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Abstract

To make progress towards multi-modal AI assistants
which can guide users to achieve complex multi-step goals,
we propose the task of ‘Visual Planning for Assistance
(VPA)’. Given a goal briefly described in natural language,
e.g., “make a shelf”, and a video of the user’s progress so
far, the aim of VPA is to obtain a plan, i.e. a sequence of
actions such as “sand shelf”, “paint shelf”, etc. to achieve
the goal. This requires assessing the user’s progress from
the untrimmed video, and relating it to the requirements
of underlying goal, i.e. relevance of actions and ordering
dependencies amongst them. Consequently, this requires
handling long video history, and arbitrarily complex action
dependencies. To address these challenges, we decompose
VPA into video action segmentation and forecasting. We
formulate the forecasting step as a multi-modal sequence
modeling problem and present Visual Language Model
based Planner (VLaMP), which leverages pre-trained LMs
as the sequence model. We demonstrate that VLaMP per-
forms significantly better than baselines w.r.t all metrics
that evaluate the generated plan. Moreover, through exten-
sive ablations, we also isolate the value of language pre-
training, visual observations, and goal information on the
performance. We will release our data, model, and code to
enable future research on visual planning for assistance.

1. Introduction
Imagine assembling a new piece of furniture or making

a new recipe for a dinner party. To achieve such a goal,

*Work done while interning at Meta Reality Labs Research.
†Corresponding author: rutadesai@meta.com

1The images in the Fig. 1 and Fig. 2 are from Ego4D[19], and are for
the purpose illustration only.
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Figure 1: Given a user’s goal described in natural lan-
guage and corresponding visual history depicting the user’s
progress till time t, the aim of Visual Planning for Assis-
tance is to plan a sequence of actions aimed at achieving the
goal. Our approach entails multi-modal sequence modeling
using pre-trained video segmentation and language models.
1

you might follow a manual or a video tutorial, going back
and forth as you perform the steps. Instead of fumbling
through a manual, imagine an assistive agent capable of be-
ing invoked through natural language, having the ability to
understand human actions, and providing actionable multi-
step guidance for achieving your desired goal.

Towards this next generation of assistive agents, multi-
model neural models should be able to reason human activ-
ities from visual observations, contextualize it to the goal
at hand, and provide multi-step guidance. To develop such
multi-modal neural models, we propose a new and intuitive
learning task – Visual Planning for Assistance (VPA).

As illustrated in Fig. 1, given a user-specified goal in nat-
ural language and corresponding video observations depict-
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ing the user’s progress towards this goal, the VPA objective
is to generate the ordered sequence of next actions towards
achieiving the goal. Complementing extensive research in
on forecasting or anticipation in videos, we take inspiration
from active or embodied vision [14]. Particularly, we for-
mulate VPA as goal-conditioned task planning where the
goal is specified in natural language allowing to easily as-
sist humans. Further, we focus on performing complex hu-
man activities and on real-world human videos. A ubiq-
uitous category of such multi-step and complex stream of
actions is procedural human activities, which include cook-
ing, assembly, repair, etc. Focusing on this, we based VPA
off instructional videos of such procedural activities from
YouTube from large, open-sourced, human datasets.

Given a procedural activity, e.g., building a shelf, the as-
sistant must estimate the user’s progress towards their goal
from a long video with potentially many irrelevant back-
ground frames, which is challenging. Then, conditioned on
the user’s progress, the assistant must generate and recom-
mend a valid plan of actions such that the actions respect the
constraints of the activity. For instance, the shelf shouldn’t
be painted before sanding it. Reasoning about such con-
straints present in human activities while generating plans
is another challenge for VPA.

To overcome these challenges, we formulate an ap-
proach for VPA that is based on video action segmenta-
tion and a transformer-based neural sequence modeling,
where the former allows us to deal with long video history,
while the latter can handle arbitrary sequential constraints
[64, 29]. Furthermore, our formulation enables leverag-
ing state-of-the-art pre-trained transformer based language
models (PTLMs), which may contain useful priors about
action-action similarity, action-goal association, and action
ordering [6, 23, 42]. Our model, which we call Visual Lan-
guage Model Planner (VLaMP), conditions the generated
plan onto the visual history by using a transformer-based
mapper network that projects embeddings corresponding to
visual history into the input space of the LM. We show that
VLaMP performs significantly better than the baselines. We
also perform ablations to understand the effect of language
pre-training of the LM, the role of visual history, and goal
description on the model’s performance on VPA. 2

In summary, our main contributions are: (1) We propose
a new learning task VPA that considers the unique needs of
real-world vision-powered assistive agents. (2) We intro-
duce a formulation with integrated segmentation and fore-
casting for VPA, which allows leveraging pre-trained multi-
modal encoders and sequence models. (3) Using our for-
mulation, we propose a novel PTLM model called VLaMP,
and investigate its efficacy for VPA using two existing

2To enable use of our formulation as a benchmark for Visual Planning
for Assistance, we release the data processing code, as well as metrics and
model implementation.

Action
Prediction

Goal
Modality

Visual
Reasoning

Action anticipation [11] Single None Video-based
Action forecasting [19] Multiple, ordered None Video-based
Procedural planning [8] Multiple, ordered Vision Image-based
VPA (ours) Multiple, ordered Natural Language Video-based

Table 1: VPA task vs. prior tasks related to forecasting
of real-world human activities. We predict an ordered se-
quence of actions based on videos with a focus on natu-
ral language goal-conditioning for human-assistive applica-
tions.

video datasets of procedural activities: CrossTask [66] and
COIN [54].

2. Related Work

Forecasting in Videos. VPA entails future action sequence
prediction for a video and is closely related to anticipation
in video understanding, including future localization [17,
30, 59], future frame prediction [58, 34], next active object
estimation [16, 4, 19], as well as short- and long-term action
anticipation [49, 12, 15, 18, 19, 48, 47, 41, 33, 1, 38, 36].
While short-term forecasting approaches, such as [49], are
limited to predicting the single next action occurring only
a few seconds into the future, our work focuses on pre-
dicting sequences of actions over longer time horizons (on
the order of minutes) into the future. The long-term ac-
tion (LTA) forecasting benchmarking was recently estab-
lished on a small subset of Ego4D [19], and although VPA is
similarly devised to predict a temporally ordered sequence
of actions conditioned on video-based visual observations,
our approach differs in that the LTA task does no goal-
conditioning. Our task incorporates goal-conditioning on
long term sequence prediction as we argue this will drive
the development of critical system aspects, such as virtual
assistants that afford human interaction via the natural lan-
guage goals. Additionally, in contrast to LTA, we focus on
a wide range of goal-oriented activities available within the
CrossTask and COIN datasets. Tab. 1 highlights the differ-
ences between VPA and other forecasting tasks.
Procedural Planning Approaches. VPA is similar to the
task of procedure planning [8], wherein given a starting
and terminating visual observation, the aim is to predict
the actions that would transform the state from starting to
terminating. However, we argue that due to the unavail-
ability of the terminating visual state, the procedure plan-
ning task is not useful in a real-world assistance setting.
While several recent works introduce novel models for pro-
cedure planning, these models cannot be deployed for VPA
either because they rely heavily on the availability of visual
goal [52, 65, 5], or assume access to true action history [35].
Transformers for Decision Making. VLaMP autoregres-



