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Abstract

Standard reinforcement learning (RL) agents never intelligently explore like a hu-
man (i.e. by taking into account complex domain priors and previous explorations).
Even the most basic intelligent exploration strategies such as exhaustive search are
only inefficiently or poorly approximated by approaches such as novelty search
or intrinsic motivation, let alone more complicated strategies like learning new
skills, climbing stairs, opening doors, or conducting experiments. This lack of
intelligent exploration limits sample efficiency and prevents solving hard explo-
ration domains. We argue a core barrier prohibiting many RL approaches from
learning intelligent exploration is that the methods attempt to explore and exploit
simultaneously, which harms both exploration and exploitation as the goals often
conflict. We propose a novel meta-RL framework (First-Explore) with two policies:
one policy learns to only explore and one policy learns to only exploit. Once
trained, we can then explore with the explore policy, for as long as desired, and
then exploit based on all the information gained during exploration. This approach
avoids the conflict of trying to do both exploration and exploitation at once. We
demonstrate that First-Explore can learn intelligent exploration strategies such as
exhaustive search and more, and that it outperforms dominant standard RL and
meta-RL approaches on domains where exploration requires sacrificing reward.
First-Explore is a significant step towards creating meta-RL algorithms capable of
learning human-level exploration which is essential to solve challenging unseen
hard-exploration domains1

1 Introduction

Reinforcement learning (RL) is seeing successful application to a range of challenging tasks from
plasma control [1], molecule design [2], game playing [3], and to the control of robots [4]. Despite
this promise, standard RL is very sample inefficient. It can take an agent hundreds of thousands of
episodes of play to learn a task that humans could learn in a few tries [5].

This sample inefficiency has several causes. First, standard RL cannot condition on a complex prior
such as a human’s common sense or general experience [6]. For example, a human gamer has
intuitions when first encountering a 2D game with a character, platforms, ladders, keys and doors
(e.g., Montezuma’s Revenge). They think they can probably control the character with the game
actions, and that the character might be able to jump, climb ladders, collect keys, and use keys to
open doors. It has been shown that much of the sample efficiency of humans comes from such priors

1Code is available at https://github.com/btnorman/First-Explore.
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[7]. Second, standard RL is limited in how it adapts as it relies on reinforcing existing behaviours
over multiple episodes rather than being able to tailor each exploration to be maximally informative.
For example, upon finding and reading a treasure map in one episode, a human might navigate to
the treasure location in the next episode, or upon losing to a strategy in a symmetric game (e.g. in
chess losing against a particular opening), they might mimic and attempt to master that strategy in
subsequent play. This lack of human-like adaption further harms sample efficiency. Third, standard
RL and standard meta reinforcement learning (meta-RL) both use the same policy to explore (gather
data to improve the policy) and to exploit (achieve high episode reward) [8, 9]. Standard meta-RL
[9–12] does not enable intelligent exploration (exploration that incorporates a complex prior and
adapts appropriately based on memory). When good exploration and good exploitation are different,
e.g., when exploring requires sacrificing episode reward, using the same policy to both explore and to
exploit can cause terrible sample inefficiency and potentially prevent learning (detailed in section
2.1.3).

We present First-Explore, a simple framework for meta-RL that overcomes these limitations by
learning a pair of policies: an explore policy that can intelligently explore, and an exploit policy
that can intelligently exploit. First-Explore enables the potential of learning policies that exhibit
meta-RL’s human-level-in-context-sample-efficient learning on unseen hard-exploration domains
including hostile ones that require sacrificing reward to properly explore.

2 Preliminaries and Related Work

2.1 Problems with Standard RL Exploration

2.1.1 Exploring by Exploiting

In standard RL, the same policy is generally used for two different purposes: i) Exploring: gathering
data to improve the policy and ii) Exploiting: using the gathered data to specify a highly performant
policy [13]. Standard RL algorithms (such as PPO [8]) rely on exploring by sampling the small area
of policy space covered by a noisy policy centered on exploitation, e.g., by ensuring the exploit policy
has high entropy [14] or by epsilon-greedy sampling of the policy [5].

Figure 1: Locked
Path Environment.
The high reward
blue path requires
complex behavior.

Exploring by relying on such noisy exploiting will never solve some tasks. For
example, imagine an environment with two long paths, one orange and one
blue. While the orange path is straightforward, and leads to a medium reward,
the blue path is blocked by a locked door that requires great lock-picking skills
to open. However, behind the door is a vast treasure (with significantly higher
reward). During an episode an agent does not have time to reach the end of
both paths. We shall call this the locked path environment (Figure 1).

The standard-RL approach of exploring by (noisily) exploiting will not enable
learning the best strategy (reaching the blue path reward). This dynamic occurs
because while the agent is unskilled at lock picking the blue path gives zero
reward, which is lower than the medium reward of the orange path. Hence,
an agent attempting to exploit each episode will solely travel the orange path.
Finally, because the blue path is never travelled, there is no chance to learn lock picking. The best
strategy is not learnt because travelling the orange path is a local optima.

