
Position: LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks

Subbarao Kambhampati 1 Karthik Valmeekam 1 Lin Guan 1 Mudit Verma 1 Kaya Stechly 1

Siddhant Bhambri 1 Lucas Saldyt 1 Anil Murthy 1

Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1

Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.

1

ar
X

iv
:2

40
2.

01
81

7v
3

 [
cs

.A
I]

 1
2

Ju
n

20
24

LLM-Modulo Framework for Robust Planning

Figure 1. An informal account of viewing an LLM as a giant exter-
nal non-veridical memory that acts as a pseudo System 1

lators. They are a kind of approximate knowledge source
(albeit sans guarantees) trained on our collective conscious-
ness. While it is unlikely that they will have System 2 com-
petencies by themselves, they can nevertheless be valuable
resources in solving System 2 tasks. To put it another way,
the problem with Alchemy of yore was not that Chemistry
is useless, but that people wanted to delude themselves that
Chemistry–a pretty amazing discipline on its own merits–
can be Nuclear Physics if you prompt it just so. The con-
fusions regarding LLM abilities, or should we say, LLM
alchemy, doesn’t seem to be much different–oscillating be-
tween ignoring their strengths, and ascribing abilities they
don’t have.

The goal of this position paper is to introduce some clarity
into this confusing state of affairs oscillating between over-
optimism and over-pessimism. Simply put, we take the
stance that LLMs are amazing giant external non-veridical
memories that can serve as powerful cognitive orthotics for
human or machine agents, if rightly used. The underlying n-
gram nature makes them effortlessly intermix what would be
considered disparate fields of study (not surprisingly, LLMs
are seen to be very good at making/finding analogies!). The
challenge is to leverage them without wrongly ascribing to
them capabilities they don’t possess. The LLM-Modulo
framework proposed in this position paper tackles this
challenge.

For the sake of concreteness, we consider planning tasks,
especially as studied in the automated planning community
(Ghallab et al., 2004). The central position of the paper is
that LLMs cannot plan themselves but can play a variety
of constructive roles in solving planning tasks–especially
as approximate knowledge sources and candidate plan gen-
erators in so-called LLM-Modulo Frameworks, where they
are used in conjunction with external sound model-based
verifiers.

We support this position by first reviewing literature, includ-

ing our own works, that establishes that LLMs cannot be
used as planners or plan verifiers themselves (Section 2).
We also discuss why there are claims about planning/veri-
fication abilities in the first place, in the process hopefully
clarifying some prevalent misunderstandings.

Second, we will propose a framework that allows us to
leverage LLMs effectively in planning tasks, by combin-
ing them with external critics, verifiers and humans. We
call this an LLM-Modulo Framework (a name loosely in-
spired by SAT Modulo Theories (Nieuwenhuis & Oliveras,
2006)); see Figure 3. LLMs play a spectrum of roles in this
architecture, from guessing candidate plans, to translating
those plans into syntactic forms that are more accessible
to external critics, to helping end users flesh out incom-
plete specifications, to helping expert users acquire domain
models (that in turn drive model-based critics). All this
leveraging of LLMs is done without ascribing to them any
planning or verification abilities. The LLM ideas are vetted
by external critics, thus ensuring that the plans generated
in this architecture can have formal correctness guarantees
where possible.

2. Planning-centered Limitations of LLMs
In this section, we will first review literature that calls into
question claims about the planning and self-verification
capabilities of LLMs. Subsequently, we will also provide
some possible reasons for claims to the contrary made in
the literature.

2.1. LLMs cannot generate executable plans in
autonomous mode

Despite initial claims about the planning capabilities of
LLMs (Bairi et al., 2023; Yao et al., 2023b; Shinn et al.,
2023; Huang et al., 2022; Hao et al., 2023) several recent
studies confirm that LLMs are not actually able to generate
executable plans when they are used in autonomous modes
(Valmeekam et al., 2023c; Liu et al., 2023; Silver et al.,
2022). For example, in (Valmeekam et al., 2023c;b), we
evaluate LLMs’ ability to generate correct plans on a suite of
planning problem instances based on the kinds of domains
employed in the International Planning Competition (IPC,
1998). To eliminate the subjective aspect of analysis that
forms the core part of many earlier efforts to evaluate the
reasoning capabilities of LLMs, we leverage models and
tools from the automated planning community to automate
evaluation.

We show that results in the autonomous mode are pretty
bleak. On average, only about 12% of the plans that the
best LLM (GPT-4) generates are actually executable without
errors and goal-reaching. We show that the choice of LLM
doesn’t have much bearing on this. We tested the family

2

LLM-Modulo Framework for Robust Planning

Domain Method Instances correct

GPT-4o GPT-4-
Turbo

Claude-
3-Opus

LLaMA-
3 70B

Gemini
Pro

GPT-4

Blocksworld
(BW)

One-shot 170/600
(28.33%)

138/600
(23%)

289/600
(48.17%)

76/600
(12.6%)

68/600
(11.3%)

206/600
(34.3%)

Zero-shot 213/600
(35.5%)

241/600
(40.1%)

356/600
(59.3%)

205/600
(34.16%)

3/600
(0.5%)

210/600
(34.6%)

Mystery BW
(Deceptive)

One-shot 5/600
(0.83%)

5/600
(0.83%)

8/600
(1.3%)

15/600
(2.5%)

2/500
(0.4%)

26/600
(4.3%)

Zero-shot 0/600
(0%)

1/600
(0.16%)

0/600
(0%)

0/600
(0%)

(0/500)
(0%)

1/600
(0.16%)

Table 1. Results of state-of-the-art LLMs GPT-4o, GPT-4-Turbo, Claude-3-Opus, Gemini Pro and LLaMA-3 70B for Plan Generation
with prompts in natural language.

of GPT LLMs including GPT-4 (OpenAI, 2023), GPT-3.5
(OpenAI, 2022), InstructGPT-3 (Ouyang et al., 2022) and
GPT-3 (Brown et al., 2020). We also show that fine-tuning
does not seem to have a major effect on this dismal perfor-
mance. We demonstrate that the performance deteriorates
further if the names of the actions and objects in the domain
are obfuscated–a change that doesn’t in any way affect the
performance of the standard AI planners. This further sug-
gests that LLMs are more likely doing approximate retrieval
of plans than actual planning.

