additional sentences extracted as negative exam-
ples. (Center) Word Sense Disambiguation (WSD) used for
selecting from XN relevant negatives (XN∗). (Right) Training
and evaluation of bias classifiers.

Synthetic 
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Figure 2: WSD training and evaluation. Excerpts manually
labeled as race-related or not plus GPT-generated sentences
are used to train and evaluate the WSD models.

5.1 Word Sense Disambiguation Experiments
We evaluate several models for WSD: a simple baseline, two fine-

tuned variants of BERT, and two GPT models. For fine-tuning and

evaluation, we combined our manual annotations with sentences

generated by ChatGPT-4o, yielding 352 labeled excerpts.

Experimental Setup. We divide each of the two datasets (manually

annotated excerpts and synthetic samples) independently with a

70-15-15 stratified split into training, validation, and test sets.

We investigated two ways of building the training set:

• Only manually-annotated excerpts;

• Both manually-annotated excerpts and synthetic samples.

WSD Models. We evaluate three models shown in the recent lit-

erature to perform well on WSD: ALBERT, GlossBERT, and GPT

models. These models are compared to our baseline, a logistic re-

gression with TF-IDF.

Fine-tuning and Prompting. Wefine-tune all layers of the pre-trained

ALBERT and GlossBERT models with a learning rate of 2 × 10
−5

and weight decay of 0.01 over 10 epochs, keeping the model that

yielded the smallest validation loss.

Given the substantial empirical and theoretical evidence sup-

porting the benefits of chain of thought (CoT) prompting in various

LLM tasks [11, 30], we incorporate CoT into our zero-shot prompts.

We opted to follow the prompt template presented in Kojima et

al. [17], which was shown to produce the highest accuracy (i.e.,

“Let’s think step by step”). To prompt the model, we first specified

the model’s role: “You are a helpful assistant that determines if the
sentence is race or ethnicity related”. Then, we defined the task as:

“Given the sentence ‘text’, think step by step: Is this sentence race or
ethnicity related? Only output 1 or 0. If this sentence contains any
terms relating to race or ethnicity, state 1. Otherwise, state 0.”

Metrics. We evaluate the models’ performance on the test set with

respect to accuracy, precision, recall and F1 score.

5.2 Bias Classification Experiments
Using the BRICC dataset, we fine-tune binary classification neural

language models and prompt pre-trained LLMs for bias classifica-

tion. For fine-tuning, we consider encoder-only and decoder-only

models (encoder-decoder models are often reserved for multi-modal

tasks and causal language inference [2]).The fine-tuned models

include RoBERTa, DistilBERT, BioBERT, and TinyLlama. Using

prompt engineering, we additionally prompt GPT-4o mini.

Different sets of negatives. The datasets we will consider contain all

positive samples, plus one of the following:

• Labeled negatives (LN),

• Labeled negatives plus extracted negatives filtered by key-

words (LN + XN), and

• Labeled negatives plus extracted negatives filtered using

word sense disambiguation (LN + XN
∗
).

As described in Section 3, the set of extracted negatives (XN) is

constructed by filtering data based on keywords that relate to either

gender, sex, race, ethnicity, age, and/or geography. Then, we apply

the best-performing WSD model to ensure these samples truly

relate to the social demographics of interest, resulting in XN
∗
. To

assess performance variability as a function of the data splits, we

split the dataset in K-folds for cross-validation and calculate average

performance and confidence intervals.

Fine-tuning. To construct the models, we add a classification head to

each language model and fully fine-tune each model along with the

classification head. The models we utilize are: RoBERT, DistilBERT,

and BioBERT, all encoder-only, and TinyLlama, a 1.1B decoder-only

model derived from Meta’s Llama 2.

For each dataset we outlined, we do initial fine-tuning on

RoBERTa, DistlBERT, BioBERT, and TinyLlama with a batch size of

8 and a learning rate of 2 × 10
−5
. We use the validation set to tune

the hyperparameters with grid search, leading to the final model.