Because of this local optima, getting the maximum reward in the locked path environment requires
effective exploring (learning to travel the blue path and unlock the lock) which requires sacrificing
episode reward during exploration (by not getting the orange path reward). This is a general principle
we now define:

• Sacrificial exploration: exploration that is not exploitative is sacrificial as one is ‘sacrificing’
episode reward for information gain.
Examples: paying for information or tutoring, doing practice drills, practicing ones weak-
nesses, attempting to solve a task in an unfamiliar way when one can already solve it in a
familiar way.

• Coincidental exploration: exploitation that happens by coincidence when noisily exploiting
(exploiting with noise potentially added or encouraged).
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Relying on coincidental exploration is the standard RL approach, and is vulnerable to local
optima.
Examples: practicing one’s strengths, playing normal matches, attempting to solve a task in
a familiar way, attempting something new when nothing is working.

Standard RL never intentionally sacrificially explores because each episode is spent trying to maxi-
mize reward. This inability prevents standard RL from optimally exploring, and so causes greater
sample inefficiency, making solving hostile tasks (where exploration requires sacrificing reward)
infeasible.

2.1.2 Memory-less Exploration

People often exhaustively explore. For example, an explorer, searching for new lands, has little
interest in places they have already visited. In standard RL, an agent has no knowledge or memory of
previous episodes, and so (while noisily exploiting) it will do approximately the same ‘exploration’
repeatedly. This lack of memory can make the standard RL exploration hugely sample inefficient.
While the agent’s policy may change due to updates to the policy’s weights, the policy change is slow,
and unlikely to allow human-level adaption, wherein people change their policy substantially and
appropriately based on a single episode of experience.

2.1.3 No Prior on Exploration

Effective and efficient exploration requires a prior on how to explore in the environment. When a
human sees a level of Montezuma’s Revenge, they have an intuition that keys open rooms, and hence
collecting them is important for exploration. Having such intuition is core to efficient exploration.

Furthermore, a good exploration prior is often different from a good exploitation prior because
optimal exploration often requires sacrificing episode reward, e.g. to experiment with new strategies.
Imagine playing an adventure game where one explores a strange and unfamiliar dungeon. When
one is purely exploiting each episode, one acts as though one only has a single life and it is wise to
only perform actions one knows are safe, e.g. not open any doors to previously unexplored rooms.
However, when purely exploring, one would play as though one has infinite lives with the only
concern regarding dying being the opportunity cost of wasting subsequent exploration that one could
have done were one still alive in that episode, e.g. open all the unexplored dungeon rooms, but with
the safest seeming rooms opened first. Both ways of playing correspond to a complex prior on how
the player should act, however the prior for exploitation actively prohibits effective exploration (no
new rooms are explored).

2.2 Meta-RL

Meta-RL attempts to address many of standard-RL’s issues by learning a reinforcement learning
algorithm. This reinforcement learning algorithm can be realized as a mapping from a context of
rollouts c in an environment m to a peformant policy πθ,c specialized to that environment, whether by
a transformer [9], recurrent neural network [10] or other method capable of processing long-sequences
or memory. To train meta-RL, one specifies a distribution of environments M. Giving the agent
multiple interactions with a sampled environment then enables the policy to learn to adapt to the
specifics of the environment m it is in, and also make use of and learn the prior that the environment
comes from the training distribution, m ∼ M.

Once trained, the learnt RL algorithm can be very sample efficient [9, 10]. For example, when trained
to find a reward location in mazes, a learnt RL algorithm can remember the areas of the maze it has
already visited, and know not to visit those areas again [10] (unless worth it to reach other unseen
areas). This capability allows an unseen maze to be solved in a few tries, which is fewer episode
rollouts than are needed for a single batched gradient update of standard RL [10].

Despite these benefits, the standard approach to meta-RL is still limited in that it learns a single
policy (the learnt RL algorithm) and uses it for two different purposes: to a) get information about the
current environment, and b) get maximum reward in the current environment. Thus these meta-RL
approaches would still fail the locked path environment described in section 2.1.1 because in this
case intelligent exploration and intelligent exploitation are very different, meaning that modelling
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both at once is not possible. First-Explore solves this problem by instead learning two policies: one
to intelligently explore and one to intelligently exploit.

Figure 2: Different meta-RL training approaches. Here, arrows depict the flow of context, with
episodes having as context all episodes preceding in the chain of arrows. The proportion of sacrificial
exploration is depicted in blue, the proportion of pure exploitation is depicted in orange. (Left)
Always-Exploit training incentizes each episode to be exploitative conditioned on the previous
context, and hence learns no sacrificial exploration. (Middle) Cumulative exploitation trains to
maximize summed reward across episodes and hence can learn to sacrifice early rewards for later
payoffs. (Right) Tweaking cumulative exploitation to ignore the reward of the first k episodes allows
a burn-in period of sacrificial exploration.
We will first consider two existing works of meta-RL, and detail how they suffer from the problem
of exploring by exploiting. The first is AdA [9]. The authors note that their trained model always
attempts to maximize individual episode reward conditional on the context of previous episodes
(Fig. 2, left). AdA then demonstrates very efficient exploitation that can learn and adapt from
previous episodes. However, because the agent is always exploiting, all exploration comes from
coincidental exploration. This restriction prohibits the method working in domains that require
sacrificial exploration. With minor modifications, AdA could learn to perform sacrificial exploration,
such as if the reward function is the reward gained in the final episode only; then it might learn to
sacrificially explore in early episodes and exploit in the last episode.

