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Abstract

There are pronounced differences in the extent to
which industrial and academic AI labs use comput-
ing resources. We provide a data-driven survey of the
role of the compute divide in shaping machine learning
research. We show that a compute divide has coin-
cided with a reduced representation of academic-only
research teams in compute intensive research topics, es-
pecially foundation models. We argue that, academia
will likely play a smaller role in advancing the as-
sociated techniques, providing critical evaluation and
scrutiny, and in the diffusion of such models. Concur-
rent with this change in research focus, there is a no-
ticeable shift in academic research towards embracing
open source, pre-trained models developed within the
industry. To address the challenges arising from this
trend, especially reduced scrutiny of influential models,
we recommend approaches aimed at thoughtfully ex-
panding academic insights. Nationally-sponsored com-
puting infrastructure coupled with open science initia-
tives could judiciously boost academic compute access,
prioritizing research on interpretability, safety and se-
curity. Structured access programs and third-party au-
diting may also allow measured external evaluation of
industry systems.

The crucial role of powerful computer hardware that is
well-suited to the needs of machine learning has been rec-
ognized in the field for at least twenty years. In the context
of neural-network-based machine learning, it has been dis-
cussed since at least the mid-2000s (see, in particular, Uetz
and Behnke 2009; Cireşan et al. 2011; Chellapilla, Puri,
and Simard 2006). The ascent of deep learning has ce-
mented this recognition (LeCun, Bengio, and Hinton 2015;
Schmidhuber 2015). Work on large self-supervised models,
and particularly large language models (LLMs)—such as
GPT-4 and PaLM—has underscored the salience of large-
scale AI computing resources as a critical input for training
capable deep learning systems. Self-supervised learning,
in particular, has enabled more scalable training on mas-
sive unlabelled datasets, which has resulted in compute
becoming one of the key bottlenecks in the development
of state-of-the-art machine learning models (Bommasani
et al. 2021).
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Figure 1. Share of notable machine learning models by institution
type at various compute budgets (top).1Machine learning models in
the top 75th percentile of compute intensity relative to contempo-
raneous models by institution type over time (bottom). Based on
a dataset of 650 machine learning models across a broad range of
domains by Sevilla et al. 2022.

The compute required to train machine learning models,
measured in floating point operations (FLOP), has dou-
bled every six months on average since the early 2010s
(Sevilla et al. 2022). By contrast, Moore’s law is typi-
cally associated with a two-year doubling time. Since late
2015, a new class of unusually large models that use 10- to
100-fold more compute than their typical contemporaries
has become a common fixture in AI. Estimates indicate
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Mateos-Garcia, Micah Musser, Konstantin Pilz, Phillip Isola, Jayson Lynch, Matthew Zaragoza-Watkins, Ben Garfinkel, Markus Anderljung,
Micah Musser, Nur Ahmed, and Michael Totty. for helpful discussions. We thank Owen Dudney for his help in producing the NeurIPs compute
usage dataset.

1“Notable” is defined as results that satisfy at least one notability criterion (90th percentile of citations among AI publications from the
same period, historical importance or a state-of-the-art advance), see Methods.
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that the amount of compute needed to train large-scale
models has increased between hundreds of thousands and
tens of million-fold in the past decade (Sevilla et al. 2022;
Ganguli et al. 2022). With this growth in compute, the
training of widely used models has become increasingly
technically demanding and expensive, with costs reach-
ing excess of tens of millions of dollars. Meanwhile, the
cost of workhorse language models, such as the medium
to large size BERT, can already be too costly for projects
within academia (Sharir, Peleg, and Shoham 2020; Izsak,
Berchansky, and Levy 2021).

The increasing amount of compute also brings greater
technical complexity in its deployment, requiring expertise
in parallel and distributed computing, specialist program-
ming languages, and software development and optimiza-
tion. Hardware constraints, including memory limitations
and communication bandwidths on accelerators, require
practitioners to adopt various distributed computing tech-
niques, notably model parallelism, which are often difficult
to design and implement (Huang et al. 2019; Shoeybi et al.
2019). Hardware failures in training often require manual
remediation from dedicated engineers (Zhang et al. 2022),
an issue that is likely to be especially challenging for aca-
demic machine learning groups that might lack engineers
who specialize in the hardware used in research experi-
ments.