Prompting. We evaluate the performance of GPT-4o mini by using

zero- and few-shot prompting. To prompt this model, we first es-

tablish the model’s role: “You are a helpful assistant that determines
if text is biased”. Then, we establish the task. We find that the best

task description is: “Given text, determine if the text contains bias or
no bias. The bias may target gender, sex, race, ethnicity, age, and/or
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Table 3: Few-shot example inputs, outputs, and reasoning
used for prompting GPT-4o mini for bias classification

Input 𝑥 Label, Comment

52 year old, married female with one daugh-

ter, employed as a school administrator with

no prior psych history reports 2 month h/o

[history of] sadness, subjective anxiety and

intermittent trouble falling asleep.

Label: 1, Use gender
terms like woman

for case studies

Once patient is on another treatment for her

disorder, she no longer needs this medication.

Label: 0, n/a (from

XN set)

Recent meta-analysis suggested no difference

in prevalence among countries, rate is 1-2%

with increase during late adolescence.

Label: 1, Term ‘Late

Adolescence’ is an

unclear time period

Table 4: Performance metrics for WSD on manually-
annotated+GPT excerpts. Best result for each metric shown
in bold. GlossBERT and GPT-4o are tied as the best models.

Metric TF-IDF+
Logistic Reg.

ALBERT Gloss
BERT

GPT-3.5
Turbo

GPT-4o
mini

Accuracy 0.839 0.926 0.944 0.925 0.944
Precision 0.816 0.935 0.936 0.916 0.936
Recall 0.839 0.977 1.000 1.000 1.000
F1 Score 0.817 0.956 0.967 0.956 0.967

geography, include exclusive language, or make unsupported claims.
The text may also contain no bias at all. If the text has bias state 1, if
the text does not have bias state 0.”

Both zero- and few-shot prompting used the prompt above. For

few-shot prompting, we tested various sets of examples from the

dataset. Table 3 shows the subset that performed best.

Metrics. For the bias detection task, we also evaluate the models’

performance on the test set with respect to precision, recall and F1

score. In addition, we consider the F2 score and area under the ROC

curve (AUC). F2 is similar to F1 but prioritizes recall over precision.

Due to the class imbalance, AUC is more relevant than accuracy

because it accounts for all possible threshold choices.

6 RESULTS
6.1 Evaluation of WSD models
Table 4 presents the evaluation results for the WSD models exam-

ined. The baseline achieved worse results than the other models for

every metric. We find that GlossBERT outperforms ALBERT and

that GPT-4o mini improves upon GPT-3.5 Turbo. Furthermore, both

GlossBERT and GPT-4o are tied as the best models, both exhibiting

a very high F1 Score (0.967). Using the cost as a tie-breaker between

the two, we opted to use GlossBERT for the WSD task performed

on the extracted negatives.

Table 5 illustrates examples from the test set, two of which were

correctly identified and one that was not. While the first and third

were correctly predicted with high confidence, the middle row was

incorrectly classified with a “high confidence prediction”. For the

few instances that GlossBERT incurred false positives, a closer

inspection has revealed that those excerpts may be lacking enough

context for this specific task. For example, in the middle row, the

Table 5: Examples ofWSD test cases andGlossBERTpredicted
probabilities for𝑦 = 1. Each excerpt has a term (bolded) listed
among race/ethnicity keywords.

Input 𝑥 (label 𝑦) Prediction

Melanoma: increasing in incidence in thewhite population
(CDC). (𝑦 = 1)

0.9998

2015AmericanHeart Association guidelines suggest treat-

ing patients presenting with systolic BP above 150-220

mmHg, but they do not offer a specific BP target. (𝑦 = 0)

0.9998

Calcific plaques are chalky white and arise from cardiac

(aortic and mitral) valves. (𝑦 = 0)

0.0001

Table 6: Performance Metrics and 95%-CIs for Fine-Tuned
Models trained on LN+XN* data. RoBERTa yields the highest
averages, but it is statistically tied with DistilBERT.

