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Abstract
Mean Opinion Score (MOS) is a popular measure for evaluating
synthesized speech. However, the scores obtained in MOS tests
are heavily dependent upon many contextual factors. One such
factor is the overall range of quality of the samples presented
in the test – listeners tend to try to use the entire range of scor-
ing options available to them regardless of this, a phenomenon
which is known as range-equalizing bias. In this paper, we sys-
tematically investigate the effects of range-equalizing bias on
MOS tests for synthesized speech by conducting a series of lis-
tening tests in which we progressively “zoom in” on a smaller
number of systems in the higher-quality range. This allows us
to better understand and quantify the effects of range-equalizing
bias in MOS tests.
Index Terms: mean opinion score, subjective evaluation, lis-
tening tests, range-equalizing bias

1. Introduction
Listening tests where human listeners rate the quality of gener-
ated samples are the gold standard for evaluating models of syn-
thesized speech such as text-to-speech or voice conversion, and
the Mean Opinion Score (MOS) test [1], where listeners rate au-
dio samples one by one on an ordinal scale, is a popular testing
paradigm for rating and comparing different approaches. How-
ever, MOS tests are known to be very context-dependent, where
the context includes the demographics of the listeners that were
recruited to participate in the test, their personal opinions and
individual differences, the environment in which they are lis-
tening to samples, the types of synthesis systems included in the
test, the sentences chosen to synthesize test material, and even
the appearance of the testing interface. In this paper we inves-
tigate the effect of range equalizing bias, which is the tendency
of listeners to use the entire range of choices on the rating scale,
regardless of the absolute quality of the samples present in the
test. To do this, we start with an existing large-scale database of
audio samples and their MOS ratings, and conduct new listen-
ing tests where we progressively “zoom in” on the high-quality
region of synthesis systems. By quantifying the ways in which
MOS ratings change as listening test context is changed sys-
tematically, we can better understand the effects of context on
listening test results, which can help researchers to design their
listening tests in more principled ways, and which can also help
to improve automatic MOS prediction.

The BVCC dataset [2] is a large-scale dataset of MOS rat-
ings for samples from 187 different text-to-speech and voice
conversion systems covering over a decade of progress in these
fields. These samples were evaluated all together in one large-
scale MOS test. This dataset provided for the first time a
huge variety of synthesized samples all evaluated together in

the same context, and has since been used as training material
for automatic MOS predictors [3, 4]. However, this dataset has
several shortcomings. The wide variety of synthesis methods
present in the dataset provide good coverage and generalizabil-
ity [3], but this also means that there are fewer fine-grained and
significant differences to be found between synthesizers of sim-
ilar quality, and that the ability of MOS predictors trained on
this data to correctly rank synthesis systems that are close in
quality will be impaired. The number of systems is also much
larger than a typical or representative listening test. Further-
more, present-day researchers are less likely to want to compare
their proposed synthesis methods with ones from many years
ago. Present-day, high-quality synthesis systems are the more
relevant comparisons, and there is especially room for improve-
ment in this regard as shown from the results of the VoiceMOS
Challenge – while low-quality samples were consistently easy
to predict for all teams, middle-range and high-quality systems
remained more difficult to predict accurately. These points mo-
tivated us to revisit the BVCC dataset and conduct new listening
tests on progressively smaller subsets of the synthesis systems,
focusing in towards the top of the range of quality. Data from
these new listening tests allow us to observe and quantify the
effects of range-equalizing bias on MOS of synthesized speech.
We expect to see scores for some systems to decrease as listen-
ers attempt to use the entire range of score choices, and we also
expect to be able to find more significant differences between
systems.

The distributions of scores reveal the presence of range-
equalizing bias in MOS listening tests for synthesized speech,
while the skew of the distributions demonstrate that listeners
nevertheless do maintain some sense of absolute quality while
completing the test. We can see more significant differences
emerge as the range of synthesis systems becomes smaller, and
we can also observe a substantial decrease of about one MOS
point in scores for some systems. In Section 2 we discuss some
other studies which address context-dependency and bias in per-
ceptual tests. In Section 3 we describe our data and listening
test design. Section 4 describes the results of our listening tests
and analysis of what happens when a smaller range of synthesis
systems is evaluted. We conclude in Section 5.

2. Related work
A comprehensive review of biases in listening tests [5] docu-
ments the various factors that can affect listener ratings. These
include recency, listener expectations, stimulus frequency, per-
ceptually non-equal spacing between the words chosen for the
rating categories that may vary by language, and even factors
such as the appearance of the testing equipment or user inter-
face. The range-equalizing bias effect is described as a “rub-

ar
X

iv
:2

30
5.