Despite discussions on the divide in research contributions
due to compute access (Ahmed and Wahed 2020; Ahmed,
Wahed, and Thompson 2023), a comprehensive account of
its implications for machine learning and AI governance is
lacking. In light of this, we provide a data-driven investi-
gation into the way compute divides machine learning re-
search and offer a preliminary analysis of the strategic im-
plications. We ask: How does a widening compute divide
affect the machine learning research ecosystem? What are
the consequences for the ability of the scientific community
to access, evaluate, study, and scrutinize machine learning
models and other artifacts?

1 Compute divides machine
learning research

The dominant position once held by academia in the devel-
opment of significant machine learning models appears to
have declined recently. An analysis of 650 notable machine
learning models indicates that the proportion of large-scale
machine learning models (characterized as those in the top
quartile of computational usage compared to their coun-
terparts) created by academic laboratories has decreased
dramatically. In the early 2010s, around 65% of these
models originated from academic labs. However, this fig-
ure fell to approximately 10% during the initial years of
the 2020s (as shown in Figure ). Moreover, since 2017,
industry-only research teams have dominated the training
of large-scale machine learning models, reaching around
81% in 2022.

We find that the relative dominance of industry is es-
pecially pronounced in the case of large self-supervised
models, such as language or generative image models,
where non-industry models are rare and generally much
smaller than those produced by industry. The largest self-
supervised model trained by an academically led research
team is ProtT5-XXL (Elnaggar et al. 2020), which, us-
ing supercomputers from the Oak Ridge National Labora-
tory, still used less than 1% of the compute used to train
the largest machine learning model developed by industry.
Another significant shift in the contributions from various
institutions is the rise in collaborative efforts, which have
accounted for about 20% of large-scale machine learning
models since 2012. This is a notable increase from the
single-digit percentages observed in the early 2000s. Such
collaborations often serve as a bridge for knowledge ex-
change or as a conduit for academic researchers transi-
tioning to industry roles. As a result, this trend could be
viewed as a precursor-trend that has enabled the current
relative dominance of industry.

Of the large models trained outside of industry, a no-
table fraction is produced by Chinese research organiza-
tions. This suggests that the compute divide may be less
pronounced in Chinese AI development. Indeed, Chinese
government-sponsored labs, such as the BAAI, provide an
unrivaled level of support in terms of funding and compute
to facilitate the training of large machine learning models
(Ding and Xiao 2022).
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Figure 2. Distribution of peak theoretical performance (FLOP/s)
of hardware used in 2,333 NeurIPS 2021 papers. Dashed lines show
mean peak theoretical performance of hardware set-ups reported in
papers by academic research teams and research teams that involve

industry authors. “Other” refers to topics other than NLP and
speech, and computer vision (e.g. reinforcement learning,

methodological papers, graph neural networks, and papers covering
multiple subfields).
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Industry-affiliated research groups report using hardware
five times more powerful than non-industry groups in
NeurIPS publications. Around 30% of industry teams
also have better infrastructure than the best academic se-
tups. While some industry teams have similar resources to
academics, highly compute-intensive projects are predom-
inantly done by industry. Overall, the current picture-of
labs producing large-scale models and those using large
amounts of computing resources-is consistent with the pro-
nounced differences between industry and non-industry
labs in their ability to fund or deploy high-performance
computing resources.

• Funding. A key reason for the compute divide be-
tween academia and industry is the limited funding
available for researchers in academia. The high costs
of purchasing or renting many AI accelerators (such
as GPUs) may encumber academic researchers from
acquiring the resources needed for compute intensive
machine learning research.

• Engineering expertise. The setup and manage-
ment of large clusters of hardware and AI accelera-
tors needed for compute-intensive research requires
extensive expertise in parallel and distributed com-
puting (Huang et al. 2019; Shoeybi et al. 2019). Or-
chestrating these large clusters is its own discipline
and requires dedicated staff. This type of work is
not commonly found in academia, as PhD research
in machine learning is often done by individuals or
small teams.

• Access to computing clusters. Industry play-
ers, especially large tech firms, are often supplied
or co-located with access to data centers and given
these services for free or at reduced prices. It is,
for instance, notable that many of the leading in-
dustry AI research groups are also leading cloud
providers, such as Amazon Web Services, Google
Cloud, and Microsoft Azure (Gartner 2021; Belfield
and Hua 2022), or at least have partnerships with
cloud providers. The availability, ease of access, and
on-site talent for leveraging these computational re-
sources make it easier for industry researchers to use
these resources for their research and development
efforts.