Metric RoBERTa DistilBERT BioBERT

Precision 0.613 ± 0.015 0.605 ± 0.013 0.581 ± 0.014

Recall 0.692 ± 0.024 0.649 ± 0.030 0.620 ± 0.019

F1 Score 0.650 ± 0.014 0.626 ± 0.018 0.599 ± 0.010

F2 Score 0.674 ± 0.019 0.639 ± 0.025 0.611 ± 0.014

AUC 0.927 ± 0.003 0.921 ± 0.006 0.904 ± 0.003

Table 7: Performance Metrics and 95%-CIs for Prompting
GPT-4omini. Best results for eachmetric shown in bold. AUC
was ommitted as it cannot be computed for binary outputs.

Metric Zero-Shot Few-Shot

Precision 0.367 ± 0.071 0.259 ± 0.019

Recall 0.260 ± 0.029 0.610 ± 0.026
F1 Score 0.303 ± 0.040 0.363 ± 0.023
F2 Score 0.274 ± 0.032 0.480 ± 0.025

use of ‘American’ only indirectly relates to the ethnicity of the

people that an organization serves.

We also investigate whether the synthetic samples generated

by ChatGPT-4o were trivial, which would artificially inflate per-

formance. When we evaluate the model results on only manually

annotated excerpts, the performance of all models stays somewhat

similar, except for GPT models, both of which achieve 100% accu-

racy. Therefore, the synthetic examples are at least as hard as the

manually annotated excerpts for BERT models, justifying their use

in our evaluation.

In addition, we evaluate the models’ performance when trained

only on the manually-annotated data. In this case, there is a perfor-

mance drop for the fine-tuned models (ALBERT declines from 0.926
to 0.852 and GlossBERT declines from 0.944 to 0.852 accuracy),

indicating that the synthetic samples help the models to generalize

better. Furthermore, GlossBERT remains tied as the best model,

which supports our choice of using it for building the set of filtered

extracted negatives in the bias detection task.

6.2 Evaluation of Bias Detection Models
Firstly, we compare the performance of the fine-tuned BERT vari-

ants on the bias detection task. Table 6 displays the models’ perfor-

mance with respect to precision, recall, F1 and F2 score, and AUC.
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Table 8: Performance metrics and 95%-CIs for RoBERTa, TinyLlama trained on dataset variants (LN+XN*, LN+XN, LN). Best
results among each model variants (resp. across all models) and statistical ties shown are bolded (resp. underlined).

Metric RoBERTa TinyLlama
LN+XN* LN+XN LN LN+XN* LN+XN LN

Precision 0.613 ± 0.015 0.640 ± 0.021 0.526 ± 0.029 0.675 ± 0.008 0.693 ± 0.028 0.536 ± 0.020

Recall 0.692 ± 0.024 0.667 ± 0.023 0.719 ± 0.026 0.548 ± 0.030 0.519 ± 0.029 0.607 ± 0.035
F1 Score 0.650 ± 0.013 0.652 ± 0.017 0.606 ± 0.017 0.604 ± 0.021 0.593 ± 0.017 0.568 ± 0.016
F2 Score 0.674 ± 0.019 0.661 ± 0.016 0.669 ± 0.016 0.569 ± 0.027 0.546 ± 0.024 0.591 ± 0.025
AUC 0.927 ± 0.003 0.930 ± 0.009 0.910 ± 0.008 0.907 ± 0.005 0.903 ± 0.005 0.871 ± 0.011

Table 9: Performance Metrics and 95%-CIs for Fine-Tuned
Models against Baseline (∗Salavati et al., 2024). Best results
and statistical ties shown in bold.

Metric RoBERTa TinyLlama Baseline∗

Precision 0.613 ± 0.015 0.675 ± 0.008 0.504 ± 0.054

Recall 0.692 ± 0.024 0.548 ± 0.030 0.812 ± 0.069
F1 Score 0.650 ± 0.014 0.604 ± 0.021 0.615 ± 0.022

F2 Score 0.674 ± 0.019 0.569 ± 0.027 0.717 ± 0.027
AUC 0.927 ± 0.003 0.907 ± 0.005 0.923 ± 0.004

While RoBERTa and DistilBERT are statistically tied, BioBERT

clearly performs worst among all BERT models. We select the

RoBERTa model for further comparison due to the model’s higher

mean evaluation metrics with lower standard deviations.

