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Figure 1: The Scholastic interface. Scholastic aims to support core elements of an interpretive qualitative analysis workflow for analyzing
text documents using visual analytics and interactive machine learning. The system is comprised of three views that afford a variety of
strategies for document sampling, applying codes to passages within individual documents, and refining and categorizing codes.

ABSTRACT
Interpretive scholars generate knowledge from text corpora byman-
ually sampling documents, applying codes, and refining and collat-
ing codes into categories until meaningful themes emerge. Given a
large corpus, machine learning could help scale this data sampling
and analysis, but prior research shows that experts are generally
concerned about algorithms potentially disrupting or driving inter-
pretive scholarship. We take a human-centered design approach to
addressing concerns around machine-assisted interpretive research
to build Scholastic, which incorporates a machine-in-the-loop clus-
tering algorithm to scaffold interpretive text analysis. As a scholar
applies codes to documents and refines them, the resulting coding
schema serves as structured metadata which constrains hierarchical
document and word clusters inferred from the corpus. Interactive vi-
sualizations of these clusters can help scholars strategically sample
documents further toward insights. Scholastic demonstrates how
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human-centered algorithm design and visualizations employing
familiar metaphors can support inductive and interpretive research
methodologies through interactive topic modeling and document
clustering.
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1 INTRODUCTION
Modern social science depends heavily on analyzing text data, such
as interviews, written logs, or social media archives. Researchers
may infer patterns from raw texts using statistical topic modeling
[6]. Alternatively, researchers may employ interpretive methods,
clustering texts based on an in-depth reading of the data to apply
codes and group codes into categories, which are then iteratively
refined until meaningful themes emerge [8]. The two approaches
represent trade-offs between efficiency and efficacy. The labor-
intensive interpretive methods may not scale to a large corpus (e.g.,
collections of online blog posts or tweets), requiring researchers to
only examine (an often random) sample of texts [24]. While statis-
tical models can rapidly process a large corpus, their reliance on
purely statistical patterns in the absence of expert knowledge can
sacrifice semantics for scale, leading to findings that may insuffi-
ciently address critical research questions [11].

Visualizing topic models and document clusters could help inter-
pretive scholars explore both the breadth and depth of content in
a corpus [5]. However, our prior interview studies [23, 33] discov-
ered that interpretive scholars were largely skeptical about using
machine learning to support their analyses, raising concerns about
algorithms driving or replacing human expertise and biasing the
analysis process (§3). Recent human-AI collaboration tools can cap-
ture expert knowledge as input to refine statistical text models [21].
However, using these tools would require interpretive scholars to
work outside of typical workflows where they freely and iteratively
apply codes to documents. In this work, we introduce Scholastic, a
visual analytics tool that instead explores a machine-in-the-loop
[26, 27] approach to interpretive research, where scholars analyze
text to generate codes and categories that also serve as goal-oriented
user input to models that scaffold, rather than replace, human sense-
making. Scholastic aims to build on the strengths of interactive
topic modeling and document clustering for helping organize text
data at scale while minimizing disruptions to a focused qualitative
analysis workflow.

When scholars sample documents to examine and apply codes
to a passage within a document, the code label becomes both a
meaningful unit of information as well as an organizational tool
for re-examining relevant passages from the corpus [40] to refine
the scholar’s coding schema. We consider two additional concep-
tualizations of codes as: 1) meaningful human input for the text
model to learn from (§5.1), and 2) interactive filters to visualize the
distribution of emerging knowledge across clusters (§6). Hierarchi-
cal document and word clusters generated by an interactive topic
modeling algorithm are depicted using interactive geographical
treemaps [2] and indented trees [34], drawing on familiar visual
metaphors while supporting evolving strategies for information
foraging. Scholars can apply and iterate on individual codes us-
ing the raw text, moving freely between clusters and text as their
analysis develops.

Scholastic is the result of a multi-phase co-design process with
interpretive scholars, machine learning researchers, and visualiza-
tion scientists. Our prototype provides preliminary insight into the
vision of incorporating interactive ML within the data sampling
and sensemaking loops of a qualitative analysis workflow given
a large corpus (e.g., online blog posts). Our primary contribution,

Scholastic, is a visual analytics tool that supports interpretive data
analysis at scale, which comprises:

• An interactive word and document clustering algorithm that
incorporates evolving codes and categories as model con-
straints,

• Reading, coding, and categorization tools familiar to inter-
pretive scholars,

• Interactive cluster visualizations that support both breadth-
first exploration of and depth-first search for relevant docu-
ments, and

• A characterization of the design needs for graphical tools
supporting qualitative analysis workflows.

We conducted a formative user study of the tool (§7), focusing on
its usability for sampling and coding processes.

2 BACKGROUND
2.1 Inductive and Interpretive Text Analysis
Interpretive research methods for making sense of text data include
thematic analysis [8] and grounded theory analysis [16]. One shared
thread between these approaches is a principled method for data
collection (or sampling items when given an existing corpus) given
a research question. Given the collected (or sampled) dataset and in
the absence of prior relevant knowledge about a population under
study (‘data-driven’ as opposed to ‘theory-driven’ analysis [8]), the
process of applying codes to texts and iteratively categorizing those
codes [40] is the central process of inductively modelingmeaningful
patterns (‘surfacing themes’) within interpretive analysis.

The deluge of data available has in some ways made data collec-
tion easier, but data items must still be sampled from a corpus, and
applying codes can be laborious for even small sets of interviews
or ethnographic data [42]. Popular tools like MaxQDA1 or NVivo2
provide environments in which analysts can manage texts and
codes, but these tools can only produce basic summary statistics
like code counts. The visualization features in our system prototype
are designed to support the data sampling process for interpretive
analysis, but also provide coding and categorization functionalities
to 1) provide scholars an effective algorithmic support tool to think
with and 2) collect user input for an interactive ML algorithm.

