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Abstract—Adversarial examples against AI systems pose both
risks via malicious attacks and opportunities for improving
robustness via adversarial training. In multiagent settings, ad-
versarial policies can be developed by training an adversarial
agent to minimize a victim agent’s rewards. Prior work has
studied black-box attacks where the adversary only sees the state
observations and effectively treats the victim as any other part
of the environment. In this work, we experiment with white-box
adversarial policies to study whether an agent’s internal state
can offer useful information for other agents. We make three
contributions. First, we introduce white-box adversarial policies
in which an attacker can observe a victim’s internal state at
each timestep. Second, we demonstrate that white-box access to
a victim makes for better attacks in two-agent environments,
resulting in both faster initial learning and higher asymptotic
performance against the victim. Third, we show that training
against white-box adversarial policies can be used to make
learners in single-agent environments more robust to domain
shifts. Code is available at this https url.

Index Terms—adversarial examples, adversarial policies, rein-
forcement learning, white-box attacks

I. INTRODUCTION

As AI systems become more capable and widely-deployed,
it becomes increasingly important to understand and address
their vulnerabilities. These include concerns involving adver-
sarial attacks that are specifically crafted to make a system
fail. Adversarial attacks in the form of subtle perturbations to
inputs have been widely studied in supervised learning [15],
[43]. However, compared to supervised learning, reinforce-
ment learning (RL) agents can face an expanded set of threats
[23], [42], including adversarial policies from other agents.
The standard approach for developing adversarial policies has
been to train an attacker against a black-box victim until
the attacker (over)fits a policy that minimizes the victim’s
reward. These adversarial policies have been used both to
attack victims [12], [14] and to improve a victim’s robustness
through adversarial training [36].

This black-box approach often works well, but it fails
to utilize any information beyond what the attacker can
directly observe, thus treating the victim as any other part
of the environment. As a result, this requires cheap query
access to the victim, often for many millions of timesteps.
Developing a better understanding of threats and opportunities
from adversarial policies will be valuable as reinforcement
learning systems are showing increasing potential for use in
real-world applications Thus, we set out to expand on the
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Fig. 1. White-box adversarial policies. At each timestep, both the adversary
(adv) and victim (vict) observe the state st. The adversary also observes the
internal state of the victim and concatenates this extra information, mt, into
its observations. We demonstrate how this type of white-box adversarial policy
is more useful than black-box controls for attacks and adversarial training.

conventional threat model with adversarial policies that exploit
richer information from the victim.

The analog to training a black-box adversarial policy in
supervised learning would be to make a zero-order search
through a model’s input space to find examples that make
it fail. While black-box attacks like these have been studied
in supervised learning [3], they are much less effective and
query-efficient than white-box ones which permit access to
the model’s internal state. Thus, here we study how using
information from the victim can help an attacker learn an
adversarial policy more quickly and effectively.

Our version of white-box attacks are adversarial policies
that can “read the victim’s mind.” Fig. 1 depicts our general
approach. At each timestep, both the adversary and victim
observe the state st. The adversary, however, is also able
to observe internal information, mt, from the victim. In our
experiments, mt is a vector that consists of the victim’s
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Fig. 2. Our setup for (a) adversarial attacks in the two-player Google Research Football (Gfootball) environment and (b) robust adversarial reinforcement
learning (RARL) in single-player Mujoco environments. At each timestep, the state observation st is passed to the adversary and victim. The adversary is
also given internal information mt from the victim which is concatenated into its first and last dense layer for Gfootball and its observations for Mujoco
ebvironments. The vector mt can include the victim’s action distribution ∆vict

t (A), value estimate vvictt , and/or latent activations `t. For the two-player
Gfootball environment, both actions are passed into the environment’s step function. For single-player Mujoco environment,s the adversary’s action is added
to the victim’s as a perturbation.

action distribution ∆vict
t (A), value estimate vvictt , and/or latent

activations `t.
Specifically, we test this approach in two different settings.

