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ABSTRACT

Interpretability provides a means for humans to verify aspects of machine learning (ML) models and
empower human+ML teaming in situations where the task cannot be fully automated. Different con-
texts require explanations with different properties. For example, the kind of explanation required
to determine if an early cardiac arrest warning system is ready to be integrated into a care setting
is very different from the type of explanation required for a loan applicant to help determine the
actions they might need to take to make their application successful.

Unfortunately, there is a lack of standardization when it comes to properties of explanations: dif-
ferent papers may use the same term to mean different quantities, and different terms to mean the
same quantity. This lack of a standardized terminology and categorization of the properties of ML
explanations prevents us from both rigorously comparing interpretable machine learning methods
and identifying what properties are needed in what contexts.

In this work, we survey properties defined in interpretable machine learning papers, synthesize them
based on what they actually measure, and describe the trade-offs between different formulations of
these properties. In doing so, we enable more informed selection of task-appropriate formulations of
explanation properties as well as standardization for future work in interpretable machine learning.

1 Introduction

Interest in interpretable machine learning2 has grown in recent years. Regulatory bodies see interpretable machine
learning as a method for auditing algorithms for safety, fairness, and other criteria—especially in high-stakes situations.
Industry sees interpretable machine learning not only as a mechanism to provide oversight over their products, but also
as a way to uncover insights on trends in their data and other forms of human+ML teaming.

It is well-accepted that different contexts will require different kinds of methods for interpretable machine learning.
For example, the kind of explanation required to determine if an early cardiac arrest warning system is ready to
be integrated into a care setting is very different from the type of explanation required for a loan applicant to help
determine the actions they might need to take to make their application successful. Identifying which interpretability
methods are best suited to which tasks remains a grand challenge in interpretable machine learning.

We can quantify how "good" an interpretable machine learning method is by quantifying the properties it preserves.
Since these properties must be tied to the task it is designed to explain, they can serve as an abstraction between the
method and its context. For example, both an explanation describing features a patient might change to reduce future
cardiac risk and an explanation describing features a loan applicant might change to successfully get a loan, should
clearly have no false positives—if the person acts on the listed features, the output should change. In both cases, it
might also be important for the explanation to be reasonably short as the person may not have the time or inclination

∗Equal Contribution
2In this paper, we will use the term interpretable machine learning synonymously with explainable AI.
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to parse through a complex description. In contrast, if one were vetting a risk predictor for a health or justice scenario,
one might require a more complete explanation of the entire model—and not mind spending time carefully inspecting
it. In other words, desirable properties in explanations are completely dependent on the context and the explanation
being used, which is why we can consider them as an abstraction between the two. If one knows what properties are
needed for what contexts, then one might be able to check for those properties computationally to identify promising
interpretable machine learning methods prior to more expensive user studies with people.

Unfortunately, while many works have defined properties, there is little current consensus around the terminology and
formulation of interpretable machine learning properties. We highlight some of the issues due to this. First, different
works have used different terms for the same property. For example, one work might call a property robustness
while another calls it stability. Second, different works have formalized the notion of these properties differently: the
expressions that one work uses to computationally evaluate compactness may be different than another. The current
state of having multiple definitions in literature and a lack of consistent formulations makes it difficult to compare
methods rigorously. It also becomes challenging to interpret what it truly means when one claims that a certain
context needs a certain property or that a certain algorithm preserves it.

This paper reviews and synthesizes existing properties and definitions in the interpretable machine learning literature.
We first collect together metrics describing the same properties but termed differently in different works. Next, for
each property, we (a) precisely describe the various mathematical formulations that have been proposed, (b) identify
the key variations in those formulations, and (c) describe how different formulations of the same property might be
appropriate in different contexts. Finally, we use these formulations to make precise how different properties may or
may not be in tension with each other.

In doing the above, our framework provides a much-needed systematic synthesis of a key part of the interpretable
machine learning ecosystem. Our work serves as a reference for not only what are common properties that we might
desire of interpretable machine learning methods, but also what considerations might go into how the abstract property
is made precise. Our work can serve as a reference for both what terms are used to describe properties as well as how
to formalize them for future research in interpretable machine learning.

2 Related Work

The urgent need for explainable and interpretable machine learning has prompted researchers to focus on reviewing
and categorizing existing literature based on explainability methods, properties, and evaluation metrics. However, to
the best of our knowledge, there has not been prior work that organizes formulations of explanation properties—which
is necessary for future work comparing interpretable machine learning methods and understanding what information
is needed in what contexts.

Reviews of Explanation Types: The categorization of explanations into various classes in the form of a taxonomy to
aid practical usage has been offered by Arya et al. (2019). Since this work focuses on real-world usage of explanations,
they supplement this overview with a software package implementing the explainability methods under various classes.
Carvalho et al. (2019) also classify explanation methods based on various criteria such as explanation type, result,
scope, etc. Marcinkevics and Vogt (2020) provide a similar non-exhaustive categorization of various explainable and
interpretable methods from a quantitative perspective. Similarly, Murdoch et al. (2019) offer a framework which aids
the categorization and selection of explainable and interpretable techniques for practical applications. All of these
works focus on the types of explanations. In contrast, we categorize formulations of the properties that describe an
explanation’s quality.

Reviews of Explanation Properties and Metrics: The terms property and evaluation metric are often used synony-
mously in different works. We prefer the term property to avoid conflation with the ultimate downstream evaluation
metric—how well an explanation aids a user in performing their task. The identification of important properties in
explanations by reviewing various explanation evaluation metrics in literature has been offered by Zhou et al. (2021).
Liao et al. (2022) provide a user survey based taxonomy with a focus on desired properties and usage contexts of
explanations. Sovrano et al. (2021) offer a review of evaluation metrics based on their compliance with the law and
the properties to be satisfied for such compliance, which differs from our focus on the quantitative objectives fulfilled
by each property. Unlike these works, we make each property precise by offering an analytical comparison between
proposed definitions in literature and by mapping these definitions to various use cases.

Other Taxonomies: A thorough taxonomy discussing all contributions in explainable machine learning, intended
to serve as overarching references for incoming researchers in the field, has been presented by Barredo Arrieta et al.
(2020) and Adadi and Berrada (2018). The former discusses explanations and their properties with a focus on the
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types of models in use. Guidotti et al. (2018) also provide a mapping of explanation methods to the type of black-box
model being used in addition to discussing the types of problems they can address. These reviews are broad, and do
not focus on the precise concern of synthesizing different property formulations.

3 Notation and Terminology

In this work, we use f to denote the model to be explained and E(f) to represent the explanation; we define the
explanation as the information provided from the model to the user. Throughout the work, we look at predictive
models that yield a prediction ŷ = f(x) for the input point x that has K features x(1) . . . x(K). For the model f ,
we denote its prediction as ŷf , which may be discrete or continuous depending on whether the task is classification
or regression. If the explanation depends also on the input, we will use the notation E(f,x). Certain evaluations
of explanations also require a baseline or reference input value, we denote x0 as this reference value. Some also
take into account the ground truth value at an input x, and we denote y as the respective ground truth. Explanations
in the interpretable machine learning literature tend to fall into three main categories: function-based explanations,
feature-attribution-based explanations, example-based explanations.

Function-based Explanations: We use the term function-based explanations for models or structures that are in-
herently interpretable and allow one to produce an output or reasoning given an input. Typically, this means that the
explanation will produce a prediction ŷE that can be compared to the model prediction ŷf . Examples are: a local
surrogate explanation that uses an interpretable model (e.g. sparse linear model, decision tree, etc.) to approximate
the target model locally around an individual prediction; a decision set that approximates the target model’s behav-
ior globally with nested if-else rules; a self-explaining neural network that has an interpretable linear form but with
the coefficients being neural networks and depending on the input; a concept bottleneck model that maps features to
interpretable concepts and then uses the concepts to predict the output.

Feature Attribution Explanations: The next common form of explanation is one that simply provides a list of
important features (perhaps ordered or weighted somehow). Specifically, a feature attribution explanation E gives a
length-K vector, in which each entry E(f,x)k is the attribution score for each feature k = 1 . . .K at observation x

for model f . Different feature attribution methods use different ranges of values for E(f,x)k: some may assign both
positive and negative weights; others may only assign non-negative weights. The ranking of features RankE(f,x)
given the attribution weights E(f,x)k is the ordering of the features from largest to smallest.

Sparse feature attribution methods attempt to identify a subset of relevant features from the full set. We use S ⊆
{1 . . .K} to represent the retained subset of features. We use xS to denote a version of the input x for which the
values of the features in S are retained, and the values of the features not in S are reverted to baseline values x0:
x
(k)
S = x

(k) if k ∈ S elsex(k)
0 for k = 1 . . .K . Similarly, we use Sc to denote the complement of S and xSc to denote

the input x with features in Sc retained and features in S reset to the reference value x0, i.e. x(k)
Sc = x

(k)
0 if k ∈ S else

x
(k) for k ∈ Sc.

Unlike function-based explanations, a list of feature attributions does not, in itself, provide a way to predict an output
given an input. However, one common approach to making predictions given a feature attribution-based explanation
E(f,x)k is to compute the prediction f(xS).

Example-based Explanations: Example-based methods select a subset of representative samples from the dataset
to explain model behavior or the underlying distribution.

Metrics and Norms: We use ℓ(·, ·) to denote all norms and specify the type of norm (e.g. ℓ2 for the L-2 norm) and
what space it is on, in the text.

We often want to compare the model prediction output ŷf = f(x) to the output implied by the explanation ŷE .
(For function-based explanations, there is a direct way to compute ŷE = E(f,x)(x) for local explanations and
ŷE = E(f)(x) for global explanations; for feature attribution methods, we can use heuristics like those listed above.)
We use L(ŷf , ŷE) to denote the loss that captures how well the explanation captures the model’s behavior at an input
x.

Finally, all equations presented in the relevant literature cited below are converted to this notation for ease of compari-
son. We also reference the original equations to allow the reader to refer to the source.
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4 Framework for Synthesizing Properties of Model Explanations

We synthesize explanation evaluation metrics from existing literature and find that they broadly fall under four distinct
categories, each of which corresponds to a desired property for model explanations. We provide a visual categorization
of the metrics introduced by various works in literature in Figure 1 and synthesize them in their corresponding sections.