2.2 Using Topic Models for Qualitative
Research

Epistemological discussions surrounding how machine learning
could be leveraged for interpretive research [4, 14] have noted sim-
ilarities between coding in qualitative analysis and topic modeling:
both approaches share the goal of iteratively inferring models with-
out prior labels. Topic models such as Latent Dirichlet Allocation
(LDA) [6] output probabilistic clusters of words based on their co-
occurrence patterns within documents. One application of topic
models is to facilitate document clustering [49]. Boyd-Graber et al.
[7] review the use of topic models across digital humanities and
social sciences. These works focus on refining topic models (e.g.,

1maxqda.com
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by introducing new random variables [44]) and statistically vali-
dating them (e.g., using posterior predictive checks [41]) to output
best-fitting statistical models summarizing text corpora.

On the other hand, the high probability words in each topic
may also be read as ‘themes’ that provide an overview of a text
corpus [4]. When interpreted this way, topic models can sometimes
suggest overlooked codes and categories or open up paths to other
meaningful documents. For example, through human interpretation
and sampling via topic models, Nelson [43] analyzed suffrage and
feminism movements in New York City and Chicago to characterize
how these two local movements differed in their guiding political
principles. Although refining and validating topic models may ap-
peal to qualitative scholars for their statistical power, our research
team and the qualitative scholars we interviewed [23, 32] agree with
the views of Nelson and Grimmer & Stewart [29] that topic models
can be a tool for assisting—but not superceding—human induction
when conducting data-driven interpretive analysis. Still, how mod-
els should be integrated into human-AI collaborative workflows
remains an open question within interpretive scholarship.

2.3 Interfacing with Text Models
Text models can be interpreted and refined using graphical tools.
Termite [13] represents the probability distributions of topic models
with matrix-based representations. Topicalizer [5], TOME [36], and
Serendip [1] follow a more human-centered design approach for
presenting topic models for qualitative research or digital humani-
ties. UTOPIAN [12] and ArchiText [34] allow users to improve topic
models using various interactions, including merging and splitting
topics and removing words from topics. Lee et al. [38] surveyed and
evaluated these strategies, recommending eight useful interactions
for topic refinement. In contrast, our algorithm design is closest to
Yang et al. [50] who incorporated expert knowledge as ‘must-link’
or ‘cannot-link’ constraints for LDA via factor graphs.

Visual analytics approaches also enable users to understand how
their interactions change clustering outputs. For example, iVisClus-
tering [37] allows users to see how adjusting topic models impacts
document clustering outputs. Endert et al. [22] introduces semantic
interaction for directly updating document embeddings. Semantic
Concept Spaces [21] helps analysts incorporate expert knowledge
about data semantics into topic models through direct manipulation.
Our algorithm design takes the goal of incorporating data seman-
tics further by gathering user input given clear research objectives
and methodologies while surfacing codes and categories. Related
tools for coding documents include Overview [9], an investigative
journalism tool for sampling and categorizing documents given
hierarchical clusters. Aeonium [20] is a collaborative coding tool
that helps identify disagreements between scholars via an SVM
classifier. Chandrasegaran, et al. [10] leverages NLP to highlight
keywords across documents to support sensemaking within in-
terpretive scholarship. Our tool provides a contrasting view on
supporting interpretive scholarship with visual analytics by focus-
ing on document sampling and interactive modeling in inductive
qualitative workflows.

Analyst

Algorithm

Sampling and Coding

Categorization

Interactive ML

Graphical Interface

Scholastic

Corpus

Figure 2: Scholastic’s machine-in-the-loop workflow. Sam-
pling, coding, and categorization are performed by the analyst. The
algorithm can then hierarchically cluster the documents and words
using the codes and categories as constraints, and represent the out-
puts with interactive visualizations for the analyst to sample more
documents. The analyst retains agency over when the algorithm
will perform these tasks.

3 DESIGN OBJECTIVES
We characterized four key design considerations for interpretive
analysis based on recent interview studies conducted by the re-
search team [23, 33] as well as internal discussions with experts
throughout the design process. Popular methodologies such as the-
matic analysis and grounded theory analysis share several common
components. Most notably, they define processes for selecting or
collecting data, inferring codes or categories from that data, and
organizing and refining those codes to build knowledge.

On the other hand, researchers across fields have different ways
of framing the interpretive analysis process. To resolve potential
ambiguities in terminology, we refer to an individual document as a
data item, a collection of documents as a data sample, and the entire
collection of documents as a corpus. Coding is the act of applying
labels to text passages, and categorizing is the act of collating codes.
Memoing is recording notes [40] to later recall reasons for coding
passages or to log additional expert insights.

3.1 Consideration 1: Supporting Serendipity
Interviews from Jiang et al. [33] stressed that machines should
not lead data sensemaking in interpretive analysis. Scholars felt
that traditional algorithms that output potentially immutable data
summaries could bias knowledge generation. For example, they felt
that traditional algorithmic approaches could overly constrain how
analysts see the data (e.g., by asserting an algorithmic definition
of the most “meaningful” patterns in data or creating anchoring
biases), bias interpretation by dictating the most “important” terms
associated with document clusters prior to analysis (e.g., by labeling
clusters according to themost frequent or highest probability terms),
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and put the algorithm in control of the data analysis workflow (e.g.,
by limiting how analysts can compare documents across clusters).
They also felt that “maybe [the machine] could make suggestions,
but even then I don’t know if I want it because it doesn’t know
what my research questions are." From the interpretivist view, text
data has inherent ambiguities related to semantics, and experts
wanted to resolve those ambiguities themselves to support their
own knowledge generation: “It’s really satisfying ... it’s those kinds
of exciting Eureka moments that make research kind of worth it.”

AI could instead support serendipitous moments where the hu-
man analysts resolve ambiguities about the data to foster moments
of insight. Therefore, our goal was to support curiosity about the
data by scaffolding data sampling with a mixed-initiative visual an-
alytics tool. Muller et al. [42] also previously suggested that cluster
models can provide human scholars with alternative representa-
tions of data with which to refine codes. While past approaches
have used NLP algorithms to identify important segments across
texts to explicitly drive insight generation within qualitative analy-
sis [10], researchers we spoke with felt this approach shifted too
much analytical power to the algorithm to the detriment of the
analysis process.

