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Abstract

Rationalization is fundamental to human rea-
soning and learning. NLP models trained
to produce rationales along with predictions,
called self-rationalization models, have been
investigated for their interpretability and util-
ity to end-users. However, the extent to which
training with human-written rationales facili-
tates learning remains an under-explored ques-
tion. We ask whether training models to self-
rationalize can aid in their learning to solve
tasks for the right reasons. Specifically, we
evaluate how training self-rationalization mod-
els with free-text rationales affects robustness
to spurious correlations in fine-tuned encoder-
decoder and decoder-only models of six dif-
ferent sizes. We evaluate robustness to spu-
rious correlations by measuring performance
on 1) manually annotated challenge datasets
and 2) subsets of original test sets where re-
liance on spurious correlations would fail to
produce correct answers. We find that while
self-rationalization can improve robustness to
spurious correlations in low-resource settings,
it tends to hurt robustness in higher-resource
settings. Furthermore, these effects depend
on model family and size, as well as on ratio-
nale content. Together, our results suggest that
explainability can come at the cost of robust-
ness; thus, appropriate care should be taken
when training self-rationalizing models with
the goal of creating more trustworthy models.

1 Introduction

Rationalization—the process of explaining the rea-
soning used to come to a particular decision—plays
a pivotal role in human inference and learning
(Lombrozo, 2016). For these reasons, there has
been a growing interest in producing NLP mod-

*Work undertaken while Alexis Ross and Ana Marasović
were at the Allen Institute for AI.

Our code is publicly available at https://github.com/
allenai/rationale_robustness

els that can output rationales1 for their predic-
tions. Models that output such rationales have mul-
tiple benefits: First, they are more interpretable
and easier to interact with for end-users than non-
rationalizing models (Alvarez-Melis and Jaakkola,
2018). Second, such intermediate rationalization
can offer learning benefits, such as achieving com-
parable performance with less data and improving
out-of-distribution generalization (Nye et al., 2021;
Wei et al., 2022; Zelikman et al., 2022).

However, the question of whether training mod-
els to rationalize can help them learn how to solve
tasks for the right reasons remains open. In par-
ticular, rationales encode information about the
underlying reasoning humans use to reach answers,
which raises the question: Does incorporating such
rationales into training allow models to rely on
human-aligned reasoning rather than spurious fea-
ture interactions? If so, training with rationales
could offer a pathway towards creating more ro-
bust, trustworthy, or cognitively plausible models.

In this work, we explore this question by empir-
ically investigating whether training models with
human-written rationales can help make them more
robust to spurious correlations in data. We ana-
lyze a class of models called self-rationalization
models—which jointly output free-text rationales
along with predictions—and focus specifically on
the fine-tuning setting, in which prior work has
found reliance on spurious correlations to emerge
(Utama et al., 2021).

We evaluate six models of varying architectures
and sizes across two tasks, natural language infer-
ence and commonsense question answering. Our
main results are as follows:

1. While the effects of training with rationales
are model- and task-specific, when it improves
robustness to spurious correlations, it tends

1Prior work has used the terms “explanation” and ”ratio-
nale” interchangeably. In this work, we use the word ”ratio-
nale” for consistency with ”self-rationalization” models.
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to be in lower-resource settings. In higher-
resource settings, training with rationales can
hurt robustness (§4.1).

2. Within model families, larger models benefit
more in robustness from rationales (§4.2).

3. The effects of self-rationalization on robust-
ness are not fully explained by its effects on
in-domain task performance (§4.3).

4. The content of rationales used during training
influences both task performance and robust-
ness to spurious correlations (§4.4).

Our results suggest that straightforward self-
rationalization training does not always facilitate
learning to solve a task for the right reasons. In-
stead, the effects of self-rationalization on robust-
ness to spurious correlations depend on a multitude
of factors. Thus, appropriate care should be taken
when training models to self-rationalize for the goal
of creating trustworthy models.

2 Related Work

Learning to rationalize Two classes of ap-
proaches to producing models that can rational-
ize their predictions include self-rationalization
models,2 which are fully differentiable and out-
put free-text rationales along with task predic-
tions, and pipeline models, which consist of two
components—one that produces rationales, and a
second that makes predictions from those rationales
(Wiegreffe et al., 2021).3 Such methods are typi-
cally evaluated by the faithfulness and plausibility
of their rationales, where faithfulness represents
the extent to which a model actually relied on the
rationale in making its prediction, and plausibility
indicates human judgment of how well the ratio-
nale explains the output (DeYoung et al., 2020).

In contrast to these works which aim to im-
prove model interpretability through new methods
for rationalizing models, we ask to what extent
existing methods affect model robustness to spu-
rious correlations. We conduct our analysis on
self-rationalization models, which have been found
to achieve better task performance and produce
higher-quality rationales than do pipeline models
(Wiegreffe et al., 2021; Camburu et al., 2018).