• Academic research is more diverse. Aca-
demic research is often more diverse and may
not always require large amounts of compute re-
sources. Industry, in contrast, typically has a more
single-minded focus on commercializing their re-
search and may be more interested in computation-
ally intensive projects (Klinger, Mateos-Garcia, and
Stathoulopoulos 2020). While minor improvements
in an already extensively explored domain are of in-
terest to industry, research in well-explored domains
may offer fewer of the novel scientific insights sought
after in academia.

2 Implications for academic
contributions

The growing divide in compute resources significantly im-
pacts the distribution of research topics between industrial
and academic institutions in ML domains. In areas where
compute usage and the need for high-performance comput-
ing expertise rise, industry is taking the lead. In response,
academia is increasingly focusing on lower-compute in-
tensity research, and research involving open source pre-
trained models developed by industry.

2.1 Impact on research landscapes

Using publication data from OpenAlex, we find that an
increase in the number of compute-related terms (i.e.
“GPU”, “large-scale”, “distributed computing”, etc.) in
ML sub-fields is associated with a decline in the proportion
of research produced by academic-only research teams.
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Figure 3. As the average number of compute-related terms in
abstracts for papers by topic increases, the share of research

publications on those topics from academic-only teams decreases
(slope: -0.122, p-value: < 1%). Plot shows top 25 ML topics in the

OpenAlex corpus.

In the top 25 ML sub-fields (∼1.2M publications), we ob-
serve that in the 2012-2021 period, a 10% rise in compute-
related keywords in abstracts corresponds to a 1.73% de-
crease in the proportion of academic-only publications in
a topic. This effect is particularly noticeable in language-
related ML fields: a 10% increase in compute-related key-
words in abstracts is linked to a reduction in academic-
only team representation in natural language processing
by 2.43%, in language modeling by 2.76%, and in machine
translation by 2.18%.

The data also indicates that an overall increase in compute
usage can be differentially attributed to industrial AI labs.
While compute-related key words in ML abstracts grew
on average 17.8% in the 2012-2021 period in academic ab-
stracts, this number was 33.0% in industry abstracts. This
differential increase was especially pronounced in domains
such as robotics, transfer learning, reinforcement learning,
and natural language processing (Figure 4).
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2.2 Sidelining from research on founda-
tion models

The massive training runs of large models require exten-
sive engineering expertise, and practitioners must often
adopt various types of distributed computing techniques,
notably model parallelism, that are hard to design and im-
plement (Huang et al. 2019; Shoeybi et al. 2019). The tool-
ing for implementing effective large-scale training, such as
model parallelism, tensor parallelism, or effective reduc-
tions in memory consumption, is often nascent at a large-
scale and relies on custom frameworks (Athlur et al. 2022).

Current data strongly suggests that the driving force be-
hind research into large self-supervised models is predom-
inantly the industrial sector, as opposed to academic re-
search institutions. This is exemplified by the significant
gap in the production of these models. Of the 23 models
with over a billion parameters released in 2022, industrial
research labs were solely responsible for producing 16 of
these models, while academic institutions could only claim
exclusive credit for one (Figure 5).

Academic research often aims to advance basic knowledge,
while industry research tends to focus on developing capa-
bilities for commercial products (Muller 2014, Bodas Fre-
itas and Verspagen 2017). Although industry faces some
pressure to align with academic interests for recruiting tal-
ent (Ahmed 2022), they may attract academics through
other means like salaries, computing resources, and access
to proprietary datasets.

2.3 Dominance of industry open sourced
models

Open source programming languages (e.g. Python),
frameworks (e.g. PyTorch, TensorFlow), software, and
datasets are widely used in computer science research
(Barba 2022; Hasselbring et al. 2020), and ML in par-
ticular (Langenkamp and Yue 2022). Aided by platforms
such as HuggingFace, open source ML models are becom-

ing another important tool in ML research. As developing
large self-supervised models from scratch is infeasible for
most academic labs due to the relative lack of compute ac-
cess, we expect to see an increased emphasis on researching
open sourced pre-trained models.

In addition to demand for pre-trained models from non-
industry researchers, incentives to regularly release open
source ML model weights and code-bases exist in indus-
try, suggesting this trend will continue. Open-sourcing
technology can provide benefits to the developers, such
as reducing the costs of testing, debugging, and generat-
ing improvements (Lerner and Tirole 2002; Henkel 2004;
Ågerfalk and Fitzgerald 2008), lowering the recruiting and
on-boarding costs of new hires by promoting adoption of
one’s technology stack (Lerner and Tirole 2002; Marlow
and Dabbish 2013), as well as allowing for the sale of com-
plementary products (Dahlander and Wallin 2006; Watson
et al. 2008).
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isolated and analyzed for whether or not they sufficiently used or

studied a BERT model or technique in their research.

