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Abstract

Medical imaging has revolutionized disease diagnosis, yet the potential is ham-
pered by limited access to diverse and privacy-conscious datasets. Open-source
medical datasets, while valuable, suffer from data quality and clinical informa-
tion disparities. Generative models, such as diffusion models, aim to mitigate
these challenges. At Stanford, researchers explored the utility of a fine-tuned Sta-
ble Diffusion model (RoentGen) for medical imaging data augmentation. Our
work examines specific considerations to expand the Stanford research question,
“Could Stable Diffusion Solve a Gap in Medical Imaging Data?” from the lens of
bias and validity of the generated outcomes. We leveraged RoentGen to produce
synthetic Chest-XRay (CXR) images and conducted assessments on bias, valid-
ity, and hallucinations. Diagnostic accuracy was evaluated by a disease classifier,
while a COVID classifier uncovered latent hallucinations. The bias analysis un-
veiled disparities in classification performance among various subgroups, with a
pronounced impact on the Female Hispanic subgroup. Furthermore, incorporating
race and gender into input prompts exacerbated fairness issues in the generated im-
ages. The quality of synthetic images exhibited variability, particularly in certain
disease classes, where there was more significant uncertainty compared to the orig-
inal images. Additionally, we observed latent hallucinations, with approximately
42% of the images incorrectly indicating COVID, hinting at the presence of hallu-
cinatory elements. These identifications provide new research directions towards
interpretability of synthetic CXR images, for further understanding of associated
risks and patient safety in medical applications.

1 Introduction

Medical imaging technologies have enabled precise disease diagnosis without invasive tests, yet ra-
diologists lack access to large amounts of training images due to privacy and security concerns [10]
[3]. The lack of high-quality annotated medical imagery datasets provides the impetus for generative
imaging models to be created that accurately represent medical concepts while providing composi-
tional diversity [4]. The utilization of open-source medical image datasets presents numerous lim-
itations, which include inconsistencies in image quality, gaps in metadata and clinical information,
the use of outdated imaging equipment in some dataset acquisitions, the presence of low-quality
images, insufficient expert labeling, and often, restrictions on commercial usage imposed by many
open-source datasets[18]. Some performance variations could be due to differences in patient de-
mographics across sites, and the study highlights the need for further investigation in this area. For
instance, a study found that the AI algorithm’s performance dropped substantially when evaluated
on a different site, indicating limitations in generalizability [19]. Deep learning models can create
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synthetic data to improve diagnostic accuracy and advance medical imaging techniques[12]. The
diffusion model has gained popularity as it better estimates data distribution and sample quality than
other methods - making it a potential alternative to GANs when creating images [11]. Today, ad-
vanced models like Stable Diffusion[15], DALL-E 2, and Midjourney are now capable of producing
impressive-quality images from natural language descriptions.[2][14].

Multi-modal models trained on natural image/text pairs often perform poorly when applied to med-
ical applications [4]. Typically, diffusion models follow a two-stage process: (1) a prior generating
CLIP image embedding with a text caption; (2) a decoder (U-net) producing an image conditioned
upon the image embedding. In this context, diffusion models offer advantages as decoders due to
their computational efficiency and ability to generate high-quality samples [13].

2 Stable Diffusion applied to medical imaging

While the license agreements from Stable Diffusion limit its use for medical advice or interpretation,
researchers at Stanford used the technique to generate radiology images (RoentGen)[4] to assess if
this method can solve the current gap of lack of adequate data in medical imaging. With RoentGen,
the researchers could generate realistic synthetic CXR images using free-form text prompts, improv-
ing diagnostic accuracy. They found that fine-tuning the model on a fixed training set increases
classifier performance by 5% when trained on both synthetic and original images and 3% when
trained solely on synthetic images. Furthermore, text-encoder representation capabilities for certain
diseases like Pneumothorax were enhanced by 25% through fine-tuning.

The RoentGen study investigated using latent diffusion models to generate medical images in tho-
racic imaging. The researchers list the limitations encountered, such as difficulty measuring clinical
accuracy with standard metrics (e.g., usefulness of image), lack of diversity in generated images
(only a small sample considered), and need for improved text prompts (e.g., radiology-specific words
or verbatim radiology text). The study or the paper did not discuss the known limitations of medical
imaging interpretation, including data diversity, bias, validity, and interpretability of the underlying
model performance. Our work examines specific considerations to expand the Stanford research
question, “Could Stable Diffusion Solve a Gap in Medical Imaging Data?” [8] from the lens of bias
and validity of the generated outcomes.

3 Experimental Methodology for validating Bias, Adversarial Robustness

and Reliability

We rigorously validated our dataset and assessed RoentGen’s performance, initializing it with model
weights from its creators. Our primary data source was the MIMIC-CXR dataset, comprising CXR
images and radiologist textual inputs [1]. An experimental framework was then established, utiliz-
ing pre-trained RoentGen model weights, ensuring a robust foundation for image generation. We
subsequently generated CXR images based on radiologist textual descriptions from the MIMIC-
CXR dataset, with and without protected variables such as Gender and Race as counterfactuals. To
gauge image quality and fidelity to medical conditions, we employed a disease classification model
trained on multiple- CXR illness categories [5]. The classifier’s performance on original and gener-
ated images was compared, providing a comprehensive assessment of the model’s representational
capabilities. Additionally, we probed for latent hallucinations by subjecting both original and gen-
erated images to a dedicated COVID classifier [9]. As the original images were not expected to
show signs of COVID, any discrepancies in the classifier’s results signaled potential features intro-
duced by RoentGen’s hallucinations. We then rigorously compiled and analyzed the results from
our experiments.