Robustness/Sensitivity: Robustness or sensitivity measures how much the explanation is prone to change when the
input x is changed infinitesimally or imperceptibly. This is an important property because similar inputs should yield
similar explanations, else users might rely on inconsistent explanations for slightly variable inputs and lose trust in the
model.

Faithfulness/Fidelity: Faithfulness or fidelity evaluates the explanation’s capability to capture the true underlying
decision-making of the model. This is important because explanations should reveal the true reasoning of the model
to the users. Failing to do so can affect downstream decision-making by the user and lead to unfavorable outcomes,
especially in high-risk scenarios.

Complexity/Compactness: Complexity or compactness describes the cognitive effort that users would have to exert
to understand the explanation. This is an important property because simple explanations are more understandable
and thus more usable. We observe a trade-off between faithfulness and complexity, i.e. a tension between accurately
capturing model behavior and maximizing user understandability of the explanation.

Homogeneity: Homogeneity refers to the ability of the explanation to accurately reveal the model’s underlying
decision-making across different subgroups, which is equivalent to faithfulness across subgroups. In specific appli-
cations, these subgroups differ by a sensitive demographic attribute, which makes homogeneity relevant to fairness
preservation. On the other hand, homogeneity can also be viewed as the explanation’s ability to be robust to input
perturbations to subgroup membership. From the standpoint of fairness, if a model makes biased/fair decisions, then
an explanation that preserves homogeneity should accurately reveal the unfairness/fairness to the user. This makes
homogeneity a combination of faithfulness and robustness across subgroups.

What follows is a synthesis of the properties preserved by the various explanation metrics proposed in literature and a
categorization by their mathematical formulation, the underlying notion being captured and the human tasks requiring
the preservation of these properties.

5 Robustness and Sensitivity

The first property we examine is robustness, also often referred-to as sensitivity. For local interpretability methods (i.e.
methods that explain the prediction for a given x), sensitivity measures the similarity of explanations under changes
to the input point x. It has been shown that robustness increases user trust in the explanation (Yeh et al., 2019a;
Ghorbani et al., 2017): users expect explanations to be stable under minor changes to the input point x. Especially
in high-stakes applications, it is important to ensure that minor changes to the input do not lead to explanations that
are very different since this could mislead users to inappropriately trust incorrect models. Robust explanations also
help manage end-user expectations from the model. Additionally, sensitivity to input perturbations plays a key role in
determining the success of an adversarial attack that seeks to perturb the explanation via an imperceptible perturbation
of the input.

Input perturbations can be performed in various ways and is typically defined as being performed on a region of
interest. For instance, local perturbations are performed within a sphere of a given radius surrounding the input x and
the region here is the sphere itself. Group perturbations are performed by perturbing group membership values of the
input x and the region is characterized by the set of sensitive attribute values. Within a given region, the nature of
the perturbation can be general or adversarial and sensitivity is broadly measured as the change in the perturbed and
unperturbed explanations, via distance and similarity metrics.

In the following, we categorize and compare proposed mathematical formulations for sensitivity. In all cases, we
presume there is some context-dependent definition of similarity between two explanations so that we can numerically
calculate the "difference/change in explanation". Then, the formulations for sensitivity fall into three major categories:

• Sensitivity via general perturbations measures the change in explanation as a function of change in input,
where this change in input is described via local perturbations of a given radius. It evaluates the collective
impact on an explanation when inputs are subject to change and this can be quantified as the maximum
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Figure 1: Property Synthesis Framework

change in explanation, the average change in explanation, or the maximum ratio of explanation change to
perturbation size. We describe these in Section 5.1.

• Sensitivity via adversarial perturbations is a special case where the perturbations are intended to cause
change in explanation while the input is perturbed imperceptibly. These are highly relevant to explanation
methods where the input is an image that can be perturbed to deceive the explanation, thus raising security
concerns in medical and economic applications. This undesirable explanation change when subject to an
adversarial attack is formalized in different ways depending on the region of input perturbation. While most
of the current applications have been to images, the general definition can be applied to other use cases. We
describe these in Section 5.2.

• Sensitivity via group-based perturbations measures the change in an explanation by changing only the group
membership of a sensitive categorical attribute in the input. This type of perturbation can also be viewed
as a general perturbation where the geometric region is cylindrical and the perturbation is along a single
axis measuring sensitive attribute change. This is relevant to downstream applications which require the
explanation to reveal underlying group-based unfairness/biases in the model. In other words, an explanation
must be robust enough to accurately reflect the model’s group-based decision making when subjected to
group-based perturbations. We describe these in Section 5.3.

We expand on each below.

5



Running Title for Header

5.1 Sensitivity via General Perturbations

General perturbations usually refer to random perturbations within a specific region around the original input and the
examples in literature use spherical regions for local perturbations and cylindrical regions for group-based perturba-
tions. However, a general definition of sensitivity could use geometric regions of different shapes, depending on the
application.

The first metric of sensitivity via general perturbations, proposed by Yeh et al. (2019a) (also discussed by Bhatt et al.
(2020)), defines max-sensitivity as the maximum change in the explanation E under a small perturbation. The pertur-
bation is defined within a sphere of radius r around the input x and the change in explanation is measured by the ℓ2
norm:

max-sensitivity(E, f,x, r) , max
‖x′−x‖≤r

‖E(f,x′)− E(f,x)‖ ⊲Definition 3.1 in Yeh et al. (1)

While bounding max-sensitivity bounds the change in explanation within a small region, it does not require continuity.
That is, the explanation may change abruptly within the region. In contrast, Alvarez-Melis and Jaakkola (2018) (also
discussed in Yeh et al. (2019a)) propose an alternative metric, called local-stability, that measures the ratio of the
maximum change in explanation within the perturbation region to the size of the perturbation region (akin to Lipschitz
continuity). Again, the change in the explanationE and the distance from x are both measured by the ℓ2 norm:

local-stability(E, f,x, r) , max
‖x′−x‖≤r

‖E(f,x) − E(f,x′)‖

‖x− x′‖
⊲Equation 5 in Alvarez-Melis and Jaakkola (2)

Wang et al. (2021) refer to robustness for a feature attribution E as a constrained version of Equation 2, wherein an
explanation is locally-robust if its local-stability(E, f,x, r) ≤ λ for a given threshold λ.

Unlike max-sensitivity, bounding local-stability ensures that the perturbed input explanations become sufficiently sim-
ilar to the explanation at input x, as we approach x. In fact, as r → 0, local-stability converges to the ℓ2 norm of the
gradient of f at x, so it can be easily approximated for small r (assuming that f is differentiable). However, the disad-
vantage of bounding local-stability is that explanations become insensitive to all small input perturbations, including
the ones that cause tangible change to the model prediction.

In cases where the explanation varies smoothly in a region of perturbation except for at a few isolated points, max-
sensitivity or local-stability may be unrepresentative of the behavior of the explanation system, as it can be determined
completely by these "outlier points". To address this, we can consider average-sensitivity (Bhatt et al., 2020), by
looking at the average change in the explanation within the perturbation region. To take the average, they define a
distribution p(x), which captures the region of interest. In the simplest formulation, p(x) is uniformly distributed in
a sphere with radius r around x: p = U({x′| ‖x′ − x‖ ≤ r}). To measure the change in the explanation we use ℓ2
distance, although in the original formulation the metric is stated with a general distance metric.

average-sensitivity(E, f,x, p) ,

∫

x
′∈RK

‖E(f,x) − E(f,x′)‖ p(x′) dx′ ⊲Definition 2 in Bhatt et al. (3)

An additional benefit of average-sensitivity is that one can obtain an unbiased estimate by drawing Monte-Carlo
samples from p(x). The same does not hold for max-sensitivity and local-stability. Further, explanation aggregation
can be used as a means for minimizing average-sensitivity.

5.2 Sensitivity via Adversarial Perturbations

While general perturbations usually refer to random perturbations in a geometric region surrounding the original input,
adversarial perturbations refer to well-designed perturbations on some targeted features in a specific direction such
that the change in model behavior is infinitesimal while the explanation undergoes considerable change, i.e. is highly
sensitive. The goal with adversarial perturbations is to find the worst perturbation that causes the explanation to
behave sensitively, which resembles the idea of maximum sensitivity described in Equation 1. We find that examples
in literature discuss adversarial perturbations almost exclusively in the context of images, though the idea is more
general.

Ghorbani et al. (2017) denote sensitivity as fragility of neural network explanations, formally computed with dissim-
ilarity metrics measuring explanation change. Here, the inputs are images, the explanations are feature importance
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maps or influence functions and each dissimilarity metric corresponds to a region of perturbation R = x′ : x+ c for
all c in the input. Each of the dissimilarity metrics defined measures the explanation change obtained by iteratively
optimizing towards the worst-case adversarial perturbation.

The first dissimilarity metric top-K-dissimilarity is defined as the minimization of the sum of importances of top K
initially most important features, where E(f,x)k denotes the kth important feature in an explanation, and x

′
topK is the

input x where only the top K features are perturbed:

top-K-dissimilarity(E, f,x) , max
‖x′

topK−x‖≤r

[

−
K
∑

k=1

E(f,x′
topK)k

]

⊲Algorithm 1 in Ghorbani et al. (4)

This can also be viewed as a maximization over the set of all possible input perturbations, such that the original K
most important features are perturbed to have minimal importance scores. This is the same as finding a perturbed
explanation that is farthest from the unperturbed explanation as in max-sensitivity (Equation 1), with the difference
that the region of perturbationR is defined as the top K most important features but not all features.

The second dissimilarity metric is a variant of Equation 4, and seeks to maximize the sum of feature importances
within a user-specified perturbation region R: max

∑

RE(f,x′)k. As argued above, this is the same as considering
max-sensitivity (Equation 1), with the difference being the region of perturbation.

The third dissimilarity metric uses the ℓ2 distance to measure maximum sensitivity and is identical to max-sensitivity
(Equation 1) by Yeh et al. (2019a). Here, the explanation change (as a proxy for explanation sensitivity) is measured
as the change in the center of mass of the image weighted by pixel feature importances. For a W ×H image and a
pixel xi,j with coordinates (i, j), the center of mass of the image is given by

∑

i∈W

∑

j∈H E(f,xi,j)[i, j]
T . In other

words, this considers the region of perturbationR as the entire input, weighted by feature importances and maximizes
over the set of all such possible perturbations.