The second work we consider is RL2 [10] (concurrently invented in [11]). RL2 maximizes cumulative
reward (Fig. 2, middle). This incentive means it learns a changing explore exploit trade-off, where
initial episodes can be slightly sacrificially exploratory. However, maximizing cumulative reward
prohibits pure sacrificial exploration with arbitrarily negative rewards, because the initial exploration
could be so costly as to make the overall sum negative. RL2 is also inflexible as it links the explore
exploit trade-off to the size of the context, and hence one cannot exploit early, or continue exploring
indefinitely.

Another work, Stadie et al. [15] presents E-RL2, which is a modification of RL2 that still maximizes
cumulative reward but ignores the reward of the first k episodes. This modification makes the first k
episodes exploratory on a new task, and allows initial sacrificial exploration on those first k episodes
(Fig. 2, right). Despite this improvement, it is limited for several reasons. First, the method introduces
an across-episode value assignment problem of assigning credit to which of the k exploratory episodes
contributed to the explore context. It is also inflexible in that a) only the final episode is purely
exploitative and b) the number of zero reward episodes is set as a hyperparameter and the same for
all tasks (both at training and at inference). This constraint can be inefficient and counter productive
if at inference one wants to continually explore until a satisfactory policy quality is reached.

2.3 Other Works Addressing Exploration

There is a rich literature on non-meta-RL exploration approaches. One relevant approach is Intrinsic
Motivation (IM), which replaces the environment reward with an intrinsic motivation reward such as
novelty [16]. Despite the success of IM at enabling sacrificial exploration, these methods are limited
by being slow to adapt due to lacking a memory not encoded via weights (section 2.1.2) and not
having a complex learnt prior on exploration (section 2.1.3). Another deeper problem is that many
of these methods enable sacrificial exploration by entirely ignoring the reward signal, leading to
pathologies such as the noisy TV problem [17, 18], where an agent looking for new states will find
a TV showing white noise to be endlessly captivating. There is also work on combining such (IM)
methods with meta-RL such as Liu et al. [19] which has the insight of decoupling exploration from
exploitation, however, they do so at the cost of making the exploration un-grounded in ultimate reward,
introducing the pathologies just mentioned. Another method, Go-Explore [20], decouples exploration
and exploitation, but lacks complex priors. There are also approaches within the multi-armed bandit
literature, and regret-based learning [18].
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Despite the benefits of all these approaches, they all have pathologies, and only meta-RL is both a)
computationally tractable and b) capable of human-level sample efficiency in high dimensional state
spaces. As discussed above our method is an improvement on top of meta-RL learning by allowing
sacrificial exploration.

3 First-Explore Framework

First-Explore is a framework that overcomes the outlined standard RL and meta-RL limitations by
recognizing that RL is composed of two tasks. The task of a) gathering informative environment
rollouts and b) mapping those to an effective policy. By separating exploration and exploitation we
can learn sample-efficient and intelligent pure-exploration and pure-exploitation policies that are not
hampered by attempting to do both at once.

First-explore learns a pair of policies. An explore policy πexplore,θ,c that explores and provides
information (context) for itself and for exploitation, and an exploit policy πexploit,θ,c that exploits after
every explore providing feedback to train the explore policy. The policies may share or have separate
parameters, e.g., for policies with separate parameters, one could write θ = (θexplore, θexploit) with
each policy only dependent on its own subset of θ. This framework is visualized in Figure 3.

Figure 3: The First-Explore Framework. The explore episodes τ1, . . . , τ4 in blue are sampled
using the explore policy πexplore,θ,c and the context of previous explore episodes, e.g. for τt, c =
{τ1, . . . τt−1}. These explore episodes are purely exploratory and are able to sacrificially explore.
The exploit episodes τ ′1, . . . , τ

′
4 in orange are sampled using the exploit policy πexploit,θ,c and the

context of all preceding explore episodes. They are purely exploitative.

• The explore policy πexplore,θ,c gathers informative environment rollouts based on the current
context c (all previous explores) and parameters θ.

• The exploit policy πexploit,θ,c exploits (maximizes episode return) based on the current
context c (all previous explores) and parameters θ.

Here the notation πexplore,θ,c refers to the explore policy conditioned on the context πexplore,θ,c =
πexplore,θ|c and similarly for πexploit,θ,c. Notably, each policy is limited by the quality of the other as if
there is no useful context then an excellent exploit policy will do no better than a mediocre one, and
if the exploit policy is poor then mediocre and excellent context will be similarly indistinguishable.
Thus, for complex tasks, the policies need to be learnt together.

A central idea of First-Explore is that the exploratory value vexplore of an explore episode τexplore given
a context of past episodes {τ1, . . . , τn} is the increase in expected reward of a subsequent exploit
when the explore episode is added to the context to create new context {τ1, . . . , τn, τexplore}.

vexplore(τexplore)|{τ1, . . . , τn} = E(τexploit|{τ1, . . . , τn, τexplore})− E(τexploit|{τ1, . . . , τn})

where τexploit|c denotes a rollout from πexploit,θ,c.

As the last term does not depend on the explore episode τexplore, it is possible to discard the last term
E(τexploit|{τ1, . . . , τn}) when learning the optimal exploration policy. The reward function for the
explore policy is thus the reward of the following exploit.

