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Figure 1: Generating and manipulating images via touch. We propose a model based on latent diffusion that translates between touch
and images (and vice versa), unifying many previous visuo-tactile image synthesis tasks and enabling new ones. (a) We generate an image
of a scene given a tactile signal. (b) We perform tactile-driven image stylization, e.g. restyling a rough rock to match the smoother texture
of a brick. (c) We propose the novel task of tactile-driven shading estimation: predicting an image from its reflectance and tactile signal.
To aid visualization, we show reference images next to the touch signal. We present a circular crop from the touch signal to emphasize the
part of the signal that is in contact with the object.

Abstract
An emerging line of work has sought to generate plau-

sible imagery from touch. Existing approaches, however,
tackle only narrow aspects of the visuo-tactile synthesis
problem, and lag significantly behind the quality of cross-
modal synthesis methods in other domains. We draw on re-
cent advances in latent diffusion to create a model for syn-
thesizing images from tactile signals (and vice versa) and
apply it to a number of visuo-tactile synthesis tasks. Using
this model, we significantly outperform prior work on the
tactile-driven stylization problem, i.e., manipulating an im-
age to match a touch signal, and we are the first to success-
fully generate images from touch without additional sources
of information about the scene. We also successfully use
our model to address two novel synthesis problems: gen-
erating images that do not contain the touch sensor or
the hand holding it, and estimating an image’s shading
from its reflectance and touch. Project Page: https://
fredfyyang.github.io/vision-from-touch/

1. Introduction
Humans rely crucially on cross-modal associations be-

tween sight and touch to physically interact with the

world [58]. For example, our sense of sight tells us how
the ground in front of us will feel when we place our feet
on it, while our sense of touch conveys the likely visual ap-
pearance of an unseen object from a brief contact. Translat-
ing between these modalities requires an understanding of
physical and material properties. Models trained to solve
this problem must learn, for instance, to associate rapid
changes in shading with rough microgeometry, and smooth
textures with soft surfaces.

Touch is arguably the most important sensory modal-
ity for humans [48, 43, 40], due to its role in basic sur-
vival [40, 9, 23] and physical interaction. Yet touch sens-
ing has received comparably little attention in multimodal
learning. An emerging line of work has addressed the prob-
lem of translating touch to sight, such as by learning joint
embeddings [64, 39], manipulating visual styles to match
a tactile signal [64], or adding a plausible imagery of a
robotic arm to an existing photo of a scene [38]. While these
tasks each capture important parts of the cross-modal pre-
diction problem, each currently requires a separate, special-
purpose method. Existing methods also lag significantly be-
hind those of other areas of multimodal perception, which
provide general-purpose methods for cross-modal synthe-
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sis, and can translate between modalities without the aid of
extra conditional information.

In this paper, we generate plausible images of natural
scenes from touch (and vice versa), drawing on recent ad-
vances in diffusion models [51, 12, 21, 22, 45]. We adapt
latent diffusion models to a variety of visuo-tactile synthe-
sis problems. Our proposed framework obtains strong re-
sults on several novel synthesis problems, and unifies many
previously studied visuo-tactile synthesis tasks.

First, we study the problem of generating images from
touch (and vice versa). We address the task of generating
images from touch without any image-based conditioning,
where we are the first method to successfully generate im-
ages for natural scenes (Fig. 1a). We also address the task
of adding an arm to a photo of an existing scene, where we
significantly outperform prior work [38].

Second, we address the recently proposed tactile-driven
image stylization task, i.e., the problem of manipulating an
image to match a given touch signal [64] (Fig. 1b), using
an approach based on guided image synthesis [44]. Our ap-
proach obtains results that are higher fidelity and that match
the tactile signal significantly more closely than those of
prior work. It also provides the ability to control the amount
of image content preserved from the input image.

Finally, we show that we can augment our model with
additional conditional information. Taking inspiration from
the classic problem of intrinsic image decomposition [41,
3], we perform tactile-driven shading estimation, predict-
ing an image after conditioning on reflectance and touch
(Fig. 1c). Since changes in tactile microgeometry often
manifest as changes in shading (i.e., the information miss-
ing from reflectance), this tests the model’s ability to link
the two signals. We also use segmentation masks to create
“hand-less” images that contain the object being pressed but
not the tactile sensor or arm that pressed it.