3.2 Consideration 2: Right Place, Right Time
Feuston & Brubaker [23] described various computational subsam-
pling strategies used by scholars, including simple random sam-
pling. While reticent to use automation in coding or categorization,
scholars were willing to delegate data sampling to algorithms often
as a matter of practicality: corpora are often too large to code all
data items. One scholar had used cluster overview visualizations
from semantic network analysis alone to sample data items; another
used classifiers grounded in keywords related to categories they
had developed to identify similar data items. While both approaches
illustrate algorithmic sampling strategies, the latter approach com-
bines human expertise with automation.

Many scholars felt that AI was only appropriate after they had
made some analytic progress, as in the second analyst’s keyword-
based approach. Cluster models often rely on word-document co-
occurrence matrices that privilege frequently occurring words [46].
Frequency is not necessarily integral to qualitative methodologies.
Data patterns of interest can be sparsely scattered, so if text models
are used at all, they should incorporate human inputs in addition to
co-occurrence information. The updated clusters can then be used
to guide further sampling (adhering to the constant comparative
method in grounded theory). We note the potential caveat that
human selection bias also poses a challenge to generalizability
within qualitative research [15].

3.3 Consideration 3: Using Familiar Paradigms
Qualitative researchers often only rely on the most basic features
of software [48]. Scholars interviewed by Jiang et al. [33] attributed
this to the overall difficulty of using complex qualitative analysis
tools like MaxQDA or NVivo: “[qualitative analysis tools should not
be] like the NVivo type, where I have to really learn a lot of it." Such
complexity was perceived as getting in the way of their analysis.
Many scholars used Google Docs or post-it notes to manage codes.
Sensemaking about computational tools can inadvertently hinder

or misguide sensemaking about data using those tools: “Using any
tools, I think it gets in the way of the analysis... I think the focus
then inevitably becomes on the tool and how I can manipulate and
push data in order to make it appropriate for the tool." Building on
these observations, interpretive analysis tools should, whenever
possible, leverage familiar visual and interaction paradigms to help
analysts retain their focus on the data rather than on navigating
the tool.

3.4 Consideration 4: Overlaying Visualizations
With Codes and Categories

Scholars interviewed by Feuston & Brubaker [23] described how “it
might be interesting to compare and contrast" the analyst-inferred
codes with machine-inferred clusters to help refine codes and cate-
gories. This desire was echoed by scholars in Jiang et al. [33] who
frequently requested visualization features that allowed compar-
isons across clusters and codes: “I want to be able to say, okay,
all the people I’ve talked to who identify as queer, how did they
feel about capitalism? I want to be able to do a cross-sectional
analysis on multiple codes and domains.” This comparison may
be accomplished by incorporating visual overlays of the applied
codes and categories onto cluster visualizations, situating both
human-induced and machine-inferred models in the same space.

These comparisons also could foster collaborative interaction
between human and automated analyses. For example, once a ma-
chine has learned from human input, the visualizations could guide
the user toward sets of related documents or codes. An expert in
Jiang et al. [32] indicated that it would be useful “if there was some
sort of learning algorithm, for example, that would suggest... other
quotes that were similar to that one."

3.5 Summary of Design Objectives
The above considerations indicate a need for human-AI collabo-
ration in qualitative analysis, such that AI is embedded within an
interpretive research workflow and adapts to evolving codes and
categories. System features should support:

(1) Insight Generation and Retention: We aim to develop an in-
terface for memoing, developing codes and categories, and
revisiting coded documents to help people generate knowl-
edge by creating, applying, and refining their coding schema
with intelligent and transparent system support.

(2) Random Sampling: We aim to enable a random subselection
of documents in the absence of human codes to gather initial
insights about the dataset.

(3) Strategic Cluster-Based Sampling:We aim to incorporate clus-
ter model visualizations that enable both breath-first ex-
ploration of the corpus or depth-first search for potentially
meaningful data items. Overlaying codes and categories onto
the cluster visualizations will allow scholars to compare the
model outputs with their own coding schema.

(4) Familiar Metaphors for Interactive Visualizations: We aim
to leverage familiar visual metaphors for representing text
models such that sensemaking about the tool does not inhibit
sensemaking about the data.
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(5) Interactive Models that Incorporate Expert Input:We introduce
an interactive clustering algorithm that can learn from par-
simonious human input without disrupting their analysis by
using codes and categories as additional data for the model.

4 IMPLEMENTATION
Scholastic is aweb-based application built using Python and JavaScript.
Interactive machine learning is implemented through the Python
packages spacy, graph-tool, NumPy, and SciPy. The backend inter-
face utilizes Flask, pandas, and the Google Sheets API. As requested
by experts, user inputs (codes, categories, passages, keywords, and
memos) are saved to Google Sheets to support the integration of
their analysis into existing external processes. The frontend inter-
face is implemented through the Svelte, Carbon Design, TopoJSON,
and D3.js packages.

Text layer Metadata layer

Figure 3: Undirected multilayer network representation of
the corpus and human-induced metadata. Note that this net-
work allows parallel edges from the word nodes. The Text layer is
a bipartite network between the documents (hexagons) and words
(triangles). TheMetadata layer is a disconnected, tripartite network
of words, codes (squares), and category tags (circles). The edges
between words and codes will be input via passage highlighting
and subsequent ‘in vivo’ keyword selection, as described in §6.2.
By default, words are assigned the non-keyword code (green).

