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Abstract— In reality, it is often more efficient to ask for
help than to search the entire space to find an object with
an unknown location. We present a learning framework that
enables an agent to actively ask for help in such embodied
visual navigation tasks, where the feedback informs the agent
of where the goal is in its view. To emulate the real-world
scenario that a teacher may not always be present, we propose
a training curriculum where feedback is not always available.
We formulate an uncertainty measure of where the goal is and
use empirical results to show that through this approach, the
agent learns to ask for help effectively while remaining robust
when feedback is not available.

I. INTRODUCTION

Consider the following scenario: you instruct a newly
deployed robot assistant to retrieve a tool for you, but the
robot does not know its location. Hence, it searches your
entire home for it. It would be far more efficient if it could
ask someone familiar with the task and environment for help,
as shown in Fig. 1. We naturally want to seek assistance
when a task is difficult, especially so when we lack sufficient
information about the goal or the environment. Similarly,
robots should be endowed with the ability to actively query
and gain relevant knowledge. However, agents in many
robotics works [1], [2], [3] do not have access to external
assistance when tackling their navigation tasks.

We propose Good Time to Ask (GTA), a learning
framework to train and evaluate an embodied agent with
the additional capability of asking for feedback. The task is
set to be object-goal navigation (ObjectNav) in AI2-THOR
[4], an embodied AI [5] simulator with photorealistic indoor
environment. An interactive reinforcement learning approach
is used to train the agent to learn to seek help in the form:
“Is the target object in view?”. To evaluate the quality of a
query by the agent in the ObjectNav task, we present two
important considerations:
• Timing - When is the best time to ask for assistance?
• Robustness - How to prevent the agent from being

overly reliant on feedback?
The agent must learn to ask for help in a timely way that

maximizes the feedback’s informativity while minimizing in-
convenience (i.e. annotation cost) to the teacher. In addition,
it is important to account for the possibility that a teacher
is not present to improve the generalizability of our setup to
real-world settings. Hence, we need to ensure that the agent
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is not overly reliant on feedback and can still perform well
when external help is unavailable. We develop a novel metric
to assess the quality of a query and address the considerations
above. This is done by calculating the lower bound estimate
of the agent’s uncertainty with regards to the task objective
and the type of action taken by the agent at each time step.

The main contributions of our proposed learning frame-
work are threefold: 1) We demonstrate the positive effect
of teacher-supplied assistance, in the form of image seman-
tic segmentation feedback, on the performance of learning
agents. 2) We propose a semi-present teacher training cur-
riculum to train agents that can adapt their behavior to the
teacher’s level of availability. 3) We propose a new evaluation
metric to assess the quality of the agent’s queries for help.

Fig. 1: Our learning framework where the agent has an addi-
tional capability to ask for feedback during ObjectNav. The
overall pipeline of our learning framework and an illustrated
comparison in the ObjectNav performance between agents
with and without the ask action.

II. RELATED WORKS

Object-Goal Navigation [6], [7], [8], [3] has been inten-
sively studied as a fundamental task in the field of embodied
AI [5], [9], [10] in recent years. In its simplest form,
ObjectNav is the task of navigating to an object in pho-
torealistic 3D environments [4], [11], [12]. Since ObjectNav
is a sequential decision-making problem, existing learning-
based approaches rely on reinforcement learning (RL) and
can be modeled as a Markov Decision Process. Learning-
based approaches for ObjectNav differ in their memory
architectures, e.g. gated recurrent units [13], semantic maps
[14], and amount of environment prior exploration [15]. In
this work, we focus on making key modifications to the RL
framework by closing the loop with human feedback.

Interactive Reinforcement Learning [16], [17] accounts
for human guidance and feedback [18], [19], [20]. Interactive
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RL adopts a human-in-the-loop [21] approach to integrate
contextual human knowledge that improves or personalizes
the behavior of AI agents. This helps to reduce the notorious
issue of sample inefficiency in RL [22]. The incorporation
of human advice into RL is commonly done through reward
shaping [18], [17]. An alternative approach uses human
advice as input observations for the RL agent’s policy, e.g.
gestures in Ges-THOR [23] and state descriptions [24].
Lastly, human advice can be expressed in diverse ways e.g.
language [25], [26], gesture [23], and image [16], [24]. We
focus on human feedback in the form of image semantic
segmentation, which is used as part of the agent’s observa-
tion. Compared to previous work [23], [27], [28], this type
of human feedback is less costly as it does not require the
teacher to be always physically next to the agent and requires
less environment knowledge.