First, we test adversarial attacks using the two-player Google
Research Football (Gfootball) environment [28] and large
convolutional policy networks. Both the adversary’s and vic-
tim’s actions are passed into the environment’s step function.
This setup is illustrated in Fig. 2a. Here, we show that our
white-box attackers have both higher initial and asymptotic
performance than black-box baselines. Second, we adopt the
robust adversarial reinforcement learning (RARL) approach
from [36], [46] for experiments in single-player Mujoco en-
vironments (HalfCheetah and Hopper) [4] with small fully-
connected policy networks. The adversary’s actions are added
to the victim’s as a perturbation. This is shown in Fig. 2b.
Here, we find that white-box adversaries can be more useful
for training robust victims whose policies generalize better to
environments with altered transition dynamics.

Given these results, we argue that adversarial policies that
exploit inner information pose greater threats from attacks and
greater opportunities from adversarial training. More generally,

our results demonstrate that observations from an agent’s
internal state can be useful for other agents that interact with
it. Following a discussion of related works in section II,
Section III details our threat model and methods. Section IV
presents results, and Section V a discussion. For a high-level
explanation and summary, see the Appendix1.

II. RELATED WORK

Adversarial Policies: Reinforcement learning agents can
be vulnerable to several types of adversarial threats including
input perturbations, action perturbations, reward perturbations,
environments, and policies from other agents. Both [23] and
[42] offer surveys of threats and defenses. Our focus is on
adversarial policies. Conventionally, these attacks have been
developed by simply training the adversary against the fixed
victim policy. The approach has been used by [2], [12],
[14], [16], [17], [47] for attacks. These adversaries were even
observed unintentionally by [1] and [28] who found that in

1Code for white-box RARL is available.
https://github.com/thestephencasper/white_box_rarl.

https://github.com/thestephencasper/white_box_rarl


competitive multiagent environments, it was key to rotate play-
ers in a round-robin fashion to avoid agents overfitting against
a particular opponent. Additionally, [37] introduced a approach
based on planning, [14] tested the detectability of adversarial
policies, [9], [14] explored defense techniques via obfuscating
the attacker and using option-based policies respectively, [8],
[47] experimented with defense via adversarial training, and
[12], [13] offered methods of attacking a victim whose reward
is unknown.

Meanwhile, [33], [36], [41], [44], [46], [48] have studied
Robust Adversarial Reinforcement Learning (RARL) in which
an agent is trained alongside an adversary that perturb’s its
body or actions in order for the agent to learn more robust
control. [49] studied the stability of this approach. Others [32],
[35], [39] have adversarially trained agents under observation
or environment perturbations.

Black vs. White-box Attacks: In supervised learning,
adversarial attacks are often easy to make with white-box
access to the victim’s internal weights. Black-box attacks,
however, typically require transfer, zero-order optimization, or
gradient estimation, and are usually less successful [3]. Several
others including [25], [26], [30], [32], [35] have studied attacks
against reinforcement learners analogous to white-box ones in
supervised learning. [27] further demonstrated the use of a
victim’s internal state by using the value function for schedul-
ing maximally-effective adversarial observation perturbations.
These types of attacks perturb the victim’s observations and
involve propagating the gradient for an adversarial objective
through the policy network. In contrast, our white-box adver-
sarial policies only differ from black-box ones from related
work in whether the attacker, a reinforcement learner, can
observe the victim’s internal state. Several works [10], [20],
[29] have also trained agents with a theory of mind for
their opponent in competitive tasks, but only in very simple
environments. To our knowledge, we are the first to introduce
policies which can exploit inner information from a victim in
complex environments.

Open-Source Decision Making: We study victims whose
policies are transparent to other agents in the environment.
Agents with open source policies pose a number of challenges
and pitfalls for decision-making. Several works formalize these
challenges in the context of decision theory or game theory
[5]–[7], [11], [19]. Our work adds to this by empirically
studying one such challenge.