2Such approaches have also been referred to as explain-
then-predict (Camburu et al., 2018) and rationalize-then-
predict (Chen et al., 2022) models.

3See Wiegreffe et al. (2021) for a detailed discussion of
pipeline and self-rationalization approaches to rationalization.

Learning from rationales Recent work has ex-
plored the utility of rationales for improving end-
task performance in in-context learning (Wei et al.,
2022; Lampinen et al., 2022; Ye and Durrett, 2022)
as well as in fine-tuning (Zaidan et al., 2007; Han-
cock et al., 2018; Camburu et al., 2018; Narang
et al., 2020; Hase and Bansal, 2021; Nye et al.,
2021; Zhao and Vydiswaran, 2021). Previous work
has shown that training with both human-annotated
rationales (Rajani et al., 2019) and rationales gen-
erated by language models (Paranjape et al., 2021)
can increase in-domain task performance, partic-
ularly in low-resource settings (Bhat et al., 2021;
Pruthi et al., 2022; Zelikman et al., 2022). Unlike
these prior works, which study how training with
rationales affects in-domain, end-task performance,
we focus specifically on evaluating impact on ro-
bustness to spurious correlations.

Improving robustness with rationales Most
closely related are recent works that study how
training with rationales affects model robustness.
Stacey et al. (2022) propose a method of supervis-
ing attention weights with extractive rationales and
show that this method leads to both in-distribution
and out-of-distribution improvements for natural
language inference. Schuster et al. (2021) find that
training with contrastive extractive rationales im-
proves robustness as measured by performance on
adversarial evaluation sets. Concurrent work by
Chen et al. (2022) investigates to what extent train-
ing models to extract rationales through pipelines
improves their robustness to adversarial attacks.

In contrast to all three of these works, we focus
on freeform rationales instead of extractive ratio-
nales and explore the impact of amount of training
data on robustness. In contrast to Schuster et al.
(2021) and Chen et al. (2022), we analyze self-
rationalization models instead of pipeline models
and measure robustness to spurious correlations,
rather than robustness to adversarial attacks. While
Stacey et al. (2022) evaluate robustness to spurious
correlations for natural language inference with
some of the same test sets, they work with masked
language models and evaluate the effect of super-
vising model attention with rationales; in contrast,
we work with encoder-decoder and decoder-only
models of varying sizes and evaluate the effect of
outputting rationales along with predictions. In ad-
dition, their analysis is limited to natural language
inference, for which evaluation datasets targeting
robustness exist; in contrast, we also experiment



with commonsense question answering through
new methods for evaluating robustness. In §4.1,
we discuss the variance in results across different
tasks and highlight the importance of cross-task
evaluation.

3 Experiments

3.1 Experimental Set-Up

Models We experiment with encoder-decoder
and decoder-only models of varying sizes ranging
from 140 to 774 million parameters, as shown in
Figures 1 and 2. Our encoder-decoder models build
on pretrained T5 (Raffel et al., 2020) and BART
models (Lewis et al., 2020), and our decoder-only
models build on pretrained GPT2 (Radford et al.,
2019) models. Our T5 models build specifically on
the versions trained for an additional 100K steps on
the language modeling objective after pretraining
(Lester et al., 2021), as we aim to measure how
the amount of training data impacts results, and the
default T5 models have already been fine-tuned on
the full SNLI training dataset.4

Tasks We evaluate self-rationalization models
on two tasks—natural language inference (NLI),
and commonsense question answering (CQA)—
for which human-annotated rationales already ex-
ist. For NLI, we train task models on SNLI (Bow-
man et al., 2015) and obtain rationales from ESNLI

(Camburu et al., 2018). For CQA, we train task
models on CQA (Talmor et al., 2019) and obtain
rationales from ECQA (Aggarwal et al., 2021). Ex-
amples of inputs and outputs for both tasks are
shown in Table 2. For CQA, unless otherwise spec-
ified, we train on the “positive” freeform rationales
in ECQA, which explain why the gold answer is
the correct answer for a given question. In §4.4,
we explore the impact of training with the different
forms of rationales shown in Table 2.

Rationales For each task, we compare a baseline
model trained solely to predict task labels with
models trained to also self-rationalize. All self-
rationalization models are trained to generate a
rationale following the task label, as previous work
has found that outputting rationales conditioned on
labels leads to better performance than outputting

4For example, when experimenting with T5-BASE,
we work specifically with t5-base-lm-adapt available
in huggingface at https://huggingface.co/google/
t5-base-lm-adapt.

labels conditioned on rationales in the fine-tuning
setting (Schuff et al., 2021).