We demonstrate our framework’s effectiveness using
natural scenes from the Touch and Go dataset [64], a col-
lection of egocentric videos that capture a wide variety of
materials and objects using GelSight [28], and using robot-
collected data from VisGel [38].

2. Related Work
Cross-modal synthesis with diffusion models. Diffu-
sion models have recently become a favored generative
model family due to their ability to produce high-quality
samples. However, one major concern for diffusion mod-
els is their slow inference speed due to the iterative gen-
eration process on high dimensional data. Recently, la-
tent diffusion [51] addressed this drawback by working on
a compressed latent space of lower dimensionality, which
allows diffusion models to work on more extensive tasks
with accelerating the speed. These models have demon-
strated remarkable success in tasks such as image synthe-

sis [12, 21, 22, 45], super-resolution [54], and image edit-
ing [57, 44, 8]. Additionally, the advancements in multi-
modal learning [25, 27, 16] have enabled diffusion models
to be utilized for cross-modal synthesis tasks. For vision-
language generation, diffusion models have been studied for
text-to-image synthesis [1, 29, 46, 50, 53], text-to-speech
generation [7, 31, 35], text-to-3D generation [42, 55]. In ad-
dition, diffusion models also show promising results in au-
dio synthesis including text-to-audio generation [56], wave-
form generation [32, 18, 6]. In this work, we are the first
to employ diffusion model on real-world visual-tactile data,
exploring the possibility of utilizing tactile data as a prompt
for image synthesis. In concurrent work, Higuera et al. [20]
used diffusion to simulate tactile data, which they used to
train a braille classifier.

Tactile sensing. Early touch sensors recorded simple,
low-dimensional sensory signals, such as measures of force,
vibration, and temperature [33, 34, 10]. Beginning with
GelSight [65, 28], researchers proposed a variety of vision-
based tactile sensors, which convert the deformation of
an illuminated membrane using a camera, thereby provid-
ing detailed information about shape and material proper-
ties [59, 36]. We focus on these sensors, particularly us-
ing GelSight, since it is widely used applications [38, 4],
and available in visuo-tactile datasets [15, 17, 64]. Cru-
cially, these sensors produce images as output, allowing
us to use the same network architectures for both images
and touch [66]. Other work proposes collocated vision and
touch sensors [62, 5].

Cross-modal models for vision and touch. Li et al. [38]
used a GAN [24] to translate between tactile signals and im-
ages, using a dataset acquired by a robot. In contrast, they
require conditioning their touch-to-image model on another
photo from the same scene. This is a task that amounts
to adding an arm grasping the correct object (given sev-
eral possible choices), rather than generating an object that
could have plausibly led to a touch signal according to its
physical properties. It is not straightforward to adapt their
method to the other touch-to-image synthesis problems we
address without major modifications. Yang et al. [64] pro-
posed a visuo-tactile dataset and used a GAN to restyle im-
ages to match a touch signal. Their approach only learns
a limited number of visual styles, and cannot be straight-
forwardly adopt extra conditional information (such as re-
flectance) or be applied to unconditional cross-modal trans-
lation tasks. Other work has learned multimodal visuo-
tactile embeddings [64, 39]. Other work learns to associate
touch and sight for servoing and manipulation [5].

3. Method
Our goal is to translate touch to vision (and vision to

touch) using a generative model. We will do this using
a model based on latent diffusion [51]. We will use this
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Figure 2: Touch-to-image model. We use a latent diffusion model to generate an image of a scene from touch. The touch signal is
represented using multiple frames of video from a GelSight sensor. The model uses a segmentation mask to optionally generate only the
scene content containing the pressed object (i.e., without a hand or touch sensor). We also optionally condition on reflectance from a scene,
in which case the model’s generation task requires it to estimate shading.

model to solve a number of tasks, including: 1) cross-modal
visual-tactile synthesis, 2) tactile-driven image stylization,
and 3) tactile-driven shading estimation.

3.1. Cross-Modal Synthesis of Vision and Touch

We now describe our framework for cross-modal syn-
thesis. First, we describe a contrastive visuo-tactile model,
which we use to perform conditional generation. Second,
we describe our cross-modal latent diffusion model.