Secondly, we evaluate the performance of zero- and few-shot

prompting with GPT-4o mini on bias detection. Table 7 shows

the results obtained using the prompting techniques outlined in

Section 5.2. Despite the substantial increase in recall seen with

few-shot prompting, the low overall performance of GPT-4o mini

deems it unsuitable for the bias detection task.

Next, we compare the best BERT model and a baseline from our

prior work [25] with a fine-tuned TinyLlama. Table 9 shows the

comparison results. Although TinyLlama achieves high precision,

its lower recall causes it to be outperformed by RoBERTa and by

the baseline with respect to both F1 and (especially) F2 scores.

RoBERTa and the baseline are statistically tied with the highest

AUCs (0.927 ± 0.003 and 0.923 ± 0.004), indicating that for either

model the classification threshold can be tuned to find a trade-off

between precision and recall suitable for the target application.

Last, we conduct an ablation test to assess the impact of WSD

for data refinement by comparing the performance of RoBERTa

and TinyLlama across various dataset configurations. The results in

Table 8 show that the LN+XN* setting led to higher recall averages

than LN+XN (despite not statistically significant) at a small cost

in precision. LN achieves the highest recall, but at a steep cost

in precision. Therefore, LN+XN* results in the highest F2 scores,

indicating that it is the most adequate setting for TAR (Technology

Assisted Review) purposes.

7 CONCLUSION
Despite recent strides in fairness, accountability, and transparency,

health-related applications and recommender systems are still

prone to biases amplified through data, which can perpetuate health

disparities and affect patient care. To mitigate this issue, this paper

introduces a framework for detecting and diagnosing bias in the

medical curriculum, focusing on the data guiding these models

rather than on the models’ architecture. We use models trained and

tested on instructional content annotated by medical experts for

bias. We focus on bias related to sex/gender, race/ethnicity, age,

and geography. Our method involves extracting non-annotated

samples that contain a social identifier as negative samples for the

bias classifier. For those extracted negatives, we employ word sense

disambiguation to clean out any that have race/ethnicity-related

terms but are not actually related to those categories.

Our findings demonstrate that while LLMs can handle many

tasks, they are not well-suited for this one. Our zero- and few-shot

promptingwith GPT-4omini underperformed compared to the base-

line model from our previous work and scored significantly lower

than the language models we tested. Similarly, using a domain-

specific model like BioBERT showed no significant improvement.

RoBERTa and TinyLlama were the best performers for bias detec-

tion, with RoBERTa matching the baseline and showing slight gains

in precision and F1 score.

Our WSD models were highly effective at distinguishing biased

excerpts from non-biased ones. ALBERT and GlossBERT nearly

perfectly disambiguated sentences with race and ethnicity-related

keywords. Although GPTmodels were comparable to BERTmodels,

BERT consistently outperformed GPT in all metrics except recall.

While this task focused on one bias category, these models could

be adapted to other types with appropriate annotations. Applying

WSD to bias detection in medical curricula yielded mixed results.

The AUC for RoBERTa was similar to the baseline, but WSD im-

proved both precision and F1 score.

This work could help identify potentially biased excerpts in

medical curricula for review before they’re used to train models

for future health-related applications and recommender systems,

contributing to more equitable healthcare across all demographics.

8 DISCUSSION
Despite the encouraging results provided by our WSD and bias

classification models, there are future directions we can take to

enhance our project’s significance. First, in the WSD experiment,

using ChatGPT-4o to generate more sentences noticeably increased

the performance of our language models. Hence, it is likely that

increasing the number of synthetic sentences can further enhance

performance if the samples are diverse enough. LLMs often have a

“temperature” parameter that can control the amount of randomness

in the text generation. However, excessively high temperatures

could also yield less coherent sentences.



Towards Fairer Health Recommendations: finding informative unbiased samples via Word Sense Disambiguation FAccTRec ’24, October 14–18, 2024, Bari, Italy

We also want to consider how word sense disambiguation might

be useful in the context of other social identifiers, such as geography

(e.g., “American Heart Association” vs. “Native Americans”) and

other domains where the tone of an excerpt is more important

when evaluating word sense (e.g., social media).