Active Learning attempts to maximize an agent’s task
performance while minimizing the amount of samples anno-
tated [29], [30]. Similarly, we aim to minimize the AI agent’s
requests for human feedback while maximizing the agent’s
navigation performance. In general, there are rule-based and
learning-based approaches for active learning in Interactive
RL. In rule-based approaches, pre-defined heuristics deter-
mine when to ask for external help. For example, in the
model-confusion method, the agent asks for guidance on the
best next action in vision-and-language navigation [31] when
the difference in the policy’s top two action probabilities
exceeds a threshold [27]. In learning-based approaches, the
agent learns when to ask for help [27], [32], [33]. Previous
work has found learning-based approaches to be more robust
than rule-based ones [27], [34]. Here, we use a learning-
based approach and expand the action space in our agent’s
policy to accommodate the ask action in the ObjectNav task.

III. METHODS

A. Problem Formulation

In this work, we tackle the ObjectNav task [7]. To com-
plete the task, the agent must navigate to the target object
instance with stopping distance ≤ 1.0m, and then issue a
termination (i.e. stop). The object must be within the agent’s
field of view in order to succeed. An episode is terminated if
the agent issues a termination action, regardless of whether
it has succeeded, or if the maximum allowed time step is
reached, which is 500 in our setup. Two key differences
with [7] is that the target object is chosen randomly and
the placement of objects is randomized every episode. There
is only one instance of the target object type in every
episode, and is guaranteed to be reachable. There are 7 object
categories available for all scenes. However, only 5 objects
(apple, bowl, potato, soap bottle, and dish sponge) are used
in training while we reserve 2 objects (cup and bread) for
unseen object test scenarios.

We choose AI2-THOR as our learning environment to
train and evaluate our embodied agent because it has diverse
scenes and interactive features. AI2-THOR has been widely
used for different visual navigation tasks [35], [6], [10].
It also allows the possibility of deploying our learning

framework into a real-world robot via RoboTHOR [36]. We
use 10 kitchen scenes for training and 5 kitchen scenes
for testing. Each scene has its own unique appearance and
arrangement. The scene used for training is randomized every
episode. Each training experiment is ran for 10 million steps
and evaluated for 100 episodes on each scene and object.

The learning agent is represented by a capsule-shaped
robot character in AI2-THOR. The agent has six available
navigation actions: [rotate left, rotate right, move forward,
look up, look down, and stop]. In setups where the feedback
mechanism is enabled, the agent has an additional action:
[ask]. Each rotation action results in a 90° rotation; each look
up or down action results in an 30° increment or decrement
in the agent’s view angle; each forward action results in a
0.25m forward displacement. The agent is initialized at a
fixed location in each scene.

B. Model Architecture

Fig. 2: Overall architecture used to learn ObjectNav with the
example of a target object “Apple”. The highlighted feedback
module on the left is not present in the baseline model.

Fig. 2 shows an overview of the model architecture used.
Like most embodied AI works, we equip our agent with
a RGB-D sensor. These visual observations are encoded
with pretrained ResNet-18 models [37]. The target object is
encoded into a text embedding. In addition to these classic
observations, we provide an object-in-view observation that
is provided upon each ask action, containing the ground
truth semantic segmentation observation of the target object’s
location in the agent’s view. Pixels which correspond to the
target object’s location have a value of 1, and 0 otherwise.
The combined observations are passed into a gated recurrent
unit (GRU) [38] before the RL model.

We formulate our ObjectNav learning framework using
deep RL, specifically an on-policy actor-critic reinforcement
learning algorithm - PPO [39]. The actor-critic model has a
shared backbone consisting of a 2-layer network, each layer
having 256 nodes and ReLU activation. Linear prediction
heads are used to obtain the value estimate and action
distribution. We implement PPO with a time horizon of 128
steps, batch size of 128, discount factor of 0.99, 4 epochs for
each iteration of gradient descent, and buffer size of 2048
for each policy update. We use Adam [40] as the optimizer
with a learning rate of 3e−4. The agent receives a positive



reward of +10 if it completes the navigation successfully. To
encourage the agent to reach the target object in the minimum
number of steps, the agent receives a small penalty of -0.01
for each time step. AllenAct [5], [41] is used as the codebase
for our framework.

C. Training Curriculum with Semi-Present Teacher

While the agent should learn to make use of external
feedback when available, the teacher may not always be
present to provide assistance in a real-world setting. When
help is unavailable, the desired behavior for the agent in this
task would be to navigate the scene autonomously to find
the target object, even if it takes more time.