We continue to reconfirm these limitations over each of
the more recently released LLMs, including Claude Opus,
Gemini, GPT4-Turbo and GPT4-o. Table 1 shows that
all the state of the art LLMs show dismal performance on
PlanBench (Valmeekam et al., 2023b).

More recently, we have also investigated so-called “chain
of thought” prompting (Stechly et al., 2024b), as well as
ReAct-style step-by-step prompting (Verma et al., 2024a)
and found that they too are largely ineffective in improving
the planning performance of LLMs.

2.2. LLMs cannot verify plans and thus cannot improve
by self-critiquing

There still exists considerable optimism that even if LLMs
can’t generate correct solutions in one go, their accuracy
might improve in an iterative prompting regime, where
LLMs will be able to “self-critique” their candidate so-
lutions and refine them to the point of correctness (Yao
et al., 2023b;a; Shinn et al., 2023; Weng et al., 2023; Huang
et al., 2022). This belief seems to rest largely on the as-
sumption that verification of correctness should be easier
than generation for many reasoning problems–a rather clas-
sical argument from computational complexity. There are
grounds to be skeptical of this assumption as the complexity
of the reasoning task should be irrelevant to LLM perfor-
mance if what they are doing is approximate retrieval. In

general, unless LLMs are trained not just on “correct data,”
but also on “corrections data,” there is no a priori reason
to believe that their critiques would even be approximately
relevant, let alone actually correct.

Two of our studies–one on plan verification (Valmeekam
et al., 2023a) and the other on CSP verification (Stechly
et al., 2023) seem to throw cold water on this optimism.
In (Stechly et al., 2023), we systematically investigate the
effectiveness of iterative prompting in the context of Graph
Coloring, a canonical NP-complete reasoning problem. Our
methodology involves a principled empirical study of the
performance of GPT4 on two tasks: solving a large suite of
random graph coloring instances and, separately, verifying
the correctness of the candidate colorings–both in direct
(i.e., return the first solution generated by the LLM) and
iterative modes. In iterative modes, we experiment both
with an LLM critiquing LLM-produced solutions and an
external, guaranteed correct reasoner verifying solutions. In
both cases, we analyze whether the content of criticisms ac-
tually affects bottom-line performance. A more recent paper
further analyzes these results along with performance on
the 24 puzzle–a task that has been used by some researchers
claiming LLMs have the ability to self verify (Stechly et al.,
2024a).

Our results indicate that in direct mode, LLMs are, perhaps
not surprisingly, pretty bad at solving graph coloring in-
stances. More interestingly, they are no better at verifying
solutions. In iterative modes, given the inability of LLMs to
verify solutions, it should come as no surprise that our exper-
iments also show that the strategy of LLMs self-critiquing
their solutions does not improve over the baseline. We re-
port that the performance is in fact worse because the system
can’t recognize a correct coloring and thus merrily passes
over fortuitously correct colorings it has generated, ending
up with a wrong one! Similar results have also been reported
for planning problems in (Valmeekam et al., 2023c).

3

LLM-Modulo Framework for Robust Planning

One important corollary of the fact that LLMs cannot self-
critique their plans is that they also can’t self-improve by
generating synthetic data, e.g. by generating plans them-
selves, critiquing the plans by themselves to improve them,
and then using those to fine-tune themselves, as has been
claimed in the literature (Huang et al., 2023b; Wang et al.,
2022)3.

2.3. Analyzing Claims to the Contrary in the Literature

Given that LLMs can neither guarantee correct generation
nor correct verification of plans, as discussed in the previous
sections, one obvious question is why the literature is replete
with claims contrary to this (Bairi et al., 2023; Yao et al.,
2023b; Shinn et al., 2023; Yao et al., 2023a; Weng et al.,
2023; Huang et al., 2022).

Claims about Planning: To analyze planning claims, we
need to first understand that solving planning tasks requires
(a) having the necessary planning domain knowledge–the ac-
tions and their preconditions, effects; the standard hierarchi-
cal recipes (e.g. task reduction schemas in HTN planning),
past cases/plans, etc., and (b) being able to assemble this
planning knowledge into an executable plan that takes care
of any subgoal/resource interactions. The first part can be
called knowledge acquisition and the second reasoning/plan-
ning. On closer examination, many papers claiming LLMs
have planning abilities wind up confusing general planning
knowledge extracted from the LLMs for executable plans.
When all we are looking for are abstract plans, such as “wed-
ding plans,” with no intention of actually executing them,
it is easy to confuse them for complete executable plans.
Indeed, our close examination of several works claiming
planning capabilities for LLMs (Kambhampati et al., 2023)
suggests that they either work in domains/tasks where sub-
goal interactions can be safely ignored (Yao et al., 2023b;
Shinn et al., 2023)4–either because they are just working on
a single subgoal, or because the world is forgiving and er-
godic; or by delegating the interaction resolution (reasoning)
to the humans in the loop (who, through repeated prompting,
have to “correct” the plan). Sometimes, in common sense
domains, or with enough fine-tuning, the “assembling” part
may also be obviated by having seen a case that pretty much
corresponds to the problem that needs to be solved. Not
surprisingly, our work (Valmeekam et al., 2023c) shows that
if the action interactions are removed by relaxing the world

3Contrary to their claim of “self-improvement”, works like
(Wang et al., 2022) actually heavily depend on external knowledge
(crafted seed examples) and critics (filtering step).

4Although domains like AlfWorld (Shridhar et al., 2021) do
have sub-goal interactions for successful task completion, (Yao
et al., 2023b) and (Shinn et al., 2023) largely ignore these interac-
tions by either focusing on single subgoals or relying on the ergodic
nature of the domain when prompting LLMs for generating plans
(Verma et al., 2024a).