sively predicts future states and/or observations and actions
and is similar in spirit to sequence models for decision mak-
ing such as GATO [44], Decision Transformer [9], and Tra-
jectory Transformer [25]. VLaMP extends such models to
work with visual states.
Planning in Embodied AI using LMs. Past research has
leveraged PTLMs for task planning in real world for em-
bodied agents [23, 50, 31, 6, 32, 24, 13, 26]. Many of these
works focus on converting a high-level task or instruction
into sequence of low-level steps and then ground them in
the environment using either affordance functions [6], vi-
sual feedback [24], or multimodal prompts [26, 13]. Ow-
ing to their focus on robotic agents, these works focus on
predominately pick-place tasks. Instead VPA is focused on
complex tasks, in which humans might require assistance
in the form of recommended future actions. Consequently,
VLaMP requires grounding and reasoning of much more
complex states and actions, which it accomplishes by fine-
tuning a pretrained LM on multimodal sequences of (visual)
observations and (text-based) actions.
Multi-modal LMs. Recent works have successfully used
the transformer architecture for modeling multi-modal se-
quences that have visual tokens. For instance, [2, 22, 13]
train large transformer based multi-modal sequence predic-
tion models. While [3, 55, 40] focus on adapting pre-
trained LMs to work with visual tokens by aligning the
representation spaces of the two modalities. VLaMP’s ap-
proach of modeling sequence of visual and textual repre-
sentations using PTLMs is similar in spirit to these, i.e.
VLaMP also uses a mapper network to align video repre-
sentations to LM’s token space and jointly learns the map-
per with LM finetuning for VPA. However, in contrast to
previous works, VLaMP predicts the visual tokens autore-
gressively at inference time to enable forecasting of the state
for planning. Consequently, VLaMP’s token prediction loss
is multi-modal, unlike most multi-modal LMs that only use
token prediction loss for text tokens.

3. Visual Planning for Assistance
Here, we introduce the task of Visual Planning for Assis-

tance (VPA), towards enabling multi-step guidance to hu-
mans in their real-world activities. We instantiate VPA for
procedural activities, where humans routinely seek assis-
tance. In this section, we include the definition of VPA,
and describe the evaluation protocol.

3.1. Task Definition

The following two intuitive inputs are given to any model
performing VPA.
Goal Prompt (G). The natural language description (in
short phrase) of the user’s goal, emulating a typical user’s
request for assistance for a day-to-day task. Examples in-
clude, “build a shelf” and “change a tire”.

Visual History (Vt). An untrimmed video that provides
context about the user’s progress towards a goal from the
start till time, say t. We assume that Vt contains k actions
or steps {a1, . . . , ak} pertaining to the goal. However, VPA
doesn’t have access to {a1, . . . , ak} or k and must work
with Vt.

Given these two inputs, Vt andG, the objective of VPA is
to generate a plan T . The plan is a sequence of actions that
should be executed (in the next steps) to assist the user in
achieving the goal G. Concretely, the prediction is denoted
by T = (ak+1, . . . , ak+l), where ai are represented in natu-
ral language but come from a closed setA. Here, l ≤ K de-
notes the number of future actions that should be predicted,
out of the K number of remaining actions required to ac-
complish the goal. For our shelf-building example, the cor-
rect T = (sand shelf, paint shelf, attach shelf),
capturing the remaining 3 future actions (here, l = N = 3).

In day-to-day activities, we request assistance for goals
in natural language. However, prior works procedural plan-
ning [8, 5] assume access to visual goal state. This is not
a realistic assumption for an AI agent assisting humans.
Hence, we purposefully relax this assumption, making our
formulation of the task significantly more practical. More-
over, an agent with access to the visual modality, should be
able to improve its plan by filtering out relevant informa-
tion from the raw video stream of the progress. These are
the two central assumptions around which we formulate the
task of VPA.

3.2. Evaluation

Open-Sourced Video Data. We leverage existing datasets
CrossTask [66] and COIN [54], originally developed to en-
able video action understanding for VPA, based on the fol-
lowing three requirements:
• Rich diversity of activities from multiple domains: The
data from different domains such as cooking, assembly etc.,
enables testing of VPA models in a more generalized man-
ner.
• Goal-oriented activities consisting of long sequences of
actions: Since the objective is to generate l future actions,
activities in these datasets that require diverse sequences of
actions e.g., “making a pancake”, instead of “running” are
more suitable for VPA.
• Action annotations from a fixed closed set of actions : Ac-
tion labels described using verb-noun from a finite set [11],
which are temporally aligned with the videos. This makes
evaluating the accuracy of T prediction straightforward.
Specifically, free-form, narration-style descriptions of ac-
tions that are available in recent video datasets aid in effi-
cient multi-modal representation learning for video under-
standing [19, 39]. However, evaluating the quality of action
sequences towards goal achievement, where each action is
described in free-form natural language, is non-trivial. We



Dataset
# train
videos

# test
videos

# test
samples

actions per
video # goals # domains

CrossTask [66] 1756 752 4123 7.6 ± 4.3 18 3
COIN [54] 9428 1047 2011 3.9 ± 2.4 180 12

Table 2: VPA datasets. We evaluate VPA on two existing
video datasets containing multiple goal-oriented procedu-
ral activities from varied domains. Such activities contain
sequences of multiple actions making them ideal for VPA.

leave the instantiation of VPA with free-form natural lan-
guage actions as future work.

Table 2 summarizes the features from CrossTask and
COIN, aligned with the above requirements.

Metrics. The planning performance of a VPA model
is measured by comparing the generated plan T̂ =
(âk+1, . . . , âk+l) to the ground truth plan T for l actions
in the future, given Vt andG. Here âk+i denotes the predic-
tion for the k+ i-th step given history till k-th step. Consis-
tent with community practices [8, 5], we use the following
metrics, listed in decreasing order of strictness: success rate
(SR), mean accuracy (mAcc), mean intersection over union
(mIOU). Success rate requires an exact match between all
actions and their sequence between T̂ and T . Mean ac-
curacy is the accuracy of the actions at each step. Unlike
success rate, mean accuracy does not require a 100% match
to ground truth. Instead it considers matching at each indi-
vidual step. Lastly, mean intersection over union captures
the cases where the model predicts the steps correctly, but
fails to identify the correct order. Concretely,

mIOUl =

∣∣â{k+1:k+l}
⋂
a{k+1:k+l}

∣∣∣∣â{k+1:k+l}
⋃
a{k+1:k+l}

∣∣ , (1)

mAccl =
1

l

l∑
i=1

1[âk+i, = ak+i], (2)

SRl =

l∏
i=1

1[âk+i = ak+i], (3)

where 1[·] is the identity function, which is 1 when the con-
dition in its input is true, and 0, and â{k+1:k+l} denotes the
set of l future actions in T̂ , i.e., a sequence but disregarding
the order. To complement the above metrics, we also mea-
sure the accuracy of predicting the next action i.e. nAcc,
as defined in (4), where ‘n’ stands for next. Note that all
metrics are averaged over the test set details of which are
included in Sec. 5.