III. METHODS

A. Framework

We consider the goal of training an adversary against a
victim inside of a two player Markov Decision Process (MDP)
defined by a 6-tuple: (S, {Aadv,Avict}, T, d0, {radv, rvict}, γ)
with S a state set, Aadv and Avict action sets for the adversary
and victim, T : S × Aadv ×Avict → ∆(S) a state transition
function which outputs a distribution ∆(S) over S, d0 an
initial state distribution, γ a temporal discount factor, and
radv and rvict reward functions for the adversary and victim
s.t. radv, rvict : S × Aadv × Avict × S → R. We assume

radv(s) ≈ −rvict(s) ∀s ∈ S . We only run experiments in
which the victim’s policy is fixed, so the two-player MDP re-
duces to a single-player one. We will use πadv : S → ∆(Aadv)
and πvict : S → ∆(Avict) to denote the policy of an adversary
and victim, and V πadv

adv , V πvict
vict : S → R to refer to their value

functions.

B. Threat Model

There are multiple notions that have been used in supervised
and reinforcement learning to characterize an adversary. These
include being effective at making the victim fail, being subtle
and hard for an observer to detect (e.g., [27]), and being
victim-specific (e.g., [14]). Here, we use the first criterion and
consider any policy that is effective at making another fail to
be adversarial. For further discussion, see Appendix, A.

Previous works discussed in Section II have assumed a
threat model in which the adversary only has black-box
access to the victim but can cheaply train against it for many
timesteps. We both strengthen and weaken this. First, we
make the permissive assumption that the adversary can observe
at least some of the victim’s internal state at each timestep
and is able to use this information as an observation in the
same timestep (see Section III-C for details). This could be
a plausible assumption if a malicious attacker could obtain
access to a victim agent’s policy parameters – especially if its
designers make the victim open-source. Moreover, this will
always be a realistic assumption for the agent’s designers if
they want to test its robustness and/or adversarially train it.
Second, we consider the restrictive assumption that the number
of timesteps for which the adversary can train against the
victim may be limited. Realistically, this could be the case
if the victim’s designers limit access to it or if gathering
experience is costly.

C. White-Box Adversarial Policies

We train policies using Proximal Policy Optimization (PPO)
[40] and Soft Actor Critic (SAC) [18]. Both involve training
a value function estimator alongside the policy. We consider
attackers that have access to (1) the victim’s action outputs, (2)
the victim’s value estimate, and/or (3) the internal activations
from the victim’s policy network. Our goal for (1) is to give
the adversary a glimpse of the near future so that it can better
counter the victim’s behavior. Our goal for (2) is to make it
easier for the attacker to quickly learn its own value function
because V πvict

vict (st) ≈ −V πadv

adv (st). Note this is only possible
for victims that have a critic. Finally, our goal for (3) is to
give the adversary rich and generally-useful information on
how the victim represents the state.

At timestep t, the environment state, st, is observed. The
victim processes the state and produces an action avictt ∼
πvict(st). At the same time, the white-box adversary queries
the victim to get its action output πvict(st), value estimate
Vvict(st), and/or latents `vict(st) in the form of a vector m(st).
In a slight abuse of notation, we refer to `vict(st) as `t and
m(st) as mt. Thus, the adversary’s policy function can be



written as πadv(st) = f(st,mt), and its value estimate can be
written as V πa

a (st) = g(st,mt).
We train both adversaries that use large convolutional neural

networks (CNNs) and small multilayer perceptrons (MLPs) as
policy networks. These architectures are illustrated in Fig. 2.
For the large CNNs, we concatenate mt into the representation
of the state twice: once at the first fully-connected layer, and
once at the last. We do this so that the adversary can readily
learn both complex and simple functions of mt. In partic-
ular,we hypothesized that giving the adversary the victim’s
value estimate in its final layer is helpful for learning its own
value estimator, which ought to be approximately the negative
of the victim’s. For the small MLPs policy networks, we only
concatenate mt with the observation once at the beginning for
efficiency.