Figure 2. Viewing LLMs as an approximate knowledge source
trained over civilizational knowledge

models, then the ability of LLMs to guess executable plans
improves. Without these assumptions or mitigations, the
plans that come out of LLMs may look reasonable to the lay
user, and yet lead to execution time interactions and errors.5

Claims about Self-Verification: Coming to the claims
about LLM’s self-verification abilities, a closer look at the
literature (Yao et al., 2023a; Huang et al., 2023a) shows
that those claims are either (i) made in the context of tacit
knowledge tasks for which there is little possibility of a ver-
ifier (e.g. essay writing)–making it hard to evaluate whether
LLM’s critiquing actually helped or (ii) the external verifica-
tion is carried out either by simulators (Wang et al., 2023b;
Yao et al., 2023b) or simple calls to the underlying operating
system.

In a related vein, there is the recent Tree of Thoughts (ToT)
paper (Yao et al., 2023a), which has been pitched as a way to
convert LLMs into some type of systematic search with self-
verification. Specifically, ToT employs a problem-specific
prompt priming method. The “tree” in ToT is essentially a
way to generate diverse priming prompts (that the authors
set up in a problem specific way). In other words, despite
the use of terminology of problem-solving agents (Russell
& Norvig, 2010)–search tree, expansion etc., there is really
no deeper connection to search-based agents.

The guarantees–if any–are coming in terms of soundness of
the external verifier. The one clear reasoning problem used
in the ToT paper is the 24 puzzle–for which the external
verifier can be easily implemented in terms of arithmetic
operations (thankfully not done by the numerically chal-
lenged LLM!). Here, our experiments show that the LLM’s
own criticisms are often quite off the mark.6 Because the

5These issues are illustrated in part by a recent news story
(Kugel & Hiltner, 2023) about the proliferation of travel planning
books, mostly auto-extracted from LLMs, and the ensuing disap-
pointment of the unsuspecting end users who buy them mistaking
them for usable plans!

6Note that we can do this check easily because of the formal
specification of correctness. For the “improving writing task” also

4

LLM-Modulo Framework for Robust Planning

Figure 3. The proposed LLM-Modulo framework where LLMs act as idea generators and various external critics that specialize in different
aspects, critique the candidate plan.

24 puzzle’s solutions can be verified by simple arithmetic
operations, it is trivial to implement an external verifier for
these problems. In general though, the verifier may be more
complex and can involve substantial work (you can substi-
tute a simulator for the verifier–but someone has to write
that simulator too!).

LLMs as Approximate Knowledge Sources: The fact
that LLMs are often good at extracting planning knowledge
can indeed be gainfully leveraged. As shown in recent
works (Guan et al., 2023), LLMs can be a rich source of
approximate models of world/domain dynamics and user
preferences, as long as the humans (and any specialized
critics) in the loop verify and refine those models, and give
them over to model-based solvers. This way of using LLMs
has the advantage that the humans need only be present
when the dynamics/preference model is being teased out
and refined, and the actual planning after that can be left to
sounder planning frameworks with correctness guarantees,
such as the LLM-Modulo framework we propose.

Such an overall approach has striking similarities to
knowledge-based AI systems of yore, with LLMs effectively
replacing the “knowledge engineer” (see Figure 2). Given
the rather quixotic and dogmatic shift of AI away from ap-

used in ToT, there are no formal quality metrics and so it is hard to
say anything concrete about the critiques of the LLM.

proaches that accept domain knowledge from human experts
that can be termed “Polanyi’s Revenge” (c.f. (Kambham-
pati, 2021)), this new trend of using LLMs as knowledge
sources can be viewed as a form of avenging Polanyi’s re-
venge! Indeed, LLMs make it easy to get problem-specific
knowledge as long as we are willing to relax the correct-
ness requirements of that knowledge. In contrast to the old
knowledge engineering approaches, LLMs offer this with-
out making it look like we are inconveniencing any specific
human (we are, instead, just leveraging everything humans
told each other on the Web!). So the million dollar question
for reasoning tasks is: “how would you do robust planning
if you have some doddering know-it-all ready to give you
any kind of knowledge?” The LLM-Modulo Framework is a
principled method for tackling this challenge.

3. LLM-Modulo Framework for Robust
Planning

While Section 2 questions the claims that LLMs are ca-
pable of planning/reasoning by themselves, it is certainly
not meant to imply that LLMs don’t have any constructive
roles to play in solving planning/reasoning tasks. On the
contrary, as discussed in the Introduction, their uncanny
ability to generate ideas/potential candidate solutions–albeit
with no guarantees about those guesses–can be valuable in

5

LLM-Modulo Framework for Robust Planning

the generate-test-critique setups in conjunction with either
model-based verifiers or expert humans in the loop. Accord-
ingly, we propose a general “LLM-Modulo” framework7.
While we believe that versions of such an architecture can be
of use in a wide variety of planning or reasoning tasks, for
the sake of concreteness, we will focus on planning tasks,
especially of the type studied in the automated planning
community (Ghallab et al., 2004).

Figure 3 gives a schematic of the LLM-Modulo Frame-
work, as we envision it. As can be seen readily, the un-
derlying architecture is a Generate-Test-Critique loop, with
the LLM generating candidate plans and a bank of critics
critiquing the candidate. The loop starts with the LLM get-
ting the problem specification and generating its first plan
candidate.8 Note that the plans an LLM helps generate in
this architecture have soundness guarantees because of the
external sound critics. This means that plans coming out
of such an compound system will constitute a better corpus
of synthetic data for any fine tuning phase carried out to
improve/customize the LLM’s generation capability. The
completeness of the system depends on the LLM’s ability
to generate all potentially relevant candidates.

Design Choices: Before going into the details about the
framework and its various modules, it is worth noting
some design decisions underlying the proposed architecture.
We start by noting that the LLM-Modulo architecture is a
“Generate-Test” one that involves LLMs interacting with the
external critics/verifiers rather than a LLMs being just front-
ends to external solvers. This is a deliberate decision–as this
allows the LLM to guess/generate candidates to satisfy the
critics, as against dealing with the expressiveness and search
complexity issues of the solvers. The critics/verifiers also
are also more naturally composable than solvers/planners.
As we shall see, we do allow for constructive critics which
can be based on solvers, and provide suggestions on specific
ways of extending/modifying the candidate plans.