nAcc = 1[âk+1 = ak+1] (4)

4. Visual LM Planner
VPA can be viewed as a sequential decision making

problem, where the model (say, π) predicting the sequence
of next actions is a policy conditioned on the visual history
Vt, serving as (partially-observed) state, and goal prompt
G. Inspired by the offline learning formulation closest to
‘learning from offline demonstrations’ [20, 57, 27, 60], in
VLaMP, we formulate VPA as a goal-conditioned, multi-
modal sequence prediction problem. 3 This formulation
allows us to leverage high-capacity sequence models like
Transformers [56], which have been successfully applied to
sequential decision making [25, 9]. Furthermore, inspired
by the recent success of pre-trained transformer language
models (PTLMs) on such tasks, [45, 23, 9], we propose
to leverage PTLMs as the sequence model in our formu-
lation. In the remainder of this section we describe our
approach for VPA, called Visual Language Model based
Planner (VLaMP), consisting of a segmentation module and
PTLM based sequence prediction module.

4.1. Planning with Segmentation and Forecasting

We define π as a goal-conditioned, multi-modal se-
quence prediction problem:

π = P (ak+1, ak+2, · · · | Vt, G). (5)

where π models the probability of goal-relevant and valid
future actions sequences conditioned on Vt and G.

Modeling the multi-modal sequence in Eq. 5 is compu-
tationally expensive and difficult to scale because of the
high-dimensional state space of raw untrimmed video Vt.4

Also, there is limited data to learn the distribution over
valid action sequences for goals in real-world applications.
Tackling these challenges, we argue that the latent space
of factors influencing the future plan can indeed be ex-
pressed in lesser dimensions. Particularly, to ensure scal-
ability for handling raw videos and sample efficiency in
learning valid action sequence distributions, we decompose
our policy π into two modules. The first module is video
segmentation, which converts the untrimmed video history
Vt into a sequence of video segments i.e. a segment history
Sk = (s1, . . . , sk), where each segment corresponds to an
action ai that occurred in the video. The second module en-
ables forecasting i.e. it transforms the output of the segmen-
tation module and generates the plan. While a probabilistic
formulation of this decomposition can be expressed as:

π =
∑
Sk

P (ak+1, ak+2, · · · | Sk, G)︸ ︷︷ ︸
Forecasting

P (Sk | Vt)︸ ︷︷ ︸
Segmentation

, (6)

3Future works may explore alternate policy optimization formulations
based on reward shaping, inverse RL, or by employing additional online
interactions through photorealistic simulation [28, 46, 53, 51].

4A typical untrimmed video of 100p video of 5 minutes at 8fps will
have 27 raw pixel values.
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Figure 2: VLaMP – Segmentation Module. The
untrimmed visual history Vt is converted into segments,
each consisting of observation oi and the action ai. The ob-
servation oi is the collection of video frames of δ seconds
around the start time stamp ti of the corresponding action
ai. Two such segments are shown here.

where the segment history Sk is a latent variable, the sum-
mation over all possible segment histories is intractable.
We, however, use Eq. 6 as the guiding expression to formu-
late the input and output of both modules. Next, we include
the technical details of both of these modules.

4.2. Segmentation Module

This module splits the untrimmed video history Vt into
segment history Sk of multiple segments, each segment
corresponding to an action. The segmentation is done us-
ing a video-action segmentation model in three steps: pre-
processing, classification, and consolidation. In the pre-
processing step, the raw video frames from Vt are bundled
into fixed-length window clips ci, each of length 1 second,
to obtain Vt = (c1, . . . , ct). In the classification step, a
video-action segmentation model is used to output the most
probable action for each clip ci, which can be denoted as
Ãt = (ã1, ã2, . . . , ãt). Finally, in the consolidation steps,
we convert Ãt into a form that can be used by the fore-
casting module; this form consists of two sequences: ac-
tion history Ak and observation history Ok. To this end,
same actions in consecutive seconds in Ãt are consolidated
to form the action history Ak = (a1, . . . , ak). As illus-
trated in Fig. 2, assuming ti denotes the starting times-
tamp for ai, we also extract video frames from ti − δ/2
to ti + δ/2 to obtain a observation window oi correspond-
ing to ai, and consequently the full observation history
Ok = (o1, . . . , ok). The resultant segment history is termed
Sk = ((o1, a1), . . . , (ok, ak)), summarized in Fig. 2.

4.3. Forecasting Module

The usefulness of π’s decomposition expressed in Eq. (6)
becomes apparent now. Modeling the segmentation mod-
ule’s output as segment history Sk, where each segment
consisting of action and observations, allows writing the

output of the forecasting module in an autoregressive man-
ner:

P (ak+1, ak+2, · · · | o1, a1, . . . , ok, ak, G)

=
∏
i>0

∑
ok+i

P (ok+i, ak+i | o1, a1, . . . , ok, ak, G). (7)

Illustrated in Fig. 3, this autoregressive expression allows
the possibility of using any sequence-to-sequence neural
network as the forecasting module in combination with
pretrained text and video encoders for representing action
and observation history Ak and Ok. This general-purpose
framework allows the use of any neural sequence model –
LSTM [21], GRU [10], Transformers [56], etc. We choose
to instantiate the forecasting module for π using a pretrained
transformer-based LM. Next we present the details of the
encoders for the two modalities and the LM based sequence
model.
Action encoder (fact) Each action ai in Ak is encoded by
fact and the output is denoted by αi. Concretely, token em-
beddings are expressed as:

(α1, . . . , αk) = (fact(a1), . . . , fact(ak)) ,where

αi = (α1
i , . . . , α

ri
i ) ∈ Rri×d (8)

As we illustrate in Fig. 3 (left), each action ai is tokenized
into ri tokens using appropriate tokenizer for the LM, the
tokens are indexed using the vocabulary of the LM, and are
represented using an embedding lookup from the token em-
beddings of the LM to produce αi. Here, ri is the number
of tokens and d is the dimensionality of token embeddings.
Observation encoder (fobs). Visual cues play an inte-
gral role in knowing what actions lie ahead, towards achiev-
ing the goal prompt G. To this end, the visual observa-
tions Ok are encoded and play a critical role in the plan-
ner. Recall, the visual observation history Ok comprises of
oi corresponding to action ai, each of δ frames. As illus-
trated in Fig. 3 (middle), we transform each oi employing
the widely-adopted S3D backbone [62] fS3D∗ (∗ denotes
backbone is frozen). We must project visual encodings to
a shared latent space of action (language) embeddings de-
scribed before (αi). To this end, we map S3D features via a
trainable transformer mapper fmap. Concretely,

(β1, . . . , βk) = (fobs(o1), . . . , fobs(ok)) ,where

βi = (β1
i , . . . , β

δ
i ) ∈ Rδ×d and fobs = fS3D∗ ◦ fmap (9)