Open source ML models like BERT offer non-industry
researchers-tested, large-scale models with lower computa-
tional costs and engineering overhead. A notable example
is Google’s BERT (Devlin et al. 2018), which has become
an ubiquitous baseline in NLP experiments and has given
rise to ‘BERTology’, the study of the nature and perfor-
mance of the model (Rogers, Kovaleva, and Rumshisky
2020). After BERT was released in 2018, the number of
research papers studying BERT (and models in the BERT-
family) at NeurIPS more than tripled from 2019 to 2021
(Figure 6). By 2021, around 3% of all NeurIPS publica-
tions (a total of 65 papers), investigated BERT models or
conducted experiments on BERT.

In their analysis of interviews of open source ML software
users, Langenkamp and Yue 2022 highlight that open-
sourcing in ML has facilitated the creation of standards,
facilitating interoperability and fostering a growing user
base. Open source ML models, such as BERT, may then
form the basis of a set of standards for architectures, in-
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put/output representations, and other settings in a way
that preempts the development of competing standards.

Corporate AI labs may aim to open source ML models to
invite external researchers to test, evaluate and iterate on
existing techniques. While the publication of code low-
ers the cost of reproduction and iteration, (Langenkamp
and Yue 2022), while releasing model weights lowers these
even more drastically. Since the availability of tools and
models can shape researchers’ research priorities, the re-
lease of models could promote research on topics of inter-
est. For instance, Zhang et al. 2022 noted that release of
the OPT suite of models could advance progress on their
ability to improve robustness and mitigate issues such as
bias and toxicity through open collaboration with external
researchers.

2.4 Policy implications and recommenda-
tions

The foregoing section highlights several policy-relevant im-
plications of the compute divide, including reduced repre-
sentation in compute intensive subfields, the training and
evaluation of large-scale models, and industry dominance
over open source artifacts. In what follows, we provide
preliminary recommendations for promoting and support-
ing research that we may expected to be under-provided
by industry labs.

Responsible compute provision

There is a growing awareness of the resource gap in AI
research within academia, prompting efforts to provide
computing resources. Recent initiatives, such as the US
National AI Research Resource (NAIRR; Force 2023) and
the UK’s AI Research Resource (Department for Science,
Innovation and Technology 2022) aim to, in part, miti-
gate the effects of limited compute access for academic
institutions on national competitiveness and talent devel-
opment. Nationally sponsored computing infrastructure
can potentially achieve significant economies of scale in the
procurement and maintenance of large-scale infrastructure
(Anderljung, Heim, and Shevlane 2022).

While these resources could help address the divide, it is
crucial to pair increased compute allocation with a focus
on risk reduction and equitable benefit distribution (An-
derljung, Heim, and Shevlane 2022), so that it expands
academic insights judiciously, empowering academia to
guide progress responsibly. We thus emphasize the impor-
tance of compute provision schemes aimed at supporting
research that may reasonably be expected to be under-
provided by industry labs, such as:

1. Improve scrutiny, comprehension, and interpretabil-
ity of large machine learning models;

2. Concentrate on enhancing AI safety, security, and
robustness to address potential risks and vulnerabil-

ities in high-compute models;

3. Create open source models to address challenges not
prioritized by industry due to monetization barriers
or lack of immediate financial returns (e.g. models
for neglected tropical diseases, climate change, pub-
lic health, or under-resourced languages); and

4. Encourage exploration of high-uncertainty/high-
reward research, especially that which blends diverse
approaches from traditionally academic-dominated
fields, to foster breakthroughs and new paradigms
in AI.

Open science initiatives

Promoting open science initiatives that prioritize the shar-
ing of pre-trained models can significantly bridge the com-
pute divide, particularly for projects focusing on public
benefits or addressing issues that are likely to be under-
served by the industry.2

Support should prioritize research that directly tackles
challenges not prioritized by industry due to monetiza-
tion barriers or lack of immediate financial returns (e.g.
such as experiments aimed towards understanding risks
from AI, models for neglected tropical diseases, climate
change, public health, or under-resourced languages) as
well as other applications of AI that serve the common
good (such as those discussed in Pizzi, Romanoff, and En-
gelhardt 2020; Hager et al. 2019).