Data We experiment with different numbers of
training examples n, as we seek to understood how
training data size influences the impact of self-
rationalization training on robustness to spurious
correlations. We experiment with n ∈ {1K, 2.5K,
5K, 10K, 50K, 100K} for NLI and n ∈ {1K, 5K,
7598} for CQA.5 For each training data amount n,
we create validation data for checkpointing mod-
els by randomly sampling n/2 instances from the
original task-only validation dataset, such that we
perform model selection based on task performance
across baseline and self-rationalization models. For
self-rationalization models, we create training data
by concatenating original task-only training input-
output pairs with their rationale-extended counter-
parts, such that we have 2n training inputs obtained
from n original instances.6

Training For each amount of training data n, we
report the average difference between task-only
and self-rationalization models across multiple ran-
dom seeds (5 for NLI and 10 for CQA).7 For one
random seed in each evaluation setting (where a set-
ting is determined by the task, model family, model
size, whether rationales are used, and amount of
training data), we tune the learning rate from pos-
sible values [1e−5, 3e−5, 5e−5] and use the best-
performing learning rate for other random seeds in
the same setting. We train with fixed batch size 64
and linear learning rate scheduler using Adafactor
until accuracy on the validation data stops decreas-
ing, or for a maximum of 50 epochs. We use pa-
tience values of 10 for n < 10K, 5 for n >= 10K,
and 3 for n >= 50K.

Evaluation We decode predictions using greedy
decoding and evaluate accuracy using exact match
with gold labels. We evaluate robustness to spuri-
ous correlations by measuring performance on 1)
manually annotated challenge datasets and 2) sub-
sets of original test sets where reliance on spurious

5The total size of original training datasets are 549,339 for
SNLI and 7,598 for CQA.

6In initial experiments, we find that this leads to bet-
ter performance/robustness measures than only using the n
input-outputs for self-rationalization; we hypothesize that
without including the original task-only inputs as well, self-
rationalization models may be overfitting to the rationale gen-
eration part of the training objective.

7We experiment with more seeds for CQA because we have
fewer metrics/evaluation datasets to measure robustness for
CQA, and so it is harder to disentangle real effects from noise.

https://huggingface.co/google/t5-base-lm-adapt
https://huggingface.co/google/t5-base-lm-adapt


correlations would fail to produce correct answers.
Both methods are discussed below in §3.2.

3.2 Evaluating Reliance on Spurious
Features

Out-of-domain challenge datasets Our first
method of evaluating reliance on spurious cor-
relations leverages out-of-domain evaluation sets
designed by experts to test for reliance on spu-
rious features. For NLI, we evaluate on HANS
(McCoy et al., 2019) and CAD (Kaushik et al.,
2021). HANS is a controlled evaluation dataset
that tests for reliance on surface-level syntactic bi-
ases present in SNLI. CAD is an evaluation dataset
with human-annotated edits to inputs that change
entailment labels. To the best of our knowledge,
such evaluation datasets do not exist for CQA.

CQA NLI
Feature z Feature z

fountain 3.50 lex-overlap ≥ 0.8 140.16 (e)
music 3.18 for 93.86 (n)

welcome 3.01 to 83.30 (n)
atlas 3.00 sleeping 80.68 (c)

satisfied 3.00 there 78.11 (e)
hard 2.98 outside 77.64 (e)
stage 2.86 nobody 68.44 (c)
tale 2.86 outdoors 65.17 (e)

amusement 2.65 no 52.58 (c)
feel 2.65 cat 50.72 (c)

Table 1: Features found to have statistically significant
correlations with labels in training datasets using Gard-
ner et al. (2021)’s framework. Details in §3.2.

“Hard” subsets of original evaluation data To
directly test for reliance on spurious correlations
without introducing additional domain shifts, we
also subset the original task test sets into subsets of
varying difficulty, where difficulty is measured by
the success of spurious heuristics: “Easy” subsets
include instances for which heuristics that build on
spurious correlations in training data would lead
to correct predictions, and “hard” subsets include
instances where such spurious heuristics would fail.

To create these “easy” and “hard” subsets, we
build on the statistical framework for uncovering
dataset-level artifacts introduced by Gardner et al.
(2021). Specifically, we measure correlation be-
tween features and outputs across the CQA and
SNLI training datasets and consider as artifacts any
features showing statistically significant correla-
tion, i.e., with z-statistic > 2.