Kindermans et al. (2017) propose input-invariance as a necessary condition for ensuring insensitivity of saliency
based feature attribution methods. This requires that a constant shift in the input x, which does not affect model pre-
dictions or weights, must not affect the explanation (attribution) either. The sensitivity is measured by experimentally
comparing the saliency heatmaps of the unperturbed and perturbed inputs, which should be identical if input-invariance
is satisfied.

As discussed in Section 5.1, the metric local-stability (Equation 2) by Alvarez-Melis and Jaakkola (2018) has the draw-
back of being insensitive even to those adversarial perturbations which cause change in model output. Explanations
which are insensitive to such attacks on the model can be misleading and lead to dangerous downstream consequences.
To address this, Dombrowski et al. (2019) propose to bound the curvature of the hypersurface of a constant network
output manifoldM = {x ∈ R

d|f(x) = c} for a constant c. All adversarial perturbations will then lie on this manifold.
The larger the curvature of this hypersurface, the higher the sensitivity of the saliency map explanation.

5.3 Sensitivity via Group Based Perturbations

Group-based perturbations can be defined as changing the group membership of one of the features of the input x.
In contrast to a spherical radius of perturbation, this corresponds to a cylindrical region in which the "non-sensitive"
features are fixed and the "sensitive" features can vary over their full range. Due to its implications on fairness, it
becomes important to study the sensitivity of explanations subject to group perturbations along different regions of the
cylinder.

For instance, if we have gender as a feature with group values contained in the set {male, female, other}, then a
group-based perturbation would change an input point’s group membership from one value to another. This kind
of perturbation is very relevant to checking for and maintaining fairness across groups. Sensitivity via such group-
based perturbations checks for the change in the explanation, when the only difference between the original input x
and the perturbed input x′ is their demographic group membership. Fairness preserving explanations must capture the
underlying behavior of the model accurately and faithfully, which means that a fairness preserving model must have an
explanation that reflects this fairness, while an unfair model must have an explanation revealing the unfairness. This
can be formalized as a condition for preserving counterfactual fairness, by Dai et al. (2021), where the change in
explanation must be approximately equal to the change in model output, when the input is subjected to a group-based
perturbation:

E(f,x) − E(f,x′) ≈ f(x)− f(x′) ⊲Equation 2.1.2 in Dai et al. (5)
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As an example of practical usage, Dai et al. (2021) consider LIME and propose adding a penalty term for fairness
to the optimization objective to generate fairness-preserving explanations. πx is a distance metric defining the local
neighborhood of an input, λ1 is the tuning parameter for complexity Ω and λ2 is the tuning parameter for the fairness-
preservation term ψ.

fair-LIME-loss(E, f,x) , L (E, f, πx) + λ1Ω(E,x) + λ2ψ(f, E) ⊲Equation 2.2.2 in Dai et al. (6)

Examples of Explanation Similarity Metrics. All of the above require access to some measure of similarity be-
tween explanations. In general, this will be very domain and explanation type dependent. Below, we describe three
similarity metrics to compare the explanation change, following usage by Adebayo et al. (2018), for the image context.
The sum of the explanation maps are normalized to one for these metrics. The first metric is the structural-similarity-
index, first introduced by Wang et al. (2004), where Ex and Ex

′ represent E(f,x) and E(f,x′) respectively and are
used for notational brevity:

structural-similarity-index(Ex, Ex
′) ,

(2µEx
µE

x
′ + C1)(2σExEx

′ + C2)

(µ2
Ex

+ µ2
E

x
′
+ C1)(σ2

Ex

+ σ2
E

x
′
+ C2)

⊲Equation 13 in Wang et al. (7)

Let Exi
be the ith pixel in the explanation Ex. Then, µEx

= 1
N

∑

N Ex which averages over N pixels in Ex

represents the luminance. The term σEx
= 1

N−1

∑

N (Exi
− µEx

)2 is the standard deviation of all N pixels and
represents contrast. C1 and C2 are constants which ensure a non-zero denominator.

The second similarity metric used is the pearson-correlation-coefficient (PCC) of the histogram of gradients (HOGs).
For HOG feature vectors ~Hx and ~Hx

′ of the explanations Ex and Ex
′ respectively, the PCC (ρ) is the cosine of the

angle between these vectors:

pearson-correlation-coefficient( ~Hx, ~Hx
′) = ρ( ~Hx, ~Hx

′) =
~Hx · ~Hx

′

‖ ~Hx‖‖ ~Hx
′‖

(8)

The third metric is the mean-squared-error (MSE) which is the absolute error measure between N pixel values each,
in explanations Ex and Ex

′ .

mean-squared-error(Ex, Ex
′) =

1

N

N
∑

i=1

(|Exi
− E

x
′
i
|)2 (9)

In addition to the metrics listed above, Adebayo et al. (2018) use spearman-rank-correlation with and without abso-
lute value, which is equal to the Pearson correlation between the rank values of the explanation maps, where each map
has N pixels. Let the rank difference between corresponding components of the explanation maps be ri = Exi

−E
x
′
i
,

then we get:

spearman-rank-correlation(Ex, Ex
′) = 1−

6
N
∑

i=1

r2i

N(N2 − 1)
(10)

6 Faithfulness and Fidelity

In the literature, fidelity and faithfulness are often used interchangeably to describe the ability of the explanation to
capture the true underlying behavior of the model. Faithfulness is desirable because a good explanation aims to reveal
the true reasoning and decision making of a complex model to the user. If an explanation does not explain the model’s
behavior accurately (faithfully), it could mislead users into using the model’s decisions and predictions for high-stakes
situations and lead to undesirable consequences and low user trust. While the notion of the explanation being true to
the underlying model is intuitive, it can be formalized in many different ways.
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• Faithfulness as approximation accuracy measures how well an explanation approximates the model’s behav-
ior overall; that is

∑

L(ŷf , ŷE) =
∑

x∈X L(f(x), E(f,x)(x)) is small over a set of inputs of interest X ,
whereL denotes the loss that quantifies the difference between the model’s prediction and the prediction given
by the explanation. Here, the predicted output from the explanation ŷE = E(f,x)(x) could come directly
from a function-based explanation or from some heuristic overlaid on a feature attribution or example-based
explanation. We describe these in Section 6.1.

For feature-attribution and example-based explanations, as well as concept bottleneck models, there are additional
common formulations of faithfulness:

• Faithfulness as no false negatives evaluates the degree to which an explanation is able to detect truly important
features/samples or contains important concepts. We describe these in Section 6.2.

• Faithfulness as no false positives evaluates how well an explanation identifies truly insignificant features or
samples as insignificant. We describe these in Section 6.3.

• Faithfulness as no false positives or false negatives evaluates how well an explanation can detect both truly
important features as well as truly insignificant features. This can be further split into two subcategories,
monotonicity (Section 6.4.1) and completeness (Section 6.4.2). Monotonicity states that the attribution scores
of the features should align with their true impact on the output. It evaluates both the degree of no false
positives and the degree of no false negatives since the definition requires insignificant features to not have
high attribution weights and significant features to not have low attribution weights. While monotonicity
considers the relative values of the attribution weights, completeness considers their actual values: the larger
the weight, the more impact the feature should have on the output (regardless of weights on other features).
It is essentially a stricter version of monotonicity with a numerical constraint.

• Feature-set faithfulness generally requires that if a set of features has the same sum of attributions as an-
other, then they must have the same impact on the model output. That is, for feature sets S and S ′, if
∑

k∈S E(f,x)k ≈
∑

k∈S′ E(f,x)k , then f(xS) ≈ f(xS′). We describe these in Section 6.5.

6.1 Faithfulness as Approximation Accuracy

Faithfulness as approximation accuracy measures how well an explanation approximates the model’s behavior overall.
This can be described using a loss to measure how similar the outputs implied by the explanation(s) are to the model
outputs.

Balagopalan et al. (2022) adopt a general definition called loss-based-fidelity from Craven and Shavlik (1995) and
average the quality of approximation around all inputs x ∈ X as:

loss-based-fidelity(E, f) ,
1

|X |

∑

x∈X

L
(

f(x), E(f)(x)
)

⊲Definition 3.1 in Balagopalan et al. (11)

The choice for the loss L can be an appropriate task-specific metric such as accuracy, AUROC or mean error. Note
that this formulation measures the faithfulness of a global explanation at all inputs; if the explanations are local, then
we can modify it to measure the average degree of faithfulness of each local explanation E(f,x) at each input x.
Lundberg and Lee (2017) also refer to faithfulness for a local explanation at x as a constrained version of Equation 11,
wherin an explanation satisfies local-accuracy if the inner loss term is simple difference and has a value of 0, i.e.
L
(

f(x), E(f,x)(x)
)

= f(x)− E(f,x)(x) = 0.

A specific instantiation of Equation 11 can be seen in Yeh et al. (2019a), where the loss is given by the ℓ2 distance
between the change in model output and change in explanation output (squared loss) when the input is perturbed:
∑

x
′ ℓ2(f(x

′) − f(x), ŷE(x
′) − ŷE(x)). (Recall that ŷE is the predicted value of y given by the explanation). This

looks at the local quality of the approximation around an input x. Yeh et al. (2019a) call this local-infidelity; if the
explanation is a linear approximation to the model at x, this becomes:

local-infidelity(E, f,x, p) , Ep(x′)

[

(

(x′ − x)TE(f,x)− (f(x) − f(x′))
)2
]

⊲Definition 2.1 in Yeh et al. (12)

Here, x′ are drawn from some p(x′) centered at the input of interest x and the explanation E(f,x) is the set of linear
approximation weights. This approach is also used to create explanations in Ribeiro et al. (2016) (LIME): LIME finds
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the set of weights with least error according to Equation 12. The primary difference between Equations 11 and 12 is
that local-infidelity samples around a local input x, unlike loss-based-fidelity which considers all inputs.