5 ALGORITHM DESIGN
We adapt the hSBM approach to probabilistic word and document
clustering by Gerlach et al. [25] which uses a stochastic block
model to detect communities in complex bipartite networks formed
by text data. A stochastic block model [30] generates a random
graph whose adjacency matrix representation is 𝐴ij with proba-
bility 𝑃 (A | b), where elements in the vector 𝑏𝑘 represent block
membership assignments. In the context of text, each𝐴ij represents
the number of times a word𝑤𝑖 occurs in a document 𝑑 𝑗 , and b𝑊

and b𝐷 represent individual word and document blocks respec-
tively. Given the marginal likelihood function defined in Gerlach
et al. [25], the posterior distribution 𝑃 (b | A) can be efficiently
approximated using Markov Chain Monte Carlo (MCMC), which is
then equilibriated to avoid local optima [45].

The informative priors on hSBM produce more heterogeneous
mixtures than LDA while being completely non-parametric [25].

Notably, the mixed-membership (‘overlapping’) version of hSBM,
which outputs ‘soft’ clusters of words (‘topics’), significantly out-
performs LDA topic models even on synthetic Dirichlet mixtures.
Additionally, even in the absence of stop-word removal, hSBM au-
tomatically detects clusters of stop-words which frequently occur
across the corpus; it will also infer the number of word and docu-
ment clusters directly by sampling from the posterior distribution
rather than requiring either the developer or researcher to specify
a target number of clusters a priori.

In this work, we utilize the non-overlapping variant of hSBM.
Non-overlapping blocks partition the text data deterministically
(e.g., 𝑃 (b𝑊

𝑙
|𝑤𝑖 ) = 1 if word node𝑤𝑖 belongs in a word cluster b𝑊

in level 𝑙 and 𝑃 (b𝑊
𝑙
|𝑤𝑖 ) = 0 otherwise). In contrast to LDA, this

forgoes the need for the system or its users to set a minimum proba-
bility threshold to obtain ‘hard’ clusters from topic models. 3 Given
this bipartite model structure, hSBM infers hierarchical word and
document block assignments 𝑃 (b𝑊

𝑙
|𝑤𝑖 ) and 𝑃 (b𝐷

𝑙
|𝑑 𝑗 ) simultane-

ously.

5.1 Incorporating Codes and Categories
as Metadata

Adapting the multilayer hSBM introduced by Hyland et al. [31],
Scholastic pairs word-document co-occurrencematriceswith analyst-
induced coding schema, adjusting clusters to reflect ongoing expert
analyses. To formulate these coding schema as constraints to cluster
outputs, we re-frame the data types which characterize interpretive
text analysis as follows:

Documents A corpus 𝐷 of document nodes 𝑑 𝑗 .
Words A vocabulary𝑊 of word nodes𝑤𝑖 .
Codes Each𝑤𝑖 in𝑊 is classified by a code in 𝐶 .
Categories Each code in 𝐶 is classified by a category tag in 𝑇 .
We represent these variables as an undirectedmultilayer network

[35] with parallel edges (Figure 3), whose clusters can then be
inferred using stochastic block models. Our network includes two
layers: a Text layer to capture co-occurrence patterns in text and a
Metadata layer for codes and categories generated by the human
scholar. The Text layer is a bipartite network with parallel edges
between𝑊 and 𝐷 . The Metadata layer is a disconnected, tripartite
network of words, codes, and category tags where parallel edges
hierarchically partition words.

When applied to multilayer networks, hSBMwill simultaneously
infer clusters across all layers. Since the same𝑊 occurs in both the
Text and Metadata layers, how words are clustered together will
be identical across both layers [31]. Thus, the partitioned nature
of the Metadata layer enforces a constraint that keywords applied
the same code must always be clustered together. However, the
relationships of these keywords to other words in the Text layer
allows sets of keywords to be clustered with other non-keywords
or with other keyword clusters.

The edges between words and codes is inferred from passage
highlighting and subsequent ‘in vivo’ keyword selection used to
apply codes to raw texts, as described in §6.2. Note that every word
in the corpus is always adjacent to a unique code. If a word has not
3This partly motivates our avoidance in this paper toward referring to probabilistic
word clusters as ‘topics’; interpretive scholars may also find the concept of ‘topics’
difficult to disassociate from ‘themes.’
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Before categorization After categorization
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Figure 4: Scholastic’s Document Map features and states. The geographical treemap represents a hierarchical clustering of the corpus
with color-coded pins summarizing applied codes (colors correspond to code categories). A navigation bar (1) persists across all views of the
interface, and the left sidebar (2) contains two sliders that can step through either the lowest level of the hierarchical clusters displayed or
the history of the evolving model. The item legend component at the bottom of the left sidebar allows a scholar to remove all overlaid pins
(3) and avoid visual occlusion. Code filters within the navigation bar filter overlaid pins, which appear above documents if codes have been
applied to passages within those documents. The random sampling component (4) generates a set of 𝑁 documents for the analyst to apply
codes in the Document Reader. Categorizing codes through the Code Examiner changes the colors of code tags and pin overlays (5). Code
colors use D3.js’s Set2 color scheme, applying one color per category. If there are more than eight categories, the color hues will duplicate as
in commercial tools like Tableau, but the code filters still explicitly encode their categorization through their text labels. Hovering over each
hexagon dynamically displays the corresponding document’s title on the right sidebar; right-clicking the hexagon expands this component
to show a content preview (6). Left-clicking a hexagon navigates the researcher to the Document Reader.

been coded, it remains by default adjacent to the non-keyword code.
After a scholar produces codes and categories, they can update the
model on demand using a button in the interface (see §6). The
Metadata layer is then remodeled and clusters reinferred with the
new constraints that reflect the current analysis state.

6 INTERFACE DESIGN
To incorporate the above algorithm within a machine-in-the-loop
interpretive scholarship workflow, our system prototype Scholastic
has three views:

(1) The Document Map (Figure 4), which supports both random
and breadth-first sampling as well as model comparisons;

(2) The Document Reader (Figure 5), which supports coding,
memoing, and keyword selection for the algorithm; and

(3) The Code Examiner (Figure 6), which supports categoriza-
tion, depth-first search for similar documents related to
codes, and subsequent code refinement.