For SNLI, we consider tokens in inputs as fea-

tures, as well as lexical overlap between premise
and hypothesis. Following previous work (Wu
et al., 2022), we consider an input to have high
lexical overlap if the ratio of tokens in the hypoth-
esis that are also present in the premise is at least
0.8. We use classification labels as outputs. For
CQA, the feature and output spaces are less clearly
defined, as it contains different output choices for
each input. We take tokens in answer choices to
be features and whether or not those tokens are
present in the gold answers as outputs. To remove
features that are very frequent or infrequent, we
filter features that appear less than 10 or more than
200K times for SNLI and less than 5 or more than
10K times for CQA. Table 1 displays the 10 fea-
tures with highest z-statistics for the CQA and SNLI

training sets.8

We subset the original CQA and NLI test sets
based on whether artifacts appear with the same
output they showed statistically significant corre-
lations with in the training datasets. TEST-HARD
contains instances for which relying solely on ar-
tifacts to make predictions would fail to produce
correct predictions (i.e., artifacts appear with a dif-
ferent output than they are correlated with), and
TEST-EASY contains instances for which relying
on artifacts would lead to correct predictions.9 For
example, a CQA test instance for which an incor-
rect answer choice had token “fountain” would be
considered “hard,” as “fountain” has statistically
significant correlation with being in the correct an-
swer choice (Table 1). The sizes of TEST-EASY

and TEST-HARD are 76/333 respectively for NLI

and 82/372 for CQA. In addition to reporting per-
formance values for these subsets, we measure the
spread in performance on hard vs. easy subsets,
i.e., TEST-EASY − TEST-HARD, which we refer
to as ∆ TEST-SUBSETS. We take a lower value
of ∆ TEST-SUBSETS to indicate less reliance on
artifacts.10 For NLI, we also evaluate on TEST-

8We note that the z-statistics for SNLI artifacts are much
higher than for CQA; this finding aligns with prior work show-
ing that SNLI contains many artifacts (Poliak et al., 2018;
Gururangan et al., 2018; Wallace et al., 2019). SNLI train has
3,496 total artifacts, and CQA train has 43.

9If an instance (x, yi) contains both artifact(s) that show
statistically significant correlation with yi in the training data
and other artifact(s) that show statistically significant correla-
tion with y 6= yi in the training data, we exclude this instance
from both TEST-EASY and TEST-HARD.

10We observe that TEST-EASY and TEST-HARD in fact
have the expected difficulties as measured by accuracy values
of different models. In particular, as shown in the last rows
of Figures 1 and 2, the large ∆ TEST-SUBSETS values, anno-
tated in gray, indicate that baseline models perform noticeably
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Figure 1: Effect of self-rationalization for NLI across six models (columns) and varying amounts of training data
(x axis). Bar heights show mean differences between baseline task-only models and self-rationalization models
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shown in gray. Error bars indicate standard errors of the means. Green/red bars indicate improvement/degradation
in robustness; gray bars indicate error bars intersecting 0.

HYP, a subset of the SNLI test set for which a
hypothesis-only classifier was found to give incor-
rect predictions (Gururangan et al., 2018).11

4 Results

Figures 1 and 2 show, for NLI and CQA respec-
tively, the effects of self-rationalization across mul-
tiple random seeds. Plotted are mean differences
between self-rationalization models and baseline
worse on TEST-HARD than on TEST-EASY for both NLI and
CQA. In addition, baseline accuracies on TEST-HARD are
notably worse than accuracies on the full test sets (row 1) for
NLI. While this latter trend does not hold as consistently for
CQA, we observe that the baseline accuracies on original test
sets are lower for CQA than for NLI. Thus, we hypothesize
that for CQA, the relative lack of drop in performance on
TEST-HARD compared to original test sets can be explained
by the fact that ECQA contains fewer artifacts and so original
test sets are already “hard” for CQA models in the sense of
prevalence of artifacts to be exploited.

11We do not evaluate on the analogous “easy” counterpart
for TEST-HYP, i.e., the subset for which a hypothesis-only
classifier succeeds, as it would require re-training a hypothesis-
only classifier; instead, we evaluate only on the TEST-HYP
subset released by Gururangan et al. (2018).

task-only models (i.e., self-rationalization − base-
line) across six models (columns) and varying
amounts of training data (x axis). Improvements
on TEST (row 1) reflect in-domain, task improve-
ments, while improvements on other metrics (rows
> 1) indicate robustness improvements.

4.1 Main Results

As shown in Figure 1, under our evaluation of
robustness to spurious correlations, we observe
that self-rationalization improves the robustness
of BART- and GPT2-based NLI models in lower
resource data settings. In higher resource set-
tings, we observe a degradation in some robust-
ness metrics, namely performance on TEST-HYP

& TEST-HARD and ∆ TEST-SUBSETS for all mod-
els except BART-LARGE. For BART-BASE, this
degradation in higher-resource settings is also seen
for performance on HANS. The T5 models (T5-
BASE & T5-LARGE) show more mixed results:
While self-rationalization hurts performance on
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HANS for both T5-BASE and T5-LARGE in all
data regimes, it improves performance on some
metrics, i.e., ∆ TEST-SUBSETS in higher-resource
settings (n>=5k) for T5-LARGE.12

For CQA (Figure 2), results are more mixed, and
they depend on model properties, i.e., architecture
and size, as well as size of the training data. For
BART and GPT2 models of size LARGE, training
with rationales generally leads to improvements.
For models smaller than size LARGE, as well as
both T5 models, the effect of training with ratio-
nales depends on the amount of training data, but
rationales tend to hurt robustness in higher-resource
settings (7.6K training examples) for these models.