3 Scrutiny and diffusion of ML
models

A compute divide between academia and industry impacts
the diffusion and distribution of machine learning systems,
and the degree to which they undergo scrutiny, critical
evaluation, and testing.

3.1 Diffusion of machine learning models

The compute divide may constrain the diffusion of ma-
chine learning models, as prominent AI labs like Google
Research and OpenAI may withhold their state-of-the-art
models (Talat et al. 2022; Wiggers 2022). Firms might
maximize commercial value of technology by minimiz-
ing ”knowledge spillovers” (Cassiman and Veugelers 2002;
Alexy, George, and Salter 2013), thus discouraging the
unrestricted release of research artifacts such as models,
code bases, and data.

On the other hand, there are a host of reasons corporate
labs might publish technical work, because this can:

• signal tacit knowledge, enhance technical reputa-
tion for fundraising, recruiting, and other purposes
(Hicks 1995; Ahmed 2022);

2An example of such efforts is BigScience 2021–2022, supported in part by GENCI, a public organization promoting intensive computing
and AI use for French research communities.
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• defensively block consolidation or patenting by com-
petitors (Barrett 2002);

• support marketing activities and market positioning
through demonstrating technical competency to in-
vestors or consumers (Azoulay 2002; Polidoro Jr and
Theeke 2012);

• exploit second-mover advantages by subsidizing first-
movers (Dai, Jiang, and N. Wang 2022); and

• avoid consolidation by a rival (Aguelakakis and
Yankelevich 2019).
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Nevertheless, the data on code-sharing suggests that in-
dustry tends to be more tight-lipped about its work than
academic teams. We find a negative relationship between
industry authorship and the rate of code release. In par-
ticular, for a sample of 565 NeurIPS publications, we find
that industry-only teams are about 32% less likely to re-
lease their code than a paper with academic-only author-
ship. This negative relation holds across all years of pub-
lication in our data set. This finding is consistent with
our predictions of higher transparency in academia, given
the theoretical differences in incentive structures between
academia and industry.

Transparency, verifiability, replicability, and openness are
deeply ingrained principles in norms and practices of
academic science broadly (Munafò et al. 2017; Resnik
2005), and in AI in particular (Whittlestone and Ovadya
2019), fostering a broader diffusion of research. Academic
researchers largely prioritize novelty, prestige, research
prizes, and academic success over profit, making certain
industry-related disincentives against knowledge diffusion
less applicable. However, it is essential to consider the im-
pact of cultural norms and reputational concerns on these
incentives. Academic AI labs may hesitate to share mod-
els that could potentially be misused or cause harm due to
concerns about negative consequences with funders, peers
and the public. Furthermore, first-mover advantages, in

which early publishers receive disproportionately higher
citations (Newman 2009), can occasionally clash with the
prompt dissemination of knowledge.

Our analysis suggests that industry labs face notable disin-
centives for diffusion, such as protecting intellectual prop-
erty and mitigating risks misuse and unintentional harm
and the associated reputational risks. Although these dis-
incentives are not entirely unique to the industry, the rel-
atively strong track record of academic machine learning
research for openness, as supported by our data on code-
sharing, suggests that a compute-divide-induced domi-
nance of industry labs will reduce the extent of diffusion of
certain machine learning artifacts compared to the coun-
terfactual if compute was disproportionately in the hands
of academic labs.

3.2 Scrutiny of machine learning models

Scrutiny of machine learning models and associated tech-
niques—through testing, validation, and critical evalua-
tion—is crucial to understanding the limitations and risks
of AI systems. Evaluating how an industry dominance of
compute intensive AI research affects the level of scrutiny
is key to understanding the trend’s governance implica-
tions.

The scrutiny provided by industry and academia can have
different and complementary emphases. Because industry
labs focus predominantly on AI systems for deployment in
products or applications, we expect industry scrutiny to
be more holistic—focusing on how such a system behaves,
at scale, when embedded within some human-computer in-
teractive setting. By contrast, such ‘embedded’ contexts
in large-scale deployments are accessible in academic re-
search.

