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Abstract—Unsupervised multi-view representation learning has 

been extensively studied for mining multi-view data. However, 

some critical challenges remain. On the one hand, the existing 

methods cannot explore multi-view data comprehensively since 

they usually learn a common representation between views, given 

that multi-view data contains both the common information 

between views and the specific information within each view. On 

the other hand, to mine the nonlinear relationship between data, 

kernel or neural network methods are commonly used for multi-

view representation learning. However, these methods are lacking 

in interpretability. To this end, this paper proposes a new multi-

view fuzzy representation learning method based on the 

interpretable Takagi-Sugeno-Kang (TSK) fuzzy system 

(MVRL_FS). The method realizes multi-view representation 

learning from two aspects. First, multi-view data are transformed 

into a high-dimensional fuzzy feature space, while the common 

information between views and specific information of each view 

are explored simultaneously. Second, a new regularization method 

based on 𝑳𝟐,𝟏-norm regression is proposed to mine the consistency 

information between views, while the geometric structure of the 

data is preserved through the Laplacian graph. Finally, extensive 

experiments on many benchmark multi-view datasets are 

conducted to validate the superiority of the proposed method. 

 

Index Terms – multi-view data, representation learning, fuzzy 

system, common information, specific information. 

I. INTRODUCTION 

ith the advancement of data acquisition technologies, 

data of different types of features in real-world 

applications can be readily collected from different sources. For 

example, different features can be extracted from the audio and 

image data in videos. Similarly, different features can be 

extracted from textual data of different languages. These feature 

types can be considered as descriptions of the subject matter 

from different views. Compared with single-view data that 

provides features from one view, multi-view data enable more 

comprehensive understanding and thus more accurate modeling. 

Hence, multi-view learning has received great attention in 

recent years in order to mine multi-view data efficiently. 

Unsupervised multi-view representation learning is among the 

hottest research topics in multi-view learning. It concerns the 

learning of the representation of multi-view data so as to 

improve the discriminability of the data without using label 

information and thereby enhancing the robustness of 

subsequently constructed models [1]. Existing unsupervised 
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multi-view representation learning algorithms can be classified 

into the following two categories [2]: 

1) Multi-view alignment based methods: this category of 

methods aligns different views to maximize the distributions of 

the views consistent. The framework of the methods is shown 

in Fig. 1(a). Some of the representative methods are discussed 

below. Kan et al. used canonical correlation analysis (CCA) to 

achieve view alignment by maximizing the correlation between 

different views [3]. However, this method is only applicable to 

data with two views and can only explore the linear relationship 

between data. To address these two problems, Luo et al. 

proposed a new multi-view representation learning method 

based on CCA and tensor learning [4]. In addition, a deep CCA 

method is also proposed in recent years to obtain high-level 

correlations between data from multiple views [5]. Besides 

these CCA based methods, methods based on distance and 

similarity are also proposed. For example, using partial least 

squares, Li et al. learned the orthogonal projection matrix of 

two views and minimized the distance of the projected 

representation [6]. To mine the high-level correlations between 

the views, Yu et al. proposed a new cross-modal alignment 

method based on deep neural networks [7]. Zhang et al. learned 

the new representations of each view by using the similarity of 

data and aligned them by joint kernel matching [8]. 

2) Multi-view fusion based methods: This category of 

methods extracts the common information between views and 

transforms it into a new representation. The framework of the 

methods is shown in Fig. 1(b). In this category, matrix 

factorization is a commonly used technique. For example, Liu 

et al. used non-negative matrix factorization to extract the 

common representation between views [9]. Considering that the 

constraints of non-negative matrix factorization are too strict, 

Luo et al. proposed a new multi-view representation learning 

method based on semi-negative matrix factorization [10]. 

Besides, there are also methods using concept factorization [11, 

12] and unconstrained matrix factorization [13, 14]. Another 

commonly used technique is self-representation learning, 

which assumes that multi-view data share a common self-

representation matrix, such as the method proposed by Zhang 

et al. [15]. To mine the nonlinear relationships within data, Cao 

et al. used self-representation learning to extract a common 

representation in the kernel space [16]. Zheng et al. extract a 

common representation by introducing self-representation 

learning and degeneration mapping model [17]. In addition, 

deep neural network based methods have been proposed in 
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recent years. For example, Srivastava et al. learned a 

representation for each view based on a deep Boltzmann 

machine and fused them into one representation at the final 

layer [18]. To remove the irrelevant information between views 

as much as possible, Wan et al. introduced the information 

bottleneck theory into deep neural networks and proposed a 

new deep multi-view representation learning method [19]. 
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Fig. 1 Two main multi-view representation learning frameworks: (a) the typical 

framework of multi-views alignment based methods; (b) the typical framework 
of multi-view fusion based methods. 

 

Although these two categories of methods have achieved 

great success, they still face critical challenges. First, in multi-

view data, there exist not only the common information shared 

by different views, but also a set of specific information within 

each view. However, most of the existing methods discussed 

above only focus on the former and ignore the latter. Second, 

kernel methods and deep neural networks, that are commonly 

used to mine the nonlinear relationship between data from 

multiple views, lack transparency and interpretability. It is also 

difficult to select a suitable kernel function or network structure 

for representation learning. Therefore, a more effective and 

efficient multi-view representation learning method is needed. 

Takagi-Sugeno-Kang (TSK) fuzzy system is a data-driven 

system comprised of IF-THEN fuzzy rules that can create 

models with strong learning capability as well as good 

transparency interpretability. It has been successfully applied in 

various fields [20-22]. In recent years, TSK fuzzy system-based 

multi-view learning methods have been proposed to achieve 

better interpretability and deal with uncertainty in multi-view 

learning [23]. For example, Jiang et al. proposed a multi-view 

TSK fuzzy system by introducing collaborative learning and 

maximum margin learning criteria [24]. By learning the hidden 

view and integrating it with the visible views for modeling, a 

multi-view TSK fuzzy system leveraging the cooperation 

between visible and hidden views was proposed [25]. To 

address the problem in incomplete multi-view classification 

problem, Zhang et al. integrated common hidden view learning 

and missing view imputation as one process. Then, they 

combined common hidden view and imputed multi-view data 

to construct an incomplete multi-view model [26]. Moreover, a 

transductive multi-view TSK fuzzy system modeling method 

was proposed to deal with scenarios where labeled multi-view 

data were limited [27]. The method learned both the model and 

the pseudo label simultaneously, and used matrix factorization 

to further improve the learning abilities of the model. Although 

these methods have achieved promising performance, they are 

all proposed for multi-view classification tasks and their 

performance depends heavily on the learning ability of the 

specific fuzzy system. There are almost no studies investigating 

fuzzy system modeling techniques to improve the transparency 

of multi-view representation learning. In fact, design of TSK 

fuzzy system based, unsupervised multi-view representation 

learning methods that can be applied generally to different 

application scenarios are a challenging task. 

To this end, a new multi-view representation learning with 

TSK fuzzy system (MVRL_FS) is proposed in this paper. First, 

a multioutput TSK fuzzy system is used as a model for feature 

extraction. Nonlinear transformation is realized by constructing 

fuzzy mapping with the antecedent part of the TSK fuzzy 

system, which does not require the selection of kernel function 

or deep neural network structure, and can better preserve the 

information in the original multi-view data [28]. Then, we 

realize linear dimensionality reduction by learning the 

consequent parameters of the TSK fuzzy system for each view. 

In this process, to mine the common information between the 

views and the specific information within each view 

simultaneously, we decompose the traditional consequent 

parameters into the common and the specific parts. In addition, 

the consistent information mining mechanism, along with 𝐿2,1-

norm regularization regression, is proposed so that the common 

consequent parameters of different views would tend to be 

consistent. Finally, a Laplacian graph method and a maximum 

entropy mechanism are also introduced to preserve the 

topological structure of multi-view data and to balance the 

importance of different views, respectively. 

The main contributions of this paper are summarized as 

follows: 

1) TSK fuzzy system is the first time introduced into multi-

view representation learning, and a new unsupervised 

multi-view representation learning method is proposed 

to explore common information between the views and 

specific information within each view simultaneously. 

2) A new multi-view consistent information mining 

method is proposed with the aid of 𝐿2,1 -norm 

regularized regression, which greatly improves the 

discrimination of the learned representation. 