These general trends are similar to those for NLI,
with more improvements from self-rationalization
in lower-resource settings and some degradation in
higher-resource settings. However, unlike for NLI,
the results are not always monotonic in the amount
of training data, particularly for BART-BASE and
GPT2-MEDIUM on ∆ TEST-SUBSETS. In addition,
for GPT2-LARGE, results on ∆ TEST-SUBSETS

improve with increasing data size, opposite to the

12One distinct property of T5 models is that they were pre-
trained with a denoising objective and then adapted with a lan-
guage modeling (LM) objective, while BART was pretrained
only with denoising and GPT2 only with LM. Thus, we spec-
ulate that an explanation for the difference in results from the
T5 models could be that the objectives used to pretrain a model
before fine-tuning may influence how self-rationalization af-
fects robustness to spurious correlations, but why exactly the
objectives may have such an effect remains unclear.

general trend. Furthermore, improvements in TEST-
HARD are similar to standard errors, except for
T5-BASE and n=1K, suggesting that even in low-
resource settings, self-rationalization does not no-
tably improve robustness for CQA.

The varied results for CQA and lack of consis-
tency between NLI and CQA may be influenced by
the differing numbers of artifacts in the datasets;
in particular, perhaps self-rationalization training
has a larger effect on robustness to spurious corre-
lations when there are more spurious correlations
in the training data (as in SNLI but not ECQA). We
leave it to future work to investigate the impact
of artifacts in training data on effect of rationales.
The differences between NLI and CQA also sug-
gest that evaluations solely based on NLI may not
cleanly transfer to other tasks; this finding provides
further evidence that the benefits of rationales are
task-dependent (Carton et al., 2020; Palaskar et al.,
2022) and that evaluations on one task such as NLI

alone are not comprehensive enough to draw gen-
eral conclusions about the utility of rationales.

4.2 Effect of Model Size

For NLI, for the GPT2 and BART models, we find
that increasing model size leads to increasing gains
in robustness: Self-rationalization leads to larger
improvements in robustness for BART-LARGE than
for BART-BASE, and similarly for GPT2-LARGE

and GPT2-MEDIUM (except for when n=2.5K);



NLI input:
snli hypothesis: The family is sitting down for dinner. premise: A couple play in the tide with their young son.

SNLI contradiction
ESNLI contradiction explanation: The family cannot simultaneously be playing in the tide and sitting down to

dinner.

CQA input:
Where would you get a dog if you do not have one? (A) pet store (B) outside (C) neighbor’s house (D) park (E) rug

CQA pet store
ECQA Positive pet store explanation: Pet store is a retail business which sells different kinds of animals, variety of animal

supplies and pet accessories to the public. We would get a dog at a pet store, if we do not have one.
ECQA Negative pet store explanation: Outside means not in the living or working area. Those found outside in streets

are street dogs and are not usually a pet dog. Neighbor’s house is the man who lives in the house next
door to your house is your neighbor and the house in which he lives is your neighbor’s house. The one at
neighbor’s house is his pet dog and we can’t get it even though we don’t have one. Park is a large public
garden or area of land used for recreation. Dogs found at park are street dogs not suitable for being a pet.
Rug is a floor covering of thick woven material or animal skin, typically not extending over the entire
floor. Rug is a floor covering and not a pet shop where we can get a dog.

ECQA Freeflow pet store explanation: Pet store is a retail business which sells different kinds of animals, variety of animal
supplies and pet accessories to the public. We would get a dog at a pet store if we do not have one. Those
found outside in streets are street dogs and are not usually a pet dog. The one at neighbor’s house is his
pet dog and we can’t get it even though we don’t have one. Dogs found at park are street dogs not suitable
for being a pet. Rug is a floor covering and not a pet shop where we can get a dog.

Table 2: Examples of inputs and outputs used for training baseline and self-rationalization models.