This design embodies qualitative analysts’ workflows for manu-
ally applying codes and categories through inductive interpretivist
methods while allowing the system to collect metadata (via key-
word selection for each applied code) to refine the outputs of our
hSBM algorithm. The analyst can navigate between these views
using the navigation bar (Figure 4.1) or by sampling documents.
Code filters within the navigation bar filter overlay pins on the
Document Map: pins appear above documents if codes have been
applied to passages within those documents. The navigation bar
also contains a button to update the cluster models on demand. The
scholar can continue working on their analysis during this model

update, which given our study dataset (Appendix A) and hardware
(32GB RAM with an Intel 6-Core i7 processor) took approximately
11 minutes. Lastly, the navigation bar also allows a scholar to switch
between color themes (light mode by default and dark mode for
focused reading) using radio buttons.

6.1 Breadth-First Sampling: Document Map
The Document Map serves two main functionalities: corpus ex-
ploration and model comparisons. The central visual element is a
geographical treemap [2] representing the hierarchical document
clusters as spatial regions. The analyst controls the granularity
of the hierarchical clusters with a step slider (Figure 4.2), which
determines the lowest level cluster boundaries shown.

Each document is represented with a hexagonal tile (Figure 4.3).
Hovering over individual hexagons on the map dynamically dis-
plays the corresponding document title on the preview component
at the bottom right. Right-clicking a hexagon expands this preview
component to show the first 1000 characters of a document without
entering the Document Reader; left-clicking a hexagon opens the
document in the Document Reader (§6.2) to begin coding. If the
scholar chooses not to use the geographical map for document
sampling, the Document Map allows them to randomly sample a
subset of 𝑁 documents from the corpus, where the sample size can
be specified by the scholar (Figure 4.4).

We used a geographical treemap to draw a familiar visualmetaphor
between hierarchical document clusters and maps to allow analysts
to easily explore the hierarchical clusters. We intentionally do not
impose a priori cluster keywords or filters on this map to avoid



Scholastic: Graphical Human-AI Collaboration for Inductive and Interpretive Text Analysis UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Highlighting a passage Reviewing a highlighted passage

2
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1

Figure 5: Scholastic’s Document Reader features and states. When multiple documents are sampled, the analyst can scroll through
them using the pagination tool (1). Clicking and dragging across the text creates a highlight (2) that activates the coding footer component (3,
4) that allows the user to apply codes and memos to the highlighted portion of text. The coding footer component also displays a stemmed
subset of the highlighted passage (minus stopwords) from which analysts can click to select code-relevant keywords (3). Saving the highlight
will cause it to appear as a clickable section of the document text (5). Clicking a previously highlighted section will auto-populate the coding
footer component (6) where the analyst can view or edit their previously applied codes, memos, and keywords.

biasing an interpretive scholar’s attention toward any specific clus-
ter. We also do not provide information extracted from the model
(e.g., common words, topic names, word probabilities) beyond clus-
ter boundaries to avoid bias in cluster interpretation. By design,
the Document Map requires the user to demand details about data
items first by hovering over or sampling an item, then build up their
own filters and relations between documents (codes and categories),
constructing an overview through their own sensemaking process.

We display a location pin above a hexagon tile if a code has
been applied to the document. Each pin is colored according to the
category of the applied code. In cases where multiple codes have
been applied to a document, the number of unique categories is
initially shown above the text item. Analysts can choose to show all
codes associated with each document or a subset of codes using the
code filters on the navigation bar (Figure 4.5). The pins are intended
to support diverse and adaptive search strategies to explore related
(i.e., depth-first) and unrelated (i.e., breadth-first) documents based
on the user’s ongoing analysis. They also allow the scholar to
compare their evolving coding schema with the document cluster
output. Once the hSBM has output an updated cluster model on
the scholar’s demand, they can also make comparisons across the
model outputs (using a step slider on the left sidebar) to assess how
their inputs affected the distribution of codes across clusters.

6.2 Applying Codes: Document Reader
A scholar accesses the Document Reader (Figure 5) from either the
Document Map (when conducting a breadth-first sampling from

the corpus) or the Code Examiner (when revisiting a document
given a target code or when conducting a depth-first sampling us-
ing the indented tree; see §6.3). When multiple documents have
been sampled (e.g., through the indented tree or random sampling),
the scholar can scroll through them using the pagination compo-
nent (Figure 5.1). The Document Reader first displays the selected
document’s title and content. The scholar can click-and-drag (i.e.,
highlight) a passage to apply a code (Figure 5.2). As soon as the
drag is released, the coding footer component appears (Figure 5.4).

The coding footer component allows the analyst to apply a new
code by typing in a code label or apply existing codes by clicking
on existing code tags. It also displays a stemmed subset of words
from the highlighted passage (minus stopwords) from which the
scholar can choose relevant keywords for the multilayer hSBM
(Figure 5.3). This parsimonious input operation is similar to in vivo
coding and allows the scholar to characterize semantically mean-
ingful relationships between keywords. Highlighted passages are
then visualized as clickable tagged text [1], persisting throughout
the analysis. When revisiting a document, the scholar can click on
a previously highlighted passage—which auto-fills the code, key-
words, and memos in the coding footer—to allow reflection and
refinement (Figure 5.5, 5.6).