Wang et al. (2022) show local-infidelity (Equation 12) to be model agnostic by leveraging it to evaluate subgraph
explanations for Graph Neural Networks (GNNs). For a graph (X,A) where the nodes are given by X , A is the adja-
cency matrix and X ′ andA′ are drawn from some pX(X ′) centered at X and some pA(A′) centered at A respectively,
graph-unfaithfulness is formalized as:

graph-unfaithfulness(E, f,X,A, pX , pA) ,

EpX (X′),pA(A′)

[

(

E(f,X,A)− E(f,X ′, A′)− (f(X,A)− f(X ′, A′))
)2
]

⊲ Definition 3.1 in Wang et al. (13)

Another instantiation of Equation 11 can be seen for rule-based explanations, where the loss is summed over each
incorrectly explained class label. Specifically, Lakkaraju et al. (2017) consider a two-level decision set as the explana-
tion, which provides two nested if-then rules to approximate the model’s behavior globally. The logic rules are human
understandable, and the two-level structure allows lower complexity (a property later discussed in Section 7) during

optimization. They denote the whole dataset X containing all samples and each rule as a triple (r
(1)
i , r

(2)
i , ci), where

r
(1)
i is the first if-else condition, r(2)i is the second nested if-else condition and ci is the assigned class label if both

rules are satisfied. The decision set is E(f) = {(r
(1)
i , r

(2)
i , ci)|i ∈ {1 . . .M}}, containingM two-level rules and their

corresponding class labels.

Then, the output at a specific input x implied by the explanation is E(f)(x) = ci if x satisfies r(1)i ∧ r
(2)
i . They argue

that a decision set is unfaithful when the class labels given by the explanations do not match the predictions by the
model. To formalize the notion of infidelity, they propose disagreement:

disagreement(E, f,X ) ,

M
∑

i=1

∣

∣

∣{x ∈ X|f(x) 6= E(f)(x) ∧ E(f)(x) = ci}
∣

∣

∣

⊲Table 1.1 in Lakkaraju et al. (14)

This essentially counts, for each two-level rule, the number of input samples that meet the rule conditions but with the
respective class label disagreeing with the class label assigned by the model explained. The lower the disagreement,
the better the explanation approximates the model. The difference between this formulation and Equation 11 is that
this does not take the average and the loss takes a form that works for decision sets: 1 if the prediction implied by the
decision set matches the prediction of the model, and 0 otherwise.

6.2 Faithfulness via No False Negatives

Faithfulness as no false negatives evaluates the degree to which nothing important is left out in the explanation. While
this notion of faithfulness is most applicable to feature attribution methods—e.g. we do not want important features
left out—no false negatives has also been applied to explanations derived from concept models.

DeYoung et al. (2019) consider feature attribution methods that assign non-negative importance scores to the K fea-
tures, with higher values indicating a more important feature for the model’s function approximation f . They capture
the notion of faithfulness as a ranking of the features: retaining the most important features should be sufficient for
computing f . Luss et al. (2019) define an identical metric which they term as pertinent positives. Let xEs

denote
the input x such that the retention proportion s ∈ [0, 1] is the proportion of the most important features retained. For
features indexed k = 1 . . .K , the number of retained features will be ⌈sK⌉. RankE(f,x) is the ranking of the K
features from highest to lowest and x0 is the reference value for each feature:

x
(k)
Es

= x
(k) if k ∈ {RankE(f,x)1 . . .RankE(f,x)⌈sK⌉} elsex(k)

0 (15)

The metric (in)sufficiency can now be measured as a function of the portion of important features retained s:

(in)sufficiency(f,x, E, s) , |f(x)− f(xEs)| ⊲Equation 1 in DeYoung et al., Equation 2 in Luss et al. (16)
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Note that the original formulation omits taking the absolute value, as it only considers the confidence level in a
classification task. Here we present a generalized version that applies to all f . For this metric, a lower value means
that fewer important features are incorrectly recognized as unimportant, which indicates higher faithfulness. However,
one limitation of this formulation is that the appropriate values of the retention proportion s can sometimes be unclear.
While some tasks present natural values of s to evaluate the metric with, this might not be the case for other tasks.
Hase et al. (2021) and Hsieh et al. (2020) propose averaging over different values of s to avoid having to make an
arbitrary choice.

Wang et al. (2020) extend to attribution methods that give real-valued (possibly negative) attribution scores to features.
However, when quantifying faithfulness, they restrict to the ranking of only the K+ features with positive attributions.
Like Equation 16, they check if retaining the most important features are sufficient for computing the black-box f .
The metric sufficiency-ordering is then formalized as follows:

sufficiency-ordering(E, f,x) ,
1

K+ + 1

∑

s∈{ j
K

|j=0...K+}

min{f(xEs
), f(xE

( K+
K

)
)} − f(x0)

⊲Equation 4 in Wang et al. (17)

In contrast to Equation 16, higher values mean fewer important features being recognized as unimportant, which
indicates more faithfulness. Note that both formulations capture faithfulness as the sufficiency of the most important
features in computing the model. The difference is that in Equation 16, higher sufficiency is represented by a smaller
difference between the original model output and the output from retaining only the most important features, while in
Equation 17, higher faithfulness is given by a larger difference between the the output from retaining only the most
important features and the baseline output. Equation 17 is also different in that it clips scores to ensure that a few
important features do not impact model output more than the set of all positive attributions. It also averages the impact
of adding features to the baseline over all possible values of the retention proportion s. This allows for the user to not
have to choose a specific retention proportion, which is also proposed by Hase et al. (2021) and Hsieh et al. (2020).

The notion of no false negatives can also be generalized to evaluate concept bottleneck models, which predict higher-
level concepts from features and then use these concepts to predict the target. Yeh et al. (2019b) illustrate that for
classification tasks, the smaller the difference between the accuracy obtained by using just concept scores and the
accuracy obtained by using the original input features, the more sufficient the set of concepts will be. Specifically,
denote the inputs as x and the corresponding ground truth labels as y in the validation set V . Let h be a mapping from
the concepts to the prediction and ar be the random prediction accuracy that lower-bounds the metric score to 0. Then
concept-faithfulness can be formalized as follows:

concept-faithfulness(E, f,V) ,
suph Ex,y∈V [y = h(E(f,x))] − ar

Ex,y∈V [y = f(x)]− ar
⊲Definition 3.1 in Yeh et al. (18)

Higher values mean that fewer important concepts are not captured, which indicates more faithfulness. Note that
although this metric was originally termed as ‘completeness’, it evaluates the degree of no false negatives and hence
differs from the more fitting notion of completeness presented in Section 6.4.2, which measures both no false negatives
and no false positives.

Adversarial Attacks. It is evident that having fewer false negatives is a strong indicator of faithfulness in explana-
tions. However, adversarial attacks can be designed to compromise this property. Downstream tasks that have a strict
requirement of ensuring no false negatives are likely to see undesirable consequences. An example of such a task
can be an explanation under attack recognizing sensitive attributes as insignificant even though the underlying unfair
model in fact depends on them. Slack et al. (2019) demonstrate that adversarial attacks can render post-hoc expla-
nations such as LIME and SHAP unfaithful when explaining unfair models. In other words, LIME can be attacked
such that it shows a higher degree of false negatives. This indicates that faithfulness in local post-hoc explanations
is heavily dependent on input perturbations and this can be exploited by generating perturbed inputs from a different
distribution. Dimanov et al. (2020) also showcase attacks that render LIME and SHAP unfaithful in the context of
model fairness.

6.3 Faithfulness via No False Positives

Faithfulness as no false positives evaluates how well an explanation identifies truly insignificant features as insignifi-
cant. Again, this notion of fidelity is most applicable to and commonly used in feature attribution methods as well as
certain exemplar methods.
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In complement to (in)sufficiency (Equation 16), DeYoung et al. (2019) define the notion of comprehensiveness to
measure faithfulness of feature attribution explanations that assign non-negative importance values, by discarding the
most important features that should impact the result significantly. Luss et al. (2019) also define an identical metric
termed as pertinent negatives, which they refer to as the minimal set of features which when added, change the
classification output. Analogously, denote xE/s as the input x where the proportion s of the most important features,
is discarded:

x
(k)
E/s = x

(k)
0 if k ∈ {RankE(f,x)1 . . .RankE(f,x)⌈sK⌉} elsex(k) (19)

Then, comprehensiveness is defined as:

comprehensiveness(f,x, E, s) , |f(x)− f(xE/s)| ⊲Equation 2 in DeYoung et al., Equation 1 in Luss et al.
(20)

For this metric, a higher value means that fewer unimportant features are incorrectly recognized as important, which
indicates higher faithfulness. Like earlier, we present a generalized version using the absolute value and the averaging
technique by Hase et al. (2021) and Hsieh et al. (2020) can be used to avoid choosing an arbitrary s.

In contrast to sufficiency-ordering which retain the most important features (Equation 17), Wang et al. (2020) also
propose measuring faithfulness in real-valued attributions by discarding the most important features. The impact on
the output will then quantify how necessary those features are. As in Equation 17, they restrict to using the ranking of
only K+ features with positive attributions. The metric necessity-ordering can be defined as:

necessity-ordering(E, f,x) ,
1

K+ + 1

∑

s∈{ j
K

|j=0...K+}

max{f(xE/s)− f(x0), 0}

⊲Equation 3 in Wang et al. (21)

In contrast to Equation 20, lower values indicate fewer unimportant features being recognized as important, which
indicates more faithfulness. As argued in the case of (in)sufficiency and sufficiency-ordering, the ideas behind com-
prehensiveness and necessity-ordering are similar. In Equation 20, the impact of discarding features is indicated by a
larger difference between the original output and the output obtained by discarding (reverting) only the most impor-
tant features. In Equation 21, the impact of discarding features is larger when we get a smaller difference between the
output from reverting the most important features and the baseline output. Equation 21 is also different in that it clips
scores to be non-negative, and averages the impact of discarding features over all possible values of s, as proposed by
Hase et al. (2021).

Hsieh et al. (2020) similarly relate significance of feature to the robustness of the model explained when the feature
is perturbed. However, instead of measuring the change in model output when a subset of features is perturbed to
baseline, they go with the reverse direction and measure the minimum perturbation needed in a subset of features to
change the model classification. Specifically, robustness-S if formalized as follows:

robustness-S(E, f,x, s) , min{‖r‖ | f(x+ r) 6= f(x), ri = 0 for i /∈ {RankE(f,x)1 . . .RankE(f,x)⌈sK⌉}},
(22)

where f(x) and f(x + r) are the classifications of the model f at the original input x and the perturbed input x + r

respectively, and only the top ⌈sK⌉ feature are perturbed. Based on the idea that a more important subset S should
make the model less robust in its original prediction when reverted, it should correspond to a lower robustness-S value.
Hence, they use AUC under the curve, where the x-axis is the subset size ⌈sK⌉ = 1 . . .K and the y-axix is the value
of robustness-S at different revert proportion s, to evaluate faithfulness. A smaller AUC means a higher degree of no
false positives, and is equivalent to averaging the impact of discarding features as in Equation 21.