3.1.1 Contrastive Visuo-tactile Pretraining (CVTP)

Following other work in cross-modal synthesis [49, 51],
we provide conditional information to our generation mod-
els through multimodal embeddings via contrastive learn-
ing [14, 67, 63, 60]. Our embedding-learning approach re-
sembles that of Yang et al. [64] and contrastive multiview
coding [60]. A key difference is that we incorporate tempo-
ral information into our visual and tactile representations.
Touching an object is a dynamic process, and the informa-
tion we obtain varies over time, from the moment when the
tactile sensor begins touching the object, to the point when
the sensor has reached it maximum deformation. Adding
temporal cues provides information about material proper-
ties that may be hard to perceive from a single sample, such
as the hardness or softness of a surface [66, 26].

Given the visual and tactile datasets XI and XT ,
which consist of N synchronized visual-tactile frames
{xi

I ,x
i
T }Ni=1, we denote the video clip sampled at time

i with the window size w = 2C + 1, viI =
{xi−C

I , ...,xi
I , ...,x

i+C
I } and the corresponding tactile clip

vtI = {xi−C
I , ...,xi

I , ...,x
i+C
I }. We denote examples taken

from the same visual-tactile recording {viI , viT } as posi-
tives, and samples from different visual-tactile video pair
{υi

I , υ
j
T } as negatives.

Our goal is to jointly learn temporal visual zI = EϕI
(vI)

and tactile zT = EϕT
(vT ) encoder. We use a 2D ResNet as

the architecture for both encoders. For easy comparison to
static models, we incorporate temporal information into the
model via early fusion (concatenating channel-wise).

Then we maximize the probability of finding the corre-
sponding visuo-tactile video pair in a memory bank con-
taining K samples using InfoNCE [47] loss:

LVI ,VT

i = −log
exp(EϕI

(viI) · EϕT
(viT )/τ)∑K

j=1 exp(EϕI
(viI) · EϕT

(vjT )/τ)
(1)

where τ is a small constant. Analogously, we get a symmet-
ric objective LVT ,VI and minimize:

LCVTP = LVI ,VT + LVT ,VI . (2)

3.1.2 Touch-conditioned Image Generation

We now describe the tactile-to-image generation model (an
image-to-touch model can be formulated in an analogous
way). Our approach follows Rombach et al. [51], which
translates language to images, but with a variety of exten-
sions specific to the visuo-tactile synthesis problem. Given
a visuo-tactile image pair {xI ,xT } ∈ RH×W×3, our goal
is to generate an image x̃I from tactile input xT . We en-
code the input x into a latent representation z = E(x) ∈
Rh×w×3. A decoder D will reconstruct the image x̂ = D(z)
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Figure 3: Visuo-tactile datasets. For our experiments, we eval-
uate our model on natural scenes from Touch and Go [64] and
robot-collected data from VisGel [38].

from the code. The latent dimension h × w is smaller than
the image dimension H ×W .

Training. We train a touch-to-vision diffusion generation
in the latent space zI = E(xI). Diffusion models learn
to generate images by recursively denoising from a normal
distribution to the desired data distribution. Specifically,
given our latent representation zI , we uniformly sample a
diffusion step t ∈ {1, ..., T} and obtain the corresponding
noisy image ztI by iteratively adding Gaussian noise with a
variance schedule. We use a U-Net [52] network ϵθ as our
denoising model, which is conditioned on the tactile repre-
sentation encoded through the tactile encoder EϕT

trained
in Section 3.1.1. We minimize:

L(θ, ϕ) = EzI ,c,ϵ,t

[
∥ϵt − ϵθ(z

t
I , t, EϕT

(vT ))∥22
]
, (3)

where ϵt is the added noise at time t, and vT is the tactile
example. The denoising network ϵθ and the tactile encoder
EϕT

are jointly trained.

Inference. At test time, we first sample noise z̃TI ∼
N (0, 1) at time T , and then use the trained diffusion model
to iteratively predict the noise ϵ̃t, resulting in a denoised la-
tent representation z̃tI = z̃t+1

I −ϵ̃t+1 from t ∈ {T−1, ..., 0}.
Following [51, 12], we use classifier-free guidance to trade
off between sample quality and diversity in the conditional
generation, computing the noise as:

ϵ̃t = ϵθ(z̃
t
I , t, ∅) + s ·

(
ϵθ(z̃

t
I , t, EϕT

(vT ))− ϵθ(z̃
t
I , t, ∅)

)
,

(4)
where ∅ denotes a zero-filled conditional example (for un-
conditional generation), and s is the guidance scale. Fi-
nally, we convert the latent representation z̃0I to an image
x̃I = D(z̃0I) ∈ RH×W×3.