IV. EXPERIMENTS

A. Stronger Attacks

Environment: We use the two-player Google Research Foot-
ball environment (Gfootball) [28]. Each agent in the environ-
ment controls a team of 11 football (soccer) players. The states
are 72 × 96 × 4 pixels with the four channels encoding the
left team positions, right team positions, ball position, and
active player position. Observations were stacked over four
timesteps to give the agents a perception of time, resulting
in observations of 72 × 96 × 16 pixels. The agents’ policy
networks had a ResNet architecture [21], and the action space
was discrete with size 19. We used the same reward shaping
as in [28] in which an agent was rewarded 1 for scoring, -1 for
being scored on, and 0.1 for advancing the ball one tenth of
the way down the field. We trained all Gfootball agents using
Proximal Policy Optimization [40] using the Stable Baselines
2 implementation [22].

Victims: First, we trained victims to develop adversarial
policies against. For Gfootball, this was done in two stages
for a total of 50 million timesteps. First, the victims were
trained against a ‘bot’ agent for 25 million timesteps with an
entropy reward to encourage exploration. Second, they were
trained for another 25 million timesteps against an agent from
the first phase with an entropy penalty to encourage more
deterministic play. We found this to result in more consistent
behavior from adversaries. In Fig. 3 (a) shows the learning
curves for these victims.

Adversaries: We trained four types of adversaries, each of
which uses observes different information, mt, from the vic-
tim’s internal state:

1) Black-Box Control: mt = ∅. This is the same threat
model used by [1], [14] and others mentioned in Section
II.

2) Action & Value: mt = Vvict(st) ⊕ πvict(st) where ⊕
is the concatenation operator. Here, the adversary sees
the scalar value and an |Avict|-sized observation giving
the victim’s distribution over discrete output actions.

3) Latent: mt = `t where `t gives the latent activations
from some layer during the forward pass through the

victim’s network from st. Here, we use those of the final
layer from which both the victim’s actions and value are
computed.

4) Full: mt = Vvict(st)⊕πvict(st)⊕`t. This combines the
Action & Value and Latent threat models.

Results: We train each adversary for 50 million timesteps. Fig.
3b shows the training curves for these attackers. All improve
significantly over the black box control, both by having
faster initial learning and a higher asymptotic performance.
The two types of white-box adversaries that could observe
the victim’s latents performed the best. For the action/value,
latent, and full attacks, the p values from a one-sided t test
for the hypothesis that they were superior to the black box
controls were 0.00638, 0.00001, and 0.00002 respectively,
demonstrating clear improvements.

B. Improved Robustness

Environment: To evaluate white-box robust adversarial re-
inforcement learning (RARL), we used HalfCheetah-v3 and
Hopper-v3 Mujoco environments from OpenAI Gym. [4].
In both environments, the agent controls a body in a 3D
simulated physics environment. Observations are continuous-
valued vectors specifying the position of the body, and actions
are continuous-valued vectors for controlling it. The agents’
policy networks had a small MLP architecture with two hidden
layers of 256 neurons each. We trained all gym agents using
SAC [18] with the Stable Baselines 3 implementation [38].

Training: In alternation, we trained a protagonist agent and an
ensemble of three adversaries who perturbed the protagonist’s
actions. For each training episode for the protagonist, a random
adversary from the three was chosen to make the perturbations.
We experiment with three methods:

1) RL Control: An agent is trained with no adversary.
2) RARL: An agent is trained against an ensemble of

black-box adversarial agents. This is the approach used
by [46].

3) Latent/Action White-Box RARL (WB-RARL): An
agent is trained against an ensemble of white-box adver-
saries that each observe its latent activations and action
outputs. Thus, mt = πvict(st)⊕ `t

Results: We trained a total of 40 agents of each type for
2 million timesteps and selected the 20 with the best final
performance. Fig. 4a shows the evaluation performance for the
HalfCheetah and Hopper agents in an adversary-free environ-
ment over the course of training. Performance is comparable
between all three conditions with the RL controls seeming to
perform the best in HalfCheetah.