Hence, we introduce a semi-present teacher training cur-
riculum to improve the agent’s robustness in both settings.
We compare between two training curricula: 25% and 75%
semi-present teacher. A η% semi-present teacher is present
in η% of training episodes. The agent has an additional
observation of whether the teacher is present. Feedback is
only available to the agent when the teacher is present.

D. Quantifying Uncertainty

We propose a metric to quantify the agent’s uncertainty of
where the goal is, which is the target object in this case. This
metric is also used to quantitatively assess the impact of the
ask actions. We use N and R to denote the set of natural and
real numbers respectively. In a scene s, let Ps ⊆ 〈N×N×N〉
be the set of all possible 3D positions of where the target
object can be. At every time step i, we let the likelihood
of the target object being at each point p ∈ Ps be in the
range [0, 1]. The target object is definitely not at point p
if it has a likelihood of 0. We define Φs,i ⊆ Ps × R[0,1]

as the mapping of each possible position to its likelihood
in scene s at time step i. Then, the lower bound estimate
of the agent’s uncertainty of the goal location is: λs,i =∑
p∈Ps

Φs,i,p − maxp∈Ps Φs,i,p. We choose to subtract the
maximum value of likelihood in the mapping Φs,i so as to
ensure that when there is only one position with positive
likelihood value, the overall uncertainty λs,i is 0. Beginning
at time step i = 0, the target object has equal likelihood
of being at any point: ∀p ∈ Ps : Φs,0,p = 1. It is noted
that different scenes in AI2-THOR have different areas, and
hence different starting overall uncertainty λs,0. We believe
that this property reflects the amount of uncertainty in real
life, whereby an agent would have a bigger search space if
the scene is larger and vice versa.

1) Uncertainty Change from Navigation: At each time
step i, if the action taken is a navigation action that is
not a termination (i.e. rotate left/right, move forward or
look up/down), then the agent can use the RGB and depth
observations to decrease its uncertainty of where the target
location is. We formulate the decrease of uncertainty from
this observation in two cases: when the target object is in
view, and when it is not.

When the target object is not in the agent’s view, the
change in likelihood mapping is given by:

∀p ∈ Ps : Φs,i,p = Φs,i−1,p − ψ(p)× in(obsview, p) (1)

where in(obsview, p) = 1 if point p is in the agent’s view
else 0, and ψ is a piece-wise linear decay function:

ψ(p) =


1 if distp ≤ α,
1− distp−α

β−α if distp ≤ β,
0 otherwise.

(2)

where distp is the distance from the agent to the point p, and
α and β are pre-determined parameters. In our analysis, we
define α = 1.0 and β = 2.0, which are respectively 1× and
2× of the proximity distance which the agent has to be of
the target object to succeed. The decay function mimics the
effect that object recognition is often better when the agent is
closer to the object. For example, while an agent may mistake
a tomato for an apple when it is far away, it can distinguish
better when the visual details are clearer. In Equation 1, the
likelihood decreases for every point seen by the agent. This
coincides with the agent’s potential knowledge gain that the
target object is not in the seen region.

Suppose that the target object is at position p̂, then when
the point p̂ is in the agent’s RGB-D view, the change in
likelihood mapping is given by:

∀p ∈ Ps :Φs,i,p = Φs,i−1,p

+ is target(p)× ψ(p)× in(obsview, p)

+ is target(p)× ψ(p̂)

(3)

where is target(p) =

{
1 if point p = p̂,
0 otherwise.

(4)

In Equation 3, the likelihood decreases for every point seen
by the agent that does not have the target object. This reflects
the agent’s potential knowledge gain that the target object is
not at the seen region. Then, the likelihood decreases for
every point that does not have the target object, including
the points not covered by the agent’s view. The target object
is in the agent’s view, reflecting the potential knowledge gain
that the target object is less likely to be at other positions.

2) Uncertainty Change from Feedback: At each time step
i, if an ask action is taken, then the additional observation
that the agent can use to decrease its uncertainty of the target
object’s location is the object-in-view feedback. The decrease
of uncertainty from this observation is formulated in two
cases: when the target object is in view, and when it is not.