Secondly, the framework explicitly recognizes that the
LLMs can generate approximate ideas not just about plan
candidates, but domain models, problem reduction strate-
gies, and refinements to the problem specification. The
framework also recognizes that LLMs are good at for-
mat/syntax changes. Accordingly, the framework lever-
ages all these abilities of LLMs, letting them play multiple
roles in planning. Finally, the architecture carefully circum-
scribes the human’s role–domain experts interact with the
LLM to tease out the models used by (some of) the critics,
while end users take part in refining any incomplete prob-

7The name LLM-Modulo is inspired by the SAT-Modulo theo-
ries (Nieuwenhuis & Oliveras, 2006).

8Although we focus on planning from scratch, it is easy to
accommodate replanning scenarios, where the loop starts with an
externally supplied candidate plan.

lem specification in concert with the LLM. A notable, and
deliberate, absence is human’s involvement in the inner loop
of planning–e.g. with iterative prompting. In addition to
posing an infeasible burden on the human’s time for com-
plex planning problems, such iterative prompting strategies
are notorious for their Clever Hans effect (cle).

3.1. Critics/Verifers

In the LLM-Modulo framework, critics can evaluate LLM-
generated candidates for a planning/reasoning problem over
both hard and soft (style) constraints. Hard constraints refer
to correctness verification which can include causal correct-
ness, timeline correctness, resource constraint correctness
as well as unit tests. For PDDL planning problems, the
hard critic can be based on VAL (Howey et al., 2004), that
works off of a model (which itself can be acquired with the
help of the LLM (Guan et al., 2023). It is worth noting that
the critics don’t always have to be declarative model-based
ones, and can be simulators. Just as LLMs can help humans
in coming up with models, they can also help in writing
procedural simulators, as seems to be done in systems like
Voyager (Wang et al., 2023a).

On the other hand, soft constraints can include more abstract
notions of good form such as style, explicability, preference
conformance, etc. As discussed in Section 2.3, while LLMs
cannot take on the role of hard critics with soundness guaran-
tees,9 they can help simulate some aspects of the role of soft
(style) critics. So our framework does allow for style critics
be possibly based on LLMs. For example, in (Verma et al.,
2024b) we discuss how LLMs can act as a human proxy to
evaluate plans in terms of how they would be perceived by
humans in the loop. Additionally, in (Guan et al., 2024), we
show how Vision-Language Models (VLMs) can be lever-
aged to critique the style of robot behaviors in terms of
their adherence to the soft common-sense preferences of the
humans in the loop. We reiterate that the soundness of the
LLM-modulo framework is inherited from the soundness of
the correctness (hard) critics.

The bank of critics–hard (model-based) as well as soft (pos-
sibly LLM-based) evaluate the current plan candidate to
evaluate its fitness/acceptability. If at least all the hard crit-
ics sign off on the current candidate, then that is considered
a valid solution to be returned to the end-user or the ex-
ecutor. When a critic finds the current plan candidate to
be unsatisfactory, it can provide varying levels of feedback,
ranging from “No, try again” to “No, try again, here is one
thing wrong with the current plan” to “No, try again, here
are all the things wrong with the current plan.” More impor-
tantly, the critics can be constructive, and offer alternatives

9If we don’t insist on soundness guarantees, then it is, in prin-
ciple, possible to train LLMs discriminatively to learn to verify
plans; see (Arora & Kambhampati, 2023).

6

LLM-Modulo Framework for Robust Planning

plan/subplan suggestions. One way of obtaining such con-
structive critics is to base them on partial planners–operating
either on the models themselves or their relaxations (Bryce
& Kambhampati, 2007).These critiques are all pooled at the
Meta (Backprompt) Controller (see Section 3.2)

LLMs as Reformulators: One interesting challenge is that
many of the symbolic model-based verifiers tend to be oper-
ating on specialized formal representations. Given a central
candidate plan (e.g. a mission plan), these critics need trans-
lations of that candidate into their representations. This is
the role of the reformulator module attached to individual
critics. These reformulator modules can be supported to
a large extent by LLMs, given that one thing LLMs are
very good at is format change across different syntactic rep-
resentations (Olmo et al., 2021). Indeed, as discussed in
Section 1, some approaches to combine LLMs with external
symbolic solvers just use LLMs as reformulators for these
solvers (Liu et al., 2023; Pan et al., 2023). It is worth noting
that the syntax conversion itself can be helped with a nested
LLM-Modulo framework–where the syntactic correctness
of the conversion is checked by syntax critics. We will
have occasion to illustrate this in the context of our prelimi-
nary work on LLM-Modulo frameworks for travel planning
discussed in Section 4. Our discussion of LLM-Modulo
framework should make it clear that syntax reformulation
alone is a severely limited role for LLMs!

3.2. Backprompt (Meta) Controller

The critiques from the various critics are pooled together by
the Meta (Backprompt) Controller, which passes a processed
version of them to the LLM as the next iterative prompt to
elicit the next guess. This is especially required in the
presence of a mix of soft and hard critics, where the Meta
Controller can assume the responsibility of compiling the
critiques into a consistent feedback to send to the LLM.

The processing in the controller can range from (i) simple
round-robin selection of prompts to (ii) generating a summa-
rized prompt (with LLM help) to (iii) employing a prompt
diversification strategy to elicit the next candidate from a
different part of the implicit search space. This last strategy
helps increase the completeness of the LLM candidate gen-
eration, and may involve domain/task-specific knowledge
(see the discussion of Tree of Thoughts in Section 2.3).

3.3. Specification Refinement & Critic/Model
Acquisition

As mentioned earlier, we avoid having humans involved
in iteratively prompting LLMs–as this can be an infeasibly
time-consuming activity for them. Instead, we let automated
verifiers, either model-based or LLM-supported, to manage
the plan critiquing process. The framework does depend
on humans for “once per domain” and “once per problem”

interactions. In the former category, human domain experts
can play a role in acquiring the domain model with the
help of the LLM. Examples of such interaction include
teasing out PDDL planning models from the LLMs with
the help of human expert curation (top left in Figure 3). An
example of this is our work in (Guan et al., 2023). The idea
here is that the traditional domain model acquisition task
(e.g. (Simpson et al., 2001)) is significantly made easier by
having the LLMs help with ideas regarding various pieces
of the domain model (e.g., actions, their preconditions and
effects) and letting humans sign off/critique the resulting
model. Once the model is acquired this way, it can be used
by correctness verifiers such as VAL (Howey et al., 2004;
Guan et al., 2023). Often the planning problems in real
world situations are specified incompletely, leaving it to the
human commonsense to refine the specification. This brings
up a second role for humans–this time end users (bottom
left in Figure 3–in collaboratively refining the specification
with the help of LLMs (similar to the way done in (Xie et al.,
2023; Liu et al., 2023)).