3) The effectiveness of the proposed method is validated 

by comprehensive experimental studies. 
The remainder of this paper is organized as follows. The 

related work is briefly described in Section II. The proposed 

method is described in detail in Section III. Experimental 

studies on various datasets are reported in Section IV. Finally, 

the conclusions and prospects are given in Section V. 
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Table I Summary of notations frequently used in this paper 

Notation Description 

𝐱 Input feature vector 

𝐱𝑔 Mapped feature vector of input vector 𝐱 by the fuzzy rules 

𝐱𝑣 Input feature vector of the vth view 

𝐗𝑣 Matrix combining all input vectors of the vth view 

𝐗𝑔
𝑣 

Matrix combining all the mapped feature vectors of the vth 

view 

𝐩𝑔 Consequent parameters of the single-output TSK fuzzy system 

𝐩𝑔
𝑣  

Consequent parameters of the vth view single-output TSK 

fuzzy system 

𝐏𝒗 
Consequent parameters of the vth view multi-output TSK 

fuzzy system 

𝐏𝑐
𝑣 Common part consequent parameters of the vth view 

𝐏𝑠
𝑣 Specific part consequent parameters of the vth view 

𝐙𝑐
𝑣 Common representation of the vth view 

𝐙𝑠
𝑣 Specific representation of the vth view 

𝐋𝒗 Laplacian matrix of the vth view 

𝐁 Mapping matrix 

𝑤𝑣 Weight of the vth view 

𝛼, 𝛾, 𝛽, 𝛿 regularization parameters 

II. RELATED WORK 

In this section, we first review the existing multi-view 

representation learning methods that perform nonlinear 

transformation, and then introduce TKS fuzzy system which is 

the fundamental of the proposed method. The frequently used 

notations in this paper are listed in Table I. 

A. Multi-view Representation Learning Methods with 

Nonlinear Transformation 

In recent years, kernel function and deep neural networks 

have received increasing attention for multi-view learning, 

based on which a large amount of multi-view representation 

learning methods have been proposed. Both approaches first 

perform nonlinear transformation and then project the original 

multi-view data into the high-dimensional space, followed by 

linear dimensionality reduction. 

For kernel function based multi-view learning, CCA was 

used by Fukumizu et al. to propose KCCA which exploited the 

nonlinear relationships between the data of multiple views [29]. 

Chen et al. proposed a new multi-view representation learning 

method (JLMVC) [30] to mine the nonlinear relationships 

between data using a kernel-induced mapping and 

automatically learn a reasonable weight for each view. Zhang 

et al. learned the low-rank common representation between 

views in the kernel space while exploring the effect of different 

ranks to the model by adopting the weighted Schatten p-

paradigms [31]. By using a custom kernel function, De Sa et al. 

integrated common information between views to obtain a 

common representation [32]. Similarly, Houthuys et al. used a 

weighted kernel CCA to learn a common representation 

between views and obtained the solution using primal-dual 

optimization [33]. 

On the other hand, for neural network-based multi-view 

representation learning method, Andrew et al. proposed the new 

DeepCCA with deep neural networks to obtain a more 

extensive association between views [5]. Wang et al. proposed 

a multi-view representation learning method based on 

adversarial autoencoder, which aimed at learning a common 

and compact representation between views [34]. Wang et al. 

proposed a multi-view representation learning method based on 

Deep Neural Networks (DNN) and CCA [35]. Based on 

autoencoder and low-rank tensor constraint, Zheng et al. 

extracted a common representation and proposed a multi-view 

representation learning method [36]. For multi-view graph data, 

Hassani et al. proposed a multi-view contrastive representation 

learning method based on Graph Neural Network (GNN) [37]. 

Similarly, Shao et al proposed a multi-view representation 

learning for heterogeneous graph data by introducing GNN [38]. 

Huang et al. proposed a multi-view deep spectral representation 

learning method by combining deep networks with spectral 

methods [39]. 

Although these multi-view representation learning methods 

with nonlinear transformation have shown promising 

performance, most of them only focus on the common 

information between views and ignore the specific information 

within each view. For this reason, this paper proposes a new 

multi-view representation learning method that simultaneously 

mines the common information between views and the specific 

information within each view. In addition, due to the poor 

interpretability of kernel function and deep neural network, the 

transparent and interpretable TSK fuzzy system is adopted as 

the basis model to develop the corresponding multi-view 

representation learning method. 

B. Takagi-Sugeno-Kang Fuzzy System 

TSK fuzzy system is an intelligent model based on fuzzy set 

and fuzzy logic [40]. It can construct a model based on expert 

experience or following a data-driven approach [41]. Compared 

with traditional machine learning model, TSK fuzzy system has 

the characteristics of good accuracy and interpretability. 

Given a TSK fuzzy system, the kth fuzzy rule is often defined 

as follows: 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴1
𝑘  ∧ ⋯ ∧ 𝑥𝑑  𝑖𝑠 𝐴𝑑

𝑘   

𝑇𝐻𝐸𝑁 𝑓𝑘(𝐱) = 𝑝0
𝑘 + 𝑝1

𝑘𝑥1 + ⋯ + 𝑝𝑑
𝑘𝑥𝑑         (1) 

where 𝑘 = 1,2, … , 𝐾 , K is the number of rule, 𝐱 =
[𝑥1, 𝑥2, … , 𝑥𝑑  ] ∈ 𝑅1×𝑑 is the input vector, d is the number of 

features of 𝐱, 𝑓𝑘(𝐱) is the output of the kth rule, 𝐴𝑗
𝑘 is a fuzzy 

set associated with the jth feature and the kth rule, and ∧ is a 

fuzzy conjunction operator. Unlike the crisp set where the 

membership is 0 or 1, the membership in the fuzzy set can be 

any value between 0 and 1. The membership can be calculated 

using membership functions, which can be defined according 

to different application scenarios. In the absence of domain 

knowledge, the Gaussian function is usually used as the 

membership function, which is defined as follows: 

𝜇
𝐴𝑗

𝑘(𝑥𝑗) = 𝑒𝑥𝑝 (−(𝑥𝑗 − 𝑒𝑘,𝑗)
2

2𝑞𝑘,𝑗⁄ )       (2a) 

where parameters 𝑒𝑘,𝑗 and 𝑞𝑘,𝑗 are the center and width of the 

Gaussian function, respectively. In classical TSK fuzzy system, 

the two parameters are also called the antecedent parameters. 

They can be estimated with different strategies, where 

clustering techniques are typically used, e.g. Fuzzy C-Means 

Clustering (FCM) [42]. However, since random initialization is 

involved in FCM, the results may be unstable. To overcome this 

shortcoming, more stable clustering algorithms such as Var-

Part [43] can be adopted. 
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Fig. 2. The framework of the proposed multi-view fuzzy representation learning. 

 

With the known antecedent parameters, the membership 

value of each feature of the corresponding fuzzy set 𝐴𝑗
𝑘 can be 

calculated by (2a). Using multiplication as the conjunction 

operator, the firing level of the kth rule for each input vector can 

be calculated using (2b). The normalized form of (2b) is given 

in (2c). The final output of TSK fuzzy system is then given by 

the weighted average of 𝑓𝑘(𝐱), as shown in (2d). 

𝜇𝑘(𝐱) = ∏ 𝜇
𝐴𝑗

𝑘(𝑥𝑗)𝑑
𝑗=1              (2b) 

�̃�𝑘(𝐱) =
𝜇𝑘(𝐱)

∑ 𝜇𝑙(𝐱)𝐾
𝑙=1

                (2c) 

𝑦 = ∑ �̃�𝑘(𝐱)𝑓𝑘(𝐱)𝐾
𝑘=1               (2d) 

Once the antecedent parameters are estimated, the outputs of 

the TSK fuzzy system in (2d) can be expressed in the form of 

linear regression in a new fuzzy feature space as follows: 

𝑦 = 𝐱𝑔𝐩𝑔                   (3a) 

where 𝐱𝑔 and 𝐩𝑔 are defined as follows: 

𝐱𝑒 = [1, 𝐱] ∈ 𝑅1×(𝑑+1)             (3b) 

�̃�𝑘 = �̃�𝑘(𝐱)𝐱𝑒 ∈ 𝑅1×(𝑑+1)            (3c) 

𝐱𝑔 = [�̃�1, �̃�2, … , �̃�𝐾] ∈ 𝑅1×𝐾(𝑑+1)         (3d) 

𝐩𝑘 = [𝑝0
𝑘 , 𝑝1

𝑘, … , 𝑝𝑑
𝑘] ∈ 𝑅1×(𝑑+1)          (3e) 

𝐩𝑔 = [𝐩1, 𝐩2, … , 𝐩𝐾]T ∈ 𝑅𝐾(𝑑+1)×1        (3f) 

III. MULTI-VIEW FUZZY REPRESENTATION LEARNING  

In this section, we propose a new multi-view representation 

learning method based on fuzzy systems (MVRL_FS) to 

address the issues mentioned in the introduction. The 

framework of MVRL_FS is shown in Fig 2. The proposed 

method can mine the common and specific information of the 

multi-view data simultaneously, and obtain new representations 

for both types of information. In addition, MVRL_FS explores 

the nonlinear relationships between data from multiple views 

using rules based TSK fuzzy system in order to achieve good 

performance in both robustness and interpretability. 

A. Multi-view Common and Specific Representation 

Construction with TSK Fuzzy System 

In multi-view representation learning with nonlinear 

transformation, data is first transformed nonlinearly into a high-

dimensional space, which is then linearly reduced to a low-

dimensional space. In this paper, the nonlinear transformation 

is realized by the antecedent parameters of the multi-output 

TSK fuzzy system, and the linear dimensionality reduction is 

realized by the consequent parameters of the multi-output TSK 

fuzzy system. 

To construct a TSK fuzzy system for representation learning, 

the first step is to estimate the antecedent parameters so as to 

realize the nonlinear transformation from the original space to 

a high dimensional fuzzy feature space. Different membership 

functions can be used for the TSK fuzzy system according to 

specific applications. In this paper, we adopt the Gaussian 

function as the membership function, and the antecedent 

parameters are the center and width of the Gaussian function. 