Additionally, although LLMs like GPT models have significantly

shown to be advanced in natural language processing, they also

present a series of challenges [19]. Firstly, developing and training

LLMs requires computational cost and can be time-consuming. So,

they may be less accessible for smaller groups of researchers.

9 ACKNOWLEDGEMENTS
This material is based upon work supported in part by the National

Science Foundation REU Site Grant 2349370 and the WPI STAR

Program. Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

REFERENCES
[1] Sarah E Ali-Khan, Tomasz Krakowski, Rabia Tahir, and Abdallah S Daar. The use

of race, ethnicity and ancestry in human genetic research. The HUGO journal,
5:47–63, 2011.

[2] Ahmad Asadi and Reza Safabakhsh. The encoder-decoder framework and its

applications. Deep learning: Concepts and architectures, pages 133–167, 2020.
[3] Kun Bu, Yuanchao Liu, and Xiaolong Ju. Efficient utilization of pre-trained

models: A review of sentiment analysis via prompt learning. Knowledge-Based
Systems, page 111148, 2023.

[4] Robert Challen, Joshua Denny, Martin Pitt, Luke Gompels, Tom Edwards, and

Krasimira Tsaneva-Atanasova. Artificial intelligence, bias and clinical safety.

BMJ quality & safety, 28(3):231–237, 2019.
[5] Benjamin Clavié, Alexandru Ciceu, Frederick Naylor, Guillaume Soulié, and

Thomas Brightwell. Large language models in the workplace: A case study on

prompt engineering for job type classification. In International Conference on
Applications of Natural Language to Information Systems, pages 3–17. Springer,
2023.

[6] Giuseppe Colavito, Filippo Lanubile, Nicole Novielli, and Luigi Quaranta. Leverag-

ing gpt-like llms to automate issue labeling. In 2024 IEEE/ACM 21st International
Conference on Mining Software Repositories (MSR), pages 469–480. IEEE, 2024.

[7] Gordon V Cormack and Maura R Grossman. Engineering quality and reliability

in technology-assisted review. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, pages 75–84,
2016.

[8] Leonor Corsino, Kenyon Railey, Katherine Brooks, Daniel Ostrovsky, Sandro O

Pinheiro, Alyson McGhan-Johnson, and Blanca Iris Padilla. The impact of racial

bias in patient care and medical education: let’s focus on the educator. MedEd-
PORTAL, 17:11183, 2021.

[9] Erin Dehon, Nicole Weiss, Jonathan Jones, Whitney Faulconer, Elizabeth Hinton,

and Sarah Sterling. A systematic review of the impact of physician implicit racial

bias on clinical decision making. Academic Emergency Medicine, 24(8):895–904,
2017.

[10] Shiri Dori-Hacohen, Roberto Montenegro, Fabricio Murai, Scott A Hale, Keen

Sung, Michela Blain, and Jennifer Edwards-Johnson. Fairness via ai: Bias reduc-

tion in medical information. arXiv preprint arXiv:2109.02202, 2021.
[11] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang.

Towards revealing the mystery behind chain of thought: A theoretical perspective.

In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,

Advances in Neural Information Processing Systems, volume 36, pages 70757–70798.

Curran Associates, Inc., 2023.

[12] Mark Halman, Lindsay Baker, and Stella Ng. Using critical consciousness to

inform health professions education: A literature review. Perspectives on medical
education, 6:12–20, 2017.

[13] Debra Howcroft and Jill Rubery. ‘bias in, bias out’: gender equality and the future

of work debate. Labour & Industry: a journal of the social and economic relations
of work, 29(2):213–227, 2019.

[14] Linda M Hunt, Nicole D Truesdell, and Meta J Kreiner. Genes, race, and culture

in clinical care: racial profiling in the management of chronic illness. Medical
anthropology quarterly, 27(2):253–271, 2013.

[15] Reena Karani, Lara Varpio, Win May, Tanya Horsley, John Chenault,

Karen Hughes Miller, and Bridget O’Brien. Commentary: racism and bias in

health professions education: how educators, faculty developers, and researchers

can make a difference. Academic Medicine, 92(11S):S1–S6, 2017.
[16] Shawn Khan, Abirami Kirubarajan, Tahmina Shamsheri, Adam Clayton, and

Geeta Mehta. Gender bias in reference letters for residency and academic

medicine: a systematic review. Postgraduate medical journal, 99(1170):272–278,
2023.