Overall, as we show in Fig. 3 (right), the resultant en-
coded sequence of representation for Sk is thus

fenc(Sk) = (β1, α1, . . . , βk, αk) = Hk,

Sequence model (fseq). Given the above encoding for the
segment history Sk, the role of the sequence model is to
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Figure 4: Tokenized Sequence with Masks. The encoded
sequence of representations for k = 2 segments, denoted
alternatively using modality agnostic notation of H2 and
mask M for next token prediction training.

predict a representation of the next token, that would in re-
turn enable VLaMP plan generation capabilities for VPA.
Importantly, in the process of generating sequence of fu-
ture actions autoregressively, we would also need to gener-
ate the representations of ‘future observations’. Therefore,
as we shown in Fig. 3, our sequence model, which con-
sists of the transformer layers of a PTLM, also produces
representations for vision (in addition to the necessary ac-
tion tokens). Before proceeding further, we pause and in-
troduce additional notation for the sequence model, which
will make the subsequent explanation for training and infer-
ence easier to follow. As shown in Figure 4, we alternatively
denote the sequence of representations (β1, α1, . . . , βk, αk)

by Hk = (h1, . . . , hn), with n = kδ +
∑k
i=1 ri. A binary

maskM = (m1, . . . ,mn), wheremi is 1 if the correspond-
ing representation is for an action and 0 otherwise, can help
obtain necessary action or visual observations. With this
notation, given first j representations denoted as h1:j , one
step of the sequence model produces the representation for
j + 1, i.e., fseq(h1:j) = ĥj+1.

4.4. Training

The joint training of the segmentation and forecasting
modules following Eq. (6) is intractable. 5 But, by exploit-
ing the availability of unpaired training data, we approxi-
mate Eq. (6) by feeding in the output of the segmentation
module to the forecasting module and training them sep-
arately, each on their respective labeled data. The video-
action segmentation model is trained utilizing the Video-
CLIP setup [63], where in the segmentation model performs
classification to predict the action for each second of the
video. The forecasting model is trained by adopting the
next representation prediction objective. Unlike vanilla LM
pretraining, however, we also need to train for predicting
visual representations in addition to text (action). There-
fore, we use two different losses Lact and Lobs for text and
visual representations respectively. Specifically, Lact is the
conventional cross-entropy loss over the LM’s vocabulary
VLM for the action representations while Lobs is the mean-
squared error between the predicted and the ground truth
observation representations. The total loss is the sum of
both the loss terms as shown in Eq. (10). In order to have
a stable training, we use ground truth action history to con-
struct Sk (and subsequentlyHk) instead of the output of the
segmentation module. Appendix provides further details on
loss and optimizers for training.

L = −
n∑
j=1

mj Lact(ĥj) + (1−mj)Lobs(ĥj),where

Lact = hj · ĥj −
|VLM|∑
p=1

hp · ĥj ; Lobs =
‖hj − ĥj‖22

d
(10)

5Despite tuning attempts, we found joint optimization to be intractable
and inefficient on resources.



Inference. We next detail the inference procedure for
VLaMP. Recall that we use 1 : n to denote a sequence of
n representations (i.e, h1:n = (h1, . . . , hn)). Additionally,
we denote the concatenation operator over two representa-
tion sequences by “�”. With this notation at hand, we define
the score of an action a ∈ A for following history h1:n as

φ(h1:n � fact(a)) =

ra∑
j=1

aj · fseq(h1:n � a1:j), (11)

where · is the vector dot product, and fact(a) = α1:ra =
(α1, . . . , αra) is the sequence of encoded representations
for action a. In other words, this score is the sum of unnor-
malized log-probability under the sequence model using the
standard softmax distribution. We use this scoring function
with to perform beam search.6.

5. Experiments
We instantiate VLaMP’s segmentation module utilizing

VideoCLIP [63] fine-tuned on COIN and CrossTask; and
the sequence model fseq (in the forecasting module) by
GPT2 [43]. We utilize the open-sourced parameters of
GPT2, obtained from HuggingFace [61]. For inference,
we use Algo. 1 presented in Appendix C, with beam size
B = 10 for CrossTask and a B = 3 for COIN.

5.1. Data and Baselines

Data. For a video V with goal G, both CrossTask [66]
and COIN [54] provide annotations of the form
{ak, (tk, t′k)}Kk=1, where ak are the actions in the video, and
tk (resp. t′k) are the start (resp. end) timestamps ak. Given
an annotated video consisting of K steps, we generate
K − l examples, each with input xk = (G,Vtk) and output
yk = (ak+1, . . . , ak+l), for k = 1, . . .K − l (leaving
at least l steps to predict in each example). 7 Therefore
from M videos, we generated N =

∑M
m=1(Km − l)

examples, where Km is the number of steps in the m-th
video, forming a dataset D = {x(j), y(j)}Nj=1 suitable for
VPA (total number of samples in shown in Table 2).
Baselines. As a first step towards benchmarking, we uti-
lize a random baseline, and additionally adopt a variety of
strong goal-conditioned models. The procedure planning
task is most relevant task from the literature to VPA, there-
fore, we adapt 8 the widely used DDN model introduced by
Chang et al. [8], since it is an established model in many
benchmarks in prior works [5, 65, 52], hence, is chosen for
our experiments. The key details regarding our baselines
are as follows 9:

6The inference algorithm is presented in Algo. 1 Appendix C
7Since we evaluate for three and four next steps on our datasets, we

use the maximum required length and set l = 4.
8We detail these adaptations in Appendix B.1.
9Additional details are deferred to Appendix B.

• Random: Predicts the plan by picking all l actions uni-
formly randomly from the set of all actions A.
• Random w/ goal: A stronger baseline; for each goalG, we
allow privilege access to a set of applicable actions to that
goal AG ⊆ A, and predicts the plan by randomly picking
actions from the restricted set.
• Dual Dynamics Network (DDN) [8]: Accounting for the
difference in task definition, i.e. lack of visual goal, a direct
application of DDN inference algorithm was not possible.
So we keep DDN’s network structure but use Algo. 1 for
inference on VPA.

5.2. Quantitative Results

In the following, we include quantitative findings of
benchmarking methods on two video data sources ( Tab. 3)
and head-on ablations ( Tab. 4).
Improved performance across video datasets. As we
show in Tab. 3, VLaMP significantly outperforms the base-
lines. DDN that is customized for procedural tasks performs
significantly better than heuristics leading to a mAcc boost
from 12.7 → 24.1% (row 2 and 3, l = 4, Tab. 3). With
our novel decomposition and pretraining objective, VLaMP
outperforms these baselines with a further bump up from
24.1→ 31.7% (row 3 and 4).
Steady gains in short & long horizon predictions. Com-
paring columns corresponding to l = 1 and l = 4, the per-
formance (as one might expect) decreases, across all base-
lines and tasks. However, zooming in on COIN results, we
observe consistent gains of VLaMP over DDN. Particularly,
a relative improvement of 54% (29.3 → 45.2) for l = 1
(row 7 and 8, Tab. 3) and a relative improvement of 68%
(21.0→ 35.2) in mAcc.
Privileged random baseline comes close to DDN on easy
metrics. Interestingly, we observe the performance of Ran-
dom w/ goal comes close to DDN, when evaluated for le-
nient metrics like mAcc and mIOU (in COIN section of
Tab. 3). Note, Random w/ goal enjoys the privileged access
to (a much smaller) ‘relevant actions set’ for a given goal.
On an average, the relevant or feasible action set is smaller
for COIN than CrossTask videos. This a priori access to fea-
sible actions makes Random w/ goal a competitive baseline.