6.3 Categorization and Depth-First Search:
Code Examiner

After applying codes, the Code Examiner (Figure 6) allows scholars
to compare, refine, and categorize them. Selecting a pair of codes
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Figure 6: Code Examiner features and states. These models show P2’s evaluation (§7.3) before and after they triggered the interactive
model update. The indented tree component (1, 2) displays keywords associated with selected codes, clustered and sorted by word frequency
according to the model. Hovering over and selecting a vertical line samples documents most relevant to the word cluster at the given level
(2). Note that words corresponding to code A (pink) and code B (green) were not clustered together, and the model update successfully
enforced the correct constraints. Moreover, this cluster also found other related words (3) which are shown on hover interaction. These
words were clustered together because P2 had categorized codes A and B together (4) using the dropdown menus. These menus also double
as text fields where researchers can modify a code label or create new categories. Once codes are selected, the highlighted passages are
shown at the bottom. These text sections are clickable and will navigate back to the full document within the Document Reader.

from drop-down menus populates the interface with each code’s
label, memos, and the passages containing that code (Figure 6.4).
Researchers can create a new category for a code by typing in a
category label under the code label drop-down. If category labels
already exist, this text field also doubles as a drop-down menu to
assign an existing category to a code. These text segments highlight
important keywords selected by the analyst using tagged text [1].
Clicking on a passage will navigate the scholar back to the corre-
sponding document in the Document Reader (§6.2) for reflection
and refinement.

When codes are selected from the dropdown menus, the Code
Examiner displays a pruned tree representation of the hierarchi-
cal word clusters generated by the hSBM model (Figure 6.2). The
indented word tree representation of these clusters—similar to Ar-
chiText [34]—and the simple form-based interface build on familiar
metaphors from digital filing systems. At the overview level, the
tree only displays keywords from the coded passages to reduce
complexity, but hovering over each cluster will display the top ten
words within it. The analyst can click on a word cluster at various
depth levels in the hierarchy to sample 30 documents associated
with the selected cluster. These 30 documents are selected and dis-
played in a paginated list (see Figure 5.1), sorted according to the
probability of the selected word cluster occurring in each document
(𝑃 (b𝑊 | 𝑑)). This algorithmic sampling and sorting allows schol-
ars to identify candidate documents depth-first through their code
labels and preview the documents in the list view to quickly find
those that are most relevant for their current analysis.

7 EVALUATION
We evaluated Scholastic in an interview study with two interpretive
researchers. The study consisted of three phases: a brief introduc-
tion to the study goals, a think-aloud analysis of 2,615 recipe blog
posts using Scholastic (Appendix A), and an exit interview to capture
additional feedback. Both participants were trained and published
in interpretive research using text data.

Scholastic integrates a constraint-based interactive ML algorithm
with both the data sampling and sensemaking loops of qualitative
analysis. Our design considerations took into account that an effec-
tive human-AI collaboration tool should support: 1) serendipitous
insightful moments during data sampling and sensemaking, and 2)
incorporating human input into cluster models (see §3). Therefore,
our evaluation sought evidence of following:

• A range of sampling strategies within the Document Map
and the Code Examiner, and

• Indications that the interactive ML-related functionalities
would not disrupt a scholar’s focused analysis within the
Document Reader.

First, a short introduction was given describing how we wished
to examine the ways an interpretive scholar might use our system to
analyze a large corpus in order to gather feedback on its design. We
then obtain informed consent to participate and basic demographic
information. Finally, we introduced the target dataset and a relevant
research question with the following script:
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“You have collected 2615 online recipe blog posts. You are interested
in examining how certain foods elicit stories about certain interper-
sonal relationships as bloggers build narratives around food. Due to
the amount of data, you will try a new system designed to support the
qualitative analysis of large datasets. The first thing you want to do
is to familiarize yourself with your dataset. You open up the system.
Talk aloud while you use this screen—as well as the interactions it
supports—to examine the dataset.”

We devised three simple, open-ended tasks to help scaffold the
interview such that scholars were able to navigate all system fea-
tures. These task instructions were devised to ensure task coverage,
avoid a prescriptive workflow, and minimize researcher bias. We
did not provide participants with tutorials on system functionalities,
instead allowing participants to independently learn through their
interactions. By providing an example dataset, we also intended to
mitigate biases that may arise from familiarity with the underlying
information. Each interview took 90 minutes.

7.1 Task 1: You open up the system.
What do you do first?

Our first task captured initial interactions with the Document Map
(§6.1), which served as a frontispiece for the tool. P1 described the
geographical treemap as “pleasing,” “so wholesome,” and that one
cluster was “a very pleasing shape.” They appreciated the connec-
tion to familiar geographic maps and board games (e.g. Dungeons
& Dragons, Settlers of Catan). They started exploring documents
by hovering over items, which dynamically displayed each item’s
title on the right sidebar. Their interactions focused on items at the
cluster boundaries, leading them to wonder: “Is there a reason this
cell is bordered off in this section?”

Although the geographical treemap did not communicate visual
content summaries, the dynamic details-on-demand interactions
with document titles still allowed P1 to conceptualize clusters in
a creative way. They remembered each cluster by its shape and
position, developing light-hearted yet memorable names for the
regions (e.g., ‘Grandma’s Cookie Empire’, ‘Meat-topia’). When ad-
justing the granularity of the hierarchical document clusters, they
talked about how the first and second levels were manageable, but
the third level was too granular, saying they might as well be going
through the documents manually on their computer.

Similarly, P2 was drawn to the hover interactions on the geo-
graphical treemap, which they described as ‘techy’ and ‘aesthetic.’
They noted that although one region seemed to only include pasta
recipes, another region seemed to combine drinks and desserts,
prompting them to wonder why those recipes were clustered to-
gether. P2 described the process of foraging for documents with the
map as akin to finding “little treats.” P2 heavily relied on the right-
click preview feature, which retrieves the first 1,000 characters of
the document, to make more detailed sense of each item within the
clusters. Although P2 did not verbally conceptualize the regions as
P1 did, when asked to recall where the pasta and drinks regions
were at the end of the interview, P2 located them by their shapes
and positions.

7.2 Task 2: Sample document items
and apply codes.

How participants sampled documents were left to their preferences.
P1 chose to select documents via click interactions on the map,
whereas P2 sampled ten random documents. With the Document
Reader (§6.3) shown, participants were then instructed to begin
applying codes. P1’s coding process started with ‘meme’ codes (e.g.,
‘veggie tales,’ ‘boil em mash em’) that they later refined. Neither
participants had guidance for why the keyword selection feature
was present, but immediately speculated that keywords might be
used to help update the cluster outputs, as P1 noted: “The machine
will operate better if I give it more input, is what I’m assuming there.”
P2 also recognized that the keywords could benefit collaboration
with the machine: “so when we see this in other documents, [the
system is] going to assign more weight to that in some way.” To this
point, they speculated about what would happen if they trained the
model incorrectly: “I feel like it’s basically the garbage in, garbage
out principle.”