TEST CAD HANS TEST
HYP

TEST
HARD

∆ TEST
SUBSETS

↑ ↑ ↑ ↑ ↑ ↓

1K
no rationales 84.62 ±0.31 71.20 ±0.27 50.18 ±0.08 73.68 ±0.40 73.82 ±0.85 14.70 ±1.50
original +1.05 ±0.21 +1.75 ±0.34 +0.44 ±0.19 +1.56 ±0.40 +2.04 ±0.91 -2.04 ±1.93
shuffled -0.59 ±0.37 -2.11 ±0.45 +0.86 ±0.52 -1.81 ±0.50 -2.51 ±1.60 +4.15 ±2.85

Table 3: Comparison between training BART-LARGE on 1K training instances with original rationales in ESNLI
vs. shuffled rationales across 5 random seeds. We report means, as well as standard errors of the means.

furthermore, we do not observe the same degra-
dation in robustness for BART-LARGE in higher-
resource settings that we observe for BART-BASE.
For the T5 models, self-rationalization generally
leads to less degradation in robustness for T5-
LARGE than for T5-BASE. For CQA, we observe
a similar trend: self-rationalization generally leads
to larger improvements in robustness for BART-
LARGE than for BART-BASE, for GPT2-LARGE

than for GPT2-MEDIUM, and for T5-LARGE than
for T5-BASE (except for when n=1K).

Thus, our results suggest that, within model fam-
ilies, increasing model size may improve effects on
robustness from training with rationales. Previous
work has shown that rationales improve in-domain
performance only for larger models, in both fine-
tuning (Nye et al., 2021) and in-context learning
(Wei et al., 2022; Lampinen et al., 2022); our re-
sults can be seen as an extension of this finding
to the effects of training with rationales on robust-
ness. It is worth noting that the trends we observe

appear to be specific to model families, i.e., increas-
ing model size has no noticeable effect when not
conditioning on model family.

4.3 Correlation between robustness metrics

To determine how results on different robustness
metrics relate to each other, we compute their cor-
relations. These correlations should indicate how
much insight we can get into the overall impact of
self-rationalization on a model’s robustness by only
looking at select metrics. For each pair of metrics
in Figure 1, we aggregate the differences in per-
formance between baseline and self-rationalization
performance on those metrics in all evaluation set-
tings (e.g., model type, training data size), and
compute the Pearson Correlation of these values.

As shown in Figure 3, results on the “hard” sub-
sets of original test data (TEST-HARD & TEST-
HYP) are overall correlated with the results on out-
of-domain challenge datasets; the lowest correla-
tion we observe for these subsets is between TEST-
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Figure 3: Pearson correlations between results on pairs
of evaluation metrics. Each cell color is determined by
absolute value of the correlation coefficient.

HYP and HANS, with Pearson coefficient 0.449.
Furthermore, CAD and HANS, the manually an-
notated challenge sets, show low correlation with
each other, with a Pearson coefficient of 0.271, sug-
gesting that out-of-domain performance does not
straightforwardly reflect all aspects of robustness.
We also observe that in-domain test performance is
not always highly correlated with robustness met-
rics, with Pearson coefficient magnitudes as low as
0.496; this result suggests that difference in test per-
formance is not entirely predictive of the effect of
self-rationalization on robustness. In other words,
training with rationales has effects on robustness
that go beyond facilitating or hurting in-domain
task performance.

4.4 Effect of rationale content
Shuffled explanations One hypothesis for why
training models to output rationales in addition to
predictions may improve robustness is that it serves
as a form of regularization; under this hypothesis,
training to output even rationales with low explana-
tory power might improve robustness to spurious
correlations by reducing overfitting.

To determine to what extent rationale content
influences effects on robustness, we experiment
with shuffling rationales during training such that
the rationale for a given input no longer explains
that input. Results from training BART-LARGE

with shuffled rationales for NLI are shown in Ta-
ble 3. We also report results for BART-BASE,
GPT2-MEDIUM, and T5-LARGE, which follow
a similar trend, in Table 5 in the Appendix. We find
that, as expected, training with shuffled rationales
leads to worse robustness compared to training with

original rationales, except on HANS.

Different ECQA rationales We also experiment
with training BART-LARGE with the different ratio-
nale types in the ECQA dataset, depicted in Table 2.
Results for BART-BASE, GPT2-MEDIUM, and T5-
LARGE, which follow a similar trend, are shown in
Table 6 in the Appendix.

“Positive” rationales explain why the gold an-
swer is correct for a given question, “negative” ra-
tionales explain why other choices are incorrect,
and “freeflow” rationales combine positive and neg-
ative rationales into a coherent and free-flowing
paragraph and thus constitute freeform contrastive
rationales.13 As shown in Table 4, training with
1K positive rationales improves performance on
both TEST & TEST-HARD and decreases ∆ TEST-
SUBSETS. In contrast, training with 1K negative
or freeflow rationales hurts performance on TEST

& TEST-HARD. We also observe that training with
freeflow rationales generally leads to worse results
than positive rationales and better results than neg-
ative rationales. In contrast to prior findings on the
benefits of contrastive rationales (Paranjape et al.,
2021; Schuster et al., 2021), our results suggest that
contrastive rationales do not always provide more
learning benefits than non-contrastive rationales,
given that training with freeflow rationales hurts
robustness compare to the non-contrastive positive
rationales.