Industry labs can have substantial incentives to provide
such scrutiny; there can, as there could be a large value in
understanding the limitations of AI systems if that enables
the building of more highly economically useful models
(see, e.g., Brundage, Mayer, et al. 2021; Lowe and Leike
2022 for a discussion of how safety-promoting research
aligns with improving capabilities). Yet, it is unclear
whether the incentives industry faces are adequate. When
compared to other industries, AI development might, at
least in the near future, involve weak incentives for pro-
viding internal scrutiny. Because consumers lack under-
standing of AI-associated risks—which can be unusually
challenging to understand (Askell, Brundage, and Had-
field 2019)—traditional market incentives for delivering
safe products are weaker. A comparable lack of under-
standing among regulators makes safety mandates difficult
to craft and enforce. Risks may be diffuse, like reduced on-
line trust, so firms could fail to internalize costs of rushed
deployment. And first-mover advantage may reward rapid
development over time-consuming safety-evaluations eval-
uation (Askell, Brundage, and Hadfield 2019).

Given the empirical observations described in Section 3.1,
we may expect the lopsided role of industry in the pro-
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duction of compute intensive machine learning systems to
limit the diffusion of relevant artifacts. As noted elsewhere
(such as by Liang et al. 2022; Whittlestone and Ovadya
2019; Solaiman et al. 2019), more limited diffusion may
reduce the extent of external scrutiny. More broadly, the
reduced accessibility of the relevant artifacts will hamper
the research community’s academic and industry and gov-
ernment bodies’ ability to test, validate, and develop a
safety-promoting understanding of models and associated
techniques.

Research that scrutinizes compute intensive machine
learning models and the associated techniques is plausi-
bly well-suited to academia. First, academic research can
be conducted at arms-length from organizations deeply
invested in the technologies, which can be crucial for cri-
tiquing approaches pursued by industry labs. For ex-
ample, in their work, Bender et al. 2021, evaluates the
shortcomings and risks of large language models. It is re-
ported that this publication resulted in one of the Google-
employed authors having their employment terminated
(Wired, 2020). Examples such as this suggest that the
independence of academic researchers, and perhaps par-
ticularly tenured researchers, might be critical in conduct-
ing work aimed at providing scrutiny. Second, academic
research labs are more likely to publish work that uncovers
the risks and limitations of their models. While industry
labs might be disinclined to publish such work, as doing
so could disclose sensitive intellectual property or it might
harm their reputation and market positioning, academia
tends to be more geared towards public research outputs.
While this may not always promote safety (e.g. publish-
ing prompt-injection techniques), public research that ad-
vances a deeper understanding of the relevant issues is
arguably ultimately more likely to result in desirable out-
comes than “security through obscurity”.

3.3 Policy implications and recommenda-
tions to address scrutiny

As this work emphasizes, academic researchers can possess
the necessary expertise, perspective and independence to
scrutinize, test and evaluate compute intensive ML models
effectively. As AI systems continue to grow in capability
and ubiquity, ensuring that academia can investigate how
these systems could potentially fail, inflict harm, or gen-
erate unintended consequences becomes increasingly vital.
Insofar as academia is likely to fall short of being able to
contribute these goals, other mechanisms will need to be
considered.

Privileged structured access

Structured access, as presented in Shevlane 2022, is an
emerging paradigm for safely deploying artificial intelli-
gence systems. Rather than openly distributing AI soft-
ware, developers facilitate a controlled interaction with the
AI system’s capabilities, using technical and other meth-
ods to limit how the software can be used, modified, and
reproduced. There have been various examples of this,
such as GPT-3 (Brown et al. 2020) and OPT-175B (Zhang

et al. 2022), both of which had structured access programs
for researchers in academia and those affiliated with gov-
ernmental or civil society institutions.

By granting researchers in academia and other non-
industry labs structured access, industry models can be
evaluated more widely and studied independently by AI
researchers, as well as by social scientists, ethicists, and
other non-technical experts. Independent evaluation can
reveal potential biases, flaws, or unintended consequences
in the AI systems that might have been missed by the
developers, thereby helping to improve their quality and
safety. Importantly, structured access can be consistent
with industry aims of preserving ownership over intellec-
tual property, though this might require carefully designed
protocols.

Standardized protocols for privileged structured access
programs are currently lacking, and many questions on
how such programs should be designed are still unresolved,
such as:

• What technical and other methods for limiting how
the model can be used, modified, or reproduced
strike the right balance between enabling thorough
research and preserving intellectual property?

• How can we ensure that a diverse range of re-
searchers and institutions have equitable access to
structured access programs, avoiding the risk of fur-
ther entrenching existing inequalities in the AI re-
search community?

• What measures should be taken to prevent misuse
of AI systems accessed through structured access
programs, and what responsibilities do stakeholders
have in monitoring and addressing such misuse?