4 Results

4.1 Bias and Fairness

The RoentGen model was employed to construct a synthetic CXR dataset, which was subsequently
compared to its MIMIC counterpart (labelled ground truth) to assess their performance with regard
to fairness and bias metrics. After filtering out scans with consistent demographic information and
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retaining one scan per patient, we arrived at a subset of MIMIC images comprising 18,200 samples.
Inference was conducted on both the MIMIC images and the synthetically generated images using
the all-weights model from the TorchXRayVision library [6]. To examine fairness and bias, sub-
groups of gender and ethnicity were analyzed and graded based on indicators stressing True Positive
Rate (TPR) and Selection Rate (SR) disparity. The findings indicate that for the disease Atelectasis,
the model displayed bias against specific subgroups, with a notable and enduring bias observed in
the Hispanic female subgroup (which was also concluded in the CheXclusion study [16]). Upon
examining TPR and SR values, the model consistently exhibits bias against the Hispanic female sub-
group, which also demonstrates poorer performance compared to other subgroups despite its larger
sample size. This bias persists in synthetic images, with TPR values dropping to 44% for Hispanic
females, in contrast to 64% for White females and 56% for Asian females. The introduction of racial
and gender references in prompts further exacerbates bias, resulting in a substantial 26% deviation
from the SR of White females and a 16% deviation from Asian females. Consequently, the synthetic
images under-perform in comparison to their MIMIC counterparts, with demographic references
intensifying the bias.

4.2 Validity

We also observed differences in the characteristics of the original image and the synthetic image
generated from RoentGen, indicating possible generalization of features in the synthetic images
during generation. To understand the extent of generalization and potential implications therein,
we evaluated the quality of the generated images by passing them through a classification model
(Chester, the AI Radiology Assistant [5]) trained on a comprehensive set of (18-classes) illness
categories. This was done to accurately assess the model’s ability to capture and represent the
medical conditions. About half of the above mentioned categories had an accuracy of 50-70%, while
the rest had an accuracy of more than 70% when compared to the performance of original images
using the same classifier. The results showed lower confidence (high uncertainty) towards selected
classes for the synthetic images despite the classifier’s high accuracy. The synthetic samples were
also more prone to false negative classifications compared to their MIMIC counterparts. Higher
uncertainty indicates that the samples are closer to the decision boundaries and have a potential for
being misclassified with smaller perturbations.

4.3 Hallucinations

To further understand if the differences in quality arising from the generalization of features in syn-
thetic image generation represent latent hallucinations, we passed both the generated and original
images through a dedicated COVID classifier [9]. The results showed that RoentGen adds additional
latent features (hallucinations) in the generated synthetic images that do not represent attributes or
correspond to the original text descriptions provided as prompts. In this case, the latent features rep-
resented COVID in 7500 out of 18,200 images, highlighting hallucinations. This also exhibits the
need to evaluate the generated images against classes independent of the training set to understand
the hallucinations. In our experiment, when passing the generated images through the classifier con-
taining the original class, the accuracy was better for all the classes (while there were uncertainties in
confidence); however, when passing the generated images through the classifier containing the (out-
of-training) independent class, the images exposed, potential latent hallucinations also resulting in
lower classification accuracy.

5 Discussion and Outlook

Interpretation of Generative AI models is challenging and newer methods such as per-word attribu-
tion [17] or per-head cross attention [7] have been proposed. It is essential to have an extensive
system for comprehending text-to-image attribution to detect any potential flaws or inconsistencies
within these models in medical imaging. The harms contributed by the inherent biases in these
pre-trained models may have accentuated implications considering the general lack of adequate in-
terpretability of these models. Given the risks noticed from the experimental results, we believe there
is a need to have more comprehensive approaches for evaluating the suitability of using Generative
models for data augmentation in disease diagnosis.
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The specific aberrations arising out of hallucinations from our experimental study were not identified
through traditional evaluation metrics for generative images, thereby requiring domain-specific con-
sideration of alternative methods. We choose an out-of-training class validation method to demon-
strate the hallucination; however, such an approach may not be suited for many circumstances. We
believe these experimental results will trigger further research on establishing validity and reliability
metrics for hallucinations in Generative Medical Images. It is also pertinent to consider the need for
extended research on approaches to limit latent hallucinations, as some of these hallucinations, if
not constrained, can have significant downside impacts on people and the planet.
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Potential negative impacts

Our research presents a comprehensive exploration of the drawbacks associated with the utilization
of generative AI models in the context of medical imaging. Specifically, our study sheds light on
issues related to bias, validity, and the phenomenon of hallucination within the datasets generated
by these AI models.

It is important to acknowledge that our study, while serving as a reminder of the longstanding prob-
lem of fairness in the realm of medical AI, may inadvertently contribute to the perpetuation of
skepticism surrounding the applicability of diffusion models in the medical domain. This skepti-
cism may erode the credibility of diffusion models as a viable and convenient method for enhancing
medical image datasets, potentially dissuading other researchers in the field from exploring these
avenues.

Nevertheless, in light of the ethical imperatives inherent to the use of AI in medical applications, our
research also serves as an illustrative example of the notion that reliance solely on generated datasets
to bridge existing gaps may not yet be a sufficiently robust approach.
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