To test the robustness of the learned policies, we then test
on a set of adversary-free environments with the transition
dynamics altered. We selected a range of 8 mass and 8 friction
coefficients to modify the environment dynamics by and tested
the agents on all 8 × 8 combinations. The full arrays of
results are shown in Fig. 5 in Appendix B. And the mean
results over all friction coefficients and mass coefficients are
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Fig. 3. Results for white-box adversarial attacks. (a) Training curves for Gfootball victims. The curves give the mean and standard error of the mean across
n = 20 victims. The first 25 million timesteps of training is against a rule-based “bot,” and the action entropy is rewarded while the second 25 million
timesteps is against a peer and the action entropy is penalized. (b) Learning curves over 50 million timesteps for various adversarial attackers against the
victims from (a) starting from random initialization. The top three curves show the performance of white-box adversaries with access to the victim’s action
distribution and value estimate and/or its latent activations. The bottom shows a black-box control. As in (a), the curves give the mean and standard error of
the mean across n = 20 victims. Three p value are shown below giving the results of a one-sided t test for the hypothesis that each white-box agent beat the
black-box control.

plotted in Fig. 4b-c respectively. In Fig. 4b-c, WB-RARL
agents generally perform as well or better than the other
two. And on average, WB-RARL performs the best over all
testing environments. For RL, RARL, and WB-RARL, the
HalfCheetah agents achieve mean episode rewards of 902,
914, and 1019, and the Hopper agents achieve 673, 645, and
716 respectively. We performed four one-sided t-tests to test
the hypotheses that the WB-RARL agents had superior overall
testing performance. For HalfCheetah, the p values were 0.085
and 0.111 for comparing the WB-RARL agents to the RL
and RARL ones respectively. For Hopper, the corresponding
p values were 0.095 and 0.009. These suggest it is likely that
the WB-RARL agents are more robust to these domain shifts.

V. DISCUSSION AND BROADER IMPACT

Our goal in this work is to better understand threats and
opportunities from adversarial policies in reinforcement learn-
ing by studying white-box adversarial attackers. We show that
allowing an adversarial policy to observe the internal state
of the victim, can result in (1) better initial and asymptotic
performance for adversarial attackers and (2) more effective
adversarial training for improving the robustness of a learned
policy.

More generally, our results show that information about
an agent’s internal state offers useful information for other
agents interacting with it. This may be the case regardless of
whether the setting is adversarial, cooperative, or apathetic. In
multiagent settings, it is key to bear in mind that a policy
which makes use of white-box information from another
agent need not be implemented by nor against a conventional
reinforcement learner. On one hand, policies can be developed

without standard reinforcement learning approaches (e.g., PPO
or SAC). For example, human video game players constantly
develop strategies to exploit the weaknesses of computer-
controlled competitors to great effect. On the other hand, so
long as a target agent computes actions via latent information
which information could be given to other agents.

Concerning adversarial attacks in particular, one risk of any
work that focuses on attack methods is that they could be
used for malicious attacks. This is an important concern, but
we emphasize that it is better to develop an understanding of
adversarial vulnerabilities through exploratory research than
from incidents in the real world. We also stress the benefits
of adversarial training. Our findings should encourage cau-
tion and robustness measures when developing reinforcement
learning systems that may vulnerable to these types of attacks.
In particular, these should include restricting access to white-
box information from agents.

A limitation is that while we show that white-box attacks
can be useful, they may be of limited practical relevance.
One reason is that for our experiments with RARL, the
improvements from granting the adversary white-box access
were only modest. Another is that white-box access may often
be difficult to obtain in the first place. And even though white-
box attacks can help train adversarial policies more quickly,
these attacks may still demand many millions of timesteps.
Future work on similar black-box attacks that use a model
of the victim learned from black-box (and potentially even
offline) access may be valuable. Studying ways to more effec-
tively leverage victim information in fewer training timesteps
may also be useful. Additional progress like this toward
better understanding threats and opportunities from adversaries
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Fig. 4. Results for white-box adversarial training. Training and testing performance for (top) HalfCheetah and (bottom) Hopper agents. (a) Performance over
training for robust adversarial reinforcement learning (RARL) experiments. Results are obtained from adversary-free testing environments. The curves show
the mean and standard error of the mean across n = 20 agents. We then tested the final agents across a range of environments with perturbed mass and
friction coefficients. The full results are shown in Fig. 5 in Appendix B. Here, (b-c) show the mean and standard error of the mean for testing results averaged
across the friction and mass coefficients respectively. Again, all errorbars show standard error of the mean across n = 20 agents. In general, agents trained
with white-box adversarial training perform as well or better than controls.