To train, one then iterates building a context exclusively from exploration, each time determining
the value of each exploration by a subsequent exploit. Evaluating and crediting each explore in this
way allows First-Explore to avoid the value assignment problem of E-RL2. First-explore can be
combined with different meta-RL approaches and losses. Algorithm 2 gives an example of a training
update for a simple loss function l such as policy gradient [13].
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Once the two policies have been trained, to adapt to an environment, one performs iterated rollouts
in the environment using the explore policy to sample-efficiently explore, with each explore rollout
added to the context potentially improving the context-conditioned exploit policy. This process is
the analogue of sample-efficiently training a standard RL policy where accumulation of informative
context replaces standard RL-training, and exploit rollouts replace standard RL evaluation rollouts.

One approach would be to explore in the environment until a preset desired exploit quality is reached
(similarly to training in standard RL until an environment is solved). Algorithm 1 gives an example
of this method. One could also simply do a set number of rollouts (similarly to training standard RL
for a set number of epochs).

# rollout conducts an episode when provided with an environment and policy
# and returns all the episode infomation.
def calc_loss(θ):

"""A basic First-Explore training step."""
# sample an environment, and initalize context c and loss value
m = sample(M); c = set(); loss = 0
for i in range(k): # do k iterated rollouts

τexplore = rollout(m,πexplore,θ,c) # explore given context c
τexploit = rollout(m,πexploit,θ,c ∪ {τexplore}) # exploit given c ∪ {τexplore, }
r = final_reward(τexploit) # get the exploit reward
# add πexplore's loss using the exploit reward and pre-explore context
# and πexploit's loss using the exploit reward and post-explore context
loss = loss+l(r, πexplore,θ,c, τexplore,c1) + l(r, πexploit,θ,c ∪ {τexplore})
c = c ∪ {τexplore} # update the context for the next explore

return loss

θ = θ − learning_rate ×∇calc_loss(θ) # training update

Algorithm 1: Example meta-RL training update using First-Explore framework for a simple loss l
such as policy gradient. First-Explore is a framework for meta-RL training, not a specific algorithm.

def incontext_learn(θ, env, reward_target):
"""Incontext learn a policy for the environment env
until the requisite reward_target is reached. Returns a context
that specifies the learnt policy in combination with theta."""
c = set() # initalize context, c
while True:

τexplore = rollout(env, πexplore,θ,c) # explore given c
c = c ∪ {τexplore} # update the context
τexploit = rollout(env, πexploit,θ,c) # exploit given the context c
r = final_reward(τexploit) # get the exploit reward
if r ≥ reward_target: # if exploting gave sufficient reward

return c # then return the context
Algorithm 2: Example of using the trained First-Explore policies to in-context learn on a new
environment until a desired exploit reward is reached.

4 Results

For each domain, the architecture is a standard GPT-2 style transformer architecture [21]. For
simplicity, the parameters are shared between the two policies, differing only by a final linear-layer
head. As a control, we modified the same algorithm used to train the First-Explore policies to instead
learn to always-exploit. We use a novel loss based on predicting the sequence of future actions
conditional on the episode having high reward, which preliminary experiments showed improved
training stability. While an innovation, it is not core to the framework, and other standard losses (e.g.
PPO) should work as replacements. Full architecture, training details and hyperparameters are given
in the supplementary materials (SI).
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Because the environments differ in how difficult and rewarding they are, a single evaluation of the
policies involves sampling a batch of environments (10, 000 for the bandit domain, and 1, 000 for
the treasure-room one), performing iterated rollouts in each environment (allowing the policy to
in-context adapt to each environment) and calculating the average statistics across the batch (e.g., the
average first episode exploit reward).

To ensure non-spurious results, First-Explore and the always-exploit control were both trained ten
times with ten different random seeds. Furthermore, the in-context learning of each training run
was evaluated ten times each on an independently sampled batch of environments (for a total of
100 evaluations). Each treatment is then visualized by a line showing the mean over the evaluations
and training runs. The darker-shaded area shows one standard deviation from the mean, and the
lighter-shaded area shows the minimum and maximum value (across evaluations and seeds). If the
light area shaded around one line (e.g. the First-Explore exploit reward) is above the light shaded
area around another (e.g. the always-exploit reward) then, in all 100 evaluations, one treatment beats
the other, which (as the runs are independent) is statistically significant (p ≤ 2−10). All lines have
these shaded areas, however the deviation between evaluations can be so small that the shaded areas
can be hard to see.

4.1 Gaussian Multi-armed Bandit

The first problem setting is a multi-armed Gaussian Bandit with k arms specified by k arms means
µ{1,...k} ∈ R. At each time step t the agent chooses an arm at and receives as reward rt equal to the
arm mean plus a normally distributed noise term, rt = N(µat

, 1
2 ). In our meta-RL approach, the

agent observes its previous actions and their rewards, and can adapt based on that. Each environment’s
arm means are normally distributed, µ{1,...,k} ∼ N(0, I).