When the target object is not in the agent’s view, the
change in likelihood mapping is given by:

∀p ∈ Ps : Φs,i,p = Φs,i−1,p − in(obsview, p) (5)

As the object-in-view feedback is a ground truth observation,
there is no ambiguity in it. Hence, Equation 5 reflects the
potential knowledge gain that the current view does not
contain the target object. On the other hand, if the target
object is at position p̂ and p̂ is in the agent’s view, the change
in likelihood mapping is given by:

∀p ∈ Ps : Φs,i,p = Φs,i−1,p

+ in(obsview, p)× is target(p)
+ in(obsview, p)× ψ(p̂)

(6)



Fig. 3: A qualitative result for how the lower bound estimate of the agent’s uncertainty of the target object’s location changes:
(top) rendering of the uncertainty mapping; (bottom) egocentric RGB observations at the corresponding time steps with the
observable target object circled in red; (bottom-right) allocentric view of the scene.

The first part of Equation 6 reflects the potential knowledge
gain that positions in the current view with non-positive
object-in-view feedback do not contain the target object. The
second part reflects the potential knowledge gain that the
target object is less likely to be at other positions.

IV. EXPERIMENTAL RESULTS

A. Evaluation Metrics

We evaluate our agent on these standard navigation metrics
[7]: (1) Success rate (SR), the ratio of successful episodes
over completed episodes N : SR = 1

N

∑N
i=1 Si. (2) Success

weighted by path length (SPL) [1], a measurement of
the efficacy of navigation, given by: SPL = 1

N

∑N
i=1 Si ×

( li
max(pi,li)

) where li is the shortest path distance from the
agent’s starting position to the goal in episode i, and pi
is the actual path length taken by the agent. Additionally,
we propose these new evaluation metrics to justify the
effectiveness of the human-agent interaction:
• The percentage of actions taken that are ask actions -

how frequently the agent is asking for feedback.
• The average decrease in uncertainty of the target ob-

ject’s location from ask actions - Using the definition
in Section III-D, we can quantify how much these ask
actions are helping the agent in the ObjectNav task.

In the real world, there is no obvious property used
to quantify when is a good time to ask. However, in
this controlled simulated environment, there are instances
where we can point out that is not the most informative
time to ask. Hence, in our analysis, we give statistics on
the following types of ask actions taken: (1) Consecutive
ask actions: The agent does not gain any observations or
feedback different from previous time steps. (2) Vapid ask
actions: Ask actions taken when the agent should already
have a good idea of where the goal is (i.e. the lower bound

estimate of uncertainty is < 10% of its starting uncertainty).
(3) Statistically insignificant ask actions: Ask actions which
decrease the uncertainty minimally (i.e. the change in lower
bound estimate of uncertainty caused by the ask action is
less than a threshold γ). We choose γ = 2.0, about 10%
of the average decrease in uncertainty by all actions in the
baseline. These statistics are shown in Table III.

B. Feedback Variations

In this paper, we introduce some feedback variations: (1)
Binary Feedback: Binary feedback flattens the object-in-
view feedback into a binary signal. Upon each ask action,
the agent will receive a positive scalar signal of 1 if the
target object is in its view, and a scalar signal of 0 if it is
not. The agent will receive a signal of -1 if the ask action
is not taken. (2) Added noise: Agent is trained with ground
truth object-in-view feedback and evaluated with noisy image
semantic segmentation for a more realistic setup in the real
world. The noisy image segmentation is generated from the
ground truth by two perturbations. The first perturbation is to
scale the ground truth segmentation vertically or horizontally
within a range of 0.6 to 1.0, whereby the shape remains
unchanged if scaled by 1.0. The second perturbation is
to adjust the segmentation boundary by a random amount
between -5 to +5 pixels. (3) Language Feedback: Object-in-
view feedback expressed in natural language instead of image
semantic segmentation, based on target object color, location
and distance. The natural language inputs are generated as
shown in Table V. We use RoBERTa [42] to encode the
natural language inputs before feeding them into the policy.

C. Analysis

We use two methods to evaluate the impact of ask actions
in the agent’s performance: (1) Baseline: the agent only has
the visual (i.e. RGB-D) and object category information.