A possible explanation for the differences in ef-
fects from training with these different rationale
types is their varying lengths. As shown in Table 2,
negative and freeflow rationales are longer than
positive rationales.14 To rule out this explanation,
we also train BART-LARGE with length-controlled
negative and freeflow rationales, in which we trun-
cate their lengths to 96 tokens, the maximum length
used to train with positive rationales. As shown in
Table 4, we still observe degradation in both task
performance and robustness when using negative
or freeflow rationales rather than positive rationales.
These consistent results suggest that rationale con-
tent, rather than length, indeed influences learning.

Another possible explanation for these varied
effects is that the topical relevance of rationales
to gold labels may influence their utility in train-
ing. Positive rationales, as explanations of gold

13Contrastive explanations explain why answers are correct
compared to alternative (incorrect) answers (Miller, 2019;
Ross et al., 2021; Jacovi et al., 2021b).

14The mean number of rationale tokens are 60, 62, and 29
for negative, freeflow, and positive rationales respectively.



TEST
TEST
HARD

∆ TEST
SUBSETS

↑ ↑ ↓

no rationales 48.3 ±0.8 49.0 ±1.0 19.9 ±1.8

positive +2.2 ±1.3 +2.2 ±1.0 -1.9 ±3.0

freeflow -2.3 ±1.1 -1.7 ±1.2 -2.4 ±2.5
freeflow* -3.3 ±0.4 -1.1 ±2.7 +2.2 ±4.3

negative -4.1 ±1.2 -3.7 ±1.8 -1.4 ±2.1
negative* -5.3 ±0.3 -1.7 ±0.5 -1.6 ±2.0

Table 4: Effect of training BART-LARGE with different
types of rationales in ECQA. Blue/red cells indicate
improvement/worsening in performance compared to
the baseline (no rationales, row 1). * indicates length-
controlled rationales, i.e., truncation of the negative and
freeform rationales to have the same length as the posi-
tive rationales. We report means across 5 random seeds,
as well as standard errors of the means.

answers, are more topically related to gold answers
than negative rationales, while freeflow rationales
have topical relevance between those of positive
and negative rationales. We observe that the ef-
fects of training with these rationale types align
with their levels of topical relevance. Future work
can further explore how properties like topical rele-
vance influence the utility of rationales.

5 Conclusion

We investigate to what extent training models to
rationalize their predictions affects their robust-
ness to spurious correlations. We experiment
with encoder-decoder and decoder-only models
ranging in size from 140 to 774 million param-
eters across two tasks—natural language infer-
ence and commonsense question-answering—and
measure reliance on spurious correlations through
both manually-annotated, out-of-domain challenge
sets and challenging in-domain subsets of orig-
inal test sets. We find that the effects of self-
rationalization are model- and task-specific: While
self-rationalization can improve robustness to spuri-
ous correlations in lower-resource settings for some
models and tasks, it tends to exacerbate reliance
on spurious correlations in higher-resource settings.
Furthermore, larger models tend to benefit more
from rationales, and rationale content influences
rationale utility in improving robustness.

The variability of our results suggests that, de-
spite the appeal of self-rationalization models for
increasing model trustworthiness by facilitating
debugging and interaction with end-users (Jacovi

et al., 2021a), training models to self-rationalize
can have the unintended effect of increasing re-
liance on spurious features and biases, thereby de-
creasing the models’ trustworthiness. Thus, ap-
propriate care should be taken when training self-
rationalization models with the goal of creating
trustworthy models. Future work can investigate
how to alleviate these harms while retaining the in-
terpretability benefits of models that can rationalize
their predictions.

6 Limitations

Conducting the analysis in this work required train-
ing over 700 models, particularly because the vari-
ability of model robustness requires training mul-
tiple models, governed by different random seeds,
for every evaluation setting of interest. Thus, a
main limitation of replicating this work is its com-
putational demand.

Furthermore, even with the scale of our exper-
iments, we do not exhaustively experiment with
all possible evaluation settings of interest. Most
notably, we focus our analysis on a standard way of
training self-rationalization models—training gen-
eration models end-to-end to output rationales after
their predictions; future work can investigate how
our findings translate to other methods for training
with rationales. In addition, while many evalua-
tion sets targeting robustness exist for NLI, they
do not for CQA; thus, our evaluation of robustness
to spurious correlations for CQA were limited. Fu-
ture work can develop more tests for evaluating
robustness for tasks beyond NLI.
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TEST CAD HANS TEST
HYP