Specifically, we use the Var-Part clustering algorithm [43] to 

estimate cluster center 𝐄𝑣 = [𝑒𝑘,𝑗
𝑣 ]

𝑘×𝑑𝑣  in each view, where k is 

the number of rules, and 𝑑𝑣 is the number of features in the 𝑣th 

view. Then the matrix of width parameters in this view, i.e., 

𝐐𝑣 = [𝑞𝑘,𝑗
𝑣 ]

𝑘×𝑑𝑣 can be estimated as follows: 

𝑞𝑘,𝑗
𝑣 = ∑ (𝑥𝑖,𝑗

𝑣 − 𝑒𝑘,𝑗
𝑣 )

2𝑁
𝑖=1 ∑ ∑ (𝑥𝑖,𝑗

𝑣 − 𝑒𝑙,𝑗
𝑣 )

2𝑁
𝑖=1

𝐾
𝑙=1⁄     (4) 

where 𝑗 = 1,2, … , 𝑑𝑣, 𝑥𝑖,𝑗
𝑣  is the jth feature of the ith instance in 

the vth view. 

When the antecedent parameters of the TSK fuzzy system 

have been determined, for a given multi-view instance 

{𝐱𝑣 ∈ 𝑅1×𝑑𝑣
, 𝑣 = 1,2, … , 𝑉}, it is first transformed into a new 

fuzzy feature space by (3b) - (3d). The new representation in 

new the fuzzy feature space can be expressed as follows: 

𝐱𝑔
𝑣 = [�̃�1,𝑣 , �̃�2,𝑣 , … , �̃�𝐾,𝑣] ∈ 𝑅1×𝐾(𝑑𝑣+1), 𝑣 = 1,2, … , 𝑉 (5a) 

Then, we use the consequents of a multi-output TSK fuzzy 

system as feature transformation 𝜙(∗)  to realize linear 

dimensionality reduction in the constructed fuzzy feature space: 

𝜙(𝐱𝑣) = 𝐱𝑔
𝑣𝐏𝒗                 (5b) 

𝐏𝒗 = [𝐩𝑔
1,𝑣, 𝐩𝑔

2,𝑣 , … , 𝐩𝑔
𝑚,𝑣] ∈ 𝑅𝐾(𝑑𝑣+1)×𝑚, 𝑣 = 1,2, … , 𝑉 (5c) 

The main difference between the single-output TSK fuzzy 

system in (3a) and the multi-output TSK fuzzy system in (5b) 
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is that the latter involves multiple group consequent parameters 

in each fuzzy rule. Therefore, for a given multi-view data, the 

final representations can be denoted as: 

𝐙𝑣 = 𝐗𝑔
𝑣𝐏𝑣 ∈ 𝑅𝑁×𝑚, 𝑣 = 1,2, … , 𝑉         (6a) 

𝐗𝑔
𝑣 = [𝐱𝑔,1

𝑣 ; 𝐱𝑔,2
𝑣 ; … ; 𝐱𝑔,𝑁

𝑣 ] ∈ 𝑅𝑁×𝐾(𝑑𝑣+1), 𝑣 = 1,2, … , 𝑉 (6b) 

where 𝐗𝑔
𝑣  is the matrix expression of all instances in vth view. 

𝐙𝑣 is the new representation by the transformation using the m-

dimensional output TSK fuzzy system. 

For a multi-view dataset, although the different views 

describe the same subject, the feature spaces of different views 

are different. Therefore, there exists not only the common 

information between views, but also the specific information 

within each view. However, we can only learn the specific 

representation of each view through the above method. To 

address this problem, this paper proposes a new representation 

learning method based on TSK fuzzy system, which separates 

the consequent parameter matrix into two parts, i.e., the 

common part 𝐏𝑐
𝑣 and the specific part 𝐏𝑠

𝑣 as expressed in (7a)-

(7c). 

𝐏𝑣 = 𝐏𝑐
𝑣 + 𝐏𝑠

𝑣                  (7a) 

𝐏𝑐
𝑣 = [𝐩𝑔,𝑐

1,𝑣 , 𝐩𝑔,𝑐
2,𝑣 , … , 𝐩𝑔,𝑐

𝑚,𝑣] ∈ 𝑅𝑑𝑔
𝑣 ×𝑚        (7b) 

𝐏𝑠
𝑣 = [𝐩𝑔,𝑠

1,𝑣 , 𝐩𝑔,𝑠
2,𝑣 , … , 𝐩𝑔,𝑠

𝑚,𝑣] ∈ 𝑅𝑑𝑔
𝑣 ×𝑚        (7c) 

where 𝑑𝑔
𝑣 = 𝐾(𝑑𝑣 + 1) is the number of features in the fuzzy 

feature space associated with the 𝑣th view. 𝐏𝑐
𝑣 and 𝐏𝑠

𝑣 are the 

consequent parameters of the m-dimensional output TSK fuzzy 

system, which are used to mine the common and specific 

information, respectively. Then, for a multi-view data, the 

transformed common and specific representation can be 

expressed as follows: 

𝐙𝑐
𝑣 = 𝐗𝑔

𝑣 𝐏𝑐
𝑣 ∈ 𝑅𝑁×𝑚              (8a) 

𝐙𝑠
𝑣 = 𝐗𝑔

𝑣 𝐏𝑠
𝑣 ∈ 𝑅𝑁×𝑚              (8b) 

B. Geometric Structure Preservation 

How to adapt the learned low-dimensional representation to 

preserve the geometric structure from the original feature space 

is a hot research topic in representation learning. The adaptation 

is an important factor contributing the success of graph-based 

methods, which allows the low-dimensional representation to 

contain the geometric structure of the original feature space [44]. 

Traditional graph-based methods preserve the geometric 

structure through the following objective function: 

min
𝐙

∑ ∑ 𝑠𝑖,𝑗‖𝐳𝑖 − 𝐳𝑗‖
2

𝑁
𝑗=1

𝑁
𝑖=1 = 𝑡𝑟(𝐙T𝐋𝐙)       (9) 

where 𝐙 = [𝐳1; 𝐳2; … ; 𝐳𝑁] ∈ 𝑅𝑁×𝑚  is the low-dimensional 

representation, 𝐒 = [𝑠𝑖,𝑗]
𝑁×𝑁

 is the similarity matrix which is 

estimated in the original feature space, 𝐋 = 𝐃 − 𝐒 ∈ 𝑅𝑁×𝑁  is 

the Laplacian matrix, and 𝐃 ∈ 𝑅𝑁×𝑁 is the diagonal matrix with 

the ith diagonal value 𝑑𝑖,𝑖 = ∑ 𝑠𝑖,𝑗
𝑁
𝑗=1 . 

Since the approach can be only used for single view data, a 

new collaborative geometric structure preservation method is 

proposed based on (9) to preserve the geometric structure for 

the learned common and specific representation simultaneously. 

The corresponding objective function is defined as follows: 

min
𝐏𝑐

𝑣,𝐏𝑠
𝑣

∑ 𝑡𝑟 ((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)T𝐋𝑣((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)))𝑉
𝑣=1       (10) 

where 𝐙𝑐
𝑣 = 𝐗𝑔

𝑣𝐏𝑐
𝑣, 𝐙𝑠

𝑣 = 𝐗𝑔
𝑣 𝐏𝑠

𝑣, 𝐋𝑣 = 𝐃𝑣 − 𝐒𝑣 is the Laplacian 

matrix of the vth view, 𝐒𝑣 = [𝑠𝑖,𝑗
𝑣 ]

𝑁×𝑁
 is the similarity matrix 

of vth view, and 𝑠𝑖,𝑗
𝑣  is defined as follows: 

𝑠𝑖,𝑗
𝑣 = {

𝜅(𝐱𝑔,𝑖
𝑣 , 𝐱𝑔,𝑗

𝑣 ), if 𝑖-th instance is the k-nearest 

neighbor of 𝑗-th instance

0, otherwise

  (11) 

In (11), 𝜅(∗,∗) is a kernel function and the Gaussian function is 

used in this paper, and 𝐃𝑣 is the diagonal matrix of vth view 

with 𝑑𝑖,𝑖
𝑣 = ∑ 𝐬𝑖,𝑗

𝑣𝑁
𝑗=1 . 

Although the consequent parameters 𝐏𝑣 is divided into the 

common part 𝐏𝑐
𝑣  and the specific part 𝐏𝑠

𝑣 , there is inevitably 

some redundant information between them since they are 

learned simultaneously. Moreover, as the discriminative 

information contained in different views is inconsistent, the 

discriminability of the learned new representation can be 

greatly improved if the importance weights of the views can be 

coordinated. To address these two issues, we introduce the 

orthogonality constraint and negative Shannon entropy. 