Goal-conditioning is crucial. A key difference between
procedure planning and VPA is goal conditioning is pro-
vided to the neural policies. In Tab. 4 (rows 1 and 2), we
measure the effect of providing the goal as a textual descrip-
tion for last-observation-only models. The only difference
is goal prompt G, which increases mAcc performance from
44.5→ 53.1% for l = 1 and 28.3→ 34.7% for l = 3.

5.3. Ablations and Error Analysis

Utilizing head-on ablations, we evaluate how the action
history and the visual history affect the plan generation for



Data Model l = 1 l = 3 l = 4

{n/m}Acc SR mAcc mIOU SR mAcc mIOU

Cross-
task

Random 0.9 0.0 0.9 1.5 0.0 0.9 1.9
Rand.(w/ G) 13.2 0.3 13.4 23.6 0.0 12.7 27.8
DDN [8] 33.4 6.8 25.8 35.2 3.6 24.1 37.0
VLaMP (ours) 50.6 10.3 35.3 44.0 4.4 31.7 43.4

COIN

Random 0.1 0.0 0.1 0.2 0.0 0.1 0.2
Rand.(w/ G) 24.5 1.7 21.4 42.7 0.3 20.1 47.7
DDN [8] 29.3 10.1 22.3 32.2 7.0 21.0 37.3
VLaMP (ours) 45.2 18.3 39.2 56.6 9.0 35.2 54.2

Table 3: Performance on different datasets and horizons.
The mean of various metrics (Sec. 3.1) obtained using 5
runs with different random seeds (std. errors are provide
in Appendix I). Note that the action and observation his-
tory are the output of the separately finetuned video-action
segmentation model and hence are noisy compared to the
ground truth history.

G Ak Ok l = 3 l = 1

SR mAcc mIOU nAcc

1 7 7 ok 6.8 ± 0.3 28.3 ± 1.9 34.8 ± 2.0 44.5 ± 3.8

2 3 7 ok 8.9 ± 0.2 34.7 ± 0.7 41.6 ± 0.8 53.1 ± 2.0

3 3 3 7 14.9 ± 0.3 37.8 ± 0.4 50.8 ± 0.6 48.0 ± 0.2

4 3 3 Ok 15.2 ± 0.3 43.5 ± 0.8 51.4 ± 0.9 64.8 ± 0.9

R 3 3 Ok 10.7 ± 0.2 36.5 ± 0.7 41.7 ± 0.6 61.4 ± 1.8

Table 4: Role of different inputs and LM pre-training
in VLaMP. Here G, Ak, Ok specify the inputs provided to
VLaMP during training and inference, in terms of goal, ac-
tion history and observation history respectively. ok refers
to the use of most recent observation from the history in-
stead of the full observation history. The mean ± std. error
over 5 runs with different random seeds on CrossTask are
shown. The row R corresponds to VLaMP trained with ran-
dom initialization as compared to LM pretraining.

VPA. To remove confounding factors, in Tab. 4 we use the
ground truth output for the segmentation module.
Action and observation history improve complementary
planning metrics. As seen in all the rows with action his-
tory Tab. 4, the provision of action history increases diffi-
cult metrics such as SR. In comparing rows 2 and 3, we
see that SR increases by about 67% (8.9 → 14.9), simply
by using action history even without access to any past ob-
servation. However, the lack of observation history affects
nAcc, which drops by 10% (53.1 → 48.0) when observa-
tion history is swapped by action history between rows 2
and 3.
Priors from the pre-trained LM improve performance.
The row R of Tab. 4 shows the performance of VLaMP
when its forecasting module is trained with random initial-
ization, i.e., the transformer of the same architecture trained
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Figure 5: Effect of segmentation errors. Performance of
VLaMP on CrossTask with classification noise (%) in the
segmentation.

from scratch instead of LM pre-training. The performance
in row R is thus much lower than that of VLaMP with pre-
trained LM shown in Tab. 3, which highlights the impor-
tance of LM pre-training.
Segmentation errors are detrimental. The accuracy of
finetuned VideoCLIP model for video-action segmentation
is 80.2 and 68.7 when segmenting a video per second
for CrossTask and COIN datasets respectively. The effect
of such segmentation error in VLaMP’s performance can
be observed by comparing row 4 of Table 4, which uses
ground-truth segments, with row 4 of Table 3 that uses
a finetuned segmentation model – all metrics significantly
drop due to the introduced segmentation error.
Visual history aids in planning when segmentation has
errors. The error of the segmentation module may lead
to mis-classification of actions leading to erroneous action
history. In order to systematically study the effect of er-
roneous action history on VLaMP’s performance in visual
planning, decoupled from VideoCLIP’s segmentation accu-
racy, we perform controlled experiments wherein we add
noise in the ground truth segmentation. Specifically, we re-
place varying amounts of actions in the ground truth action
history by random actions. We also compare two models
–VLaMP(G,Ak, Ok), which uses both action and observa-
tion history, and VLaMP(A,Ak), which only uses action
history. As the noise increases, the gap in the performance
of the model with access to visual history and the one with-
out, rises. This provides evidence for usefulness of observa-
tions for robustness against segmentation classification er-
ror.
Errors increase towards the tail of the activities. In
Fig. 6, we shows mAcc w.r.t. the number of steps k in the
history. The performance drops towards the tail of the ac-
tivities inspite of access to longer history. Furthermore, this
drop is most significant for the activities that have many
steps like make pancakes, add oil to car, etc. .
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prefix length (k)

add_oil_to_your_car
build_simple_floating_shelves

change_a_tire
grill_steak

jack_up_a_car
make_a_latte

make_banana_ice_cream
make_bread_and_butter_pickles

make_french_strawberry_cake
make_french_toast
make_irish_coffee
make_jello_shots

make_kerala_fish_curry
make_kimchi_fried_rice

make_lemonade
make_meringue
make_pancakes

make_taco_salad
0.0
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0.6
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Figure 6: Prediction in the tail of long activities is chal-
lenging. mAcc for l = 3 w.r.t. the number of steps in
history (k).

6. Conclusion
Visual Planning for Assistance is a new and intuitive for-

mulation to support planning from raw visual observations
for assisting humans in day-to-day activities. We bench-
mark VPA using standard prior work and a new multi-modal
sequence modeling formation of VLaMP. The novel de-
composition of a VLaMP policy into video action segmen-
tation and forecasting leads to several efficiency and model-
ing benefits. Particularly, this allows to leverage pre-trained
LM that leads to significant performance gains. Alternative
decompositions and self-supervised pre-training objectives
for PTLMs are interesting ways forward for VPA.
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Appendix – Pretrained Language Models as
Visual Planners for Human Assistance

We structure the supplementary material as follows:

A. Necessary details and clarifications that we couldn’t
include due to space in the main paper.

B. Implementation details of DDN [8]. Two new base-
lines – GPT3-based [7] language-only method and an-
other based on most-probable actions.