3.4. Summary of LLM Roles in LLM-Modulo

It is worth summarizing the multiple roles the LLM plays
in the LLM-Modulo architecture. The most prominent, of
course, is its role in “guessing” the candidate plans (step 2 in
Figure 3) in response to problem specification and iterative
back prompting from the bank of critics (Step 5). Second,
the LLM plays a role in converting the guessed plan can-
didate into specialized representations used by the various
critics (e.g., the time-line view, the causal link view etc.).
This role leverages the fact that LLMs are very good at for-
mat conversion (c.f. (Olmo et al., 2021)). Third, the LLM
plays a role in helping the end user flesh out the incomplete
problem specification to begin with (Step 1 in Figure 3).
Finally, the LLM plays a role in helping the domain expert
tease out and refine the domain models used by the various
model-based critics (Guan et al., 2023; Kwon et al., 2022),
or help “implement” procedural critics (such as those check-
ing syntactic constraints). As a broad approximate source
of knowledge, the LLM can also help enumerate the list of
potential critics needed to validate the candidate plans (once
again with a human in the loop).

3.5. Can LLM-Modulo Frameworks Pay Their Way?

Let’s address the elephant in the room: Given that formal
model-based planning systems already exist (Ghallab et al.,
2004), is LLM-Modulo framework for planning more than
a gratuitous attempt to shoe-horn (the currently popular)
LLMs to solve planning problems? Indeed, when the under-
lying problem is actually solvable by such combinatorial
solvers, it can be orders of magnitue more resource efficient

7

LLM-Modulo Framework for Robust Planning

Figure 4. LLM Modulo Framework adapted for Travel Planning

Figure 5. Final Pass rates of models across LLM Modulo Iterations

to use them.10 Compared to a planner that is guaranteed
to be correct in a narrow set of domains, LLMs may likely
be good at generating plausible (but not guaranteed to be
correct) plan heuristics/suggestions in many more scenarios.
Thus, unlike the traditional planning architectures studied
in AI (Ghallab et al., 2004), which put a priori constraints
on the expressiveness of the problems that can be posed to
the planner (to wit, the different expressiveness levels of the
PDDL specification (McDermott et al., 1998)), the LLM-
Modulo architecture puts no such restrictions. In this sense,
it is more representative of real-world planning problems
such as those in NASA mission planning, where the differ-
ent critics–human and automated–are at best able to give
“no objection” certificates for the candidate plans under con-
sideration, clearing it from their perspective. (Indeed, both
deep space network planning and mars rover task planning
are done via a collective human blackboard. (Johnston et al.,
2014; Bresina et al., 2004).) Note that this is starkly differ-
ent from just sending an unvetted plan out to execution (as
would be the case if we have LLMs operate in autonomous
mode to guess plans). Generalizing planning and reasoning
frameworks this way is consistent with the Doyle & Patil’s
call to the Knowledge Representation community of yore
(Doyle & Patil, 1991), as well as our own call for model-lite
planning (Kambhampati, 2007).

10Not surprisingly, automated programming, the one community
that certainly doesn’t have the luxury of a ready-made “solver,”
have stuck to LLM-Modulo style approaches.

4. Two Case Studies of LLM-Modulo
We have applied the LLM-Modulo framework to classical
planning domains (as reported in (Valmeekam et al., 2023c))
and to a recent travel planning benchmark (as reported in
(Gundawar et al., 2024)). In the former case, the results
(presented in Section 5.2 and Table 4 of (Valmeekam et al.,
2023c)) show that with back prompting from VAL (Howey
et al., 2004) acting as the external verifier and critic, LLM
performance in Blocks World improves to 82% within 15
back prompting rounds, while in Logistics, it improves to
70%. LLM-Modulo doesn’t help as much in an obfuscated
version of blocks world called Mystery BW, reaching about
10% accuracy. This should be expected because the LLMs
have difficulty generating plausible candidate plans for this
domain (note that even here, if a plan is returned, it must
have passed muster with VAL, and is thus guaranteed correct
by its model).

For the travel planning case study, we used a benchmark
proposed in (Xie et al., 2024), which involves a rich mix
of travel constraints presented in flexible natural language
form. Our preliminary results on adapting LLM-Modulo
framework to this benchmark are reported in (Gundawar
et al., 2024). The benchmark’s authors test LLMs across a
variety of prompt engineering techniques including Chain of
Thought and ReAct, reporting that–on GPT-3.5-Turbo–the
current best strategies only manage a startlingly low 0.7%
performance rate! We adapted the LLM-Modulo framework
to this benchmark by operationalizing their hard constraints
(such as the budget constraint set by the user) or common-
sense constraints (such as suggesting diverse attractions to
visit) as critics as shown in Figure 4. Our preliminary re-
sults show (see Figure 5; additional results in (Gundawar
et al., 2024)) that LLM-Modulo based agentification with
automated critics in the loop significantly improves the per-
formance (6x of baselines) even with a limit of 10 back
prompting cycles, and weaker models such as GPT-3.5-
turbo. Furthermore, we also find that LLMs can success-
fully implement functions corresponding to hard critics and
several common-sense critics. Finally, LLMs reliably play
the role of reformatter as well, converting free form travel
plans into structured plans parseable by the critics for back-
prompts or plan evaluation. One interesting observation
about this domain is that we were able to use the LLM itself
to enumerate the type of critics needed to validate the plan
(with light human supervision).