Accordingly, (10) can be updated as follows: 

min
𝐏𝑐

𝑣,𝐏𝑠
𝑣,𝑤𝑣

∑ 𝑤𝑣𝑡𝑟((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)T𝐋𝑣(𝐙𝑐
𝑣 + 𝐙𝑠

𝑣))𝑉
𝑣=1 +

                             𝛼 ∑ ‖(𝐙𝑐
𝑣)T(𝐙𝑠

𝑣)‖𝐹
𝑉
𝑣=1 + 𝛿 ∑ 𝑤𝑣𝑙𝑛 (𝑤𝑣)𝑉

𝑣=1   
𝑠. 𝑡. 𝑤𝑣 ≥ 0, ∑ 𝑤𝑣𝑉

𝑣=1 = 1             (12) 

where ‖∗‖𝐹 is the Frobenius norm, 𝛼 and 𝛿 are regularization 

parameters, ∑ 𝑤𝑣𝑙𝑛𝑤𝑣𝑉
𝑣=1  is the negative Shannon entropy. By 

introducing Shannon entropy as the regularization term, the 

weights of different views can be adaptively adjusted [24-26]. 

C. Consistency Constraint with 𝐿2,1-  Norm Regularized 

Regression 

In the above two subsections, we separate the common 

representation and the specific representation in each view. To 

further improve the discrimination of the learned common 

representations, the consistency of information between these 

common representations needs to be explored. Obviously, if the 

two original datasets have the same dimension and the 

distributions are consistent, the new representations of them is 

also consistent when they are mapped by the same mapping 

matrix. Therefore, we can make the distributions of common 

representations 𝐙𝑐
𝑣  consistent by constructing the following 

objective function: 

min
𝐏𝑐

𝑣,𝐁
∑ ‖𝐁𝐙𝑐

𝑣 − 𝐇‖𝐹
𝑉
𝑣=1 + 𝛾 ∑ ‖𝐁‖2,1

𝑉
𝑣=1        (13) 

where 𝐁 ∈ 𝑅𝑞×𝑁  is the mapping matrix, 𝐿2,1 regularization is 

used to ensure the sparsity of 𝐁, and 𝐇 ∈ 𝑅𝑞×𝑚 is the same low-

dimensional representation of all common representations, with 

q as the number of the features in the low-dimensional space. 

Compared to finding a suitable value of q, we define 𝐇 as a m-

dimensional identity matrix 𝐈  and 𝐁  as a m-dimensional 

mapping matrix. The effectiveness of this setting is confirmed 

in our experiments. Thus, (13) can be updated as follows: 

min
𝐏𝑐

𝑣,𝐁
∑ ‖𝐁𝐙𝑐

𝑣 − 𝐈‖𝐹
𝑉
𝑣=1 + 𝛾‖𝐁‖2,1         (14) 



 

 

6 

where 𝛾 is the regularization parameter. With the help of the 

regularized regression, (14) is flexible method to ensure the 

consistency of the common representations of the views. 

D. Overall Objective Function and Optimization 

The multi-view representation learning problem can be 

solved by integrating (12) and (14). Meanwhile, ∑ ‖𝐏𝑐
𝑣‖2,1

𝑉
𝑣=1  

and ∑ ‖𝐏𝑠
𝑣‖2,1

𝑉
𝑣=1  are introduced to avoid overfitting. Finally, 

the overall objective function is defined as follows: 

min
𝐏𝑐

𝑣,𝐏𝑠
𝑣,𝐁,𝑤𝑣

∑ 𝑤𝑣𝑡𝑟((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)T𝐋𝑣(𝐙𝑐
𝑣 + 𝐙𝑠

𝑣))𝑉
𝑣=1 +

𝛼 ∑ ‖(𝐙𝑐
𝑣)T(𝐙𝑠

𝑣)‖𝐹
𝑉
𝑣=1 + 𝛽 ∑ ‖𝐁𝐙𝑐

𝑣 − 𝐈‖𝐹
𝑉
𝑣=1 + 𝛾‖𝐁‖2,1 +

𝛾 ∑ ‖𝐏𝑐
𝑣‖2,1

𝑉
𝑣=1 + 𝛾 ∑ ‖𝐏𝑠

𝑣‖2,1
𝑉
𝑣=1 + 𝛿 ∑ 𝑤𝑣𝑙𝑛 (𝑤𝑣)𝑉

𝑣=1   

𝑠. 𝑡. 𝑤𝑣 ≥ 0, ∑ 𝑤𝑣𝑉
𝑣=1 = 1             (15) 

where 𝐙𝑐
𝑣 = 𝐗𝑔

𝑣𝐏𝑐
𝑣 , 𝐙𝑠

𝑣 = 𝐗𝑔
𝑣 𝐏𝑠

𝑣 . 𝛼 , 𝛾 , 𝛽 , 𝛿  are regularization 

parameters and they are used to control the impact of the 

corresponding terms. These hyperparameters can be set 

manually or determined by cross-validation strategy. 

The optimization problem in (15) can be solved iteratively. 

The optimization procedure is described as follows: 

1) Step 1: Update 𝐏𝑐
𝑣. Fixing all the variables except 𝐏𝑐

𝑣, we 

obtain the following minimization problem: 

min
𝐏𝑐

𝑣
∑ 𝑤𝑣𝑡𝑟 ((𝐗𝑔

𝑣 𝐏𝑐
𝑣 + 𝐗𝑔

𝑣𝐏𝑠
𝑣)

T
𝐋𝑣(𝐗𝑔

𝑣𝐏𝑐
𝑣 + 𝐗𝑔

𝑣 𝐏𝑠
𝑣))𝑉

𝑣=1 +

𝛼 ∑ ‖(𝐗𝑔
𝑣𝐏𝑐

𝑣)
T

(𝐗𝑔
𝑣 𝐏𝑠

𝑣)‖
𝐹

𝑉
𝑣=1 + 𝛽 ∑ ‖𝐁𝐗𝑔

𝑣𝐏𝑐
𝑣 − 𝐈‖

𝐹

𝑉
𝑣=1 +

𝛾 ∑ ‖𝐏𝑐
𝑣‖2,1

𝑉
𝑣=1                   (16) 

Taking the derivative of (16) with respect to 𝐏𝑐
𝑣 and setting it 

to zero, the update rule for 𝐏𝑐
𝑣 is obtained as: 

𝐏𝑐
𝑣 = (𝑤𝑣𝐗𝑔

𝑣,T𝐋𝑣𝐗𝑔
𝑣 + 𝛼𝐗𝑔

𝑣,T𝐗𝑔
𝑣 𝐏𝑠

𝑣𝐏𝑠
𝑣,T𝐗𝑔

𝑣,T𝐗𝑔
𝑣 +

𝛽𝐗𝑔
𝑣,T𝐁T𝐁𝐗𝑔

𝑣 + 𝛾𝐅𝑐)
−1

(𝛽𝐗𝑔
𝑣,T𝐁T − 𝑤𝑣𝐗𝑔

𝑣,T𝐋𝑣𝐗𝑔
𝑣𝐏𝑠

𝑣)   (17) 

where 𝐅𝑐 is a diagonal matrix, and the ith diagonal value 𝐅𝑐,𝑖,𝑖 =

1 ‖𝐏𝑐,𝑖,:
𝑣 ‖

2
⁄ . 

2) Step 2: Update 𝐏𝑠
𝑣. Fixing all the variables except 𝐏𝑠

𝑣, we 

obtain the following minimization problem: 

min
𝐏𝑠

𝑣
∑ 𝑤𝑣𝑡𝑟 ((𝐗𝑔

𝑣 𝐏𝑐
𝑣 + 𝐗𝑔

𝑣𝐏𝑠
𝑣)

T
𝐋𝑣(𝐗𝑔

𝑣𝐏𝑐
𝑣 + 𝐗𝑔

𝑣 𝐏𝑠
𝑣))𝑉

𝑣=1 +

𝛼 ∑ ‖(𝐗𝑔
𝑣𝐏𝑐

𝑣)
T

(𝐗𝑔
𝑣 𝐏𝑠

𝑣)‖
𝐹

𝑉
𝑣=1 + 𝛾 ∑ ‖𝐏𝑠

𝑣‖2,1
𝑉
𝑣=1      (18) 

Taking the derivative of (18) with respect to 𝐏𝑠
𝑣 and setting it 

to zero, the update rule for 𝐏𝑠
𝑣 is obtained as: 

𝐏𝑠
𝑣 = (𝑤𝑣𝐗𝑔

𝑣,T𝐋𝑣𝐗𝑔
𝑣 + 𝛼𝐗𝑔

𝑣,T𝐗𝑔
𝑣 𝐏𝑐

𝑣𝐏𝑐
𝑣,T𝐗𝑔

𝑣,T𝐗𝑔
𝑣 +

𝛾𝐅𝑠)
−1

(−𝑤𝑣𝐗𝑔
𝑣,T𝐋𝑣𝐗𝑔

𝑣𝐏𝑐
𝑣)             (19) 

where 𝐅𝑠 is a diagonal matrix, and the ith diagonal value 𝐅𝑠,𝑖,𝑖 =

1 ‖𝐏𝑠,𝑖,:
𝑣 ‖

2
⁄ . 