3.2. Visuo-Tactile Synthesis Models
So far, we have presented models for translating between

touch and images (and vice versa). We now describe sev-
eral visuo-tactile synthesis models that we build on this dif-
fusion framework.

3.2.1 Generating realistic images without hands

One of the challenges of dealing with visuo-tactile data
is that the tactile sensor typically occludes the object that

is being touched (Fig. 3). Generated images will there-
fore contain the sensor, and potentially the arm that held
it. This is not always desirable, as a major goal of touch
sensing is to generate images of objects or materials that
could have plausibly led to a given touch signal. We address
this problem for the natural scenes from the Touch and Go
dataset [64], which contain visible human hands and Gel-
Sight sensors [65].

To generate images containing only objects that yield a
given tactile signal (without hands or touch sensors), we
only compute the loss for pixels that do not overlap with
hands during the training, thereby depriving the model of
supervision for hand pixels. We first generate hand seg-
mentation masks for the visual image mI = S(xI) and
obtain the downsampled mask zm of the same spatial di-
mension of the image latent representation. For this, we use
the off-the-shelf hand segmentation model from Darkhalil
et al. [11], which is a modified model from PointRend [30]
instance segmentation designed specifically for segmenting
hands. We then mask the diffusion loss (Eq. 6) to be:

Ezm,zI ,c,ϵ,t

[
∥zm ⊙

(
ϵt − ϵθ(z

t
I , t, EϕT

(vT ))
)
∥22
]
, (5)

where zm indicates whether a pixel overlaps with a hand,
and ⊙ denotes pointwise multiplication.

3.2.2 Tactile-driven Image Stylization

Tactile-driven image stylization [64] aims to manipulate the
visual appearance of an object so that it looks more con-
sistent with a given touch signal. Previous work posed the
problem of editing the visual style of an image while pre-
serving its structure [64, 37].

Given an input image xI and a desired tactile signal x′
T

(obtained from a different scene), our goal is to manipulate
xI so that it appears to “feels” more like x′

T . We adapt the
approach of Meng et al. [44]. We first compute the noisy
latent representation zNI at time 0 ≤ N ≤ T , where T de-
notes the total number of denoising steps. We then conduct
the denoising process for zNI from time step N to 0 condi-
tioned on x′

T . This allows for fine-grained control over the
amount of content preserved from the input image, via the
parameter N . We analyze the choice of N at Sec. 4.6.

3.2.3 Tactile-driven Shading Estimation

Touch conveys a great deal of information about a surface’s
microgeometry [28]. Much of this information can also be
perceived through shading cues: intensity variations due to
light interacting with surface orientation for objects with
Lambertian material properties. Following classic work in
intrinsic image decomposition [2, 19, 3], we assume that
the image can be factorized into reflectance and shading for
each pixel, i.e., we can write our image xI = xR ⊙ xS

where the two terms in the product are the per-pixel re-
flectance and shading.
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Figure 4: Tactile-driven Image Stylization. (Top) We restyle the input image using the given touch signal (reference image from scene
provided for clarity). We compare our approach to Yang et al. [64]. Our approach generates images with higher quality matching more
closely to the given tactile signal. (Bottom) We show more examples of the manipulated images. Please see supplement for more examples.

We propose a model that deals with inferring shading
from touch. Given an image’s estimated reflectance map
xR, along with a touch signal xT , we reconstruct the origi-
nal image xI . This is a task that requires inferring the shad-
ing, since it is the component that is missing from the input.
By formulating the problem so that we predict the original
image, we can easily reuse the latent encoder/decoder from
natural images.

We address this task by modifying our network so that
it also takes reflectance as input (Eq. 6). We first estimate
reflectance using the intrinsic image decomposition model
of Liu et al. [41] and downsample it to the same dimensions
as the latent space. We then concatenate the downsampled
reflectance zR to the noisy representation ztI as the input
for each denoising step. Thus we modify the loss function
(Eq. 6) as the following:

L(θ, ϕ) = EzI ,c,ϵ,t

[
∥ϵt − ϵθ(z

t
I ⊗ zR, t, EϕT (vT ))∥22

]
, (6)

where ⊗ denotes concatenation.