C. Step-by-step algorithm for inference, for reproducibil-
ity and technical details.

D. Optimization, hardware, and training details associ-
ated with training VLaMP.

E. Comparisons to Ego4D’s LTA benchmark.
I. Expanded empirical results, benchmarking the above

additional baselines, and deep-dive into error analysis.

We will opensource our model code and weights, as well
as the splits of the dataset to enable further research on VPA.

A. Clarifications
Due to space, some of the explanations in the main paper

might be insufficient or unclear in a first read. Hence, we
pre-emptively clarify some of these nuances in this section.

• VLaMP uses a randomly initialised forecasting model
(L790) → This refers to VLaMP when its forecast-
ing module is trained with random initialization, i.e.,
the transformer of the same architecture trained from
scratch instead of LM pre-training.

• Per-second accuracy of video-action segmentation
(L798-799) → The finetuned VideoCLIP [63] for
video-action segmentation outputs an action label for
each second of a video. We report this accuracy fol-
lowing the convention in the original VideoCLIP pa-
per, averaged over all videos in the test set.

• (L615-617) A more accurate representation should in-
clude a the log-sum-exp operator. The correct expres-
sion is

Lact(ĥj) = hj · ĥj − log

VLM∑
p=1

exp
(
hp · ĥj

)
.

B. DDN and Additional Baselines
In this section we include more information about base-

lines that we benchmark on VPA in experiments (Sec. 5).
First, we include necessary details of reproducing the
DDN [8] and how we keep it consistent and fair to the pro-
posed VLaMP. Second, we provide two additional baselines
– a heuristic baseline, which leverages the structure of our
goal-oriented activities for generating plans and a prompt-
based baseline using a large LM. Finally, we briefly discuss

Data Model l = 1 l = 3
{n/m}Acc SR mAcc mIOU

COIN GPT-3 [23] 12.1 0.5 14.3 22.3
VLaMP (ours) 67.2 25.5 51.6 59.1

Table 5: Performance of VLaMP vs. GPT-3 prompting.
Inspired from [23], we sub-sample 310 videos from the test
set of COIN to test a prompting-based, language-only base-
line using GPT-3 [7], and compare it with VLaMP on the
same videos. Such an application of prompting with GPT-3
does not perform well on VPA.

prior procedural planning methods, which we choose not to
compare with.

B.1. DDN [8]

Technical Background. Chang et al. [8] proposed Dual
Dynamics Network (DDN) for procedural planning. The
objective is to learn a latent space representation of obser-
vations and actions in addition to a dynamics and conjugate
dynamics model that operate over this latent space. The
latent representations and recurrent RNN-based dynamics
model are learned together by minimizing a joint loss over
predicted observations and actions. Such dynamics mod-
eling in latent space is similar in spirit to the forecasting
module in VLaMP (Eq. (7)).
Implementation. As shown in Fig. 8, we instantiate DDN
for VPA by using an LSTM-based [21] fseq in the forecast-
ing module, which operates over the observation representa-
tions obtained using the same observation encoder fobs con-
sisting of pretrained S3D [62] and a mapper as VLaMP and
action representations from an embedding layer-based ac-
tion encoder fact. Unlike VLaMP, where the mapper aims to
project the visual observation representations into the input
space of the pretrained LM, the mapper in DDN only pro-
vides trainable parameters to finetune the frozen S3D repre-
sentations for downstream dynamics model. Both fseq and
fact are initialized with random weights. Just as VLaMP,
DDN is trained using cross-entropy loss for predicted ac-
tions and mean-squared error for predicted observation rep-
resentations to jointly learn fobs, fact, and the sequence
model. At inference, the model is unrolled autoregressively
(with beam search as shown in Algo. 1), for prediction of
both action and observation representations. These design
choices are consistent with VLaMP.

B.2. Additional Baseline: GPT-3 Planner (Tab. 5)

Following Huang et al. [23], where the authors use a
LLM as zero-shot planners, we too also experiment with
prompting a frozen pretrained large language model (GPT-
3) for VPA. Specifically, a goal prompt and the current his-



Algorithm 1: Inference for VLaMP and baselines
Data: encoded representations for history Hk = (h1, . . . , hn), beam size B
Result: plan for next l steps T̂ = ak+1, · · · , ak+l

1 H0 ← {Hk}; // Initialize the set of encoded trajectories with the history
2 for i = 1, . . . , l ; // predict actions for l steps
3 do
4 Hi ← {H � fenc(a) | H ∈ Hi−1, a ∈ A} ; // All single action extension at i-th step
5 Φi ← {φ(H) | H ∈ Hi}; // score each trajectory

6 H̃i, Φ̃i ← top(B, sorted(Hi,Φi)) ; // Keep B highest scoring trajectories

7 H̃0
i ← H̃i;

8 for u = 1, . . . , δ ; // Predict δ observation representations autoregressively
9 do

10 H̃ui ← {H � fseq(H) | H ∈ H̃u−1
i }

11 end
12 Hi ← H̃δi ;
13 end
14 T̂ ← readout(l, top(1, sorted(H̃l, Φ̃l))) ; // Read out last l actions from the top scoring beam

Figure 7: GPT-3 as a planner based on [23]. A language-
only baseline using GPT-3 on COIN. GPT-3 is prompted
autoregressively to generate next action based on the goal
and the history of actions taken for the goal.

tory of previously predicted actions (if available) are given
as a prompt to the GPT-3 model [7]. Then the next actions
for the given goal are generated autoregressively, consistent
with other baselines like VLaMP. As can be seen in Fig. 7,
this model has 2 stages: 1) next-action generation, and 2)
action retrieval. In the next-action generation stage, the
model is given the prompt and generates the next action. In
the action retrieval stage, the generated next action is com-
pared to all possible actions and the action that has the clos-
est similarity to the generated action, is chosen and placed
in the prompt. This step is required since we evaluate the
generated plans by comparing with ground truth actions for
the goal, where actions belong to a closed set as described
in Sec. 3.2. We use text-davinci-003 backend for genera-
tion, and text-embedding-ada-002 for embedding, which is
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𝑓map
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LSTM

𝛽! 𝛼! 𝛽!"#

𝛼! 𝛼!"#

𝑓seq

𝛽!"#

(b) Sequence Model

Figure 8: DDN Implementation. The method utilizes
LSTM in the forecasting module for VPA. Consistent to and
analogous of VLaMP’s Fig. 3 in the main paper.

used in combination with cosine similarity to retrieve the
closest action. We perform our generation step zero-shot
without giving any examples, as GPT3 can already follow
the given prompt template, and we only generate one action
at the time – in an autoregressive manner.