In this domain, First-Explore learns intelligent exploration, learning a policy that exhaustively
searches (Fig. 4, right blue line) in the first ten actions and then significantly and appropriately
changes to sampling high reward arms (Fig. 4, left blue line). This series of average episode rewards
show how the learnt policy is grounded in reward (by focusing on high reward arms at times),
while also able to sacrificially explore (by getting low expected reward for the first ten pulls). The
First-Explore exploit policy has the highest reward (Fig. 4, left orange line), and also matches optimal
hand-coded exploitation when the hand-coded exploitation function is provided with the context
produced by the First-Explore explore policy (Fig. 5, left). Further, First-Explore exploration exceeds
random play exploration, iterated exploitation, and even hand-coded exhaust search at informing
optimal exploitation (Fig. 5, right).

Interestingly, after the First-Explore exploration policy changes to sampling the high reward arms,
the explore episode reward steadily trends downward and eventually becomes negative. This behavior
is consistent across all training runs, and all evaluations. We believe this phenomenon occurs because,
once the agent has gained sufficient information about the high-payoff arms, the only useful behavior
left is to check if the low expected value arms truly are low value, and were not just unlucky when
previously sampled.
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Figure 4: Gaussian Armed Bandit Results. Left: Rewards of different policies. First-Explore
exploitation (orange) shows the average reward of the exploit policy when provided the context
produced by previous First-Explore explores (blue). The First-Explore exploration (blue) reward is
the average reward obtained by the explore policy provided a context of previous explores. Always-
exploit (red) attempts to always exploit given the context of its previous exploitations (and thus is
a sample-efficient analogue of traditional RL in using noisy exploitation to explore). Notably, a)
First-Explore exploit has significantly higher reward than always-exploit and b) the explore policy
gets close to zero average reward for the first ten pulls, and then transitions sharply to prioritizing
sampling the high rewarding arms, evidencing intelligent exploration (see main text). Right: How
well different policies sample all arms. Iterated First-Explore exploration (blue) exhaustively searches
all arms until each has been tried once. Notably, the First-Explore exploit (orange) coverage is the
worst of all. The First-Explore explore policy having the best coverage and the First-Explore exploit
policy having the worst coverage highlights how different exploiting and exploring are, and how it is
beneficial to have a separate policy for each.

Figure 5: Gaussian Armed Bandit Additional Analysis. Left: Comparison of a manually designed
exploit policy (black dots) that selects the arm with highest expected reward (including not-yet-pulled
arms) vs the learnt First-Explore exploit policy (orange). When evaluated on the First-Explore explore
context, First-Explore is effectively identical to manually designed exploitation. This result shows
the effectiveness of the First-Explore exploitation when provided the First-Explore explore context.
Right: A manually designed exploit policy provided with different exploration contexts. Notably,
a) always-exploiting (brown) provides worse exploration information than random action selection
(green) and b) First-Explore’s exploration (blue) matches and then outperforms cycling through arms
in order (purple). This success shows both the structure and complexity of even such a simple learnt
explore policy, further shown in Figure 4, left.

4.2 Dark Treasure-Room

The second problem setting is the Dark Treasure-Room (based on the Darkroom in Laskin et al.
[22]). Dark Treasure-Rooms are w × h grids full of treasure. The agent navigates (up, left, down,
or right) to find treasure, and cannot see its surroundings. It receives only its current coordinates
(x, y) as observation, with a meta-RL agent also observing past rewards and actions. When the agent
encounters a treasure it consumes it, and receives an associated reward (positive or negative). The
lack of sight means each individual room is a separate training challenge for a standard RL agent,
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with the agent having to memorise the locations of rewards and how to reach them in the agent’s
parameters, e.g. in the neural network weights. A meta-RL agent has access to a context of all past
environment interactions, and so can instead in-context adapt to newly sampled environments, rather
than needing to be trained anew.

The training distribution was 9 × 9 Dark Treasure-Rooms, each having 8 treasure locations. The
rewards associated with these locations are uniformly distributed in the range −4 to 2 (i.e., ri ∼
U [−4, 2]). The locations of the treasures are randomly sampled uniformly, with overlapping treasure
locations having their reward values stack. Importantly, the average value of any location is negative,
meaning that visiting a location not in memory gives a negative expected reward. The negative
expected reward for visiting new states makes the environment distribution hostile to coincidental
exploration, thus requiring sacrificial exploration.

Figure 6: Dark Treasure-Room Results. Left: Average episode rewards. Epsilon-greedy sampled
always-exploit (red) learns to avoid negative reward, but not to find positive rewards. First-Explore’s
exploration policy (blue) and random actions (green) obtain negative reward. Only First-Explore
exploitation (orange) finds significant positive reward. Middle: State coverage for different policies.
In this environment the average reward of a previously unseen location is negative, hence a good
always-exploit policy (red) mostly stays still, with the minimal exploration it performs coming
via epsilon greedy sampling. First-Explore exploration (blue) covers the space better than random
play (green), and noisy always-exploiting (red) catastrophically fails to explore. The First-Explore
exploitation coverage (orange) shows how the First-Explore exploit policy repeatedly returns to the
same states (the high reward ones found using the First-Explore explore policy). Right: How well
different contexts inform the learnt exploitation policy. How well a policy covers the state space
(middle plot) corresponds to how good that policy is at informing exploitation and producing higher
reward.