4. Results
We evaluate our cross-modal synthesis models through

qualitative and quantitative experiments on natural scenes
and robot-collected data.

4.1. Implementation details
Contrastive visuo-tactile model. Following [64], we use
ResNet-18 as the backbone of contrastive model, and train
on Touch and Go [64]. This model is trained using SGD for
240 epochs with the learning rate of 0.1 and weight decay of
10−4. The ResNet takes 5 reference frames as input using

early fusion (concatenated channel-wise) and we take the
feature embedding from the last layer of the feature and map
it to 512 dimensions. Following prior work [60], we use
τ = 0.07 and use a memory bank with 16,385 examples.

Visuo-tactile diffusion model. We base our latent diffu-
sion model on Stable Diffusion [51]. We use the Adam op-
timizer with the base learning rate of 2× 10−6. Models are
all trained with 30 iterations using the above learning rate
policy. We train our model with the batch size of 96 on 4
RTX A40 GPUs. The conditional model is finetuned along
with the diffusion model. We use the frozen, pretrained VQ-
GAN [13] to obtain our latent representation, with the spa-
tial dimension of 64×64. During the inference, we conduct
denoising process for 200 steps and set the guidance scale
s = 7.5.

4.2. Experimental Setup
Dataset. We conduct our experiments on two real-world
visuo-tactile datasets:
• Touch and Go dataset. The Touch and Go dataset is a

recent, real-world visuo-tactile dataset in which humans
probe a variety of objects in both indoor and outdoor
scenes. There are 13,900 touches from roughly 4000 dif-
ferent object instances and 20 material categories. Since
this is the only available dataset with zoomed-in images
and clearly visible materials, we use it for all three tasks.

• VisGel dataset. The VisGel dataset contains synchro-
nized videos of a robot arm equipped with a GelSight
sensor interacting with 195 household objects. The
dataset includes 195 objects from a wide range of indoor

5



Real Image VisGel Ours Condition VisGel OursCondition Real Image

Condition Real Image Ours w/o hands Ours with hands
Figure 5: Visuo-tactile Cross Generation on Touch and Go dataset. (Top) We compare our approach to state-of-the-art method Vis-
gel [38]. (Bottom) We show more results of our generated images with and without hands. In both case our approach is able to generate
realsitic images with high fidelity.

Table 1: Evalutation of cross-modal generation on Touch and Go.

Method Touch → Image Image → Touch

CVTP (↑)Material(↑)FID(↓)SSIM(↑)PSNR(↑)

Pix2Pix [24] 0.08 0.15 136.4 0.43 14.3
VisGel [38] 0.07 0.15 128.3 0.45 15.0
Ours w/ hands 0.12 0.22 48.7 0.50 15.4
Ours w/o hands 0.12 0.24 81.5 0.50 15.4

scenes of food items, tools, kitchen items, to fabrics and
stationery. In total, the dataset contains 12k touches and
around 3M frames.

Evaluation metrics. We use several quantitative metrics
to evaluate the quality of our generated images or tactile
signals. We use Frechet Inception Distance (FID), which
compares the distribution of real and generated image acti-
vations using trained network. Following Yang et al. [64]
and CLIP [49], we take the cosine similarity between our
learned visual and tactile embeddings for the generated im-
ages and conditioned tactile signals, a metric we call Con-
trastive Visuo-Tactile Pre-Training (CVTP). A higher

Table 2: Evaluation of cross-modal generation on VisGel (and con-
ditioning on another photo from the scene).

Method Touch → Image Image → Touch

SSIM(↑) PSNR(↑) SSIM (↑) PSNR (↑)

Pix2Pix [24] 0.50 15.1 0.71 20.7
VisGel [38] 0.59 17.9 0.76 26.2
Ours 0.76 21.5 0.85 27.6

score indicates a better correlation between touch and im-
ages. It is worth noting that the CVTP metric only takes one
frame of touch input. Following [64], we measure Material
Classification Consistency: we use the material classifier
from Yang et al. [64] to categorize the predicted and ground
truth images, and measure the rate at which they agree.