We sub-sampled the COIN test set, and compared
VLaMP with the aforementioned GPT3-based model. In
order to make the dataset suitable for language-only instan-
tiation of VPA, we removed videos that had less than four



unique actions. We then evaluate both models on this subset
of COIN. As can be seen in Tab. 5, VLaMP surpasses the
GPT3-based baseline on all measures.

B.3. Additional Baseline: ‘Most Probable Action’

We already benchmark two intuitive, heuristic baselines
as discussed in Sec. 5.1 and Tab. 3 of the main paper, par-
ticularly, denoted as random and random w/ goal.

Here, we introduce an additional, heuristic baseline
called ‘most probable action’. The key insight here is that
procedural activities are highly structured, i.e., certain ac-
tions occur together or occur in a certain order. We bake
this into a new baseline that captures this structure through
the probability distribution of the next action given the cur-
rent action.

To this end, the intuitive most probable action baseline
picks the most probable next action aj |ai from the action
set A. Akin to random w/ goal baseline, we also evaluate
a goal-conditioned most probable action baseline, that uses
a goal-specific set of actions AG ⊂ A during sampling.
Since these most probable baselines, provide a probability
distribution over the actions, we can employ beam search
(for fairness, with the same beam size same as VLaMP)
and pick the highest scoring plan. The results of this are
included in Tab. 6 (an expanded version of Tab. 3 from the
main paper).

B.4. On Porting More Baselines

Next, we briefly include some procedural planning ap-
proaches and reasons why they cannot be directly leveraged
for rigorous and fair evaluation. Wherever possible, we in-
clude our best attempts to compare with them.
PlaTe [52]: This is similar to DDN, albeit with a Trans-
former [56] as the sequence model instead of an LSTM [21].
However, unlike DDN (and VLaMP), PlaTe uses separate
Transformer-based models for state and action prediction.
We adopt an approach that allowed us to tap into this while
being consistent and fair in evaluation. Therefore, instead
of directly adapting PlaTe for VPA as we did with DDN,
we provide an ablation on VLaMP, which uses a Trans-
former trained from scratch as the sequence model (row R
in Tab. 4).
P3IV [65]: This employs a significantly different model-
ing framework compared to DDN and PlaTe. Specifically,
P3IV leverages a memory-augmented transformer as the se-
quence model and a probabilistic generative model to cap-
ture the noise and variability in predicted sequences. The
authors report significant performance gain on the task of
procedure planning, over DDN and PlaTe. However, P3IV
relies on the visual observation of the goal already com-
pleted, even at inference time. This is necessary to condi-
tion their generative model towards encoding multiple plans
from start to goal. Since P3IV needs the observations of

goal completed, it is incompatible to the motivation and the
very premise of VPA.

C. Inference for VPA (Alg. 1)

In order to predict a sequence of next actions, we run the
sequence model, autoregressively to predict both the action
and observation tokens, with beam search on the action se-
quence. The inference algorithm is detailed in Algo. 1. We
first encode the history into a sequence of representations
Hk as described in Sec. 4.3, and initialize our set of en-
coder trajectoriesH0 using this single representation trajec-
tory (line 1 in Alg. 1). Then we start the inference procedure
that runs for l steps (line 2). At each step i we first infer the
next action and then also predict the representations for the
observation that follows it. To do the former, each represen-
tation trajectory in Hi is extended with the representations
of each action in the action set A (line 4). At this point, if,
for instance, Hi−1 had n trajectories, then after line 4, Hi
will have n×|A| trajectories. This is a temporary blow-up–
at line 6, we score all n× |A| trajectories and keep only top
B trajectories. Here, to balance diversity, we keep no more
than b trajectories with exactly same history. The parameter
b is usually referred to as per node beam size. Once we have
B trajectories in Hi, we auto-regressively predict the next
δ tokens corresponding to the next observation, thus com-
pleting one out of the l steps of inference. This process it
repeated l times to generate a plan consisting of l actions.
We make this process efficient by storing the hidden state
of the transformer and limiting the forward pass only on the
new representations at each step. This is a common practice
for transformer based models in NLP. Due to beam search,
the inference process is slower than training as shown in
Tab. 7.

D. VLaMP Training (Tab. 7)

Unlike inference where a video with K steps results into
K − 4 examples, during training, like with language model
pre-training, we use a single forward pass to compute loss
for all tokens. Moreover, inference also uses beam search
making it more memory intensive. Thus, the training is
much faster and cheaper as compared to the inference. The
details of the compute used for each training and inference
run is shown in Tab. 7.

E. Comparison to Ego4D LTA Benchmark

In prior work, Ego4D’s Long-term Action Anticipa-
tion [19] benchmark task is likely the most relevant to VPA.
Hence, we dedicate a discussion of similarities and con-
trasts. We hope this helps the reader accurately place these
two tasks in our community’s diverse research goals and di-
rections.



Dataset Method l = 1 l = 3 l = 4

nAcc SR mAcc mIOU SR mAcc mIOU

CrossTask

Random 0.9 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.5 ± 0.0 0.0 ± 0.0 0.9 ± 0.0 1.9 ± 0.0
Random w/ goal 13.2 ± 0.2 0.3 ± 0.0 13.4 ± 0.0 23.6 ± 0.1 0.0 ± 0.0 12.7 ± 0.0 27.8 ± 0.1
Most probable 10.4 ± 0.0 1.7 ± 0.0 6.1 ± 0.0 9.9 ± 0.0 1.3 ± 0.0 5.5 ± 0.0 13.9 ± 0.0
Most probable w/ goal 12.4 ± 0.0 2.4 ± 0.0 8.9 ± 0.0 15.5 ± 0.0 1.5 ± 0.0 7.9 ± 0.0 20.5 ± 0.0
DDN [8] 33.4 ± 0.5 6.8 ± 0.3 25.8 ± 0.5 35.2 ± 0.6 3.6 ± 0.2 24.1 ± 0.4 37.0 ± 0.4
VLaMP (ours) 50.6 ± 1.4 10.3 ± 0.4 35.3 ± 1.1 44.0 ± 1.0 4.4 ± 0.2 31.7 ± 1.0 43.4 ± 0.9

COIN

Random 0.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.2 ± 0.0
Random w/ goal 24.5 ± 0.2 1.7 ± 0.0 21.4 ± 0.1 42.7 ± 0.1 0.3 ± 0.0 20.1 ± 0.1 47.7 ± 0.1
Most probable 0.7 ± 0.0 1.6 ± 0.0 4.3 ± 0.0 6.8 ± 0.0 1.6 ± 0.0 8.2 ± 0.0 15.3 ± 0.0
Most probable w/ goal 23.9 ± 0.0 10.9 ± 0.0 18.0 ± 0.0 24.9 ± 0.0 9.1 ± 0.0 16.3 ± 0.0 32.2 ± 0.0
DDN [8] 29.3 ± 0.3 10.1 ± 0.4 22.3 ± 0.4 32.2 ± 0.6 7.0 ± 0.3 21.0 ± 0.4 37.3 ± 0.3
VLaMP (ours) 45.2 ± 0.8 18.3 ± 0.1 39.2 ± 0.3 56.6 ± 0.5 9.0 ± 0.3 35.2 ± 0.2 54.2 ± 0.5

Table 6: Expanded version of Tab. 3. The mean ± std. error of mean for various planning metrics obtained using 5 runs
with different random seed are shown for VLaMP and various baselines. Note that the action history and observations are
provided using the output of the action segmentation model and hence are noisy compared to the ground truth history.

beam
size (B)

per node
beam size (b) GPU

GPU
memory

Num
GPUs

(inference)

Num
GPUs

(training)

Avg. time
(training)

Avg. time
(inference)

batch
size

(training)

CrossTask 10 3 NVIDIA A100 80GB 1 GPU/model 1 GPU/model 2 s/batch 7.4 s/example 4
COIN 3 3 NVIDIA A100 80GB 3 GPUs/model 1 GPU/model 2 s/batch 6.1 s/example 4

Table 7: Hyperparameters and compute information for VLaMP.