10
60

8v
2 

 [
ee

ss
.A

S]
  2

2 
M

ay
 2

02
3



ber ruler,” meaning that listeners tend to use the entire available
range of choices, regardless of “absolute” quality. The authors
recommend using anchoring techniques to counteract this.

However, even listening test paradigms that use anchoring
are not completely immune to this type of bias. The same
authors [6] systematically varied the samples in a MUSHRA
(Multiple Stimuli with Hidden Reference and Anchor) test [7],
in which listeners are presented with samples from several sys-
tems including a reference sample and one or more anchor sam-
ples, finding that even when the anchors are held constant, the
scores can change depending on whether there are more higher-
quality or lower-quality samples present in the test.

The presentation and context of the audio sample being
evaluated can affect the scores, even when the sample itself
stays the same – scores can differ whether a sample under con-
sideration is presented in isolation, or in a paragraph or dialogue
context, and these scores do not even necessarily correlate with
each other [8]. Scores can also be affected by the wording of
the question or instructions being given to the listeners [9, 10].

Listeners may also differ in their personal preferences, and
it is therefore important to collect enough different opinions. In
a revisiting of the 2013 Blizzard Challenge [11] listening test
data, the rank order and number of significant differences were
found to change depending on sentence coverage and number
of listeners, and statistical significance only stabilized at 30 lis-
teners [12]. Another revisiting of Blizzard 2013 re-evaluated
three representative systems from that challenge alongside four
modern neural ones, finding that MOS ratings for the three older
systems dropped a full point when evaluated together with the
modern systems, even though the rankings were preserved [13].
Furthermore, a significant difference between two of the older
systems was lost in the new test, indicating that their differences
became “compressed” by the presence of the better systems.

These prior works emphasize that MOS is a relative rather
than absolute measure, and that ratings heavily depend on many
factors including the overall range of quality of the samples pre-
sented in the test. In this work, we aim to more systematically
investigate and quantify how MOS changes as the overall qual-
ity of samples in the test changes, and we also aim to better
understand and characterize the differences between listening
tests that have a large vs. small range of qualities represented.

3. Data and listening test design
3.1. The BVCC dataset

We used audio samples from the BVCC dataset [2], a large-
scale set of MOS ratings for samples from 187 different systems
(including reference natural speech) from past Blizzard Chal-
lenges [14], Voice Conversion Challenges [15], and ESPnet-
TTS [16]. These MOS ratings have been made public by the
organizers of the VoiceMOS Challenge [4]. The correspond-
ing audio samples are all sampled at 16 kHz, and have been
amplitude-normalized using sv56 [17]. 38 samples per synthe-
sis system were chosen for BVCC, balancing for genre (e.g.,
news, audiobook, conversational) and source/target speaker (for
voice conversion systems) where relevant.

3.2. New listening tests

We conducted new listening tests to re-evaluate these synthe-
sis systems in different contexts, “zooming in” on subsequently
smaller, higher-quality regions of the original BVCC listening
test data. We sorted the 187 systems by their MOS ratings in
the original BVCC data, and created four subsets by approxi-

mately halving the number of systems each time, keeping the
highest-rated half according to their original ratings. 32 sam-
ples per system were selected for all tests out of the original 38
samples, maintaining genre/speaker balance per challenge. The
listening test sets (lists of samples to be rated by one listener)
were designed to contain about the same number of samples
regardless of the zoom level, which we accomplished by dou-
bling the number of samples from a given system that appear in
one set every time the number of systems is halved. The entire
test was designed to be taken by 200 unique listeners who are
native speakers of English, defined as having spoken English
as their first language since birth. Our test design has fewer
ratings per sample for the more zoomed-out tests and smaller
numbers of listeners for the more zoomed-in tests as a necessary
tradeoff due to budgetary constraints. In a pre-test question-
naire, we asked listeners for their age range, gender, whether
or not they have any hearing impairment, and their dialect of
English. The question asked to listeners for each sample was,
“The voice you hear is a computer-generated voice (synthesized
voice). While some synthetic voices sound high quality and nat-
ural, some of them may be slightly degraded by computer pro-
cessing and sound artificial, or their voices and inflections may
sound discontinuous or unnatural. Please rate the overall qual-
ity of the synthesized voice subjectively on a 5-point scale from
‘very good’ to ‘very bad’.” The rating options were Very Bad,
Bad, Fair, Good, and Very Good, corresponding to numerical
MOS ratings from 1-5. Ethics approval was obtained from our
institution. Listeners were not permitted to complete more than
one set from any of the zoom levels, to obtain ratings from a
larger variety of listeners and to avoid cross-contamination of
the different listening test contexts of each zoom level. Details
of the four zoomed-in test parts, as well as the original BVCC
listening test for comparison, are in Table 1. The 6% zoom test
contains the top 11 systems from the original BVCC, and we
note that five of these are in fact natural speech.