5. Related Work
While the LLM-Modulo framework is being proposed in
general form here for the first time, there are certainly works
in leveraging LLMs in planning and reasoning tasks that are
in line with the spirit of the LLM-Modulo framework. Work
on FunSearch (Romera-Paredes et al., 2023) depends on a

8

LLM-Modulo Framework for Robust Planning

generate-test loop between a specially fine-tuned LLM that
guesses solutions, and an external symbolic evaluator that
critiques them. The authors note how the external verifier
is critical for avoiding falling prey to hallucinations (i.e.,
approximate solution candidates that have flaws). Alpha-
Geometry (Trinh et al., 2024) too depends on the Generate-
Test-Critique interaction between a fine-tuned LLM and a
symbolic evaluator. Both these systems fine-tune pre-trained
LLMs with task specific synthetic data–the correctness of
which is vetted with external simulators.

While we focused on PDDL planning tasks for the sake of
concreteness, we believe that the essence of LLM-Modulo
framework is equally applicable to other scenarios involving
planning and reasoning–such as Reinforcement Learning
with Simulators. Such RL systems rely on rewards as feed-
back to train a policy. Simulators takes on the roles of plan
evaluation and critiques performed by the respective crit-
ics in the LLM-Modulo framework (e.g. (Rajvanshi et al.,
2023)). The fact that simulators play the role of verifiers
is often not explicitly recognized in cases where LLMs are
used as an actor to generate an admissible plan by interact-
ing with a simulator, for example in the case of AlfWorld
(Yao et al., 2023b; Shinn et al., 2023) and Minecraft (Wang
et al., 2023b). Similar to extracting a domain model such as
in the case of (Guan et al., 2023), LLMs can also be used for
designing a reward model or shaping the reward (Bhambri
et al., 2024; Kwon et al., 2022; Hao et al., 2023; Ma et al.,
2023).

Interestingly, the fact that LLM’s can help come up with ap-
proximate quasi-symbolic transition models, reward models
and models of high level actions has made a bigger splash
in RL. This is because for far too long, researchers there
have tried to spurn any high level models (lest that would
involve depending on humans; (Kambhampati, 2021)) and
focused on learning to act from sensory information, under
the name of “deep reinforcement learning.” Given the hor-
rendous sample complexity of the DRL methods even in
reaching a single subgoal, and the well known fact that even
approximate symbolic models can help drastically improve
the performance (c.f. (Guan et al., 2022)), coupled with the
fact that LLM’s are only too glad to dream up approximate
models and goal recipes, there has been a performance revo-
lution of sorts there (Yao et al., 2023b; Liang et al., 2023;
Wang et al., 2023b). If we look beyond the improvements
in these lower level goal seeking behaviors–especially in
the presence of ergodic simulators, the RL approaches de-
pendent on LLMs will encounter the same issues regarding
subgoal interactions that our discussion of PDDL planning
problems brought into focus. The LLM-Modulo inspired
frameworks will thus, we believe, be equally relevant there.
Indeed, SayCan (Ahn et al., 2022) the earliest use of LLMs
in generating policies in an RL-with-Simulator scenario,
explicitly filters the action choices suggested by the LLM

with the help of simulator.

Although we focused on text based LLMs (such as GPT4),
recently there have also been impressive development in
multi-modal LLMs (e.g. GPT4V). While multi-modality is
a great addition that increases the coverage of their System
1 imagination (Figure 1), it is not clear that this gives them
System 2 competence.11 As we discussed earlier, we can
leverage VLMs for style criticism of the robot behavior
(Guan et al., 2024).

Finally, our position (with published supporting evidence)
that LLMs are incapable of supporting planning in au-
tonomous modes must seem quite at odds with the current
head-long rush into agentic LLMs. We believe that the
latter is largely a result of confusing “acting” with “plan-
ning.” Given their ability to translate across formalisms, it
is of course possible for LLMs to invoke external services–
something frameworks like AutoGPT and LangChain sup-
port. But the mere ability to invoke an action doesn’t, in any
way, guarantee that the course of actions thus invoked will
achieve a desired state of affairs. The only way to guaran-
tee the latter is to to support robust planning capabilities–
something our LLM-Modulo frameworks strive to do.

6. Conclusion
This position paper is a modest attempt to combat both over-
optimism and over-pessimism about the role of LLMs in
planning and reasoning tasks. Our position is that LLMs can-
not plan themselves but can play a variety of constructive
roles in solving planning tasks–especially as approximate
knowledge sources and candidate plan generators in the so-
called LLM-Modulo Frameworks in conjunction with exter-
nal sound model-based verifiers. In support of this position,
we summarized the literature questioning the claims about
the planning and self-verification capabilities of LLMs by
themselves. We also discussed how conflating approximate
knowledge acquisition and generating executable plans of
action is behind many of the claims about planning and ver-
ification abilities of LLMs. We then shared LLM-Modulo
framework, our vision for a productive way to integrate
the impressive idea generation/approximate knowledge pro-
vision capabilities of LLMs with external verifiers with
correctness guarantees, for robust and expressive planning.
We discussed how planning in LLM-Modulo framework
avoids inheriting the expressiveness and search-complexity
limitations of traditional symbolic planners, while retaining
their soundness guarantees. We illustrated and discussed the
many roles LLMs can play in the LLM-Modulo framework.
Finally, we also discussed two case studies of adapting the
LLM-Modulo frameworks.

11If you know how to complete sentences, and now learned to
complete dance moves, does your ability to reason/plan magically
improve?

9

LLM-Modulo Framework for Robust Planning

Impact Statement
This position paper takes a stance on a robust and well-
founded way of leveraging Large Language Models in plan-
ning and reasoning tasks. It (i) points out the inabilities
of current pre-trained LLMs to tackle planning problems,
(ii) suggests some reasons as to why there are wide-spread
misunderstandings about LLM planning abilities and (iii)
proposes LLM-Modulo frameworks as a way to leverage
LLMs for robust planning. The main consequences of realiz-
ing this position/vision is expected to be (i) sounding caution
about misapplication of LLMs in autonomous modes for
planning (ii) providing a way to leverage LLMs to do ro-
bust planning. Given the current interest in agentic LLMs,
these insights can have significant positive impact in mis-
sion critical situations. We do not see any obvious negative
societal consequences of leveraging LLMs this way (unless
of course the plans are aimed at achieving malicious goals).