Success Rate (%) Success weighted by Path Length (%)
Teacher Presence

during testing
Training
Methods

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

False Baseline 35.2 11.9 18.6 13.0 24.1 7.7 9.1 6.9
False Feedback 4.8 0.0 1.3 0.3 1.1 0.0 0.4 0.1
False Semi-25 40.6 7.9 23.1 13.3 26.8 4.5 11.6 8.5
False Semi-75 33.9 6.7 18.1 18.5 27.4 6.7 11.4 16.3
True Feedback 70.9 26.3 71.4 37.0 46.4 17.2 39.7 24.2
True Semi-25 51.6 6.6 35.7 15.1 34.1 4.1 20.2 8.3
True Semi-75 72.1 8.6 50.1 24.8 50.9 4.6 34.0 18.9

TABLE I: Success Rate (SR) and Success weighted by Path Length (SPL) evaluation results for different seen and unseen
cases for objects and scenes across methods. There are a total of 4 training methods. 1) Baseline: the agent only has the
visual (i.e. RGB-D) and object category information. 2) Semi-25: an agent trained with 25% present teacher curriculum. 3)
Semi-75: an agent trained with 75% present teacher curriculum. 4) Feedback: the agent receives object-in-view feedback
through object segmentation upon asking for help.

Average change in uncertainty by Nav actions Average change in uncertainty by Ask actions
Teacher Presence

during testing
Training
Methods

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

False Baseline 13.8 2.43 6.9 6.8 - - - -
False Semi-25 15.8 8.8 8.1 26.1 - - - -
False Semi-75 19.5 17.8 13.8 17.2 - - - -
True Feedback 15.6 14.2 6.7 17.3 22.2 26.4 7.6 21.9
True Semi-25 20.1 6.9 6.4 29.4 23.6 30.8 15.6 10.5
True Semi-75 19.4 7.0 11.6 11.0 28.3 19.9 21.2 13.6

TABLE II: Average change in agent’s overall uncertainty by navigation and ask actions for different seen and unseen cases
for objects and scenes across methods.

% of Ask actions in all actions % of Consecutive Ask actions in all ask actions
Training
Methods

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

Both
Seen

Both
Unseen

Unseen
Scenes

Unseen
Objects

Feedback 34.9 24.6 42.1 37.4 0.3 0.4 0.2 0.4
Semi-25 15.6 13.5 17.1 12.2 14.3 11.8 16.1 5.8
Semi-75 23.1 16.2 19.3 25.8 5.4 5.1 5.5 5.6

% of Vapid Ask actions in all ask actions % of Statistically Insignificant Ask actions in all ask actions
Feedback 57.8 70.8 70.4 63.3 80.3 81.2 94.2 73.8
Semi-25 86.0 88.2 78.3 86.2 93.6 86.3 96.0 80.0
Semi-75 75.4 70.1 73.4 64.6 78.9 83.4 94.3 87.9

TABLE III: Statistics on the types of ask actions taken for different seen and unseen cases across methods where feedback
is available. Teacher is present in all episodes used for evaluation here.

Success Rate (%) Success weighted by Path Length (%)

Teacher Presence
during testing

Training
Methods

Both
Seen

Both
Unseen

Unseen
Scenes Unseen Both

Seen
Both

Unseen
Unseen
Scenes

Unseen
Objects

True Binary Feedback 32.8 22.4 23.7 18.4 22.3 6.1 9.9 6.3
True Feedback

(eval with noise) 58.8 18.2 59.0 20.0 36.1 10.5 33.0 12.2
True Language Feedback 74.3 42.6 63.2 51.8 43.5 23.0 28.9 29.8
True Feedback 70.9 26.3 71.4 37.0 46.4 17.2 39.7 24.2

TABLE IV: Success Rate (SR) and Success weighted by Path Length (SPL) evaluation results for different seen and unseen
cases for objects and scenes across varied feedback signals.

(2) Object-in-view feedback: in addition to (1), the agent
receives object-in-view feedback upon asking for help. From
Table I, we see that object-in-view feedback method out-
performs the baseline in all cases by an average of 31.7%
and 19.9% for SR and SPL respectively. This shows that
the agent understands how to use the feedback, i.e. learning

the semantic meaning of the given feedback. As expected,
the agent’s performance decreases as more parts of the test
scenario (i.e. target object and scene) are unseen. We can
also see that performance deterioration is generally more
significant for unseen objects than for unseen scenes and
the most significant for test scenarios with simultaneously



Cases Natural Language Feedback
No ask action taken The target object is <target object name>.
Ask action, target object is not in view The <target object name>is absent from the frame.