On this distribution, always-exploiting (even with epsilon-greedy sampling to provide extra explo-
ration, as is common in standard RL) only learns to avoid negative reward (Fig. 6, left green), while
First-Explore in-context adapts over multiple explorations to exploit and achieve increasing positive
reward with the number of explorations (Fig. 6, left orange). The increased reward with additional
explorations demonstrates First-Explore succeeding at learning in an environment where sacrificial
exploration is needed, and where always-exploiting fails. The failure of always-exploiting can be
understood by considering how the policy explores the state space. As each unseen location has nega-
tive reward in expectation, the always-exploiting policy learns to avoid entering locations not already
in the context, resulting in very poor state space coverage. In contrast, First-Explore exploration
does not experience this issue (Fig. 6, middle blue). This difference is because always-exploiting
actively avoids sacrificial exploration, while First-Explore embraces it. Figure 6, right visualizes the
correspondence between coverage and how context informs exploitation. See SI for visualizations of
iterated rollouts in these environments and how successive explorations inform exploitation.

These highly consistent First-Explore results across training runs (e.g., the coverage of First-Explore
exploration, Fig. 6 middle blue) suggest that the same systematic behaviour is being learnt regardless
of the network initialisation and random seed used for training (which determines both the sampled
training environments and the action selection). This consistency suggests that First-Explore is
learning something fundamental to the domain, and is promising as it potentially means First-Explore
might learn a consistent algorithm or heuristic for general exploration if paired with a sufficiently-
complex task-distribution.
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5 Limitations and Future Work

One limitation with First-Explore is that reward during training can matter. Imagine a chef robot
learning a new recipe in a physical home. In this scenario, it is vital the robot behaves safely and
does not endanger humans or damage the kitchen while learning; however, it is fine if it cooks poorly,
or makes a poor-tasting meal. First-Explore being willing to sacrifice reward could be dangerous,
as it might ignore a safety reward penalty in order to master the recipe. One potential solution is to
infinitely penalize endangerment or damage while training both the explore and exploit policy. This
proposed version of First-Explore could actually result in far safer training (via in-context adaption)
than attempting to use standard-RL, as the meta-RL policies would have learnt a strong prior of
avoiding potentially endangering actions. However, it could be that such a strong penalty could
prohibit effective training too. As such, it seems an open question, worth further investigation.

Figure 7: A visualization of well-
planned sequential exploration (left) and
myopic exploration (right) of a plane
from the origin over multiple episodes.
The initial explore (red) is equally good,
but myopic exploration hinders the sec-
ond explore (green) as it must revisit pre-
viously seen locations, and more so for
the third (purple).

This initial version of First-Explore is also limited in that
the explore policy πexplore,θ is optimized to provide the
single best episode of exploration that will increase the ex-
pected reward of the exploit policy πexploit,θ by the greatest
amount. Unfortunately, iterated optimal myopic explo-
ration does not necessarily produce an optimal sequence
of explorations (Fig. 7). One potential solution is to reward
exploration episodes with weighted sums of the rewards
of all subsequent exploitations.

A final problem is the challenge of long sequence mod-
elling, with certain environments requiring a very large
context. However, it seems likely the rapid progress in
context lengths, and the research on more effectively using
context, will continue.[9, 22–25]. We also expect improve-
ments in stably training transformers for RL.

6 Discussion

Given that First-Explore uses RL algorithms to train the meta-RL policy, how could it solve hard-
exploration domains that standard-RL can not? For example, how might First-Explore learn to pick
the lock in the locked path environment? The answer is that it is possible if there are always some
tasks in the training distribution suitable for the current agent (e.g., a curriculum that leads to learning
to pick locks). Initially, the agent does not know how to explore at all and must learn to exploit
based on random noise. Once it has learnt rudimentary exploitation, the agent can learn rudimentary
exploration. Then it can learn better exploitation, then better exploration, and so on, each time relying
on there being tasks within a ‘goldilocks zone’ of being not too hard and not too easy, see Wang
et al. [26]. Learning via this process essentially corresponds to how standard RL can use domain
randomization to aid exploration (see Baker et al. [27] for an example of how domain randomization
can solve a seemingly hard exploration task). The advantage of First-Explore is that we spend our
compute on domain randomization upfront to learn intelligent exploration. Once trained, however,
the explore policy can be very sample efficient at learning a new task.

Additionally, one might wonder how significant a limitation exploring by exploiting is, given that
standard-RL seems to succeed despite it. We argue that it is when one attempts to explore and exploit
intelligently with human-level adaption on complex tasks that the difference becomes especially
significant. In both problem domains, the results show how optimal exploiting and exploring
significantly differ, both in how they cover the state or action space, and in how and whether they help
achieve high reward, and how this difference matters in order to achieve efficient in-context learning.

7 Conclusion

We identify the problem of attempting to explore by exploiting, and demonstrate that the novel
meta-RL framework, First-Explore, solves this problem via the simple modification of learning
two policies (one to first explore, another to then exploit). This paradigm of learned, intelligent
exploration informing learned exploitation significantly improves meta-RL performance. First-
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Explore performs better on even simple domains such as the multi-armed Gaussian-bandit, and
massively improves performance on domains that require sacrificial exploration, such as the Dark
Treasure Room environment (when it has negative average expected treasure value). The results
in this paper show First-Explore allows learning basic intelligent exploration strategies, such as
exhaustive search for the first ten actions, followed by prioritizing sampling actions with high reward.