Acknowledgments
The ideas discussed in this paper have evolved over a se-
ries of talks, tutorials and twitter threads. The discussions,
feedback and encouragement from colleagues, including
Sarath Sreedharan, Tom Dietterich, Yann LeCun, Daniel
Borrajo, and Dan Weld is gratefully acknowledged. The
adaptation of LLM-Modulo Framework for Travel Plan-
ning, discussed in Section 4 was lead by Atharva Gundawar.
Kambhampati acknowledges generous support from ONR
via grants N00014-18-1-2442, N14-18-1-2840 and N00014-
23-1-2409, as well as gifts from J.P. Morgan, Qualcomm
and Amazon.

References
Clever Hans. https://en.wikipedia.org/wiki/Clever Hans.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Arora, D. and Kambhampati, S. Learning and leveraging
verifiers to improve planning capabilities of pre-trained
language models. ICML Workshop on Knowledge and
Logical Reasoning in the Era of Data-driven Learning
(arXiv preprint arXiv:2305.17077), 2023.

Bairi, R., Sonwane, A., Kanade, A., Iyer, A., Parthasarathy,
S., Rajamani, S., Ashok, B., Shet, S., et al. Codeplan:
Repository-level coding using llms and planning. arXiv
preprint arXiv:2309.12499, 2023.

Bhambri, S., Bhattacharjee, A., Liu, H., and Kambhampati,

S. Efficient reinforcement learning via large language
model-based search, 2024.

Bresina, J. L., Jónsson, A. K., Morris, P. H., and Rajan,
K. Activity planning for the mars exploration rovers. In
ICAPS-2005 Conference, 2004.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bryce, D. and Kambhampati, S. A tutorial on planning
graph based reachability heuristics. AI Mag., 28(1):47–
83, 2007.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Doyle, J. and Patil, R. S. Two theses of knowledge represen-
tation: Language restrictions, taxonomic classification,
and the utility of representation services. Artificial intelli-
gence, 48(3):261–297, 1991.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin,
B. Y., Welleck, S., West, P., Bhagavatula, C., Bras, R. L.,
Hwang, J. D., Sanyal, S., Ren, X., Ettinger, A., Harchaoui,
Z., and Choi, Y. Faith and fate: Limits of transformers on
compositionality. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=Fkckkr3ya8.

Gendron, G., Bao, Q., Witbrock, M., and Dobbie, G.
Large language models are not abstract reasoners. arXiv
preprint arXiv:2305.19555, 2023.

Ghallab, M., Nau, D., and Traverso, P. Automated Planning:
theory and practice. Elsevier, 2004.

Guan, L., Sreedharan, S., and Kambhampati, S. Lever-
aging approximate symbolic models for reinforcement
learning via skill diversity. In Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.),
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 7949–7967. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/guan22c.html.

Guan, L., Valmeekam, K., Sreedharan, S., and Kambham-
pati, S. Leveraging pre-trained large language models
to construct and utilize world models for model-based
task planning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=zDbsSscmuj.

10

https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://proceedings.mlr.press/v162/guan22c.html
https://proceedings.mlr.press/v162/guan22c.html
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj

LLM-Modulo Framework for Robust Planning

Guan, L., Zhou, Y., Liu, D., Zha, Y., Amor, H. B., and
Kambhampati, S. ”task success” is not enough: Inves-
tigating the use of video-language models as behavior
critics for catching undesirable agent behaviors, 2024.

Gundawar, A., Verma, M., Guan, L., Valmeekam, K., Bham-
bri, S., and Kambhampati, S. Robust planning with llm-
modulo framework: Case study in travel planning. arXiv
preprint arxiv:2405.20625, 2024.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023.

Howey, R., Long, D., and Fox, M. VAL: Automatic plan val-
idation, continuous effects and mixed initiative planning
using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence, pp. 294–301. IEEE,
2004.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023a.

Huang, J., Gu, S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 1051–1068, Singapore, Decem-
ber 2023b. Association for Computational Linguistics.
doi: 10.18653/v1/2023.emnlp-main.67. URL https:
//aclanthology.org/2023.emnlp-main.67.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, I., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022.

IPC. International planning competition, 1998. URL
https://www.icaps-conference.org/
competitions/.

Johnston, M. D., Tran, D., Arroyo, B., Sorensen, S., Tay, P.,
Carruth, B., Coffman, A., and Wallace, M. Automated
scheduling for nasa’s deep space network. AI Magazine,
35(4):7–25, 2014.

Kahneman, D. Thinking, fast and slow. macmillan, 2011.

Kambhampati, S. Model-lite planning for the web age
masses: The challenges of planning with incomplete
and evolving domain models. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 22,
pp. 1601. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2007.

Kambhampati, S. Polanyi’s revenge and AI’s new romance
with tacit knowledge. Communications of the ACM, 64
(2):31–32, 2021.

Kambhampati, S. Can LLMs reason and plan? Annals of
the New York Academy of Sciences, 2024.

Kambhampati, S., Valmeekam, K., Marquez, M., and Guan,
L. On the role of large language models in planning,
July 2023. URL https://yochan-lab.github.
io/tutorial/ICAPS-2023/. Tutorial presented at
the International Conference on Automated Planning and
Scheduling (ICAPS), Prague.

Kugel, S. and Hiltner, S. A new frontier for
travel scammers: A.I.-Generated Guidebooks.
New York Times, August 2023. URL https:
//www.nytimes.com/2023/08/05/travel/
amazon-guidebooks-artificial-intelligence.
html.

Kwon, M., Xie, S. M., Bullard, K., and Sadigh, D. Reward
design with language models. In The Eleventh Interna-
tional Conference on Learning Representations, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control, 2023.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. Llm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Eureka: Human-level reward design via coding large lan-
guage models. arXiv preprint arXiv:2310.12931, 2023.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M., and Grif-
fiths, T. L. Embers of autoregression: Understanding
large language models through the problem they are
trained to solve. arXiv preprint arXiv:2309.13638, 2023.

McDermott, D., Ghallab, M., Howe, A. E., Knoblock, C. A.,
Ram, A., Veloso, M. M., Weld, D. S., and Wilkins, D. E.
Pddl-the planning domain definition language. 1998.