While the above metrics measure faithfulness of attribution methods in general, Lundberg and Lee (2017) discuss
faithfulness of additive feature attribution explanations in particular, where such an explanation is a linear func-
tion of an simplified input x

(simplified) ∈ {0, 1}M from the original input x ∈ R
K . Formally, E(f,x)(x) =

φ0 + x
(simplified)TE(f,x) = φ0 +

∑M
i=1 x

(simplified)
i · E(f,x)i, where E(f,x)i is the coefficient and also the attri-

bution score for the i-th feature in the simplified input. They present missingness as an axiom of faithfulness to satisfy,
requiring:

x
simplified
i = 0 ⇒ E(f,x)i = 0 ⊲ Property 2 in Lundberg and Lee (23)
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The implication means that in a linear representation, a value of 0 has no impact to the output, so it should be attributed
0 effect so that there is no no false positive. It also echos the idea that an attribution explanation should give the truly
unimportant features zero attribution scores, as discussed near Equation 32.

Besides feature attribution, the notion of no false positives also works for example-based methods. Denote E(f,x) a
set of examples selected by the explanation as the most responsible ones for the prediction f(x), and E(f,x)i be the
ith example in this set. Nguyen and Martínez (2020) then introduce non-representativeness to capture infidelity:

non-representativeness(E, f,x) ,

∑

i L(f(x), f(E(f,x)i))

|E(f,x)|
⊲Metric 2.2 in Nguyen and Martínez (24)

A lower value means that the model treat exemplars (examples) and the target observation x more similarly, which
indicates that the selected examples are more representative and the explanation is more faithful.

6.4 Faithfulness via No False Positives & No False Negatives

Depending on the downstream task, it could be sufficient to ensure no false positives and no false negatives separately
when measuring faithfulness. However, some tasks do require both conditions to be satisfied together, to ensure a
faithful explanation.

6.4.1 Monotonicity

The idea of ensuring no false positives and no false negatives has been captured in literature by the idea of monotonicity.
Monotonicity states that features with larger attribution weights should have more impact on the output than those with
lower attribution weights. It generalizes both no false positives and no false negatives to not only consider the ranking
of the features, but also their attributions.

Correlation Based Measures. Alvarez-Melis and Jaakkola (2018) and Luss et al. (2019) consider the idea of pro-
portionality between feature importances and the impact of each feature on the output. They propose two metrics, each
of which has been implemented by Arya et al. (2019) for feature attributions that assign each feature a non-negative
value in the range [0, 1]. The first metric is monotonic-decrease, a measure of the monotonic decrease in classifica-
tion probability due to the replacement of features with non-informative baseline values in decreasing order of feature
importances. We can expect discarding more important features to cause greater decrease in the model’s confidence
in its original prediction, and a subsequent monotonic decrease in change in predictions as importances of the reverted
features decrease.

Here, denote the explanation E(f,x) ∈ [0, 1]K as a vector of K importance values. f(x{1...K}\{i}) computes the
classification probability for the original class label for each x{1...K}\{i} where the ith feature value in x is replaced

by a baseline value x0, i.e. x(k)
{1...K}\{i} = x

(k)
0 if k = i elsex(k) for k = 1 . . .K . The metric is then defined using the

Pearson’s correlation as:

monotonic-decrease(E, f,x) , − corr
i∈{1...K}

(

E(f,x)i, f(x{1...K}\{i})

)

⊲ Section 5.3 in Alvarez-Melis and Jaakkola, Equation 6 in Arya et al. (25)

Higher values indicate that discarding (reverting) a feature with high importance decreases the model’s confidence in
its original output, hence showing more faithfulness.

Arya et al. (2019) provide an alternate definition of monotonicity, adapted from Luss et al. (2019), where they measure
the monotonic increase in classification probability due to incremental inclusion of features in increasing order of
feature importances. Let x{i} denote the input x where only the ith feature is retained and all other features are

reset to the baseline value x0, i.e. x
(k)
{i} = x

(k) if k = i else x(k)0 for k = 1 . . .K . Then, monotonic-increase is
implemented as follows:

monotonic-increase(E, f,x) , corr
i∈{1...K}

(

E(f,x)i, f(x{i})

)
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⊲ Section 4.5 from Arya et al. (26)

Higher values indicate that a feature with higher importance influences the model’s output more when added to baseline
and contributes more in preserving model confidence in the output. This is equivalent to higher faithfulness.

Bhatt et al. (2020) further extend this to real-valued feature attributions. They argue that the attribution should capture
the correlation of the important features with the function value. Let the explanation beE(f,x) ∈ R

K and xSc denote

the input x where all features in Sc are retained and features in S are reset to baseline values x0 i.e. x(k)
Sc = x

(k)
0 if k ∈

S elsex(k) for k ∈ Sc. s ∈ [0, 1] represents the retention proportion and {1 . . .K}⌈sK⌉ denotes the ⌈sK⌉ sized
subsets of the full feature set {1 . . .K}. Then, attribution-faithfulness can be defined as:

attribution-faithfulness(f, E,x, s) , corr
S∈{1...K}⌈sK⌉

(

∑

i∈S

E(f,x)i, f(x)− f(xSc)

)

⊲Definition 3 in Bhatt et al. (27)

Similarly, Nguyen and Martínez (2020) propose that a feature’s importance should be proportional to the model’s
variation in prediction in the absence of the feature. Let E(f,x) ∈ R

K and x{1...K}\{i} denote the input x such that

its ith feature is reverted and other features are retained, i.e. x
(k)
{1...K}\{i} = x

(k) if k 6= i. Formally, they define
spearman-monotonicity with Spearman’s correlation to capture this proportionality:

spearman-monotonicity(E, f,x) = spearman-corr
i∈{1...K}

(

∣

∣E(f,x)i
∣

∣,Exi

[

L(f(x), f(x{1...K}\{i})
]

)

⊲Metric 2.3 in Nguyen and Martínez (28)

Here, the expectation of the loss L is taken with respect to the randomly sampled ith feature. The explanation is a
vector of real (i.e. possibly negative) attribution values, but only absolute attribution values are used in the metric to
measure the feature’s importance. Higher values indicate that reverting a feature with high importance would cause
more change in the model output, and this indicates higher faithfulness.

The notion of monotonicity also applies to feature relevance in a self-explaining neural network (SENN).
Alvarez-Melis and Jaakkola (2018) states that faithfulness means feature importances should reflect the effect of re-
moving these features on the model’s prediction. In other words, SENN-faithfulness can be computed by obscuring
features and measuring the correlation between probability drops and importance scores estimated by the explanation.
The metric could take the form of Equation 25, Equation 27 or Equation 28, since all of these definitions consider the
same idea presented by Alvarez-Melis and Jaakkola (2018). A key difference is that unlike these metrics that discard
features by reverting them to baseline values, in an SENN model, feature removal is done by setting their coefficients
to zero.

While the above metrics evaluate within-explanation monotonicity, Lundberg and Lee (2017) also present between-
explanation monotonicity as an important property for faithfulness. Specifically, they look at two models f1 and f2
and their respective explanationsE(f1,x) andE(f2,x) at an input x, and formalize monotonic-consistency as below:

f1(x)− f1(x{1...K}\{i}) ≥ f2(x) − f2(x{1...K}\{i}) ⇒ E(f1,x) ≥ E(f2,x)

⊲ Property 3 in Lundberg and Lee (29)

A within-explanation measure such as monotonic-decrease (Equation 25) looks at, for an explanation of a model,
whether a more attributed feature has more impact on model prediction when removed than a less attributed feature.
However, the between-explanation axiom monotonic-consistency (Equation 29) looks at, when one feature has more
impact on prediction when removed for one model than the other, whether the explanation of the model would attribute
it more heavily than the explanation of the other model.
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Other measures of monotonicity. Correlation is not the only way to quantify the idea of monotonicity.
Nguyen and Martínez (2020) demonstrate that an attribution explanation should give the truly unimportant features
zero attribution scores. In the formalized metric, let S0 denote the set of features assigned zero attributions and Sf

denote the set of features the model does not functionally depend on:

S0(E, f,x) , {i ∈ {1 . . .K}|E(f,x)i = 0} (30)

Sf (E, f,x) , {i ∈ {1 . . .K}|Exi
[L(f(x), f(x{1...K}\{i})] = 0} (31)

Recall from earlier that the explanationE(f,x) ∈ R
K and x{1...K}\{i} denotes the input with the ith feature reverted.

No functional dependence is given by zero expected loss taken with respect to the ith feature and ∆ represents the
symmetric difference of two sets. Then, non-sensitivity can used to quantify infidelity as:

non-sensitivity(E, f,x) ,
∣

∣S0(E, f,x) ∆ Sf (E, f,x)
∣

∣ ⊲Metric 2.4 in Nguyen and Martínez (32)

Lower values indicate a smaller symmetric difference, i.e. there exists a larger overlap between features with zero
attribution and features with zero functional contribution, which indicates higher faithfulness.

6.4.2 Completeness

While monotonicity considers the relative values of the attribution weights, completeness considers their actual values:
the larger the attribution weight, the more impact the feature should have on the model output, regardless of weights
on other features.

Shrikumar et al. (2017) consider attribution methods and look at the difference between the true model output and the
output from a baseline input x0. For an explanation E(f,x) ∈ R

K which is a vector of K attribution scores, each of
which is represented by E(f,x)i, summation-to-delta can be defined as an axiom to be satisfied:

∑

i∈{1...K}

E(f,x)i = f(x)− f(x0) ⊲Equation 1 in Shrikumar et al. (33)

Building off of Shrikumar et al. (2017), Sundararajan et al. (2017) develop integrated gradients and show that their
method satisfies the completeness axiom, i.e. summation-to-delta (Equation 33). Note that completeness generally
evaluates gradient-based explanations and is a strict requirement of equality that almost forces users to adopt methods
such as Integrated Gradients, LRP and DeepLIFT.