We believe combining First-Explore with a curriculum, such as the AdA [9] curriculum, could be a
step towards creating algorithms able to exhibit human-level performance on unseen hard-exploration
domains, which is one of the core challenges of creating artificial general intelligence (AGI). Provided
we can adequately address the real and significant safety concerns associated with developing AGI,
such developments would allow us to reap AGI’s tremendous potential benefits.
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Supplementary Material

A Replicability

For full transparency, replicability, and to make it easier for future scientists to build on our work,
we are releasing the training code, visualization code, the code to generate the significance plots,
and the environment code. We are also releasing the weights of a trained model for each domain
for both First-Explore, and the always-exploit control. Each model contains both the explore and
exploit policies as separate heads on the shared trunk. The code is available at https://github.
com/btnorman/First-Explore.

B Compute

Each training run commanded a single GPU, specifically a Nvidia T4. Table 1 gives the approximate
walltime of each run.

Table 1: Compute Usage Per Training Run
Run Runtime

Bandit Always Exploit 6 hours
Bandit First-Explore 18.5 hours
Dark Treasure-Room Always-Exploit 64 hours
Dark Treasure-Room First-Explore 122 hours

Evaluation (sampling the multiple evaluation environments and performing iterated First-Explore and
comparison rollouts) was with a single GPU, and took minutes.

C Training Details

Full training code to replicate the results is provided. The architecture for both domains is a GPT-
2 transformer architecture [21] specifically the Jax framework [28] implementation provided by
Hugging Face [29], with the code being modified so that token embeddings could be passed rather
than token IDs. The different Hyperparameters for the two domains are given in Table 2.

For both domains each token embedding is the sum of a linear embedding of an action, a linear
embedding of the observations that followed that action, a linear embedding of the reward that
followed that action, a positional encoding of the current timestep, and a positional encoding of the
episode number. See the provided code for details. For the dark treasure-room environments a reset
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Table 2: Model Hyperparameters
Hyperparameter Bandit Dark

Hidden Size 128 128
Number of Heads 4 4
Number of Layers 3 4

token was added between episodes that contained the initial observations of the environment, and a
unique action embedding corresponding to a non-action. The bandit domain had no such reset token.

For training we use AdamW [30] with a piece-wise linear warm up schedule that interpolates
linearly from an initial rate of 0 to the full learning rate in the first 10% training steps, and then
interpolates linearly back to zero in the remaining 90% of training steps. Table 3 gives the optimization
hyperparameters.

Table 3: Optimization Hyperparameters
Hyperparameter Value

Batch Size 128
Optimizer Adam
Weight Decay 1e-4
Learning Rate 3e-4

Hyperparameters were chosen based on a relatively modest amount of preliminary experimentation.
Finally, for efficiency, all episode rollouts and training was done on GPU using the Jax framework
[28].

C.1 Optimization Loss

The First-Explore policies are trained by a novel optimization approach. To learn to exploit we
learn the distribution of actions that lead to ‘maximal’ exploit episodes. Here we define an exploit
episode as maximal if it a) has higher or equal reward to the best reward found in all of the previous
First-Explore explore and exploit episodes in the current environment, and b) also exceeds a set
baseline reward (hyperparameter) for the domain, see Algorithm 3. To learn to explore we learn
the distribution of actions that lead to ‘informative’ explore episodes. Informative episodes are
those that when added to the context lead to a subsequent exploit episode that a) exceeds the best
reward of previous First-Explore explore and exploit episodes and b) has higher reward than the
environment baseline. This explore criterion is slightly different from the exploit ‘maximal’ criterion,
as it requires an improvement in reward, see Algorithm 3. The baseline reward is there such that the
first First-Explore exploit and explore episodes have an incentive to be respectively exploitative and
exploratory.

Because in the dark treasure-room each episode is composed of multiple actions, the probability of
an initial action leading to any outcome is potentially dependent on the distribution of future actions
(e.g., imagine requiring two up actions to reach a reward; the first up action is no better than the
first down action if the policy always moves down in the second step). Hence, one must learn the
distribution conditional on a rollout policy. This expression is shown in Equation 1 for the case of the
exploit distribution. Here “episode is maximal” refers to an exploit episode having higher reward than
the baseline reward and the previous First-Explore explores and exploits (see previous paragraph). at
refers to the current action, and [a]i>t ∼ π expresses how subsequent actions are taken under the
rollout policy.

P(episode is maximal|at, [a]i>t ∼ π) (1)

To learn this distribution, the predicted likeihoods of actions being ‘maximal’ or ‘informative’
are compared to the action distributions of the rollouts that are ‘maximal’ or ‘informative.’ The
predictions are improved by minimizing a cross entropy loss between the actions observed in the
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maximal and informative episodes, and the calculated probability of those actions being selected.
This loss is detailed in Algorithm 3 as well as the provided code.