Finally, following [16], we evaluate standard Structural
Similarity Index Measure (SSIM) and Peak Signal to
Noise Ratio (PSNR) [61] metrics.

4.3. Cross-modal Generation
We perform cross-modal generation, i.e., generating an

image from touch and vice versa, on both in-the-wild Touch

6
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Figure 6: Visuo-tactile Cross Generation on VisGel dataset. (Top) We compare our approach to state-of-the-art method VisGel [38].
(Bottom) Our approach is able to generate robotic hands touching reasonable locations of objects given the same reference image but
different tactile signals.

and Go dataset and robot-collected dataset VisGel. For
straightforward comparison to prior work [38], on VisGel
we provide a reference photo of the scene as an input to the
model. Thus, successfully predicting the ground truth im-
age amounts to inserting imagery of the robotic arm to the
correct location in the scene. For Touch and Go, we do not
condition the model on a visual input: instead, we simply
translate one modality to the other.

For evaluation metrics, we use CVTP, material classifi-
cation consistency, and FID score for touch-to-image gen-
eration and SSIM and PSNR for image-to-touch generation.
For VisGel dataset we leverage SSIM and PSNR as the eval-
uation metric for both tasks. We only use CVTP, material
classification consistency and FID only on touch-to-image
generation task on Touch and Go, since these evaluation
metrics rely on a pretrained neural network from datasets
of natural images, which may not generalize well on a dif-
ferent modality or to robot-collected data.

We compare our model to the prior state-of-the-art visuo-
tactile generation method [38], which is adapted from
pix2pix [24] and is specifically designed to bridge the large
domain gap between modalities by adding a reference im-
age and temporal condition. As it is not possible to find a
reference image in the natural image dataset, we remove the
reference image while keeping everything else the same.

We show quantitative results for both tasks on Touch and
Go and VisGel in Table 1 and Table 2 respectively. Our
methods outperform existing state-of-the-art methods by a
large margin for all evaluation metrics. We note that the

Table 3: Quantitative results of of tactile-driven image stylization.

Method Evaluation Metrics

CVTP (↑) Material (↑) FID (↓)

Cycle GAN [68] 0.09 0.15 24.6
Yang et al. [64] 0.10 0.20 22.5
Ours 0.13 0.22 15.8

variation of our model that removes hands from images ob-
tains a worse FID score compared to those with hands, due
to the discrepancy of hands between the original dataset and
our generated images. Interestingly, the presence of hands
does not does not affect the performance of CVTP and ma-
terial classification consistency. We provide qualitative re-
sults from both models in Figure 5 (bottom).

4.4. Tactile-Driven Image Stylization
Following [64], we evaluate the performance of tactile-

driven image stylization on Touch and Go [64] using CVTP
and material classification metrics. We also calculate the
FID score between the set of generated images and the set of
real images associated with the given tactile signals, which
measures the fidelity of the output. We compare our model
to a modified version of CycleGAN [68] and the state-of-
the-art method of Yang et al. [64]. From the quantitative
comparisons in Table 3, our method demonstrates a signif-
icant improvement over existing methods. We also show
qualitative comparisons in Figure 3, where the generated
images more closely match the tactile signal, and we are

7
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Figure 7: Tactile-driven shading estimation. We compare our
approach to a model without a tactile signal (only reflectance),
finding that the tactile-driven model better captures subtle material
properties, such as roughness.

Table 4: Quantitative results for tactile-driven shading estimation.

Method Reflectance → Image

SSIM(↑) PSNR(↑) FID(↓)

Touch Only 0.27 11.6 48.7
Reflectance Only 0.46 14.5 40.7
Reflectance + Touch 0.48 15.4 36.9

able to generate styles that existing methods fail to capture.

4.5. Tactile-driven Shading Estimation
We hypothesize that the tactile signal conveys informa-

tion about the microgeometry of an image, and thus allows a
model to produce more accurate images than a reflectance-
to-image model that does not have access to touch. We eval-
uated both models on Touch and Go (Table 4) and found
that adding touch indeed improves performance on all eval-
uation metrics. We also show qualitative comparisons in
Figure 7. We found that tactile signals are especially infor-
mative for predicting roughness and smoothness of Lam-
bertian surfaces, such as bricks.