3) Step 3: Update 𝐁 . Fixing all the variables except 𝐁 , we 

obtain the following minimization problem: 

min
𝐁

∑ ‖𝐁𝐗𝑔
𝑣 𝐏𝑐

𝑣 − 𝐈‖
𝐹

𝑉
𝑣=1 + 𝛾‖𝐁‖2,1        (20) 

Taking the derivative of (20) with respect to 𝐁 and setting it 

to zero, the update rule for 𝐁 is obtained as: 

𝐁 = (𝐈 + 𝛾𝐅𝑏)−1(∑ 𝐏𝑐
𝑣,T𝐗𝑔

𝑣,T𝑉
𝑣=1 )         (21) 

where 𝐅𝑏 is also a diagonal matrix, and the ith diagonal value 

𝐅𝑏,𝑖,𝑖 = 1 ‖𝐁𝑖,:‖2
⁄ . 

4) Step 4: Update 𝑤𝑣 . Fixing all the variables except 𝑤𝑣 , we 

obtain the following minimization problem: 

min
𝑤𝑣

∑ 𝑤𝑣𝑡𝑟((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)T𝐋𝑣(𝐙𝑐
𝑣 + 𝐙𝑠

𝑣))𝑉
𝑣=1 +

𝛿 ∑ 𝑤𝑣𝑙𝑛 (𝑤𝑣)𝑉
𝑣=1   

𝑠. 𝑡. 𝑤𝑣 ≥ 0, ∑ 𝑤𝑣𝑉
𝑣=1 = 1             (22) 

Using Lagrangian optimization method, the update rule for 

𝑤𝑣  can be obtained as: 

𝑤𝑣 =
𝑒𝑥𝑝(−𝑡𝑟((𝐙𝑐

𝑣+𝐙𝑠
𝑣)T𝐋𝑣(𝐙𝑐

𝑣+𝐙𝑠
𝑣)) 𝛿⁄ )

∑ 𝑒𝑥𝑝(−𝑡𝑟((𝐙𝑐
𝑙 +𝐙𝑠

𝑙 )
T

𝐋𝑙(𝐙𝑐
𝑙 +𝐙𝑠

𝑙 )) 𝛿⁄ )𝑉
𝑙

        (23) 

By solving the optimization problem iteratively using the 

update rules (17), (19), (21) and (23), the local optimal solution 

of (15) can be obtained. 

Based on the above analyses, the algorithm of the proposed 

MVRL_FS is given in Algorithm 1. There are three parameters 

( 𝐏𝑠
𝑣 , 𝐏𝑐

𝑣 , 𝑤𝑣 ) needed be initialized in Algorithm 1. We 

randomly initialize 𝐏𝑠
𝑣, 𝐏𝑐

𝑣 and let each view weight 𝑤𝑣 = 1 𝑉⁄ . 
 

Algorithm 1 MVRL_FS 

Input: multi-view data {𝐗𝑣}, v=1, 2, …, V, the number of fuzzy rules K; 

number of maximum iterations T, the regularization parameters 𝛼, 𝛾, 𝛽, 𝛿. 

Output: 𝐏𝑐
𝑣, 𝐏𝑠

𝑣, 𝐁, 𝑤𝑣. 

1: Use the Var-Part clustering algorithm to estimate the antecedent 

parameters of the TSK fuzzy systems based on data 𝐗𝑣 for different views. 

2: Use (3.b) - (3.d) to construct a new dataset D𝑙
𝑣 = {𝐗𝑔

𝑣} in the fuzzy feature 

space generated by fuzzy rules for each view. 

3: Initialize 𝐏𝑠
𝑣, 𝐏𝑐

𝑣, 𝑤𝑣. 

4: for t=1, 2, …, T do 

5:    Update 𝐁 based on (21). 

6:  for v=1, 2, …, V do 

7:    Update 𝐏𝑐
𝑣 based on (17). 

8:    Update 𝐏𝑠
𝑣 based on (19). 

9:    Update 𝑤𝑣 based on (23). 

10:  end 

11: end 

 

E. Complexity Analysis 

In MVRL_FS, the feature dimension m of the common and 

specific representation is usually much less than the number of 

instances N, the feature dimension of the data in the original 

space 𝑑𝑣 and fuzzy feature space 𝑑𝑔
𝑣. The time complexities of 

steps 1 and 2 in Algorithm 1 are 𝑂(2𝑁𝑑𝑣𝐾)  and 𝑂((1 +

𝑑𝑣)𝑁𝐾) respectively, where K is the number of rules. The time 

complexity of step 5 is 𝑂 ((𝑑𝑔
𝑣 + 𝑚)𝑚𝑁𝑇) . The time 

complexities of step 7 and step 8 are 𝑂 ((𝑁2 + 𝑁𝑑𝑔
𝑣 + 𝑑𝑔

𝑣𝑚 +

𝑁𝑚)𝑑𝑔
𝑣𝑉𝑇) , where V is the number of views and T is the 

maximum number of iterations. Finally, the time complexity of 

step 9 is 𝑂((𝑚 + 𝑁 + 𝑑𝑔
𝑣)𝑚𝑁𝑉𝑇) . Therefore, the 

computational complexity of the overall algorithm is 

𝑂(𝑁2𝑑𝑔
𝑣,2𝑉𝑇). 
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F. Convergence Analysis 

In this subsection, the convergence of Algorithm 1 is shown 

by proving the theorem below. 

Theorem 1: The objective function in (15) is bounded. The 

value of the objective function at each iteration decreases 

monotonically with Algorithm 1. 

Proof: we define 𝐽(𝐏𝑐
𝑣 , 𝐏𝑠

𝑣 , 𝐁, 𝑤𝑣) as the objection function 

in (15). It is obvious that 𝐽(𝐏𝑐
𝑣 , 𝐏𝑠

𝑣 , 𝐁, 𝑤𝑣) > 0. Therefore, the 

objective function in (15) is bounded. Then, in Algorithm 1, the 

objective function 𝐽(𝐏𝑐
𝑣 , 𝐏𝑠

𝑣 , 𝐁, 𝑤𝑣) has four variables and can 

be divided correspondingly into four subproblems, each being 

a convex problem with respect to a variable. Therefore, the 

optimal solution of the subproblems can be obtained by 

updating (17), (19), (21) and (23). As a result, the value of 

𝐽(𝐏𝑐
𝑣 , 𝐏𝑠

𝑣 , 𝐁, 𝑤𝑣) is decreased at each iteration of Algorithm 1. 

G. New Feature Presentation for Subsequent Modeling Tasks 

By using the common and specific representations learned 

with Algorithm 1, we can construct the new representation as 

follows: 

𝐙 = [∑ 𝑤𝑣𝐗𝑔
𝑣𝐏𝑐

𝑣𝑉
𝑣=1 , 𝑤1𝐗𝑔

1 𝐏𝑠
1, 𝑤2𝐗𝑔

2𝐏𝑠
2, … , 𝑤𝑉𝐗𝑔

𝑉𝐏𝑠
𝑉]  (24) 

In (24), the first term is the integrated common representation 

of all views, and the other terms are the weighted specific 

representations of different views. A small weight means that 

the effect of the corresponding view is weak. Then, the new 

representation of the original multi-view dataset is fed into the 

classification or clustering model, such as SVM or K-means, to 

perform the subsequent modeling tasks. 

IV. EXPERIMENTAL STUDIES 

In this section, the effectiveness of the proposed algorithm is 

verified. Section IV-A gives the details of the experimental 

setting, which includes the datasets, the comparison methods, 

the parameters setting and the evaluation indices. Experimental 

results and analysis are given in Section IV-B. The ablation 

studies and statistical analysis are presented in Sections IV-C 

and IV-D, respectively. The running time and convergence 

analysis of the proposed algorithm are given in Section IV-E. 

Finally, Section IV-F presents the interpretability analysis of 

the model. The code of the proposed MVRL_FS is available at 

https://github.com/BBKing49/MVRL_FS. 

A. Experimental Settings 

1) Datasets 

Seven real-world multi-view datasets were adopted as the 

baselines in our experiments, which are briefly described below. 

Table II gives the statistics of datasets. 

1) Corel [27]: an image dataset containing 1000 instances 

and 10 classes. SIFT and LBP features were extracted as two 

views of the experiments. 

2) NUS-WIDE [45]: an image dataset containing 1000 

instances and 5 classes. CORR and bag of visual words features 

are extracted as two views for experiments. 

3) MF [27]: a handwriting dataset containing 2000 images 

with 10 classes. Fourier coefficients and Zernike moments 

features were extracted as two views for experiments. 

Table II Statistics of multi-view datasets 

Dataset Size 
Number of Views 

(Dimensions) 

Number 

of Classes 

Corel 1000 2 (256-300) 10 

NUS-WIDE 1000 2 (144-500) 5 

MF 2000 2 (76-47) 10 

MSRCv1 240 3 (24-256-254) 7 

ORL 400 4 (512-59-864-256) 40 

Leavers 1600 3 (64-64-64) 100 

CCA 6773 3 (20-20-20) 20 

 

Table III Parameters setting of the algorithms 

Algorithms Parameters and grid search range 

MSC_IAS 
Regularization parameter 𝜆1 , 𝜆2 : {1,2, 3, ..., 30}. The 

dimension of common representation: {100, 200, ..., 500}. 