[17] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. Large language models are zero-shot reasoners. Advances in neural
information processing systems, 35:22199–22213, 2022.

[18] Wojciech Kusa, Georgios Peikos, Moritz Staudinger, Aldo Lipani, and Allan

Hanbury. Normalised precision at fixed recall for evaluating tar. In The 10th ACM
SIGIR/The 14th International Conference on the Theory of Information Retrieval,
2024.

[19] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,

Muhammad Usman, Nick Barnes, and Ajmal Mian. A comprehensive overview

of large language models. arXiv preprint arXiv:2307.06435, 2023.
[20] Rajvardhan Patil, Thomas F Heston, and Vijay Bhuse. Prompt engineering in

healthcare. Electronics, 13(15):2961, 2024.
[21] Jhonny Pincay, Luis Terán, and Edy Portmann. Health recommender systems: a

state-of-the-art review. In 2019 Sixth International Conference on eDemocracy &
eGovernment (ICEDEG), pages 47–55. IEEE, 2019.

[22] Shaina Raza, Muskan Garg, Deepak John Reji, Syed Raza Bashir, and Chen Ding.

Nbias: A natural language processing framework for bias identification in text.

Expert Systems with Applications, 237:121542, 2024.
[23] Laria Reynolds and Kyle McDonell. Prompt programming for large language

models: Beyond the few-shot paradigm. In Extended abstracts of the 2021 CHI
conference on human factors in computing systems, pages 1–7, 2021.

[24] Abhaya Kumar Sahoo, Chittaranjan Pradhan, Rabindra Kumar Barik, and Har-

ishchandra Dubey. Deepreco: deep learning based health recommender system

using collaborative filtering. Computation, 7(2):25, 2019.
[25] Chiman Salavati, Shannon Song, Willmar Sosa Diaz, Scott A Hale, Roberto E

Montenegro, Fabricio Murai, and Shiri Dori-Hacohen. Reducing biases towards

minoritized populations in medical curricular content via artificial intelligence

for fairer health outcomes. arXiv preprint arXiv:2407.12680, 2024.
[26] Libby Tiderman, Juan Sanchez Mercedes, Fiona Romanoschi, and Fabricio Murai.

Towards detecting cascades of biased medical claims on twitter. In 2023 IEEE MIT
Undergraduate Research Technology Conference (URTC), pages 1–5, 2023.

[27] Thi Ngoc Trang Tran, Alexander Felfernig, Christoph Trattner, and Andreas

Holzinger. Recommender systems in the healthcare domain: state-of-the-art and

research issues. Journal of Intelligent Information Systems, 57(1):171–201, 2021.
[28] Jennifer Tsai, Laura Ucik, Nell Baldwin, Christopher Hasslinger, and Paul George.

Race matters? examining and rethinking race portrayal in preclinical medical

education. Academic Medicine, 91(7):916–920, 2016.
[29] Jiaqi Wang, Enze Shi, Sigang Yu, Zihao Wu, Chong Ma, Haixing Dai, Qiushi Yang,

Yanqing Kang, Jinru Wu, Huawen Hu, et al. Prompt engineering for healthcare:

Methodologies and applications. arXiv preprint arXiv:2304.14670, 2023.
[30] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei

Xia, Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits

reasoning in large language models. In S. Koyejo, S. Mohamed, A. Agarwal,

D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing
Systems, volume 35, pages 24824–24837. Curran Associates, Inc., 2022.

[31] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An

open-source small language model. arXiv preprint arXiv:2401.02385, 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 Preliminaries
	4.1 LLM Prompting
	4.2 Word Sense Disambiguation Task Definition
	4.3 Bias Detection Task Definition

	5 Methodology
	5.1 Word Sense Disambiguation Experiments
	5.2 Bias Classification Experiments

	6 Results
	6.1 Evaluation of WSD models
	6.2 Evaluation of Bias Detection Models

	7 Conclusion
	8 Discussion
	9 Acknowledgements
	References