4.6. Analysis
Importance of temporal information. We first study
the effect of adding multiple GelSight frames to the con-
trastive visuo-tactile embedding (Figure 9). We compare
our method with the unconditional generation and material
class conditional generation on Touch and Go. We found
that conditioned generation provides a large improvement in
performance compared to the unconditional generation. We
also observed that the generation conditioned on the pre-
trained model is significantly better than that without pre-
training. Interestingly, the model conditioned on the mate-
rial class outperforms the variation of the model that only
observes a single GelSight frame, suggesting that perceiv-
ing a touch signal from only a single moment in time may

Tactile ConditionInput

N = T/4 N = T/2 N = 3T/4

Image Reference

Figure 8: Controlling the amount of preserved image content.
Manipulated images of tactile-driven image stylization using dif-
ferent values of N .
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Figure 9: Effect of different types of tactile conditioning.

be less informative than the material category. Providing
the model with additional frames significantly improves the
model, with the 5-frame model obtaining the overall best
performance.

Controllable Image Stylization Our method allows us
to control over the amount of image content that is pre-
served from the original image by changing the denoising
staring point N (Sec. 3.2.2) [44]. From Figure 8, we ob-
serve that if we select the larger N , the generated image
will be changed more drastically where the visual appear-
ance will be changed completely to match the tactile signal
while ruining the original image structure. In extreme case,
where N = T the manipulated result will be equal to the
touch-to-image generation result, while small N will result
in little overall change. We empirically found that selecting
N = T/2 obtains a good trade-off between these factors.

5. Conclusion
We proposed a visuo-tactile diffusion model that unifies

previous cross-modal synthesis tasks, and allows us to ad-
dress novel problems. We are the first to generate realistic
images in the natural scenes from touch (and vise versa)
without any image-based conditioning. We also show the

8



ability to generate realistic “hand-less” images and solve a
novel tactile-driven shading estimation task. Finally, we ob-
tain significantly more realistic results on the tactile-driven
stylization task than prior work. We see our work as be-
ing a step toward integrating the fields of tactile sensing and
generative modeling.

Limitations. Since our work has applications in creating
fake imagery, a potential issue is that it could be used to
create disinformation. Also, as touch mainly conveys mate-
rial properties and microgeometry, the generated image will
often differ semantically from the ground truth.
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We provide additional details about our method, and provide qualitative results for our generation tasks.

A. Model Architecture and Implementation Details
We provide additional details about the latent diffusion model, such as the training hyperparameters.

Table 5: We show detailed hyperparamters setting of our models, including first stage model, condition model and LDM model.

Hyperparamter Value Hyperparamter Value

Learning Rate 2× 10−6 LDM Model U-Net
Image Size 256 LDM Input Size 64
Channel 3 LDM Input Channel 3
Conditioning Key Crossattn LDM Output Channel 3
First Stage Model VQModelInterface LDM Attention Resolutions [8,4,2]
VQ In-channel 3 LDM Num Resblocks 2
VQ Out-channel 3 LDM Channel Mult [1,2,3,5]
VQ Num. Resblocks 2 LDM Num Head Channels 32
VQ dropout 0.0 LDM Use Spatial Transformer True
Condition Model CVTP ResNet-18 LDM Transformer Depth 1
Condition Layer 5 LDM Context Dim 512
Condition Frame 5 Batch Size 48
Cond Stage Trainable True Monitor val/loss simple ema
Diffusion Timesteps 1000 Epoch 30
Scheduler DDPM
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B. More Qualitative Results
We provide additional results visuo-tactile cross generation, tactile-driven stylization and tactile-driven shading estimation.

Condition Real Image Ours 
w/o hands

Ours 
with hands Condition Real Image Ours 

w/o hands
Ours 

with hands

Figure 10: Additional results for touch-to-image generation on Touch and Go dataset, where we show both our results with and without
sensors.
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Figure 11: Additional results for touch-to-image generation on VisGel dataset.
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Vision OutputReal Touch OutputVision Real Touch

Figure 12: Additional results for image-to-touch generation on Touch and Go dataset.
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Input Ours Touch Reference Input Ours Touch Reference

Figure 13: Additional results for tactile-driven image stylization results. (Zoom in for better viewing)
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Figure 14: Additional results for tactile-driven shading estimation. (Zoom in for better viewing)
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