Ancona et al. (2017) further generalize the metrics by Shrikumar et al. (2017) and Sundararajan et al. (2017) to a
stricter version called sensitivity-n, such that any subset (not necessarily a strict subset) of features S of cardinality
n must satisfy completeness. Let the explanation E(f,x) ∈ R

K and xSc denote the input where features in S are
reverted to baseline values x0. {1 . . .K}n denotes an n sized subset of {1 . . .K}.

for S ∈ {1 . . .K}n :
∑

i∈S

E(f,x)i = f(x)− f(xSc) ⊲ Section 4 in Ancona et al. (34)

Instead of considering the sum of importance scores of all K features like in summation-to-delta (Equation 33),
sensitivity-n considers the sum of importances for a subset of features S and requires this sum to be equal to the
change in model output if the chosen n features in S were set to baseline values. In other words, summation-to-delta
is exactly equivalent to sensitivity-n where S is the full set of features, i.e. S = {1 . . .K}. Additionally, sensitivity-n
measures how well an explanation captures the effect of subsets of n features, for different values of n. It is a stricter
requirement and is impossible to meet most of the time: i.e. it is satisfied for every value of n if and only if the
explained model behaves linearly (Ancona et al., 2017).

The notion of completeness is also applicable to layer-wise relevance propagation introduced by (Bach et al., 2015),
which decomposes the output of an image classifier into layer-wise relevances of pixels. For each neuron, a positive or

negative relevance score indicates a positive or negative contribution to the output respectively. Let R(l)
i (x) represent

the relevance score of the ith neuron in layer l for an input x and R(l+1)
k (x) represent the relevance score of the kth
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neuron in layer l+ 1. Let w(l→l+1)
hk be the weight connecting each neuron h in layer l to the kth neuron in layer l+ 1,

with a corresponding activation ah. Then, the relevance of a neuron can be mathematically defined as the sum of the
relevance scores of neurons belonging to the succeeding layer:

R
(l)
i (x) ,

∑

k: i is input for neuron k

R
(l+1)
k (x)

aiw
(l→l+1)
ik

∑

h: h is input for neuron k ahw
(l→l+1)
hk

(35)

Then, they define layer-wise relevance conservation, a notion of completeness that requires the sum of relevance
scores of neurons in each layer to equal the model output:

f(x) = ... =
∑

i

R
(l+1)
i (x) =

∑

i

R
(l)
i (x) = · · · =

∑

i

R
(1)
i (x) ⊲Equation 2 in Bach et al. (36)

If conservation is satisfied, R(1)
i (x), the relevance score for each neuron in the first layer, can be viewed as the

attribution for each feature or pixel at input x, and the sum of attributions is required to equal the model output. Note
that if there exists a baseline value x0 for the input x such that the model output at x0 is 0, i.e. f(x0) = 0, then
Equation 36 reduces to the same form as Equation 33.

6.5 Feature Set Faithfulness

Feature set faithfulness requires that if a set of features has the same sum of attributions as another, then both sets must
have the same impact on the model output.

Wang et al. (2020) state that the attribution scores of features should be proportional to the change in model output.
They consider real-valued attribution methods but restrict to considering only positive attribution values. Let the two
subsets of features be S1 and S2 such that for each set, the sum of importances account for proportion s of the sum of
all positive attributions. Further, let S1 contain the features or pixels with the highest attribution scores and S2 contain
the features or pixels with the lowest attribution scores.

Assume:
∑

i∈S1

E(f,x)i =
∑

i∈S2

E(f,x)i = s





∑

E(f,x)i>0

E(f,x)i



 (37)

Here, xS1 denotes the input x where all features in S1 are retained, i.e. x
(k)
S1

= x
(k) if k ∈ S1 elsex

(k)
0 for k = 1 . . .K ,

and a similar notation holds for xS2 . Then, sufficiency-proportionality-s can be formalized as follows:

sufficiency-proportionality-s(E, f,x, s) ,
∣

∣f(xS1)− f(xS2)
∣

∣ ⊲Definition 3 in Wang et al. (38)

Lower values indicate that the two sets of features with identical attribution sums (i.e. importances) have a similar
contribution in preserving the model output when retained, indicating higher faithfulness.

Analogously, when the sets of features with identical attribution sums are discarded (reverted to baseline values)
instead of retained, necessity-proportionality-s can be defined as follows:

necessity-proportionality-s(E, f,x, s) ,
∣

∣f(xSc
1
)− f(xSc

2
)
∣

∣ ⊲Definition 5 in Wang et al. (39)

Here, xSc
1

denotes the input x where all features in S1 are reset to baseline values x0 i.e. xSc
1
= x

(k)
0 if k ∈ S1 elsex(k)

for k = 1 . . .K , and a similar notation holds for xSc
2
. Lower values indicate that discarding each of the sets of features

with identical attribution sums results in a similar impact on the model output. This indicates higher faithfulness.

Note that for attribution explanations, the metrics defined in Section 6.2 for no false negatives and the metrics defined
in Section 6.3 for no false positives only access the quality of the ordering, while not taking into account the actual
attributions. Consequently, two different sets of attribution will be evaluated to have the same degree of faithfulness as
long as the orderings of the attributes are the same, regardless of the attribution scores. In this case, Equation 38 and
Equation 39 can be used as complement for them.
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7 Complexity and Compactness

In human-studies literature on interpretable machine learning, we often find that the cognitive burden of parsing
explanations significantly affects the usefulness of these explanations (Lage et al., 2019; Narayanan et al., 2018). A
less complex explanation will be easier for human users to understand. As a result, complexity is a commonly used
measure of understandability and serves as a useful property to have in good explanations.

While there is a large body of work that quantifies explanation complexity. Notions of complexity are often specific to
an explanation type:

• For feature attribution explanations, there are two common measures of complexity: the entropy of fractional
contributions of features towards total importance and the minimum number of important features which
retain satisfactory model performance. We note that while feature attribution explanations are generally local
to a specific input, these measures could be applied to whatever scale the explanation is for.

• When the explanation is a continuous function explanation—either the model itself or a local or global ap-
proximation to the model—one can simply consider the sparsity of the function (as measured through nonzero
coefficients) or more sophisticated measures like how nonlinear it is.

• While notions of sparsity also apply to logic-based function explanations, there are specific notions of the
complexity of the rules that may also be relevant to the ability of a human to understand the rule.

Finally, we note that there exist many approaches to ensuring complexity by using it as a regularizer in an objective
function that maximizes faithfulness.

7.1 Measures of Complexity for Feature Attribution Explanations

Bhatt et al. (2020) consider feature attribution-based explanations and define complexity in terms of the number of
important features of the input x that will be used in the explanation.

Consider an explanation E(f,x) ∈ R
K as a vector of attribution scores of all K features in x. Let E(f,x)i be the

attribution score for the ith feature, pE(x)i denote the fractional contribution of the ith feature and pE(x) be a
discrete probability distribution consisting of the set of all fractional contributions.

pE(x)i ,
|E(f,x)i|

∑K
j=1|E(f,x)j |

, (40)

pE(x) , {pE(x)1, . . . , pE(x)K} (41)

Given this, entropy-complexity can now measured as the entropy of the fractional contribution distribution pE(x):

entropy-complexity(E, f,x) , E
[

− ln
(

pE(x)
)]

= −

K
∑

i=1

pE(x)i ln
(

pE(x)i

)

⊲Definition 4 in Bhatt et al. (42)

Nguyen and Martínez (2020) also consider feature attribution explanations and define effective-complexity as the
minimum number of the important features retained in the feature attribution such that the conditional expected loss
over model performance does not exceed a given tolerance. In other words, this metric minimizes the number of
important features required to maintain the model performance above a given tolerance. Let Sk be the set of top k
important features given by the explanation and xSk

denote the version of the input x for which the values of the

features in Sk are retained and other features not in Sk are reverted to baseline values, i.e. x(k)
Sk

= x
(k) if k ∈ Sk. Let

Sc
k denote the complement of Sk and xSc

k
denote the version of the input x for which the values of features in xSc

k
are

retained. The metric is formalized as:

effective-complexity(E, f,x) , argmin
k∈{1...K}

|Sk| s.t. E(L(f(x), f(xSc
k
))|xSk

) < ǫ

⊲Definition 4 in Nguyen and Martínez (43)
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A lower effective-complexity could ensure higher sparsity in the feature attribution while causing only minor changes
to model performance, which is controlled by the tolerance ǫ.

Even though including all features would guarantee faithfulness of the explanation, this would inevitably increase its
complexity which is undesirable and impedes understandability. The simplest explanation would use a single feature
and a complex, albeit faithful explanation would use all features.

7.2 Measures of Complexity for Explanations that are Continuous Functions

Now we consider explanations that are continuous functions—this could be a local function approximation to the
decision boundary around a specific input, or the entire decision function itself.

Complexity as Sparsity. One very common approach to measuring complexity in this case is simply sparsity, that
is, the number of nonzero coefficients in the function.

Complexity as Non-Linearity. Other notions are more sophisticated, such as measuring the difference between the
function and a linear function. Alvarez-Melis and Jaakkola (2018) define self-explaining and inherently interpretable
models which offer global explanations and are formed by progressively generalizing linear models to more complex
models. This introduces the notion of global complexity, defined as the complexity of the explanation as a whole.
Since a linear model is considered as one of the simplest explanations possible, we can consider global complexity as
a measure of how far the self-explaining model is, from a simple linear model.

Specifically, they introduce the notion of a self-explaining neural network (SENN). A SENN is of the linear form
f(x) =

∑K
i=1E(f,x)ih(x)i, where h maps the K original input features in x into interpretable basis concepts

h(x), and the interpretable coefficients E(f,x) have the descriptive capabilities of a complex model E. Users can
understand model behavior through these coefficients. Further, this linear model can be generalized to achieve more
flexibility by replacing the summation with a more general aggregation function agg. The linear model then becomes
f(x) = agg(E(f,x)1h(x)1, . . . , E(x)Kh(x)K ).

Since the coefficients serve as the explanation, the more stable the coefficients are with respect to x, the closer the
explanation will be to a linear model. To measure how close the coefficients at a particular input x are to a constant,
Alvarez-Melis and Jaakkola (2018) compute the difference between the true gradient of the function and the quantity
E(f,x)T∇xh(x). If the coefficients E(f,x) are presumed to be constant across inputs, this difference should ap-
proach zero and the model will resemble a linear model, thus minimizing complexity. The higher this difference is,
the more unstable the coefficients are with respect to x. Consequently, SENN-instability is formalized as:

SENN-instability(E, f,x) , ‖∇xf(x)− E(f,x)T∇xh(x)‖ ⊲Equation 3 in Alvarez-Melis and Jaakkola (44)

7.3 Complexity Measures for Rule Based Explanations

Finally, another major category of measures focuses specifically on rule-based explanations. Lakkaraju et al. (2017)
consider two-level decision sets with nested if-then rules and ensure human understandability by limiting the depth of
the decision tree. Additionally, complexity can be minimized by considering parameters specific to rule-based models,
which are discussed below.