P1 appreciated that the keyword selection features in the Doc-
ument Reader were automatically stemmed and stripped of stop-
words, but noted that stopwords may be useful for in-depth soci-
olinguistic analysis. For P2, on the other hand, keyword selection
became a redundant feature because they began by coding short
chunks of texts with one to three words (in vivo coding). However,
when they started highlighting larger passages, they commented
how selecting keywords within these chunks, in combination with
memoing, could potentially aid in their self-reflection on the mean-
ing of a highlighted passage. Lastly, both experts noticed a few
missing features for coding: notably, the ability to apply multiple
codes to a single highlighted passage or to simultaneously highlight
two passages and apply a single code to both.

7.3 Task 3: Now that you have codes,
organize them into categories.

Upon being given this instruction, participants intuitively navigated
to the Code Examiner (§6.3) using the navigation bar to reflect and
categorize the codes they applied in the Document Reader. On
the Code Examiner, P1 selected a code (‘meat-lovers’) and saw the
hierarchical word clusters, pruned to include only clusters with as-
sociated code keywords. Clicking into one of the clusters prompted
the sampling of 30 documents, ordered by the likelihood of contain-
ing the clicked word cluster. P1 could not immediately make sense
of why these documents were sampled, since some documents did
not contain the keyword, instead containing other words related
to them based on the clustering output. Also, interesting passages
within recipe blog posts may be sparsely scattered, only serving
as a transition from the introduction to the recipe body. However,
their reaction then was to code “more of this [document] with like,
people’s declaration of love to meat,” since they developed an un-
derstanding that the document was sampled due to its relationship
to their keywords from the combined visualizations and raw text.

When P2 started categorizing codes, they noticed that the colored
code tags in the navigation bar (Figure 4.5) made it easy to see
how the categories were emerging as well as which codes were
uncategorized. In exploring the word cluster list, P2 clicked into a
leaf cluster containing the keyword ‘friend.’ They used Ctrl-F to find
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occurrences of the word “friend” from the word cluster, which was
present in the second document but not the first. They noted that
the cluster levels seemed to get “more filtered” down the hierarchy.
For example, they noticed the associated words at the lower two
cluster levels started with the word ‘friend,’ (Figure 6.3) but words
at the top level cluster began with ‘salt.’ They then felt more certain
about the function of the indented tree when working with their
“culture” code: “Let’s see what’s in the Southern cluster. So on the
first level, it’s ‘Southern,’ ‘biscuits,’ ‘health’; on the second level,
it’s ‘cake,’ ‘Southern’; and on the third, it’s ‘roll,’ ‘dough,’ ‘filling,’
etc. Again, I do feel this is grabbing all the documents that have
‘Southern.’ or maybe something like that.”

Due to time constraints, only P2 was able to explore the doc-
ument and word clusters updated based on their codes and cate-
gories. After the model update (which took around 11 minutes),
they interacted with the Document Map with the color-categorized
code filters, doing this with several codes to see where the coded
documents now appeared. They contrasted the document cluster
partitions with the positions of colored code pins, discussing how it
was interesting that documents with the same codes still appeared
across different clusters. They had expected that documents sharing
codes would instead be clustered together by the update. Upon be-
ing asked what they would do next, they responded that they would
keep coding to see if more concrete patterns might emerge when
contrasting the document cluster partitions with the positions of
colored code pins.

8 DISCUSSION
Scholastic is a human-AI collaboration tool for interpretive scholar-
ship co-designed with experts. The system represents preliminary
steps towards the vision of supporting scalable qualitative analysis
with large text corpora scaffolded by algorithmic and visualiza-
tion tools. We took a human-centered approach to enabling this
epistemic practice, grounding our design objectives in our team’s
earlier user interviews [23, 33] and design iterations between the
interpretive scholars and visualization researchers on our team. Our
discussions revealed the importance of designing for agency: tools
should enhance analysts’ natural workflows rather than enforcing
alternative practices. On the algorithmic side, models should adapt
to human input from the scholar’s analysis; on the visualization
side, the visualization should evolve to incorporate human-inferred
codes and categories. Here, we summarize preliminary outcomes
from the implementation and evaluation of Scholastic to inform fu-
ture work on forging effective human-AI collaboration for inductive
and interpretive text analysis.

8.1 Outcome 1. Supporting Serendipity
Most cluster visualizations follow the visual information-seeking
mantra, starting with descriptive visual summaries of the data
(overviews) that are interactively adjusted (filter, relate), and in-
formation about individual data points is available on-demand.
The goal of these techniques is to better provide quantitative sum-
maries of cluster contents at-a-glance. In contrast, our geographical
treemap communicated only the size and hierarchical containment
of each cluster: Scholastic does not impose a priori cluster keywords
or filters to avoid biasing an interpretive and inductive researcher’s

attention toward any specific cluster. By design, the Document
Map requires the user to demand details first, then build up their
own filters and relations (i.e., codes and categories), constructing
an overview through their own sensemaking process. This rever-
sal of the information-seeking mantra allows the analyst to either
implicitly develop their own mental model of a cluster’s meaning
or explicitly code documents and allow the interactive machine
learning algorithm to match their outputs more closely to codes
and categories identified by analysts.