LMSC 
Regularization parameters 𝜆: {10-3, 10-2, …, 102, 103}. The 

dimension of common representation: {10, 20, …, 90, 100}. 

CSMSC Regularization parameters 𝜆1, 𝜆2: {10-3, 10-2, …, 102, 103}. 

NMFCC 

Regularization parameters α, 𝛽, 𝛾, 𝜇: {10-3, 10-2, …, 102, 

103}. The dimension of common representation is set as the 

number of clusters. 

DiMSC Regularization parameters 𝜆1, 𝜆2: {10-3, 10-2, …, 102, 103}.  

TCCA 
Regularization parameter 𝜆: {10-3, 10-2, …, 102, 103}, The 

dimension of common representation: {10, 20, …, 90, 100}. 

MDcR 
Regularization parameters 𝜆: {10-3, 10-2, …, 102, 103}. The 

dimension of common representation: {10, 20, …, 90, 100}. 

MVRL_FS 

Regularization parameters 𝛼, 𝛾, 𝛽, 𝛿: {2-5, 2-4, …, 24, 25}. 

The dimension of common and specific representation is set 

as the number of classes. The number of rules is 3. 

 

4) MSRCv1 [46]: a dataset containing 210 images and 7 

classes, i.e., cows, trees, buildings, airplanes, faces, and cars. 

CMT, LBP, and GENT features were extracted as three views 

for experiments. 

5) ORL [47]: a dataset containing 400 facial images of 

different people. CENTRIST, LBP, GIST, and HOG features 

were extracted as four views for experiments. 

6) Leavers [48]: a plant image dataset containing 100 

categories of plants. Shape, Texture and Margin features were 

extracted as three views for experiments. 

7) CCA [49]: a YouTube video dataset containing 20 

semantic classes. SIFT, STIP, and MFCC features were 

extracted as three views for experiments. 

 

2) Methods for Comparison 

Seven state-of-the-art multi-view representation learning 

methods were compared with the proposed method. Four of 

them (MSC_IAS, LMSC, CSMSC and NMFCC) are based on 

linear transformation, and the remaining three (DiMSC, TCCA 

and MDcR) are based on nonlinear transformation. The detailed 

descriptions of these methods are given below. 

1)MSC_IAS [50]: this method extracts a common 

representation between views based on matrix factorization 

with similarity constraints. 

2)LMSC [15]: this method extracts a common representation 

between views based on self-representation learning. 

3)CSMSC [51]: this method extracts a common 

representation and a set specific representations based on self-

representation learning for multi-view data, which are 

combined to form a new representation. 
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Table IV. Performance multi-view representation learning methods on seven datasets 

Datasets Algorithms NMI ACC Purity 

Corel 

MSC_IAS 0.2577±0.0081 0.3297±0.0180 0.3763±0.0171 

LMSC 0.2892±0.0021 0.3870±0.0155 0.4253±0.0110 

CSMSC 0.1990±0.0030 0.3077±0.0095 0.3363±0.0087 

NMFCC 0.2706±0.0016 0.3460±0.0079 0.3940±0.0020 

DiMSC 0.2449±0.0063 0.3422±0.0073 0.3690±0.0089 

TCCA 0.3129±0.0109 0.3887±0.0302 0.4413±0.0289 

MCDR 0.2793±0.0117 0.3543±0.0093 0.3997±0.0104 

MVRL_FS (ours) 0.3196±0.0034 0.3907±0.0080 0.4493±0.0075 

NUS-WIDE 

MSC_IAS 0.0901±0.0039 0.3403±0.0064 0.3697±0.0060 

LMSC 0.1088±0.0016 0.3893±0.0029 0.3957±0.0023 

CSMSC 0.0387±0.0068 0.2847±0.0081 0.2990±0.0052 

NMFCC 0.1020±0.0070 0.3746±0.0081 0.3857±0.0110 

DiMSC 0.1277±0.0018 0.4350±0.0035 0.4350±0.0035 

TCCA 0.1286±0.0083 0.3920±0.0312 0.4080±0.0178 

MCDR 0.1123±0.0024 0.3870±0.0026 0.3970±0.0010 

MVRL_FS (ours) 0.1604±0.0020 0.4470±0.0030 0.4577±0.0015 

MF 

MSC_IAS 0.7053±0.0341 0.7310±0.0618 0.7423±0.0424 

LMSC 0.4782±0.0116 0.5362±0.0447 0.5767±0.0087 

CSMSC 0.6682±0.0059 0.7505±0.0053 0.7505±0.0053 

NMFCC 0.6099±0.0193 0.6642±0.0645 0.6688±0.0569 

DiMSC 0.6063±0.0050 0.6857±0.0060 0.6860±0.0056 

TCCA 0.7144±0.0000 0.7780±0.0000 0.7780±0.0000 

MCDR 0.7087±0.0159 0.7486±0.0045 0.7582±0.0206 

MVRL_FS (ours) 0.7571±0.0128 0.7738±0.0166 0.8012±0.0071 

MSRCv1 

MSC_IAS 0.3263±0.0865 0.3381±0.0497 0.3714±0.0701 

LMSC 0.5278±0.0615 0.6333±0.0874 0.6651±0.0607 

CSMSC 0.3922±0.0132 0.5841±0.0192 0.5921±0.0180 

NMFCC 0.5274±0.0666 0.6302±0.0738 0.6619±0.0667 

DiMSC 0.5908±0.0113 0.6952±0.0058 0.7190±0.0058 

TCCA 0.5727±0.0666 0.6603±0.0674 0.6730±0.0667 

MCDR 0.4479±0.0325 0.4603±0.0592 0.5238±0.0412 

MVRL_FS (ours) 0.5911±0.0212 0.6794±0.0275 0.7222±0.0275 

ORL 

MSC_IAS 0.9101±0.0066 0.8275±0.0152 0.8508±0.0142 

LMSC 0.9307±0.0116 0.8550±0.0241 0.8833±0.0184 

CSMSC 0.8326±0.0176 0.7783±0.0230 0.8933±0.0030 

NMFCC 0.8644±0.0022 0.7333±0.0101 0.7650±0.0050 

DiMSC 0.9178±0.0051 0.8140±0.0145 0.8465±0.0170 

TCCA 0.8208±0.0148 0.6000±0.0115 0.6583±0.0218 

MCDR 0.8077±0.0079 0.6408±0.0052 0.6783±0.0063 

MVRL_FS (ours) 0.9369±0.0129 0.8642±0.0210 0.8825±0.0238 

Leavers 

MSC_IAS 0.8975±0.0027 0.8092±0.0088 0.8231±0.0098 

LMSC 0.7458±0.0066 0.5231±0.0220 0.5502±0.0138 

CSMSC 0.8728±0.0114 0.7452±0.0183 0.7742±0.0149 

NMFCC 0.9270±0.0095 0.7846±0.0229 0.8196±0.0208 

DiMSC 0.8748±0.0076 0.7340±0.0230 0.7620±0.0224 

TCCA 0.9305±0.0013 0.8213±0.0111 0.8399±0.0073 

MCDR 0.9349±0.0059 0.7990±0.0254 0.8392±0.0213 

MVRL_FS (ours) 0.9355±0.0033 0.7822±0.0111 0.8433±0.0118 

CCA 

MSC_IAS 0.1512±0.0026 0.1769±0.0028 0.2271±0.0041 

LMSC 0.1104±0.0000 0.1537±0.0000 0.1049±0.0000 

CSMSC 0.1653±0.0010 0.2138±0.0000 0.2438±0.0000 

NMFCC 0.1428±0.0109 0.1807±0.0121 0.2145±0.0078 

DiMSC 0.1208±0.0022 0.1508±0.0026 0.2007±0.0013 

TCCA 0.1895±0.0026 0.2076±0.0068 0.2499±0.0041 

MCDR 0.1544±0.0085 0.1824±0.0067 0.2254±0.0084 

MVRL_FS (ours) 0.2004±0.0021 0.2116±0.0054 0.2492±0.0031 

4)NMFCC [52]: this method extracts a common 

representation between views based on non-negative matrix 

factorization with orthogonal constraints. 

5)DiMSC [16]: this method extracts a common 

representation between views based on self-representation 

learning in the kernel space. 

6)TCCA [4]: this method aligns multiple views based on 

CCA incorporating tensor techniques. 

7) MDcR [8]: this method uses the projection matrix to align 

multiple views in the kernel space. 

 

3) Parameters setting 

The hyperparameters of the algorithms adopted and the 

corresponding grid search ranges are shown in Table III. 
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NMI ACC Purity 

Fig. 3. The average results of eight algorithms on all datasets. 
 

4) Performance Evaluation Scheme and Indices 

To evaluate the representation learning methods, we follow 

the approach in [13, 18] and consider clustering as the modeling 

task. When new representations are obtained by different 

representation learning methods, clustering is implemented by 

K-means. Then the clustering results are used to evaluate the 

performance of the methods. The clustering performance was 

evaluated using the three commonly used indices NMI, ACC, 

and Purity [53, 54]. Moreover, each algorithm was executed 20 

times with different parameters, and the best results in terms of 

the mean and the standard deviation of the metrics were 

recorded for comparison. 