As introduced in Subsection 6.1, for a dataset X we can consider a decision tree E(f,X ) with M if-then rules, where

the ith rule is a triple of the form (r
(1)
i , r

(2)
i , ci). Here, r(1)i and r(2)i are two nested if-then conditions, each comprising

of multiple predicates (e.g. age ≥ 50 and female = yes), and ci is the assigned class label if both conditions are met.
The following metrics can now be defined as proxies for complexity:

size(E(f,X )) =
∣

∣E(f,X )
∣

∣, ⊲Table 1.4 in Lakkaraju et al. (45)

max-width(E(f,X )) = max
e∈

⋃

M
i=1

(

r
(1)
i ∪r

(2)
i

)

width(e), ⊲Table 1.5 in Lakkaraju et al. (46)

num-preds(E(f,X )) =

M
∑

i=1

(

width
(

r
(1)
i

)

+ width
(

r
(2)
i

)

)

, ⊲Table 1.6 in Lakkaraju et al. (47)
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num-dsets(E(f,X )) =

∣

∣

∣

∣

M
⋃

i=1

r
(1)
i

∣

∣

∣

∣

, ⊲Table 1.7 in Lakkaraju et al. (48)

feature-overlap(E(f,X )) =
∑

r
(1)
i ∈

⋃

M
i=1 r

(1)
i

M
∑

i=1

feature-overlap
(

r
(1)
i , r

(2)
i

)

⊲Table 1.8 in Lakkaraju et al. (49)

Here width() counts the number of predicates, where a predicate refers to the feature, operator or value in a condition
(e.g. “age”, “≥” and “18” in “age ≥ 18”). The number of rules in the decision set is given by its cardinality and

referred to as size. The maximum number of unique if-then conditions (r(1)i and r(2)i ) across all rules is defined as
max-width. The total number of predicates in all if-then conditions, inclusive of repetitions, is num-preds. The
quantity num-dsets counts the number of unique outer if-then conditions. Lastly, feature-overlap is the number of

common features in the feature space, that show up both in the inner and outer conditions of a nested if-then pair r(1)i

and r(2)i . The sum of these common features within each nested if-then condition pair, can be minimized, to minimize
complexity. It is possible to generalize these metrics to other rule-based explanations to ensure minimal complexity.

7.4 Jointly Optimizing for Low Complexity and Fidelity

In addition to being used as a means for evaluating explanations, complexity is also used as a regularizer in ex-
planations constructed as objective functions. These objective functions typically maximize faithfulness and intro-
duce a penalty term which trades off this faithfulness against complexity to support easier human understandability
(Ribeiro et al., 2016). Ross and Doshi-Velez (2018) also demonstrate that regularizing complexity can ease human un-
derstanding, and they further show that it has the benefits of improving adversarial robustness and reducing overfitting.

As a specific example, Ribeiro et al. (2016) loosely refer to the regularizing complexity term as the local surrogate
model’s complexity, such as the depth of a decision tree or the number of non-zero coefficients in a sparse linear
model. This is in contrast to previous approaches that formalize complexity as a fixed-form metric. Let the local
infidelity measure be L (E, f,x, πx) (Equation 12 in Section 6) and πx denote a probability distribution that assigns
higher weights to input points closer to x, based on some distance metric. LIME-loss can then be formalized as:

LIME-loss(E, f,x) , L (E, f,x, πx) + λ · Ω(E, f,x) ⊲Equation 1 in Ribeiro et al. (50)

where Ω(E, f,x) is the regularization term for complexity. Similarly, Alvarez-Melis and Jaakkola (2018) incorporate
their SENN-instability metric from Equation 44 above into the loss function. More precisely, this metric is used as a
regularizer in the model-optimizing objective function with the classification loss L (E, f,x), where the hyperparam-
eter λ controls the trade-off of model performance against stability (a notion of complexity):

SENN-loss(E, f,x) , L (E, f,x) + λ · SENN-instability(E, f,x)

⊲ Section 3 in Alvarez-Melis and Jaakkola (51)

Note that in many ways, this metric is an extension of the local complexity defined by LIME (Ribeiro et al., 2016) for
linear explanations, to global explanations.

8 Homogeneity

We define homogeneity as the ability of an explanation to perform faithfully across different subgroups in a population.
This can also be viewed as the explanation being robust to subgroup perturbations to the input. Thus, homegeneity
is a special combination of faithfulness and sensitivity. Variations of this concept have appeared in fairness literature;
here we provide a general mathematical definition of this concept that can be applied to multiple downstream tasks.
Many of these tasks are often concerned with preserving subgroup fairness. Sensitive demographic attributes in the
dataset define the population subgroups and a model is said to be fair if it performs identically across all subgroups,
if all else is kept equal. Conversely, a model is said to be unfair if this isn’t the case. Faithfully revealing the
fairness/unfairness embedded in the model through the explanation has been a challenging and largely understudied
problem in explainable machine learning. It becomes relevant when there are tangible differences in the distributions
of different groups in the training data (Dai et al., 2021). We can broadly categorize homogeneity as follows:
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• Homogeneity as subgroup fidelity difference measures the difference in explanation fidelity across subgroups
differing only by a sensitive attribute. This can be done by measuring the maximum difference between sub-
group fidelity and average fidelity or via the average sum of pairwise differences between subgroup fidelities.

• Homogeneity as group fairness difference measures the difference in group fairness scores computed by the
model and the explanation and proposes to maintain this difference below a given threshold.

8.1 Homogeneity as Subgroup Fidelity Difference

Since homogeneity tries to capture the fidelity of a model across different subgroups, a natural way to define it would be
to compare explanation fidelity values by restricting the inputs to each subgroup. Balagopalan et al. (2022) consider
post-hoc surrogate explanations and measure explanation homogeneity via differences in fidelity across subgroups.
They borrow the definition of explanation fidelity (Section 6 Equation 11) from Craven and Shavlik (1995). Let Xg be
the set of input samples belonging to a subgroup g (e.g. female) within a sensitive attribute (e.g. sex), and G be the set
of all subgroups (e.g. {female, male, others}). Let the loss metric L be defined as AUROC, accuracy or mean error.
Then homogeneous-fidelity, or hg-fidelity for a given subgroup can be measured as:

HG-fidelity(E, f, g) ,
1

|Xg|

∑

x∈Xg

L(f(x), E(f,x))

⊲Definition 3.1 in Balagopalan et al. (52)

One way to compare hg-fidelity across subgroups is to quantify the maximum degree to which an explanation’s fidelity
reduces for protected subgroups compared to average explanation fidelity across all subgroups. The maximum fidelity
gap from average, or max-fidelity-gap, across all subgroups g ∈ G is defined as:

max-fidelity-gap(E, f,G) , max
g∈G

(

HG-fidelity(E, f,G)− HG-fidelity(E, f, g)

)

⊲Definition 3.3 in Balagopalan et al. (53)

Another way is to measure the average of the sum of pairwise differences in fidelity for each pair of subgroups
gi, gj ∈ G. This serves as a proxy for how much an explanation’s fidelity varies across subgroups. The mean fidelity
gap across subgroups, or mean-fidelity-gap can then be defined as:

mean-fidelity-gap(E, f,G) ,
2

|G|(|G| − 1)

∑

gi∈G

∑

gj∈G,j>i

∣

∣

∣HG-fidelity(E, f, gi)− HG-fidelity(E, f, gj)
∣

∣

∣

⊲Definition 3.4 in Balagopalan et al. (54)

While this work assumes that explanations with smaller fidelity gaps are more desirable, they point to evidence sug-
gesting that equal subgroup performance can worsen collective welfare (Corbett-Davies and Goel, 2018; Hu and Chen,
2020; Zhang et al., 2022). An interesting direction would be to define the metrics above for different fidelity scores,
as listed in Section 6.

8.2 Homogeneity as Group Fairness Difference

As seen earlier, an explanation that exhibits the property of homogeneity transparently communicates the fairness or
unfairness of the model being explained. This fairness/unfairness was measured via fidelity in Section 8.1. Another
approach to quantitatively measure fairness is to use popular group fairness metrics in literature. For surrogate explana-
tions, Dai et al. (2021) consider fairness metrics such as statistical parity which ensures equal group-wise opportunity,
predictive parity which ensures equal true positive rates, false positive rate balances which take care of unequal false
positive/negative rates, equalized odds, etc. (Verma and Rubin, 2018). Let M be one such group fairness metric and
G be the set of subgroups across which we desire homogeneity (e.g. {female, male, others}). We can say that an
explanation exhibits homogeneity if the group fairness score obtained by the model has a similar value to the score
obtained by its explanation. Mathematically, for a given threshold ǫ, we can say that group-fairness-difference is
defined as:
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∣

∣

∣M
(

G, f(x)
)

−M
(

G, E(f)(x)
)

∣

∣

∣ ≤ ǫ ⊲Definition 2.1.1 in Dai et al. (55)

However, this work also outlines the primary limitation of this formalization, which is the non-trivial computation of
group fairness for local explanations such as LIME and SHAP. Thus, this method primarily works on global explana-
tions.

Balagopalan et al. (2022) further find a relationship between measuring fairness as fidelity as opposed to using group
fairness metrics. Mathematically, they prove that for any group fairness metric (eg. demographic parity gap), one can
establish a relationship between fidelity gaps in Section 8.1 and the metric. For example, if M is demographic parity
gap, then group-fairness-difference is equal to the average hg-fidelity computed over all subgroups g ∈ G.

∣

∣

∣M
(

G, f(x)
)

−M
(

G, E(f)(x)
)

∣

∣

∣ = HG-fidelity(E, f,G) ⊲Theorem 3.2 in Balagopalan et al. (56)

Challenges. Despite capturing the desired property of homogeneity theoretically, there are challenges to implement-
ing explanations which preserve homogeneity in downstream applications. For example, in the context of fairness,
Anders et al. prove theoretically and experimentally that one can always construct a classifier that mimics an origi-
nal classifier on the entire data manifold and yet arbitrarily manipulate its explanation to conceal underlying model
unfairness.