Nieuwenhuis, R. and Oliveras, A. On sat modulo theories
and optimization problems. In Theory and Applications of
Satisfiability Testing-SAT 2006: 9th International Confer-
ence, Seattle, WA, USA, August 12-15, 2006. Proceedings
9, pp. 156–169. Springer, 2006.

Olmo, A., Sreedharan, S., and Kambhampati, S. Gpt3-to-
plan: Extracting plans from text using gpt-3. FinPlan
2021, pp. 24, 2021.

11

https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://www.icaps-conference.org/competitions/
https://www.icaps-conference.org/competitions/
https://yochan-lab.github.io/tutorial/ICAPS-2023/
https://yochan-lab.github.io/tutorial/ICAPS-2023/
https://www.nytimes.com/2023/08/05/travel/amazon-guidebooks-artificial-intelligence.html
https://www.nytimes.com/2023/08/05/travel/amazon-guidebooks-artificial-intelligence.html
https://www.nytimes.com/2023/08/05/travel/amazon-guidebooks-artificial-intelligence.html
https://www.nytimes.com/2023/08/05/travel/amazon-guidebooks-artificial-intelligence.html

LLM-Modulo Framework for Robust Planning

OpenAI. Introducing chatgpt by openai, 2022. URL
https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Pan, L., Albalak, A., Wang, X., and Wang, W. Y. Logic-
lm: Empowering large language models with symbolic
solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Rajvanshi, A., Sikka, K., Lin, X., Lee, B., Chiu, H.-P., and
Velasquez, A. Saynav: Grounding large language models
for dynamic planning to navigation in new environments.
arXiv preprint arXiv:2309.04077, 2023.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J., Ellenberg, J. S.,
Wang, P., Fawzi, O., et al. Mathematical discoveries from
program search with large language models. Nature, pp.
1–3, 2023.

Russell, S. J. and Norvig, P. Artificial intelligence a modern
approach. London, 2010.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R.,
and Yao, S. Reflexion: Language agents with verbal
reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2021. URL https://arxiv.
org/abs/2010.03768.

Silver, T., Hariprasad, V., Shuttleworth, R. S., Kumar, N.,
Lozano-Pérez, T., and Kaelbling, L. P. PDDL plan-
ning with pretrained large language models. In NeurIPS
2022 Foundation Models for Decision Making Workshop,
2022. URL https://openreview.net/forum?
id=1QMMUB4zfl.

Simpson, R., McCluskey, T. L., and Zhao, W. Gipo: an inte-
grated graphical tool to support knowledge engineering
in ai planning. In ECP-01, pp. 445. Citeseer, 2001.

Stechly, K., Marquez, M., and Kambhampati, S. GPT-
4 Doesn’t Know It’s Wrong: An Analysis of Iterative
Prompting for Reasoning Problems. In NeurIPS 2023
Foundation Models for Decision Making Workshop, 2023.

Stechly, K., Valmeekam, K., and Kambhampati, S. On
the self-verification limitations of large language mod-
els on reasoning and planning tasks. arXiv preprint
arxiv:2402.08115, 2024a.

Stechly, K., Valmeekam, K., and Kambhampati, S. Chain
of thoughtlessness: An analysis of cot in planning. arXiv
preprint arxiv:2405.04776, 2024b.

Trinh, T. H., Wu, Y., Le, Q. V., He, H., and Luong, T. Solv-
ing olympiad geometry without human demonstrations.
Nature, 625(7995):476–482, 2024.

Ullman, T. Large language models fail on trivial al-
terations to theory-of-mind tasks. arXiv preprint
arXiv:2302.08399, 2023.

Valmeekam, K., Marquez, M., and Kambhampati, S. Can
large language models really improve by self-critiquing
their own plans? In NeurIPS 2023 Foundation Models
for Decision Making Workshop, 2023a.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on plan-
ning and reasoning about change. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023b. URL https:
//openreview.net/forum?id=YXogl4uQUO.

Valmeekam, K., Marquez, M., Sreedharan, S., and Kamb-
hampati, S. On the planning abilities of large language
models - a critical investigation. In Thirty-seventh Con-
ference on Neural Information Processing Systems (Spot-
light), 2023c. URL https://openreview.net/
forum?id=X6dEqXIsEW.

Verma, M., Bhambri, S., and Kambhampati, S. On the brittle
foundations of react prompting for agentic large language
models. arXiv preprint arXiv:2405.13966, 2024a.

Verma, M., Bhambri, S., and Kambhampati, S. The-
ory of mind abilities of large language models in
human-robot interaction: An illusion? arXiv preprint
arXiv:2401.05302, 2024b.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-ended
embodied agent with large language models, 2023a.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023b.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language model with self generated instructions. arXiv
preprint arXiv:2212.10560, 2022.

12

https://openai.com/blog/chatgpt
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=1QMMUB4zfl
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=YXogl4uQUO
https://openreview.net/forum?id=X6dEqXIsEW
https://openreview.net/forum?id=X6dEqXIsEW

LLM-Modulo Framework for Robust Planning

Weng, Y., Zhu, M., Xia, F., Li, B., He, S., Liu, S., Sun,
B., Liu, K., and Zhao, J. Large language models are
better reasoners with self-verification. In Findings of
the Association for Computational Linguistics: EMNLP
2023, pp. 2550–2575, 2023.

Xie, J., Zhang, K., Chen, J., Zhu, T., Lou, R., Tian, Y.,
Xiao, Y., and Su, Y. Travelplanner: A benchmark for
real-world planning with language agents. arXiv preprint
arxiv:2402.01622, 2024.

Xie, Y., Yu, C., Zhu, T., Bai, J., Gong, Z., and Soh,
H. Translating natural language to planning goals with
large-language models. arXiv preprint arXiv:2302.05128,
2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. R. Tree of thoughts: Deliberate
problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023a. URL https://openreview.net/
forum?id=5Xc1ecxO1h.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning
and acting in language models. In The Eleventh In-
ternational Conference on Learning Representations,
2023b. URL https://openreview.net/forum?
id=WE_vluYUL-X.

13

https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=5Xc1ecxO1h
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