Consistent to VPA, LTA also focuses on predicting a se-
quence of future actions given prior visual context for free-
form human interaction. Unlike LTA, VPA specifically en-
tails goal-oriented activities and indeed a natural language
goal prompt is of key importance to the definition of VPA.
So while the forecasting suite in Ego4D aspires to under-
stand human motion, we are instead keen to create assistive
agents that can interact and assist humans in their tasks.

Since LTA does not allow access or model the user’s
goal, recent approaches for LTA including the winning
model for Ego4D 2022 LTA challenge – ICVAE [37] have
to go via an additional step of inferring the intention of the
user. This provides more impetus to our goal-conditioned
and human-assitive design choice and motivation for VPA.
This is empirically backed as well, as we show in ablation
(row 1 in Tab. 4) – goal-conditioning is crucial for VPA.

I. Additional Quantitative Results10

Most probable action baseline. As shown in Table 6, the
performance of our intuitive heuristic baselines – most prob-
able action w/ goal, and Random w/ goal (i.e. the baselines
with actions restricted to the set of actions seen with the
corresponding goal) is quite high for COIN dataset. We
find that this is due to the relatively small cardinality of the

10We number this section as I, to be consistent with the main paper
references.

action set for goals in COIN, i.e. the average size ofAG for
different Gs.

Action distribution analysis. We dig deeper into the above
finding in Fig. 9(a). Particularly, we plot the distribution of
number of actions |AG| w.r.t G and find them to be quite
different in COIN vs. CrossTask. Here, |AG| ∈ A repre-
sents the set of goal-specific actions from the larger set of
actions A for each dataset. Specifically, the average size of
AG is 4.3 and 7.3, respectively for COIN and CrossTask,
reducing the difficulty of VPA in COIN. Also, notice the
long-tails in the distribution of CrossTask, making it even
more challenging.

Zooming into the tails and higher errors. In Fig. 9(b),
we plot the number of steps in the history (k) vs. the mean
accuracy (mAcc), averaged across all goals in CrossTask on
VPA. We find that plan generation with longer history leads
to higher errors as well as higher variance in performance.
We believe this trend emerges due to two reasons.

First, the presence of repetitive steps in certain goals
is high in longer history. Moreover, we find that longer
the history the wider is the space of possible plans (intu-
itively, multiple modes exist in the plan distribution land-
scape), which lead to higher variance. We illustrate this in
Fig. 10 with a qualitative result, for the example goal of
‘making kimchi fried rice’, the action ‘stir mixture’ repeat-
edly occurs between various actions involving the addition
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Figure 9: Zooming into the tails. (a) Average size of goal-specific action setAG across COIN and CrossTask datasets. COIN
has a relatively smaller mean than CrossTask, which reduces the difficulty of VPA on COIN. (b) Mean accuracy (mAcc) vs.
the history length k of various goals from CrossTask. Interestingly, plan generation for goals with longer history is difficult
and prone to higher errors as reflected in the mAcc (reasoning included in Sec. I). (c) Longer sequences are also less frequent
in the dataset. This contributes to high variance in performance for such sequences.
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Figure 10: Qualitative Error Analysis for VPA. Ground truth plan T and the predicted plan T̂ by VLaMP for the goal
prompt of “making kimchi fried rice” (top) and “ Jack up the car” (bottom). Errors made by VLaMP can be attributed to
repetitions in actions. Details are included in Sec. I. Briefly, (1) uncertainty in the number of times actions are repeated and
(2) existence of equivalent plans for achieving the same goal, are contribute heavily to the errors for VPA. In the top, note
the action ‘stir mixture’ is repeated consecutively in the ground truth, but the model predicts it only once. Moreover, both
the ground truth and the predicted plans have correct steps for adding kimchi and onion but their order is different. Similar
repetitions result into errors for the goal of jacking up the car.

of ingredients like onion, kimchi, rice, etc. However, the
number of times stir mixture occurs varies sporadically. For
instance, for the ground truth plan in the first example in
Fig. 10, the ‘stir mixture’ is missing between ‘add onion’
and ‘add kimchi’, but occurs twice after ‘add kimchi’, be-
fore adding other ingredients. Due to this sporadic vari-
ability, the predicted plan gets IoU of 75% on this exam-
ple, but mAcc and SR of 25% and 0, respectively. Another
common source of errors is repetition of sub-sequences of
actions depending on the visual signal in the ground truth.
Specifically, as seen in the second example in Fig. 10, which
shows an action trajectory for the goal of ‘jack up a car’, the
sub-sequence (‘raise jack’, ‘lower jack’), is repeated three
times. In this example, the repetition is due to overshooting

the target height of the raised car. However, for a planning
model, that only sees the visual input till k = 3 or time
tk, it is not possible to guess whether the car will overshoot
(undershoot, respectively) the target height after the next
application of ‘raise jack’ (‘lower jack’, respectively).

Second, as analysed in Fig. 9(c), longer trajectories are
exponentially less frequent in the dataset – forming the tail
of the data distribution of action sequences in the dataset.
This also contributes to high variance in performance for
such sequences.
Segmentation errors. As we note in Sec. 5.3 and Fig. 5
of the main paper, segmentation errors are detrimental
for VPA. As the mis-classification error in the segmenta-
tion model increases, the difference in the performance of



14%

15%

38%

28%

32%

55%

% drop in performance

Figure 11: Effect of segmentation errors. The figure
zooms in on two metrics mAcc and nAcc from Figure
5. As the classification error in segmentation, which is
shown along the x-axis increases, the performance gap be-
tween the model with access to observation history VLaMP
(G,Ak, Ok) and that with access only to the action history
VLaMP (G,Ak) increases.

VLaMP (G,Ak, Ok), i.e. the model with access to obser-
vation history, and VLaMP (G,Ak), the model working
only on the action history, increases. A detailed version of
Fig. 5 is included in Fig. 11 with a focus on mean accuracy
(mAcc) and next-step accuracy (nAcc)11. Moreover, since
the observation history has higher influence on predicting
the immediate next action as discussed in Sec. 5.3, the per-
formance drop due to segmentation classification error is
higher in nAcc as compared to mAcc.

11Refer to the definitions of metrics in Sec. 3.2