9 Relationships and Trade-offs between Explanation Properties

Explanation properties serve as features by which explanations can be compared, as well as their match for a task can be
assessed. So far, we have harmonized the many different properties and definitions. Now, we use that harmonization
to describe the relationships and trade-offs between different properties. No explanation will have all properties;
understanding these relationships and trade-offs can enable a user to prioritize properties for their task.

9.1 Potential Tension: Faithfulness and Complexity

In many situations, it is possible to build an inherently interpretable model for one’s task. In this case, the explanation
is both faithful (the model is its own explanation) and non-complex (otherwise it would not be inherently interpretable).

However, if the explanation is not the entire model—presumably, because the model is too complex to understand—
then we have a tension between faithfulness and complexity. As we make the explanation more faithful, we come closer
to replicating the model perfectly, but at the cost of reducing understandability. Others have described this tension in
the context of feature attribution methods (Bhatt et al., 2020), surrogate explanations like LIME (Ribeiro et al., 2016)
and rule-based explanations (Lakkaraju et al., 2017).

There exist several ways to mitigate this tension between faithfulness and complexity in situations where an inher-
ently interpretable model cannot be used. The premise for local explanations like LIME is that by explaining a single
prediction at a time, the explanation can be both faithful to the the model locally as well as sufficiently simple to be
understandable. Several works introduce complexity regularizers during training to help find local optima correspond-
ing to models whose explanations are both faithful and complex (Ribeiro et al., 2016; Ross and Doshi-Velez, 2018;
Alvarez-Melis and Jaakkola, 2018). Finally, one can attempt to engage the user in the more complex, faithful explana-
tion. For example, Buçinca et al. (2021) use cognitive forcing functions to encourage users to stay engaged with more
complex information, even if doing so requires more cognitive labor.

This trade-off has also been captured by metrics which fix one property and apply bounds on the other. For example,
in feature attributions, effective complexity computes the minimum complexity while maintaining a given threshold
of faithfulness an (in)sufficiency evaluates faithfulness while fixing a minimal value of complexity.

9.2 Relationship between Faithfulness & Sensitivity

A good explanation should ideally be sufficiently faithful to the model while being minimally sensitive to input per-
turbations. Minimizing sensitivity naively would yield a constant and trivial explanation. Yeh et al. (2019a) discuss
striking this balance by showing that explanation smoothing results in a simultaneous lowering of sensitivity and
increase in faithfulness. This is because if explanation sensitivity is much larger than model sensitivity, the explana-
tion infidelity will be lower bounded by the difference in explanation and model sensitivity. Lowering explanation
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sensitivity thus systematically helps lower infidelity. Another technique that can improve sensitivity and infidelity is
adversarial retraining of the model.

Alvarez-Melis and Jaakkola (2018) opt for self-explaining models as a generalization of linear models, where the
stability of the model coefficients with respect to input perturbations is a proxy for sensitivity (SENN-instability,
Equation 44). We note that this metric has been formally introduced as a measure for complexity, though it also
measures sensitivity towards input perturbations. Regularization of this metric by trading off faithfulness helps control
for both sensitivity of model coefficients to perturbations and for explanation complexity (Equation 7.4).

9.3 Homogeneity-Faithfulness Trade-off

An explanation that preserves homogeneity is essentially preserving faithfulness across subgroups, which in other
words ensures low sensitivity to subgroup perturbations. Practical applications for homogeneity are typically con-
cerned with fairness amongst these subgroups. Just like the trade-off between group fairness and model accuracy is
a well-studied topic in fairness literature (Zliobaite, 2015; Kearns et al., 2018), Balagopalan et al. (2022) suspect a
similar trade-off between the fidelity gap (homogeneity) and overall faithfulness of an explanation. In other words,
they posit that trying to maximize subgroup faithfulness can inevitably decrease overall explanation faithfulness. In
such cases, they propose that it may be appropriate to maximize the faithfulness of the worst-case subgroup.

Aïvodji et al. (2019) and Dimanov et al. (2020) demonstrate that it is possible to obtain explanations or attack existing
ones, such that they faithfully capture and rationalize an unfair model’s behavior. Anders et al. (2020) achieve the
same via adversarial training. Slack et al. (2019) also demonstrate that highly faithful post-hoc explanations can be
fooled to hide underlying biases through adversarial attacks. In other words, these attacks lower the homogeneity of
an explanation despite preserving faithfulness, by inaccurately representing the explanation of an unfair model as fair.

9.4 Faithfulness-Completeness Relationship

Sensitivity-n 34 by Ancona et al. (2017) is a strict requirement for completeness and is only met for all values of n
for a feature subset of size n, when the model explained has linear behavior. Consequently, they propose measuring
the correlation for different values of n instead of equality for all n as a less general alternative, which is the same as
attribution faithfulness (Section 5.2).

attribution-faithfulness(f, E,x, s) , corr
S∈{1...K}⌈sK⌉

(

∑

i∈S

E(f,x)i, f(x)− f(x{1...K}\S)

)

⊲Equation 6 in Bhatt et al. (57)

completeness-alternative(f, E,x, n) , corr
S∈{1...K}n

(

∑

i∈S

E(f,x)i, f(x)− f(x{1...K}\S)

)

⊲Adapted from Section 4.1 in Ancona et al. (58)

The difference is trivial, where one looks at a fixed proportion of all features and the other looks at a fixed number of
features among all features.

Besides, Wang et al. (2020) proves that sensitivity-n implies proportionality-s for necessity, but not vice versa. Math-
ematically, if an attribution explanation satisfies sensitivity-n for two different values of n = n1 and n = n2 that define
S1 ∈ {1 . . .K}n1 the subset of most important features and S2 ∈ {1 . . .K}n2 the subset of least important features,
and the two subsets would account for the same share of attributions, then the proportionality-s for necessity metric
would have a value of 0.

f(x)− f(x{1...K}\S1
) =

∑

i∈S1

E(f,x)i =
∑

i∈S2

E(f,x)i = f(x)− f(x{1...K}\S2
) (59)

⇒ f(x{1...K}\S1
) = f(x{1...K}\S2

) (60)

⇒ necessity-proportionality-s(E, f,x, s) =
∣

∣f(x{1...K}\S1
)− f(x{1...K}\S2

)
∣

∣ = 0 (61)
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Based on above, completeness is a generalized version of faithfulness in feature attribution in the way that it requires
strict equality but not just proportionality. Strict equality requires removing a specific amount of features or pixels to
change the output by exactly the sum of their attributions scores, while proportionality only requires the same portion
of attribution to account for the same change in the output.

9.5 Faithfulness as Proportionality: Relationship between Feature Attribution Faithfulness Metrics

Explanations in the form of feature attributions often attempt to directly establish a quantitative relationship between
each feature and the model output. This has led to the emergence of proportionalities between the feature attribution
explanation and the model output, which we discuss below. Methods vary primarily with regard to picking the relevant
subset of features and comparing various subsets to the model output change.

Faithfulness in feature attributions requires the attributions to be proportional to the change in model output if those
features were removed. This captures the true feature contributions towards the model output. Let E(f,x)i be the ith

feature’s attribution score, S be the set of important features and Sc be the complement of S. Let xSc be the input x

with features in Sc retained and features in S reset to the reference value x0, i.e. x
(k)
Sc = x

(k)
0 if k ∈ S else x

(k) for
k ∈ Sc.

∑

i∈S

E(f,x)i ∝ L(f(x), f(xSc )) (62)

Depending on the range of values that the attribution explanation can take, the loss term can assume different forms.
For an explanationE ∈ R

K that includes negative attribution values, one possible loss L could be a simple difference:

∑

i∈S

E(f,x)i ∝ f(x)− f(xSc) (63)

When an explanation E ∈ R
K
≥0 is restricted to non-negative attribution values, the loss L can also be the absolute

difference:

∑

i∈S

E(f,x)i ∝ |f(x)− f(xSc)| (64)

This notion of proportionality captures both no false positives and no false negatives, and it can be decomposed to
either one. For example, DeYoung et al. (2019) simplify Equation 64 to revert the most important features, which is
proportional to a large change in model output. This is equivalent to a high comprehensiveness (Equation 20) value
and a higher degree of no false positives. Similarly, retaining the most important features and reverting the other
features should correspond to a small change in model output, i.e. a low (in)sufficiency (Equation 16) value and hence
a higher degree of no false positives.

This notion of proportionality can also be observed in group-based faithfulness. For instance, Wang et al. (2020) pick
two subsets of features S1 and S2 such that S1 contains the top important features and S2 contains the least important
features. Each subset accounts for an equal portion s of the total attribution value. Mathematically, we can say
∑

i∈S1
E(f,x)i =

∑

i∈S2
E(f,x)i and

∑

i∈Sc
1
E(f,x)i =

∑

i∈Sc
2
E(f,x)i. When the features in these subsets are

reduced to reference values, the proportionalities can be given as:

f(x)− f(xSc
1
)

f(x)− f(xSc
2
)
=

∑

i∈S1
E(f,x)i

∑

i∈S2
E(f,x)i

= 1, (65)

f(x)− f(xS1)

f(x)− f(xS2)
=

∑

i∈Sc
1
E(f,x)i

∑

i∈Sc
2
E(f,x)i

= 1 (66)

Given these relationships, it suffices to compute the absolute difference between f(xSc
1
) and f(xSc

2
) to evaluate the

degree of proportionality present and this is called proportionality for necessity (Equation 38). Similarly, it suffices to
compute the absolute difference between f(xS1) and f(xS2), which is referred to as proportionality for sufficiency
(Equation 39).

Metrics for monotonicity (Section 6.4.1) have also been derived from this notion of proportionality between feature
attributions and the corresponding change to model output. For instance, randomly sampling subsets of features of the
same size and computing the Pearson’s correlation of the difference between proportional quantities in Equation 63
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yields attribution faithfulness (Equation 27) (Bhatt et al., 2020). This is the same as ensuring both no false positives
and no false negatives.

10 Conclusion

In this paper, we present a synthesis of the formulation of various objective explanation metrics in literature and a
quantitative comparison of the properties they measure. Our review covers sensitivity, faithfulness, completeness,
complexity and fairness which have been broadly considered as important properties in literature. We outline the
similarities and differences between various definitions of the same property and map them to use cases. We also
discuss the trade-offs and relationships between these properties. Our work aims to provide a clear, unified view of the
various properties that constitute a good explanation. This will aid easier usage of explanations and evaluation metrics
in practical applications and to the best of our knowledge, is the first to address the current lack of organization in this
space.
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