Table 1: Details of listening test design. Information for the
original BVCC listening test from [2, 3] is included as the 100%
zoom level for comparison.

Zoom
level

Number
of

systems

Samples
per system

in a set

Number
of

listeners

Ratings
per

sample

Ratings
per

system

100% 187 1 304 8 304
50% 93 2 64 4 128
25% 46 4 64 8 256
12% 23 8 48 12 384
6% 11 16 24 12 384

4. Results
We can observe the change in the distributions of the ratings
in the original test compared to the new tests, the emergence of
more statistically-significant differences, and an overall trend of
scores decreasing as we zoom in to the higher-quality region.

4.1. Distributions of scores of different listening tests

Figure 1 shows the distributions of the listener ratings for each
zoomed-in new listening test (bottom row), and the ratings for
the same subset of systems in the original BVCC dataset (top
row) where all listeners heard samples from all 187 systems.
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Figure 1: Distributions of listener scores for subsets of the original BVCC dataset (top), and new zoomed-in listening tests (bottom).
The 100% zoom test was not repeated in our new listening tests, but we copy it in the bottom row for easier visual comparison. Bar
heights show the percent of ratings with the given label.

Statistics for mean, standard deviation, and skew for each of
these distributions are also shown. We can observe the pres-
ence of range-equalizing bias at the higher zoom levels – while
no samples from the top 11 systems (6% zoom) received rat-
ings of 1 in the original BVCC listening test, we nevertheless
observe many “1” ratings in the new test where listeners only
heard samples from the top 6% of systems and thus gave the
worst ones a rating of 1. However, we can also observe that lis-
teners nevertheless maintain some sense of absolute quality at
the same time that they adjust their ratings to fill the whole scale
– this is demonstrated by the strong skew in the distributions of
the new listening tests as we zoom in towards a smaller number
of higher-quality samples. Despite the fact that these listeners
have not heard the samples from the lower quality systems, they
still select higher scores more frequently.

4.2. Emergence of significant differences

As we zoom in towards the top of the range of quality, we ex-
pect more significant differences between systems to emerge.
Table 2 shows the comparison of the number of statistically-
significant differences in the relevant subsets of the original
BVCC data, along with the numbers for each new test. Sta-
tistical significances were computed using the Mann-Whitney
U test following [18] with Bonferroni correction for multiple
comparisons. We observe that as the range of qualities of sys-
tems under evaluation becomes narrower, the number of statisti-
cal differences tends to increase as expected. This indicates that
some differences between systems are being “compressed” by
including a wider range of systems in the listening test. We can
also observe that the number of statistically-significant pairs of
systems in the top 6% of systems is 25 in both the 12% listen-
ing test and the 6% test, indicating that all of the perceivable
differences may have been found – this could be further cor-
roborated by doing a pairwise comparison between the top 6%
of systems, as pairwise comparisons can be seen as an extreme
case of zooming in. We leave this for future work.

4.3. Correlations

There were only two statistically-significant differences among
the top 11 systems in the original BVCC listening test data,
which raises the possibility that the rankings of systems may
change in each test. We can measure this by looking at correla-

Table 2: Number of statistically-significant pairs of systems that
were found in subsets of the original BVCC data and new lis-
tening tests. The rows are listening tests, and the columns say
which top percent subset out of the 187 systems are being con-
sidered. The largest number of significant differences for a
given percent subset are indicated in bold.

100% 50% 25% 12% 6%

BVCC 13068 2400 354 61 2
50% test - 1823 381 75 11
25% test - - 562 117 17
12% test - - - 152 25
6% test - - - - 25

tions, including rank-based correlation measures. We focus on
just the top 11 systems which were present in all listening tests
for conciseness, and measure correlations of their scores in each
new listening test with their scores in the original BVCC listen-
ing test. We report the following system-level and utterance-
level correlation coefficients in Table 3: the linear correlation
coefficient (LCC), which is basic correlation; Spearman’s rank
correlation coefficient (SRCC), which considers how much the
rankings stayed the same; and Kendall’s Tau (KTAU), another
ranking-based correlation measure that is more robust to errors.

Table 3: Correlations of scores of top 11 systems in each new
listening test compared to original BVCC data.

LCC
(sys)

LCC
(utt)

SRCC
(sys)

SRCC
(utt)

KTAU
(sys)

KTAU
(utt)

50% test .85 .53 .83 .52 .66 .38
25% test .71 .38 .68 .36 .48 .26
12% test .67 .31 .63 .29 .41 .20
6% test .42 .20 .31 .16 .24 .11

Correlations decrease substantially as we zoom in. The
two pairs of systems with significant differences in the origi-
nal BVCC data do retain their order as well as their significant
differences, and the systems that switch ranks are ones that did
not have significant differences in the original test.