Ask action, target object is in view The <target object color><target object name>is <close/ far>, at the <position>of the frame.
position :- top-left, top, top-right, left, middle, right, bottom-left, bottom, bottom-right

TABLE V: Rules used to generate object-in-view feedback in natural language.

unseen objects and scenes.
Table I also shows the results from our semi-present

teacher training curriculum described in Section III-C. We
label Semi-η as the method used to train an agent with
η% present teacher curriculum. We discover that the agent
trained with object-in-view feedback and a 100% present
teacher fails in 95% of all test episodes when the teacher
is absent, performing significantly worse than the baseline
which has a SR of at least 11.9%. This shows that the agent
is over-reliant on the teacher’s feedback in a 100% present
teacher training curriculum and cannot generalize well when
the teacher is absent. However, both agents trained from
the 25% and 75% semi-present teacher curricula achieve
comparable performance to that of the baseline’s when the
teacher is absent, with a maximum SR decrease of 5.2%. This
shows that a simple curriculum of mixing in episodes with no
teacher feedback helps the agent learn to react more robustly
to the absence of a teacher. The benefits of feedback can
be seen as Semi-25 and Semi-75 agents achieve a maximum
increase of 38.2% in SR and 23.5% in SPL with the presence
of a teacher. We also note that Semi-25 and Semi-75 agents’
performance with a present teacher is not as high as that
when trained with an always present teacher with a minimum
SR decrease of 7.7%.

Using the uncertainty metric defined in Section III-D,
we present the average decrease in uncertainty caused by
navigation or ask actions in Table II. The average uncertainty
change by ask actions is higher than that by navigation
actions for the agent trained with an always present teacher
and Semi-75. This shows that the object-in-view feedback
from ask actions is statistically useful in helping the agent
complete the task more efficiently. Fig. 3 shows a qualitative
example of how uncertainty changes in an episode from
navigation and ask actions.

The agent trained with an always present teacher uses
the highest percentage of ask actions. Table III shows the
percentages of the different types of ask actions taken across
different training curricula. The percentage of consecutive
ask actions taken by the agent trained with an always present
teacher is close to zero, suggesting that the agent is success-
ful in learning that there is no additional gain in information
when asking consecutively. Comparing across methods, the
agent trained with an always present teacher has the lowest
percentage of consecutive ask actions, vapid ask actions, and
statistically insignificant ask actions, followed by Semi-75
and lastly Semi-25. This suggests that while the agent trained
with an always present teacher uses a higher percentage of
ask actions, it has learned to utilize them in a statistically
informative manner. While the percentages of vapid asks
and statistically insignificant asks (defined in Section IV-A)

seem high, this is partly attributed to the way the uncertainty
metric is defined. This metric is a lower bound estimate of
the agent’s uncertainty of the goal location. It assumes a
perfect memory where uncertainty only decreases with more
observations, which may not be the case for an RL agent.

Table IV shows the results of our feedback variations.
Binary feedback is a less costly form of feedback (i.e. more
convenient for a user), but it has worse performance in
most experimental setups with an average decrease of 46.4%
in SR and 66.4% in SPL from object-in-view feedback.
The agent that is trained with image semantic segmentation
feedback has a decrease in performance for all setups when
it is evaluated with noisy segmentation feedback, with the
SR decreasing by an average of 12.4% and the SPL by
an average of 8.9%. Lastly, the language feedback has the
closest performance to the image semantic segmentation
feedback, with an average difference of 10.7% in SR and
6.3% in SPL, and is also the only feedback variation to
outperform the image semantic segmentation feedback in
multiple setups. These results suggest that future work can
focus on reducing performance degradation with noisy feed-
back and using natural language as a feedback modality. As
future work, we plan to enable easy integration of multiple
feedback modalities into the framework by implementing a
multi-modal feedback module.

V. CONCLUSION

In this work, we demonstrate the importance of quality
feedback signals toward robot learning for the task of object-
goal navigation. We propose a learning framework that
enables the embodied agent to optimize its navigation policy
for ObjectNav tasks by learning to request for feedback.
Additionally, we propose a semi-present teacher training cur-
riculum to increase the agent’s robustness when feedback is
not always present. Finally, we develop a formulation of the
lower bound estimate of the uncertainty that quantitatively
measures the timing and robustness of the learning agent’s
feedback-seeking behavior, and show that our framework
encourages effective agent behaviors for ObjectNav.

Limitations and future work. (1) We use perfect feed-
back in our current training, which is unrealistic in a real-
world setting. A future direction could be to make the inter-
active learning framework more robust to noisy or imperfect
feedback. (2) As a proof of concept, we briefly investigated
using natural language as a feedback modal. Human interac-
tion comes in many modals. For similar semantic meanings
in a feedback, future work directions can include the study
of modular and exchangeable feedback encoders whereby
the algorithm does not need to be retrained for a different
feedback modal.
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