However, the analyst’s curiosity about emergent features on the
geographical treemap became an entry point for interpretation.
Their use and interpretation of these features naturally shifted
toward data sensemaking. They appeared to be able to integrate
both text and shape to construct a better mental model of the space
of documents [47], to efficiently sample data items, avoiding data
items from the same cluster or sampling data items from a cluster
of interest. For P1, naming regions (e.g., “meatopia”) provided a
way to remember what documents had been sampled and to revisit
similar documents later (e.g., “maybe I should go look at what’s
in Meatopia”). They called the regions by names related to their
shape or the document content: “And then there’s this little cell
here, that’s like the country on the African continent, that’s like the
little donut hole. . . ”). Although P2 initially expressed confusion over
some document clusters, their ability to vocalize their uncertainty
(e.g., “why does [this cluster] contain both drinks and desserts?”)
also reflected curiosity-driven exploration by both verbal and spatial
conceptualization of the map [17].

8.2 Outcome 2. Right Place, Right Time
By incorporating evolving human codes and categories into Scholas-
tic’s interfaces and algorithms, we supported both random and
strategic sampling with visualizations that increasingly reflect the
knowledge built by the user rather than by the raw text models. The
participants in our evaluation each chose a different strategy for
sampling. Supporting diverse strategies gives the researchers the
agency to choose the right tools for the right data, scenarios, and
times. Although P2 chose not to use the map for sampling initially,
in our post-study interview they appreciated that the document
clusters helped them familiarize themselves with the breadth of the
dataset before coding.

P2 noticed that keyword selection for the interactive ML al-
gorithm could help them analyze a passage in more depth. They
mentioned that coding individual keywords would be “the kind
of thing I would probably be memoing about,” as identifying key-
words within codes allows analysts to focus on why a particular
code might be appropriate for a given passage. In this sense, both
participants saw the tool as a collaborator, where the ML features
helped the analyst, but the analyst also helped the model evolve.
P1 in many ways personified the system as they would a research
assistant. They remarked when there was a lag in saving a high-
light that “He’s keeping up in the back there.” P1 noted that if the
keyword selection appeared beneficial for the model, they would
be pleased “because it’s designed to help me. It is my helper.” P2
noted that seeing how the document cluster outputs had changed
based on input made the model more trustworthy, because it was
able to adapt to their own interpretations.
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9 LIMITATIONS AND FUTUREWORK
Scholastic’s design focused on capturing the core components of
qualitative analysis workflows without necessarily supporting any
individual methodology (e.g., grounded theory or thematic anal-
ysis). In our evaluation with qualitative experts, analysts wanted
several additional features to tailor the tool for specific interpretive
approaches. For example, P1 appreciated that the keyword selec-
tion features in the Document Reader were automatically stemmed
and stripped of stopwords within the context of their preferred
methods (thematic analysis). However, both participants noted that
stopwords may be useful for in-depth sociolinguistic analyses. Fu-
ture work should explore extensible frameworks that tailor analysis
support to individual methodological or disciplinary needs.

We note that our tool does not aim to incorporate all of the coding
features present in commercial tools like MaxQDA that primarily
support code management. Analysts’ coding practices vary widely:
for example, P1 would have preferred to code titles of documents
in addition to their body texts. Analysts may desire to highlight
multiple disjoint segments with a single code or to assign multiple
unique codes to a single highlight. The latter practice—while fre-
quently requested—requires further algorithmic development since
our algorithm assumes that each keyword maps to a single code. If
a user wishes to apply multiple codes to the same passage of text
in our current implementation, the text must be segmented into
unique keywords for each code to avoid overlapping assignments.
For interpretive scholarship, assigning multiple codes to a single
passage for approaches treating text data as a bag-of-words input
will require novel algorithmic support, unless the word tokens can
be separated according to additional metadata such as semantics
and syntax as in Griffiths et al. [28].

Engagement played a significant role in analysts’ desire to use a
given visualization for sampling data items. For example, P1 noted
that the directory-like nature of the indented tree visualization
lacked the engaging, more organic features that had emerged on
the Document Map. This difference impacted how willing they
were to sample documents with the indented tree visualization.
Our future work will study how visual features emerging in cluster
visualizations may play a role in learning and memory for qual-
itative data. For example, even in the absence of explicit visual
summaries, people were able to leverage details-on-demand in-
teractions and emergent shapes of the geographical treemap to
conceptualize and remember the information contained within
clusters and guide their exploration. Future work should explore
if this behavior has a capacity limit (e.g., number of clusters) or is
mediated by the visualization technique used (e.g., geographical
treemaps vs. scatterplots).

Our evaluation studies focused on the system’s usability with
two researchers. An extended, longitudinal evaluation could bet-
ter demonstrate analytical insights generated using Scholastic. We
intend to deploy this system as part of a future longitudinal study
on the impact of mixed-initiative tools on qualitative analysis out-
comes. This comparative study may investigate the varying effi-
ciency and efficacy of these tools over a lengthy collaborative and
interpretive text analysis (e.g., by analyzing subjective evaluations
of confidence and trust in analysts’ knowledge work and comparing
research outcomes across users).

10 CONCLUSION
Statistical models are powerful tools for analyzing text data. How-
ever, there is no consensus within the interpretivist research com-
munity regarding what the role of machine learning should be
within their practices [19, 43]. Our co-design process with experts
took a human-centered approach to implement an interface and al-
gorithm for supporting key phases of interpretive and inductive text
analysis workflows [3]. Scholastic embodies the goals of designing
for various sampling strategies given a corpus, letting the AI model
adapt to on-going knowledge development, and allowing human
sensemaking to drive interpretive text analysis, enabling familiar
and non-disruptive interactions with the AI mediated by visualiza-
tions. Given the popularity of qualitative methods for analyzing
text data within human-computer interaction [39] and visual ana-
lytics [18], we hope that our work will build a foundation for future
mixed-initiative systems scaffolding interpretive scholarship.
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were crawled and retrieved on November 8th, 2021. The corpus con-
sists of 2,615 recipes with 14,343 unique words after lemmatization
and removal of all words (using the spacy package) except content
words (proper nouns, adjectives, adverbs, nouns, verbs). This re-
sulted in 720,292 total edges in the Text layer, with the average
document length (node-degree) of 275.45.
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