Figure 2: Heatmap of each system’s original score in the BVCC listening test, minus its score in the new tests.

4.4. Decrease in MOS ratings for some systems

In a listening test that evaluates a small number of high-quality
systems, it is expected that the worst system will have a low
score, even if it was rated highly in a test with a wider range
of systems – that is to say, we expect some systems’ scores to
decrease as we zoom in. We examine this in Figure 2, which
is a heatmap showing the drop in scores of each system in each
new test compared to the original BVCC data. Darker colors
indicate that the score did not change much from the original
listening test, and lighter colors indicate a larger score drop.
Gray boxes indicate that a system was not present in a given test.
Synthesis systems are sorted first according to their rank order
in the 6% zoom test, then remaining systems in the 12% test
are sorted according to their order in that test, and so on. It can
be seen that systems that ranked low in their respective tests had
larger score drops. The largest drop was of 1.28 MOS points for
system BC2011-G, which was the worst-ranked system in the
6% zoom-in test. Several systems had somewhat higher scores
in some of the new tests compared to BVCC; these are typically
the higher-quality systems such as ESPnet. The system that had
the largest increase in score (0.15 MOS points) was BC2016-
A, the professional British English audiobook speech used as
training data in the Blizzard Challenge 2016.

In Table 4, we report the largest drop in score for each new
listening test compared to the original score in BVCC, along
with the name of the synthesis system with this score drop.

Table 4: Synthesis systems with the largest drops in MOS in
each new listening test compared to the original BVCC.

Test
Largest

score drop System ID

50% test 1.05 BC2011-E
25% test 1.11 BC2011-L
12% test 0.89 BC2011-G
6% test 1.28 BC2011-G

Linearly fitting score drop vs. zoom level reveals a slope
close to zero, indicating that we may generally expect a sys-
tem’s MOS to possibly drop by up to around an entire point
if we re-evaluate it in a finer-grained context, regardless of the
zoom level. Interestingly, Blizzard Challenge 2011 system G
had the largest drop in MOS in both the 6% test and the 12%
test, becoming the worst-ranked synthesis system in both tests,
indicating that perhaps this system’s ranking in the original
BVCC test results may have been unreliable.

5. Conclusions
The design of our set of listening tests that progressively
“zoomed in” on the high-quality region of a large range of syn-

thesis systems shows a clear presence of range-equalizing bias.
The worst system in the smallest group of top systems dropped
by a full 1.28 MOS points, emphasizing the strong contextual
effects of MOS-based listening tests. We can advise that if re-
searchers want to identify more significant differences between
systems that are close together in quality, then it is better to keep
the overall range of quality of systems in the entire listening test
fairly small. However, it is also important to consider that this
may substantially lower the ratings for the worst systems in the
group, even if they are overall of relatively high quality.

One limitation of this study is that when we chose the sub-
sets of the top systems, our choices were based on the original
ranking of all 187 systems in BVCC, which we found in Section
4.3 may not represent the “true” ranking of the systems. Many
of the differences between systems of similar quality were not
significant, and ranking order changed upon closer inspection.

We would like to conclude by observing one interesting
phenomenon – the naturalness of Tacotron 2 [19] appears to
have gotten worse over the years! The original paper reported a
MOS of 4.53 in 2018 with “quality close to that of natural hu-
man speech,” whereas a study from 2020 [16] reported a MOS
of 4.20, and more recent results from 2022 [20] reported a MOS
for of 3.01. Of course, it’s not at all valid to make direct com-
parisons between MOS tests with completely different listeners,
test sentences, training data, configurations, vocoders, and even
rating scale increments. However, this general decrease in MOS
indicates the possibility of range-equalizing bias, and that an
unintentional “zooming in” may be taking place as speech syn-
thesis technology improves. It is therefore of utmost importance
for speech synthesis researchers to be mindful of their choices
of comparison systems and how they may affect MOS results.
It is also important when interpreting MOS results to be aware
of range-equalizing bias, and to understand that what may ap-
pear to be a large difference between systems may in fact be a
small difference which has been magnified by a narrow range
of quality of synthesized samples in the listening test.

In future work, we will conduct additional listening tests
such as A/B and MUSHRA in order to better understand how
different tests relate to one another. We will also investigate
whether finer-grained listening test data can help MOS predic-
tors to better distinguish between similar systems and to gener-
alize better. We will also investigate zooming in on the lower-
and middle-quality regions of MOS, as well as the effect of dif-
ferent rating scales such as ones using increments of 0.5.
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