TEST
HARD

∆ TEST
SUBSETS

↑ ↑ ↑ ↑ ↑ ↓

BART-BASE
no rationales 75.37 ±0.15 57.85 ±0.61 51.30 ±0.58 59.80 ±0.67 56.86 ±0.66 25.44 ±2.75
original +0.21 ±0.18 +1.04 ±0.63 +0.96 ±0.62 -0.18 ±0.38 +1.41 ±0.46 -2.73 ±1.65
shuffled -4.71 ±0.83 -5.60 ±1.11 -0.21 ±0.39 -5.60 ±1.05 -4.40 ±1.52 +2.10 ±3.81

GPT2-MEDIUM
no rationales 66.39 ±0.94 48.84 ±0.81 52.66 ±0.38 48.70 ±1.20 47.59 ±2.22 33.39 ±2.19
original +1.12 ±0.66 +0.80 ±0.73 +1.42 ±0.27 +0.59 ±1.07 +3.61 ±2.16 -3.94 ±3.97
shuffled -1.97 ±0.75 -2.45 ±0.95 +0.96 ±0.55 -3.72 ±1.46 0.00 ±3.09 +0.66 ±4.63

BART-LARGE
no rationales 84.62 ±0.31 71.20 ±0.27 50.18 ±0.08 73.68 ±0.40 73.82 ±0.85 14.70 ±1.50
original +1.05 ±0.21 +1.75 ±0.34 +0.44 ±0.19 +1.56 ±0.40 +2.04 ±0.91 -2.04 ±1.93
shuffled -0.59 ±0.37 -2.11 ±0.45 +0.86 ±0.52 -1.81 ±0.50 -2.51 ±1.60 +4.15 ±2.86

T5-LARGE
no rationales 84.03 ±0.34 71.08 ±0.31 51.54 ±0.31 74.26 ±0.54 75.45 ±0.71 10.46 ±1.03
original +0.26 ±0.21 +0.62 ±0.48 -1.13 ±0.17 -0.10 ±0.40 -0.42 ±1.11 +2.06 ±2.33
shuffled -0.67 ±0.41 -0.23 ±0.18 +3.02 ±0.98 -0.75 ±0.70 -2.62 ±1.25 +3.27 ±2.46

Table 5: Comparison between training with original rationales in ESNLI vs. shuffled rationales with 1K instances
for NLI. Blue/red cells indicate improvement/worsening in performance compared to the baseline (no rationales).
We report means across 5 random seeds, as well as standard errors of the means.



TEST
TEST
HARD

∆ TEST
SUBSETS

↑ ↑ ↓

BART-BASE
no rationales 32.4 ±0.3 33.6 ±0.5 14.7 ±1.4

positive 0.0 ±0.4 +1.4 ±0.8 -2.9 ±2.3

freeflow -1.4 ±0.7 +0.3 ±1.2 -0.0 ±1.9
freeflow* -1.7 ±0.4 -0.6 ±0.8 -0.0 ±3.1

negative -3.5 ±1.0 -2.5 ±1.2 -2.0 ±1.6
negative* -3.1 ±0.8 -2.2 ±0.8 +3.8 ±1.7

GPT2-MEDIUM
no rationales 30.6 ±0.4 29.2 ±1.5 13.3 ±3.5

positive +2.3 ±0.3 +0.9 ±1.5 +2.6 ±2.5

freeflow +2.6 ±0.4 +2.1 ±0.6 +2.7 ±2.8
freeflow* +3.4 ±0.6 +2.9 ±0.6 +1.8 ±2.4

negative +0.9 ±0.2 +0.8 ±1.1 +1.8 ±3.7
negative* +1.1 ±0.4 +0.9 ±0.6 +1.3 ±1.9

BART-LARGE
no rationales 48.3 ±0.8 49.0 ±1.0 19.9 ±1.8

positive +2.2 ±1.3 +2.2 ±1.0 -1.9 ±3.0

freeflow -2.3 ±1.1 -1.7 ±1.2 -2.4 ±2.5
freeflow* -3.3 ±0.4 -1.1 ±2.7 +2.2 ±4.3

negative -4.1 ±1.2 -3.7 ±1.8 -1.4 ±2.1
negative* -5.3 ±0.3 -1.7 ±0.5 -1.6 ±2.0

T5-LARGE
no rationales 60.4 ±0.7 61.5 ±1.5 10.5 ±1.9

positive +1.2 ±0.7 +2.0 ±1.7 +2.4 ±1.3

freeflow +1.0 ±0.9 +1.6 ±1.3 +0.3 ±1.4
freeflow* +1.0 ±0.7 +1.7 ±0.9 +2.1 ±1.2

negative -1.1 ±0.6 -1.3 ±0.8 +4.5 ±3.1
negative* -1.3 ±0.5 -1.6 ±0.7 +2.5 ±1.4

Table 6: Effect of training with 1K instances using the different types of rationales in ECQA. * indicates length-
controlled rationales. Blue/red cells indicate improvement/worsening in performance compared to the baseline (no
rationales, row 1). We report means across 5 random seeds, as well as standard errors of the means.