B. Clustering Performance 

The performance of the eight methods on the seven datasets 

is presented in terms of the three evaluation indices in Table IV. 

The average performance is also show in Fig. 3. From the 

results, the following observations can be obtained. 

1) The proposed MVRL_FS has shown the best performance 

in most datasets. This indicates the effectiveness of TSK fuzzy 

system based nonlinear transformation and the mechanism of 

exploring common and specific representation simultaneously. 

2) In most cases, the performance of the linear transformation 

based multi-view representation methods, i.e., MSC_IAS, 

LMSC, CSMSC and NMFCC, is much inferior to that of the  

nonlinear transformation based counterparts, i.e., DiMSC, 

TCCA, MDcR and MVRL_FS. For example, for the NUS-

WIDE dataset, the average NMI values of the nonlinear 

transformation based methods are 2%-3% higher than that of 

the linear transformation based methods. For the MF dataset, 

the average NMI values of nonlinear transformation based 

methods are 5%-10% higher than that of the linear 

transformation based methods. 

3) As a linear transformation based multi-view 

representation method, CSMSC has an advantage over other 

linear methods on most datasets, which indicates that mining 

the common and specific information between views can 

effectively improve representation learning ability. For 

example, for the CCA dataset, the average NMI values of 

CSMSC are 1%-4% higher than other linear transformation 

based methods. However, we can see that the performance of 

CSMSC is still inferior to the proposed MVRL_FS for all 

datasets, which indicates that only mining the linear common 

and specific information is insufficient, and nonlinear learning 

are therefore required. 

4) Compared with other multi-view representation learning 

methods based on nonlinear transformation, the proposed 

MVRL_FS is highly competitive, especially for the Corel and 

MF datasets, where MVRL_FS has a 5% higher NMI than other 

nonlinear transformation based methods. This indicates that 

TSK fuzzy system is very effective in mining the nonlinear 

relationships between data. Besides, it also indicates that 

mining and combining the common and specific information 

can greatly enhance the discriminability of the learned 

representation. 

C. Ablation Studies 

Ablation studies were conducted to further evaluate the 

effectiveness of the mechanism of learning both the common 

and specific representations simultaneously, as well as the 

ability of the proposed consistency information mining 

mechanism. We define the method that only learns the common 

representation as MVRL_FS1 and that ignores the consistency 

information as MVRL_FS2. The corresponding objective 

functions are defined respectively in (25) and (26) as follows: 

min
𝐏𝑐

𝑣,𝐁,𝑤𝑣
∑ 𝑤𝑣𝑡𝑟((𝐙𝑐

𝑣)T𝐋𝑣(𝐙𝑐
𝑣))𝑉

𝑣=1 + 𝛽 ∑ ‖𝐁𝐙𝑐
𝑣 − 𝐈‖𝐹

𝑉
𝑣=1 +

𝛾‖𝐁‖2,1 + 𝛾 ∑ ‖𝐏𝑐
𝑣‖2,1

𝑉
𝑣=1 + 𝛿 ∑ 𝑤𝑣𝑙𝑛 (𝑤𝑣)𝑉

𝑣=1   

s. t. 𝑤𝑣 ≥ 0, ∑ 𝑤𝑣𝑉
𝑣=1 = 1             (25) 

min
𝐏𝑐

𝑣,𝐏𝑠
𝑣,𝐁,𝑤𝑣

∑ 𝑤𝑣𝑡𝑟((𝐙𝑐
𝑣 + 𝐙𝑠

𝑣)T𝐋𝑣(𝐙𝑐
𝑣 + 𝐙𝑠

𝑣))𝑉
𝑣=1 +

𝛼 ∑ ‖(𝐙𝑐
𝑣)T(𝐙𝑠

𝑣)‖𝐹
𝑉
𝑣=1 + 𝛾‖𝐁‖2,1 + 𝛾 ∑ ‖𝐏𝑐

𝑣‖2,1
𝑉
𝑣=1 +

𝛾 ∑ ‖𝐏𝑠
𝑣‖2,1

𝑉
𝑣=1 + 𝛿 ∑ 𝑤𝑣𝑙𝑛 (𝑤𝑣)𝑉

𝑣=1   

s. t. 𝑤𝑣 ≥ 0, ∑ 𝑤𝑣𝑉
𝑣=1 = 1             (26) 

An alternating optimization scheme is used to solve the 

objective functions. Table V gives the experimental results of 

the three versions of the algorithm on all the datasets. It is found 

that mining both the common and specific information between 

views is advantageous over mining the common information 

only in most cases, especially on the MSRCv1 dataset. The 

ACC and Purity values of MVRL_FS1 are nearly 10% lower 

than that of MVRL_FS. In addition, it can be seen that the 

performance of MVRL_FS2 is significantly worse than 

MVRL_FS and MVRL_FS1 on all the datasets, which indicates 

the effectiveness of the proposed consistency information 

mining mechanism. 
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Table V. The results of MVRL_FS, MVRL_FS1 and MVRL_FS2 on all datasets 

Datasets 
MVRL_FS MVRL_FS1 MVRL_FS2 

NMI ACC Purity NMI ACC Purity NMI ACC Purity 

Corel 
0.3196 

±0.0034 

0.3907 

±0.0080 

0.4493 

±0.0075 

0.2918 

±0.0042 

0.3657 

±0.0042 

0.4177 

±0.0032 

0.2562 

±0.0037 

0.3467 

±0.0072 

0.3827 

±0.0055 

NUS-WIDE 
0.1604 

±0.0020 
0.4470 

±0.0030 
0.4577 

±0.0015 

0.1598 
±0.0033 

0.4503 

±0.0050 
0.4503 

±0.0050 
0.1212 

±0.0005 
0.3923 

±0.0005 
0.4053 

±0.0005 

MF 
0.7571 

±0.0128 

0.7738 

±0.0166 

0.8012 

±0.0071 

0.7176 

±0.0007 

0.7480 

±0.0007 

0.7738 

±0.0007 

0.5781 

±0.0170 

0.5788 

±0.0521 

0.6200 

±0.0485 

MSRCv1 
0.5911 

±0.0212 

0.6794 

±0.0275 

0.7222 

±0.0275 

0.5837 

±0.0001 

0.5714 

±0.0000 

0.6517 

±0.0000 

0.4562 

±0.0281 

0.4984 

±0.0153 

0.5746 

±0.0198 

ORL 
0.9369 

±0.0129 

0.8642 

±0.0210 

0.8825 

±0.0238 

0.9313 

±0.0191 

0.8454 

±0.0521 

0.8742 

±0.0355 

0.8414 

±0.0112 

0.6950 

±0.0319 

0.7308 

±0.0213 

Leavers 
0.9355 

±0.0033 

0.7822 

±0.0111 

0.8433 

±0.0118 

0.9205 

±0.0012 

0.7873 

±0.0013 

0.8242 

±0.0042 

0.8326 

±0.0053 

0.6610 

±0.0314 

0.6992 

±0.0248 

CCA 
0.2004 

±0.0021 
0.2116 

±0.0054 
0.2492 

±0.0031 
0.1988 

±0.0020 
0.2233 

±0.0067 

0.2436 
±0.0019 

0.1691 
±0.0026 

0.1958 
±0.0019 

0.2252 
±0.0036 

 

Fig. 4. The average runtime of the algorithms on the eight datasets. 

 

  

(a) (b) 

Fig. 5: Convergence curves of MVRL_FS on Leavers and MF datasets. 

 

Table VI. Friedman Test based on NMI 

Algorithm Ranking p-value Null Hypothesis 

MVRL_FS 1 

0.001139 Rejected 

TCCA 3 

MCDR 4.4286 

Dimsc 5 

NMFCC 5.2857 

LMSC 5.4286 

MSC_IAS 5.5714 

CSMSC 6.2857 

 

D. Runtime and Convergence Analyses 

We compare the average runtime of the eight algorithms on 

all datasets. The results are shown in Fig. 4. It can be seen that 

the running time of MVRL_FS is average, better than three 

while having no advantage over the other four – NMFCC, 

TCCA, MSC_IAS, and CSMSC. Nevertheless, MVRL_FS 

outperforms the other algorithms in terms of the three main 

evaluation indices as shown in Table IV and Fig. 3. 

Furthermore, we conduct convergence analysis based on the 

Leavers and MF datasets. Fig. 5 plots the values of the objective 

function over time (iteration steps). We find that the value 

decreases rapidly and convergence can be reached within 60 

steps of iteration. 

E. Statistical Analysis 

Friedman test [55] and the post-hoc Holm test [56] were 

conducted to evaluate the statistical significance of the 

performance advantage of the proposed MVRL_FS in 

clustering over the seven algorithms under comparison. 

First, we conducted the Friedman test according to [55]. The 

null hypothesis was that there was no difference in performance 

between the eight algorithms. When the p-value of the test was 

less than 0.05, the null hypothesis was rejected. Table VI gives 

the results of the Friedman test based on NMI. Tables S1-S2 in 

the Supplementary Materials section give the results based on 

Purity and ACC. As shown in Tables VI and S1-S2, all the p-

values are less than 0.05. Therefore, the difference in 

performance between the algorithms is significant. Among 

them, MVRL_FS ranks first, suggesting that it is the best 

algorithms. 