• How can structured access programs be adapted and
updated to respond to the rapidly evolving AI land-
scape, ensuring they remain relevant and effective as
technology advances?

We recommend academia, industry, and other stakehold-
ers develop standardized protocols for granting structured
access and ensuring transparency and consistency across
different AI systems – e.g., in the US the NAIRR might
be particularly well positioned for setting this standard-
ized protocol. Establishing a common framework for shar-
ing access to high-compute models will create an environ-
ment that fosters independent scrutiny and evaluation of
AI systems while maintaining a balance between intellec-
tual property rights and the need for public accountability.

Third-party auditing

As we have argued, academia will likely play a smaller role
in providing critical evaluation and scrutiny to the ma-
chine learning artifacts produced by industry, especially
large compute intensive models. In light of this, it is im-
portant to create other procedures to ensure that such ar-
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tifacts still receive necessary scrutiny as systems become
more widely deployed.

One such alternative is third-party auditing, a process
where an external, independent auditor evaluates an AI
developer’s claims about their system’s safety, security,
privacy, and fairness (Brundage, Avin, et al. 2020). Third-
party auditing can help verify the accuracy of the devel-
oper’s claims and promote consistency and accountability
in the AI industry.

We recommend that stakeholders, including AI develop-
ers, policymakers, and civil society organizations, create a
task force to research options for conducting and funding
third-party auditing of AI systems. A task force focused
on this issue could explore appropriate initial applications
to audit, devise approaches for handling sensitive intel-

lectual property, and balance the need for standardiza-
tion with the need for flexibility as AI technology evolves.
Collaborative research into this domain seems especially
promising given that the same auditing process could be
used across labs and countries.

Third-party auditing can complement the role of academia
in providing critical evaluation and scrutiny of AI systems.
By ensuring that independent auditors have the necessary
expertise, resources, and access to evaluate AI systems
effectively, we can create a robust ecosystem that fosters
transparency, trust, and accountability in the development
and deployment of AI technologies. Moreover, third-party
auditing could serve as a bridge between AI developers
and academia, allowing academic researchers to engage
with industry models and contribute their expertise with-
out being directly involved in the development process.

4 Conclusion

As the AI landscape undergoes rapid transformations,
pressing questions emerge: Who is shaping the technology
behind important machine learning models? What orga-
nizations possess the ability to test, evaluate, and scruti-
nize research artifacts? How are the directions of machine
learning research determined? In our view, two salient in-
terconnected trends must be considered: the diminishing
role of academic research in compute intensive domains
and the dwindling scrutiny faced by powerful, influential
models.

Addressing these challenges calls for deliberate inter-
ventions that aim to expand academic insights judi-
ciously, empowering academia to guide progress respon-
sibly. We explore solutions like responsible compute pro-
vision, open science, structured access, and third-party au-
diting. While not exhaustive, we hope this inspires further
dialogue and innovation towards a responsible, transpar-
ent, and collaborative AI research community prioritizing
critical evaluation.

Methods

Data on machine learning models and com-
pute estimates

We use the data from Sevilla et al. 2022, which includes
over 650 machine learning models presented in academic
publications and relevant gray literature that have an ex-
plicit learning component, showcase experimental results,
and meet at least one notability criterion (having at least
1000 citations, historical importance, a SotA performance
advance, deployment in a notable context, or wide use).

An issue with these notability criteria in our context is
that models deployed in a notable context or have wide
use are disproportionately models developed by industry
labs, as industry labs have more immediate access to a
large client-base. Indeed, many of the models that meet
only these conditions are industry-developed (e.g. Stable

Diffusion, DALL-E Codex, and AlphaFold2). Therefore,
we only consider models that are SotA improvements, of
historical relevance according to Sevilla et al. 2022, or are
highly cited (defined as receiving as many citations as the
top-90% most cited machine learning publications from
that 5-year period.

Compute divide in NeurIPS proceedings

To investigate how compute usage differs between aca-
demic and industrial labs at NeurIPS 2021, we randomly
sampled 519 publications and for each, annotated the topic
of the publication (e.g. NLP, vision or other), whether
these publications had industry co-authors, whether the
publication had a co-author from a Chinese AI lab, and
the total amount of compute that was used to train the
model. In total, we were able to infer the compute require-
ments for 109 models. The methodology for calculating
the total amount of compute used to train the model we
use is that described by Sevilla et al. 2022.