Once learned, the explore and exploit distributions combined with a sampling temperature each then
specify a policy that with high probability selects actions likely to lead to good exploitation or good
exploration. To ensure that all actions are sampled and to provide more exploration during training
(of both the explore and exploit policy), we add a small probability ϵ chance of selecting a random
action instead of one sampled from the unmodified explore or exploit policy. This probability is then
a hyperparameter that can be tuned. Learning the distributions then allows iteratively updating the
rollout policies by each time taking the new rollout policies and learning the new distributions of
maximal and informative actions under the rollout policy. The frequency of such updates is then a
hyperparameter. The hyperparameters used are given in Table 4.

While preliminary experiments found this meta-RL training method performed best, we believe the
First Explore meta-RL framework will work for general approaches too, such as using policy gradient
with actor critic, or Muesli [31] which was used in AdA [9].

Table 4: Training Rollout Hyperparameters
Hyperparameter Bandit Darkroom

Exploit Sampling Temperature 1 1
Explore Sampling Temperature 1 1
Policy Update Frequency every training step every 10, 000 training steps
ϵ chance of random action selection 0.05 0
Baseline Reward 0 0
Training Updates 200,000 1,000,000

For evaluation, we then sample by taking the argmax over actions, and do not add the ϵ-noise.

# rollout conducts an episode when provided with an environment and policy
# and returns all the episode infomation
def model_conditional_actions(θ, π, baseline_reward):

# sample an environment, and initalize context c and loss values
m = sample(M); c = set(); loss = 0
best_reward_seen = baseline_reward
for i in range(k): # do k iterated rollouts

τexplore = rollout(m,πexplore,c) # explore given context c
τexploit = rollout(m,πexploit,c ∪ {τexplore}) # exploit given c ∪ {τexplore, }
r = final_reward(τexploit) # get the exploit reward
# calculate a weight on the episodes
# non-increasing episodes have zero weight
# and increasing episodes have weight proportional to reward improvment
explore_weight = 1r>best_reward_seen ∗ (1 + r − best_reward_seen)
exploit_weight = 1r≥best_reward_seen ∗ (1 + r − best_reward_seen)
explore_loss = cross_ent(π and θ predicted probability, τexplore actions)
exploit_loss = cross_ent(π and θ predicted probability, τexploit actions)
# update the loss, conditional on the episodes being improvements
loss = loss + explore_weight * explore_loss
loss = loss + exploit_weight * exploit_loss
c = c ∪ {τexplore} # update the context for the next explore
# update the best reward seen
best_reward_seen = max(best_reward_seen, final_reward(τexploit),final_reward(τexplore))

return loss

Algorithm 3: Training to model conditionally increasing exploits with First-Explore rollouts.
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D Dark Treasure-Room Visualizations

Figure 8: A visualization of the dark treasure-room. The agent’s position is visualized by the blue
square, positive rewards are in green, and negative rewards are in red, with the magnitude of reward
being visualized by the colour intensity. When the agent enters a reward location it consumes the
reward, and for that timestep is visualized as having the additive mixture of the two colours.

Here are example iterated First-Explore rollouts of the two trained policies, πexplore, πexploit, visualized
for a single sampled darkroom.

Figure 9: The first (First-Explore) explore episode. Top left visualizes the last step of a First-Explore
explore episode, with the locations that are not in the cumulative context being coloured white, as
the agent is blind to them (having no observations or memory of those locations). This figure plots
the end of the first exploration, and shows a reward has been found. Bottom left visualizes the
coverage of the cumulative context by plotting the total number of unique locations visited by the
exploration against the cumulative episode step count. In this explore, the agent never doubled back
on itself, which is good as it is optimal to have as many unique locations visited as possible. Top right
visualizes a step in a First-Explore exploit episode, with the locations that are in context visualized.
The agent can effectively ‘see’ those locations in its memory. Bottom right plots the exploit reward
against the exploit episode timestep. As this figure plots before the start of the exploit episode, the
agent has yet to move and encounter rewards, but will have done so in the subsequent visualizations.
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Figure 10: The first (First-Explore) exploit episode. This figure uses the same visualization design as
Figure 9. Left top and bottom are the same as in Figure 9, and of the explore context, not the current
exploit episode. Right top, the agent (the light blue square) has found the reward in the first two
steps. Consuming the reward is visualized by the agent color and the reward color being combined.
Right bottom, the associated episode reward is shown.
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Figure 11: The fifth (First-Explore) explore episode. At the end of the 5th explore episode the agent
has discovered a new positive reward at the top of the room, and can now ‘see’ it in memory. The
new information presents an opportunity for the exploit policy to obtain both rewards, but it only
has exactly enough time-steps in an episode to navigate to do so, and thus cannot make a mistake
navigating.

Figure 12: The first reward of the fifth (First-Explore) exploit episode. Two steps into the episode the
agent (in consuming, light blue) has consumed the nearby reward.
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Figure 13: The end of the fifth (First-Explore) exploit episode. After consuming the nearby reward
the agent has reached the newly discovered reward at the top of the room and consumed it. This
success required making no mistakes and pathing first to the nearby reward then to the top one on the
first try. This inference is possible because the quickest the agent can reach both rewards is exactly the
length of the episode (9 steps). The pathing in this episode is an example of intelligent exploitation,
as after the information reveal (the reward at the top) of a single episode the agent appropriately
changes its policy based on the context and using the learnt environment prior (e.g., how to navigate),
produces a highly structured behaviour (pathing with no mistakes).
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