in reinforcement learning will be a promising direction for
expanding the toolbox for more trustworthy AI.
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APPENDIX

A. Understanding Adversarial Policies

The notion of an adversary for a deep learning system
was popularized by [15], [43] and subsequent research. These
works developed adversarial images that are both effective,
meaning that they fool an image classifier, and subtle, meaning
that they only differ from a benign image by a very small-norm
perturbation. While they often transfer to other models [24],
[31], [34], [45], these adversaries are also typically victim-
specific in the sense that they are created specifically to fool
a particular model.

As in supervised learning, “effectiveness” is used as part
of the definition for adversarial policies across the literature.
“Victim-specificity” sometimes is, but many RL works (e.g.,
[2]) including ours do not require an adversary to be victim-
specific. Finally, “subtlety” has not been adopted as a standard
for adversaries research in RL. A notion of subtlety for
adversaries in RL that would be analogous to supervised
learning would be that the adversary produces distributions
over actions or trajectories that are very similar to a benign
agent. However, in this and all related work in RL of which
we know, no notion of subtlety is part of the definition of an
adversarial policy. So ultimately, we use “adversarial” here to
simply refer to a policy which is good at beating a victim.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
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Fig. 5. Evaluations for Robust Adversarial Reinforcement Learning Experiments for n = 20 agents with (top) HalfCheetah and (bottom) Hopper agents. Each
grid shows mean episode reward for adversary-free environments with the mass and friction coefficients altered. Under each grid, the mean for all results in
the grid is displayed. Under the RL and RARL grids cols 1 and 2), the one-sided p value for the hypothesis that WB-RARL is superior to RL and RARL is
shown.

B. Full Robust Adversarial Reinforcement Learning Results

As discussed in Section IV-B, we tested agents on envi-
ronments with altered mass and friction parameters. For both
the HalfCheetah and Hopper environments, we used a set of
8× 8 different mass and friction values. Testing results across
all testing environments for control, RARL, and WB-RARL
agents are shown here in Fig. 5. Under each grid, the mean for
all results in the grid is displayed. Under the RL and RARL
grids (columns 1 and 2), the p value from a one-sided t-test for
the hypothesis that WB-RARL is superior to RL and RARL
is shown.

C. High-Level Summary

Here, we provide a summary of this work which does not
assume that the reader has a technical background.

“Reinforcement Learning” (RL) is the process by which an
agent learns via some formalized process of trial and error
to accomplish a goal. Humans are reinforcement learners.

And so are some algorithms that are commonly studied in
machine learning research today. For example, is common
to use reinforcement learning algorithms to train AI systems
to play video games. Using experience, they can infer what
types of actions lead to higher scores and adjust their behavior
accordingly.

Multiagent RL describes settings in which there is more than
one agent acting in some setting. Past research has shown that
in multiagent settings, training “adversarial” reinforcement
learners to make other reinforcement learners fail can be
useful. One one hand, an adversarial agent can often learn
to act in a way that renders the “victim” agent unable to
accomplish its goals. For example, an adversary can sometimes
act in ways that make a victim in a two player video game
seem to take actions that are as bad as – or even worse than
– random ones. On the other hand, training a victim against
an adversarial agent can make it much more robust to some
failures. For example, this might make the victim particularly



effective at avoiding failures due to changes to its environment.
In this work, we study a new approach to adversarial attacks

and adversarial training in RL. We experiment with “white-
box” attacks in which the adversary can observe the internal
state of the victim. For humans, this would be analogous to
one person playing a game against someone else while being
able to view scans of their brain. We show that these white-
box adversarial agents are more effective than controls for both
attacks and adversarial training. We argue that this helps us
to better understand threats and opportunities from adversarial
RL. And based on these results, we call for increased caution
and more effective robustness measures when deploying RL
systems in the real world.
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