Next, the post-hoc Holm test [56] was conducted to verify 

whether MVRL_FS performs significantly better than the other 

seven methods. The results based on NMI is given in Table VII, 

and those based on Purity and ACC can be found in Tables S3-

S4 in the Supplementary Materials section. All the three tables 

show that the performance difference between MVRL_FS and 

six methods is significant, except for TCCA. However, the 

results in Table IV and Fig. 3 indicate that MVRL_FS still 

outperforms TCCA to a certain extent. 

F. Interpretability Analysis 

The interpretability of fuzzy systems is mainly attributed to 

the rule-based knowledge expression and the fuzzy inference 

mechanism. TSK fuzzy system is commonly used in regression 

or classification tasks. In this paper, it is considered as a multi-

view representation learning model. Compared with kernel 

based and deep network based methods, TSK fuzzy system 

based method makes the process of representation learning 

more interpretable, and the representation learning process can 

be interpreted using a set of fuzzy rules. 
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Table VII. Post-hoc Test based on NMI (reject hypothesis if p-value <0. 05) 

i Algorithms 
0( )iz R R SE= −  p-value Holm= i  Null Hypothesis 

7 CSMSC/MVRL_FS 4.037031 0.000054 0.007143 Rejected 

6 MSC_IAS/MVRL_FS 3.491486 0.00048 0.008333 Rejected 

5 LMSC/MVRL_FS 3.382377 0.000719 0.01 Rejected 

4 NMFCC/MVRL_FS 3.273268 0.001063 0.0125 Rejected 

3 Dimsc/MVRL_FS 3.05505 0.00225 0.016667 Rejected 

2 MCDR/MVRL_FS 2.618615 0.008829 0.025 Rejected 

1 TCCA/MVRL_FS 1.527525 0.12663 0.05 Not Rejected 

Table VIII. Rule base generated for common representation on Corel dataset 

in the SIFT view 

The rule base of the TSK fuzzy system for the common representation 

Rule 1: 

IF: the 1th feature is High and 
the 2th feature is High and 

…, and 

the 300th feature is High. 

Then: the 1th output is -0.0038-0.0011𝑥1+0.0072𝑥2+…+0.0298𝑥300 and 

the 2th output is 0.0074+0.0034𝑥1+0.0048𝑥2+…+0.0151𝑥300 and 

…, and 

the 10th output is -0.0045-0.0065𝑥1-0.0069𝑥2+…+0.0085𝑥300 

Rule 2: 

IF: the 1th feature is Low and 

the 2th feature is Middle and 
…, and 

the 300th feature is Low. 

Then: the 1th output is -0.0038-0.0017𝑥1+0.0088𝑥2+…+0.0385𝑥300 and 

the 2th output is 0.0053+0.0017𝑥1+0.0067𝑥2+…+0.0175𝑥300 and 

…, and 

the 10th output is -0.0037-0.0049𝑥1-0.0076𝑥2+…+0.0158𝑥300 

Rule 3: 

IF: the 1th feature is Middle and 
the 2th feature is Low and 

…, and 

the 300th feature is Middle. 

Then: the 1th output is -0.0040-0.0019𝑥1+0.0085𝑥2+…+0.038𝑥300 and 

the 2th output is 0.0175+0.0065𝑥1+0.0026𝑥2+…+0.0172𝑥300 and 

…, and 

the 10th output is 0.0158-0.0045𝑥1-0.0056𝑥2+…+0.0040𝑥300  

 

Table IX. Rule base generated for specific representation on Corel dataset in 
the SIFT view 

The rule base of the TSK fuzzy system for the specific representation 

Rule 1: 

IF: the 1th feature is High and 

the 2th feature is High and 
…, and 

the 300th feature is High. 

Then: the 1th output is 0.0035+0.0008𝑥1-0.0072𝑥2+…-0.0062𝑥300 and 

the 2th output is -0.0071-0.0029𝑥1-0.005𝑥2+…-0.0039𝑥300 and 

…, and 

the 10th output is 0.0044+0.0062𝑥1+0.0066𝑥2+…+0.0047𝑥300 

Rule 2: 
IF: the 1th feature is Low and 

the 2th feature is Middle and 

…, and 
the 300th feature is Low. 

Then: the 1th output is 0.0036+0.0015𝑥1-0.0083𝑥2+…+0.0064𝑥300 and 

the 2th output is -0.0054-0.0019𝑥1-0.0058𝑥2+…-0.0055𝑥300 and 

…, and 

the 10th output is 0.0036+0.0048𝑥1+0.0071𝑥2+…-0.0015𝑥300 

Rule 3: 

IF: the 1th feature is Middle and 

the 2th feature is Low and 
…, and 

the 300th feature is Middle. 

Then: the 1th output is 0.0036+0.0011x1-0.0081x2+…-0.0129𝑥300 and 

the 2th output is -0.0055-0.0059x1-0.0020x2+…-0.0057𝑥300 and 

…, and 

the 10th output is 0.0043+0.0053x1+0.0073x2+…+0.0107𝑥300 

In the proposed method, the multiple outputs of the TSK 

fuzzy system represent the new features. The rules for feature 

transformation can be formulated as follows: 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴1
𝑘(𝑒1

𝑘, 𝑞1
𝑘)  ∧ ⋯ ∧  𝑥𝑑  𝑖𝑠 𝐴𝑑

𝑘 (𝑒𝑑
𝑘 , 𝑞𝑑

𝑘)  

𝑇𝐻𝐸𝑁 𝑓𝑘(𝐱) = [𝑝0
𝑘,1 + 𝑝1

𝑘,1𝑥1 + ⋯ + 𝑝𝑑
𝑘,1𝑥𝑑 , 𝑝0

𝑘,2 + 𝑝1
𝑘,2𝑥1 +

⋯ + 𝑝𝑑
𝑘,2𝑥𝑑 , … , 𝑝0

𝑘,𝑚 + 𝑝1
𝑘,𝑚𝑥1 + ⋯ + 𝑝𝑑

𝑘,𝑚𝑥𝑑]  𝑘 =  1, … , 𝐾

                       (27) 

Each fuzzy set 𝐴𝑗
𝑘(𝑒𝑗

𝑘, 𝑞𝑗
𝑘) in the antecedent, associated with 

the jth dimension in the kth rule, can be interpreted with a 

linguistic description. In our experiment, the number of fuzzy 

rules is set as three, i.e., there are three clustering centers for 

each dimension. According to the order of the clustering center 

value, the linguistic terms of the corresponding fuzzy sets are 

Low, Medium and High, respectively. Note that the linguistic 

descriptions given here are only a possible way to explain the 

IF-part of the fuzzy rule. Other descriptions can be used 

depending on the application scenario. 

As an example, we use the SIFT view in the Corel dataset to 

illustrate the interpretability of the proposed MVRL_FS, where 

Gaussian membership function is adopted. Since the dataset of 

this view has 300 dimensions, we only use three of them in the 

illustration, the first, second and last (i.e., the 300th). The 

membership functions and the possible linguistic explanation of 

each fuzzy set are shown in Fig. S1 of the Supplementary 

Materials section. For the first dimension (first row in Fig. S1), 

the center and variance of the first fuzzy set are 0.0858 and 

4.1820, where the center value 0.0858 ranks first among the 

three centers (i.e., 0.0858, 0.0458, and 0.0760). Therefore, this 

fuzzy set is expressed as High. The other dimensions can be 

analyzed in the same way. Once all fuzzy sets are described 

with linguistic terms, the fuzzy systems can be explained by 

fuzzy rules. The fuzzy rule base is given in Tables VIII and IX, 

where the common and specific representation learning 

processes are described as a set of rules, respectively. 

V. CONCLUSION 

In this paper, we propose the new multi-view representation 

learning method based on fuzzy system MVRL_FS. It realizes 

nonlinear transformation by constructing fuzzy mapping with 

the antecedent part of the TSK fuzzy system, and then explores 

the common and specific information in the fuzzy feature space 

by learning the consequence part of the TSK fuzzy system. In 

addition, 𝐿2,1 -norm regularization regression is further 

proposed to enhance the consistency of the common 

representation of each view. At the same time, a Laplacian 
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graph method and a maximum entropy mechanism are 

introduced to preserve the topological geometric structure and 

to balance the importance of different views, respectively. The 

experimental results show that MVRL_FS has a better 

performance than many existing algorithms. 

Although MVRL_FS has achieved promising performance, 

there is still some room for improvement. First, the similarity 

matrix in the geometric structure preservation needs to be 

learned in advance and cannot be integrated into the process of 

representation learning. Second, MVRL_FS is a two-step 

method, i.e., MVRL_FS cannot integrate the representation 

learning with the subsequent task, such as classification or 

clustering. When the subsequent task is fixed, one-step method 

can be investigated. Third, MVRL_FS considers the common 

and specific information as a linear relationship, but in some 

complex scenarios, it may be difficult to be separate common 

and specific information simply by using linear method. The 

above issues will be addressed in depth in our future work. 
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