Thematic differences in engineering topics
in NLP research

We contrast the prevalence of topics in research across top
academic and industry natural language processing publi-
cations. We see a stark difference in focus between top aca-
demic publications and high-profile industry publications.
In particular, the latter frequently features engineering-
related topics (such as training parallelism, memory effi-
ciency, and training stability), while these are mostly ab-
sent from top academic publications.

The rise of BERT-ology

In this analysis, papers which, for example, adapted or
augmented BERT architecture or techniques to make a
new model (Sung, Nair, and Raffel 2021; Ma et al. 2021),
investigated or improved a specific aspect of the BERT ar-
chitecture or techniques (Michel, Levy, and Neubig 2019;
Mukherjee and Awadallah 2020) or studied changes in
BERT performances due to changes in input (Hase, H.
Xie, and Bansal 2021; Q. Xie et al. 2020) were classified
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as studying BERT. On the other hand, papers which, for
example, tested performance of new data types in a va-
riety of models including BERT (Rouhani et al., 2020),
compared performance of an original model (not BERT-
based) to a BERT-based model’s performance (Lewis et al.
2020; Akula et al. 2021), or applied concepts from BERT
to other scientific domains (Reddy and Wehbe 2021) were
classified as not studying BERT.

Changes in research agendas

We use OpenAlex data to study how academic and indus-
try research teams are represented across research topics in
machine learning. The approach we follow is that of Gar-
cia 2022. In addition to the topics they include, we add ad-
ditional topics that are labelled in the OpenAlex dataset.
To generate a list of compute-related words, we extracted
the abstracts of papers in the dataset from Sevilla et al.
2022 that present models using at least 1e19 FLOPs and
generated a wordcloud of the most commonly used words
in those abstracts. From those, we select words that we
expect to be associated with large-scale compute deploy-
ments.

Compute-related terms
Scale, Parameters, GPT, Size, Billion, Parameter, Scaling,
Computational, Compute, Latency, Memory, GPU, Graph-
ics Processing Unit, Parallelism, Distributed Computing,
Computation, Thousands, Gpus, Hardware, Million, Scaled,
Days, Expensive, TPU, Costs, Gshard, Trillion, 175b, Bil-
lions, FLOPS, Infrastructure, Deeper, Engineering, Enor-
mous, Massive, Months, Large-scale, Footprint, Budget,
Megatron, 530B, CO2.

In our code base, we have robustness checks that vali-
date the general picture is robust to justifiable changes in
which terms we select (i.e. that there is a strong negative
association between compute terms in relevant abstracts,
particularly in NLP, and the representation of academic
teams).

Differences in code-release practices at
NeurIPS proceedings

To analyze the relative rates of diffusion between academia
and industry, we analyze a random sample of NeurIPS pa-

pers presenting novel machine learning models. Our goal is
to determine the effect of industry authorship on the like-
lihood of model code being published. Out of 565 papers
in our sample, 94 present novel machine learning models.
For each of these, we record the number of authors from
industry and academia and whether the model’s code was
made available (e.g., through a GitHub repository).

Variable Estimate Std. Error Pr(≥ |z|)
Frac. industry -1.52* 0.719 0.035
No. of authors -0.00253 0.106 0.981
2018 0.952 0.790 0.228
2019 1.30 0.674 0.054
2020 1.89* 0.767 0.014
2021 2.13** 0.720 0.0031

Table 1. Logistic regression results: effects of industry
authorship and year on code publication. *, ** denote

p < 0.05 and p < 0.01 respectively.

We find that the average proportion of industry authorship
is 27%, and the rate of code publication is 73% (69 out of
94 papers). Using logistic regression, we find a significant
negative relationship between the fraction of authors from
industry and the likelihood of code release. Specifically,
for a paper with 100% industry authorship, the odds of
releasing code are about 21.9% of the odds for a paper
with 0% industry authorship (or 100% academic author-
ship), assuming all other variables are held constant.

An increase from 0% to 100% industry authorship leads
to a reduction in the odds of reporting code of 1 −
exp(−1.52) ≈ 78%. Given that 81.40% of all-academic
teams report their code, this would amount to an abso-
lute reduction in the probability of reporting by 32.45%.

We also find that the odds of a paper releasing code in-
crease over time. However, only the coefficients for the
years 2020 and 2021 were statistically significant with
an alpha of 0.05. These findings are consistent with
our predictions of higher transparency in academia, given
the theoretical differences in incentive structures between
academia and industry.
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